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ABSTRACT

Genome-wide profiling of interactions between
genome and various functional proteins is critical
for understanding regulatory processes involved in
development and diseases. Conventional assays re-
quire a large number of cells and high-quality data on
tissue samples are scarce. Here we optimized a low-
input chromatin immunoprecipitation followed by se-
quencing (ChIP-seq) technology for profiling RNA
polymerase II (Pol II), transcription factor (TF), and
enzyme binding at the genome scale. The new ap-
proach produces high-quality binding profiles using
1,000–50,000 cells. We used the approach to examine
the binding of Pol II and two TFs (EGR1 and MEF2C)
in cerebellum and prefrontal cortex of mouse brain
and found that their binding profiles are highly re-
flective of the functional differences between the two
brain regions. Our analysis reveals the potential for
linking genome-wide TF or Pol II profiles with neu-
roanatomical origins of brain cells.

INTRODUCTION

Protein-DNA interactions are widely and critically involved
in the regulations of gene transcription and expression
(1). RNA polymerase II (Pol II) transcribes protein-coding
genes into mRNA following several steps: formation of
preinitiation complex, promoter-proximal pausing, elonga-
tion and termination. Pol II binding occurs throughout the
genome, with enrichment at regions being either actively
expressed or readied for imminent transcription upon en-
vironmental cues (2,3). This latter phenomenon of Pol II
pausing is the rate limiting step on more than 70% of meta-
zoan genes and has been shown to play key biological roles
(3–6). Pol II is a key ChIP-seq target and the bindings of its
subtypes reveal different states and stages of transcription
in the genome (7,8). Similarly, transcription factors (TFs)

bind to DNA or cofactors and participate in gene regula-
tions in a sequence-specific manner (1,9). TFs control key
aspects of cellular biology including cell differentiation, de-
velopment patterning, and immune response (8,10). They
have long been profiled using ChIP-seq in order to iden-
tify their roles in gene activities (8). Finally, enzymes such
as histone acetyl transferases (HATs) and histone deacety-
lases (HDACs) closely interact with the genome to effect
epigenetic modifications (histone acetylations) that are crit-
ically involved in gene silencing and activation (11). They
are also involved in processes beyond histone modification,
such as memory formation and synaptic plasticity in brain
(12,13). Targeting a single histone acetylation marker such
as H3K27ac does not provide the full scope of information
if the role of specific HAT/HDAC are being investigated
(14). The binding profiles of these proteins are often indica-
tive of genes that are activated or readied in a process. Dif-
ference in the binding profile among various tissue samples
reveals underlying genome-wide molecular dynamics and
variations involved in development or disease.

Chromatin immunoprecipitation coupled with sequenc-
ing (ChIP-seq) is a simple and direct approach to profile in
vivo genome-wide binding of proteins. Although ChIP-seq
has been generating reliable and high-quality data on his-
tone modifications (i.e. the interaction between a modifica-
tion histone and the genome) (15–17), ChIP-seq results on
other types of protein-DNA interactions tend to be much
more challenging. Compared to the robust histone-DNA
interaction, the interaction between DNA and other pro-
tein molecules such as Pol II, TFs, and enzymes may be
harder to preserve even after treatment such as formalde-
hyde crosslinking. Thus conventional ChIP-seq requires a
large quantity of starting material (>107 cells per assay) for
probing genomic binding of proteins that are not histones
and the results tend to have lower reproducibility compared
to histone ChIP-seq (18). In recent years, significant efforts
have been made in developing low-input ChIP-seq methods
(15–17,19–26). However, the vast majority of these meth-
ods were only demonstrated on examining histone modifi-
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cations, with a few exceptions that also profiled transcrip-
tion factors (27–29).

As an alternative to ChIP, IP-free technologies such as
CUT&RUN (30,31) and ChIL-seq (32) were developed to
profile factor binding to the genome. CUT&RUN maps Pol
II and TF binding by cutting and releasing DNA fragments
that interact with antibody-targeted Pol II and TFs into su-
pernatant, requiring as few as 1,000 cells (30,31). The latest
variation of CUT&RUN (CUT&Tag) (33) have been used
to profile single cells. However, CUT&RUN data appear to
exhibit lower correlation with the gold-standard ChIP-seq
data (e.g. ENCODE data) compared to low-input ChIP-seq
technologies (30,31,34). CUT&RUN datasets may also be
contaminated by DNA sequences that are from unknown
sources associated with the process (e.g. sequences contain-
ing (TA)n) (35).

Here we establish micrococcal nuclease (MNase)-
digestion-based native MOWChIP-seq as a general tool for
low-input profiling of protein binding to genome. MNase
digestion was previously applied in native ChIP to probe
mostly histone modifications (36) and also non-histone
proteins including Pol II and TFs (26,37–41). However,
these studies were all conducted using a large number
of cells (105–108). Our approach, referred to as native
MOWChIP-seq or nMOWChIP-seq, combines MNase
digestion of native chromatin with a microfluidics-based
low-input ChIP-seq technology (MOWChIP-seq (15,17))
that was previously applied to examine histone modifi-
cations only. We show that MNase digestion is effective
for preserving the links between protein and genome, and
essential for application of MOWChIP-seq to Pol II, TFs
and enzymes (hence the name ‘nMOWChIP-seq’). We
generated high-quality ChIP-seq data using as few as 1,000
cells for studying Pol II, 5,000 cells for TF EGR1, and
50,000 cells for HDAC2. We applied this method to study
genome-wide binding of Pol II, EGR1 and MEF2C in two
functional regions of the mouse brain: prefrontal cortex
(PFC) and cerebellum. Extensive variations in RNA Pol II
and TF binding were identified between these two brain
regions and these profiles reveal the involvement of these
regulatory molecules in the functional difference.

MATERIALS AND METHODS

Cell culture

GM12878 cells were obtained from Coriell Institute for
Medical Research. Cells were cultured in RPMI-1640
medium (30–2001, ATCC) with 15% fetal bovine serum
(16000–044, Gibco) and 1% pen-strep (Invitrogen) at 37◦C,
5% CO2. Cells were subcultured every 3 d to maintain ex-
ponential growth.

Mouse strain and brain dissection

C57BL/6J mice were purchased from Jackson Laboratory
and maintained in the animal facility with 12-h light/12-
h dark cycles and food and water ad libitum. 8-week old
male mice were sacrificed by compressed CO2 followed by
cervical dislocation. Mouse brains were rapidly dissected,
frozen on dry ice and stored at −80◦C. This study was ap-

proved by the Institutional Animal Care and Use Commit-
tee (IACUC) at Virginia Tech.

Nuclei isolation from brain tissues

A mouse brain was put on ice and PFC and cerebellum were
dissected for nuclei isolation. The following steps were per-
formed on ice and centrifugation performed at 4◦C. Tissue
was placed in 3 ml of ice-cold nuclei extraction buffer [0.32
M sucrose, 5 mM CaCl2, 3 mM Mg(Ac)2, 0.1 mM EDTA,
10 mM tris-HCl, and 0.1% Triton X-100, with 30 �l of PIC
(P8340, Sigma-Aldrich), 3 �l of 100 mM PMSF, and 3 �l
of 1 M dithiothreitol added before use]. Tissue was homog-
enized in the grinder set (D9063, Sigma-Aldrich) by slowly
douncing 15 times with pestle A and 25 times with pestle
B. Homogenate was filtered through a 40 �m cell strainer
into a 15 ml tube and centrifuged at 1000g for 10 min. The
supernatant was removed and the pellet was resuspended in
500 �l nuclei extraction buffer and transferred to a 1.5 ml
tube. 750 �l of 50% iodixanol, 7.5 �l of PIC, 0.75 �l of 100
mM PMSF and 0.75 �l of 1M dithiothreitol were added and
mixed by pipetting. The mixture was centrifuged at 10,000g
for 20 min and the supernatant was removed. If mixed nu-
clei (without separation of neurons and glia) were used for
nMOWChIP directly, the nuclei pellet was resuspended in
200 �l of Dulbecco’s phosphate-buffered saline (DPBS). If
nuclei labeling and FACS sorting were conducted, 500 �l
of 2% normal goat serum (50062Z, Life Technologies) in
DPBS was added to the nuclei pellet and incubated for 10
min before resuspending. Anti-NeuN antibody conjugated
with Alexa 488 (MAB377X, EMD Millipore) was diluted
with DPBS to 2 ng/�l. 8 �l of anti-NeuN was added to
each 500 �l of nuclei suspension and incubated at 4◦C for
1 h on a rotator. The labeled nuclei were then sorted using
FACS (BD FACSAria, BD Biosciences). 8 �l of non-labeled
nuclei were saved as unstained control prior to addition of
anti-NeuN antobody. The concentration of nuclei suspen-
sion after FACS was typically low (∼1.2 × 105/ml). The nu-
clei were re-concentrated by adding 200 �l of 1.8 M sucrose,
5 �l of 1M CaCl2 and 3 �l of 1M Mg(Ac)2 to 1 ml of the
nuclei suspension. The mixture was incubated on ice for 15
min and centrifuged at 1800g for 15 min. Supernatant was
removed and the nuclei pellet was resuspended in DPBS to
generate a suspension containing 4 × 106 nuclei/ml.

MNase digestion of chromatin

This protocol is scalable in volume and can digest
cell/nuclei suspension with concentration up to 4 × 106/ml.
Our experiments usually started with 4 × 105 cells/nuclei
suspended in 100 �l of DPBS. 1 �l of PIC, 1 �l of 100 mM
PMSF and 100 �l lysis buffer [4% Triton X-100, 100 mM
tris-HCl, 100 mM NaCl, and 30 mM MgCl2] were added,
mixed by vortexing and incubated at room temperature for
10 min. 10 �l of 100 mM CaCl2 and 2.5 �l 100U MNase
(88216, Thermo Fisher Scientific) were added, mixed by
vortexing and incubated at room temperature for 10 min.
22 �l of 0.5 M EDTA was then added, mixed by vortex-
ing and incubated on ice for 10 min. The solution was cen-
trifuged at 16,100g for 5 min at 4◦C. Supernatant containing
fragmented chromatin was collected into a new 1.5 ml tube
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and placed on ice for use. Volumes equal to 100,000 and
50,000 cells/nuclei were portioned from the final chromatin
(∼220 �l) for assays. For assays using 10,000 cells/nuclei or
less, 100 �l of suspension containing 40,000 cells/nuclei was
used in the first step and the same procedure as above was
followed.

Preparation of immunoprecipitation (IP) beads

5 �l of protein A Dynabeads (10001D, Invitrogen) were
used in each MOWChIP assay. The beads were washed
twice with IP buffer (20 mM Tris-HCl, pH 8.0, 140 mM
NaCl, 1 mM EDTA, 0.5 mM EGTA, 0.1% (w/v) sodium
deoxycholate, 0.1% SDS, 1% (v/v) Triton X-100) and re-
suspended in 150 �l of IP buffer. 1 �g of Pol II or TF
antibody was added into the bead suspension for each as-
say using 105 cells/nuclei, while 0.5 �g of antibody was
added for each assay using 5 × 104 or fewer cells/nuclei. We
used the following antibodies in this work: anti-Pol II-total
(ab817, lot GR3271868-2, Abcam), anti-Pol II-S5 (ab5131,
lot GR3202335-5, Abcam), anti-Pol II-S5 4H8 (ab5408, lot
GR3325973-4, Abcam), anti-EGR1 (sc-101033, lot A1618,
Santa Cruz), anti-MEF2C (sc-365862, lot B0818, Santa
Cruz), anti-HDAC2 (ab124974, lot GR97402-7, Abcam).
The suspension was incubated on a rotator at 4◦C for 2 h.
The beads were then washed with IP buffer twice and re-
suspended in 5 �l of IP buffer for loading into the device
chamber.

MOWChIP-seq

The microfluidics-based MOWChIP-seq process, includ-
ing microfluidic device fabrication and operation, was con-
ducted following our published protocol (17).

Purification of ChIP DNA

After nMOWChIP, IP beads were rinsed once with IP buffer
and resuspended in 200 �l of DNA elution buffer (10 mM
Tris-HCl, 50 mM NaCl, 10 mM EDTA, and 0.03% SDS).
2 �l of 20 mg/ml proteinase K was added and the suspen-
sion was incubated at 65◦C for 1 h. DNA was then extracted
and purified by phenol-chloroform extraction and ethanol
precipitation. DNA pellet was resuspended in 8 �l of low
EDTA TE buffer. Input DNA was purified with the same
process, by digesting chromatin solution directly using pro-
teinase K, followed by the same extraction and purification
process.

Library preparation, quantification and sequencing

Libraries were constructed using Accel-NGS 2S Plus DNA
Library kit (Swift Biosciences) following the manufacturer’s
instructions. 1 × EvaGreen dye (Biotium) was added to the
amplification mixture to monitor the PCR amplification.
Library was eluted to 7 �l of low EDTA TE buffer. Library
fragment size was examined using TapeStation (Agilent)
and the concentration was quantified with KAPA Library
Quantification kit (Kapa Biosystems). We also examined
the enrichment of the libraries using qPCR and primers
listed in Supplementary Table S3. Libraries were pooled for
sequencing by Illumina HiSeq 4000 SR50 mode.

ChIP-seq data analysis

Raw sequencing FASTQ files were trimmed using Trim Ga-
lore! (0.4.1) with default settings. Reads that passed the
quality check were mapped to reference genomes hg38 (hu-
man) or mm10 (mouse) with bowtie (1.1.2) (42). Uniquely
mapped reads were filtered for known blacklisted genome
regions using samtools (1.3.1) (43) and bedtools (2.29.2)
(44) to remove ChIP-seq artifacts. The reference genome
was then divided into 100-bp bins and ChIP-seq signal for
each bin was counted for both ChIP and input samples.
Normalized ChIP-seq signal for each bin was calculated us-
ing the following equation:

Signal100bp =
(

ChI P signal
No. of unique ChI P reads

− Input signal
No. of unique input reads

)

×1, 000, 000

Both ChIP and input reads were then extended by 100 bp
on either ends to compute normalized signal for each bin
in the same manner, and visualized as tracks in genome
browser IGV (2.11.2) (45). Peak calling was conducted us-
ing MACS2 (2.1.1.20160309, default settings). Differential
binding analysis was carried out using DiffBind (3.14) (46)
with default settings. Selected genomic regions of inter-
est were further analyzed for gene ontology terms using
GREAT (47). Pearson’s correlation between datasets was
calculated via DiffBind, using dba.count command with de-
fault parameters to process MACS2 peaks and uniquely
mapped reads and calculate consensus peaks and affin-
ity score. Consensus peaks between technical replicates are
identified by bedtools intersect with the additional setting
of -f 0.5. Overlap between consensus peaks are plotted us-
ing Intervene (48).

ROC curves were created by calculating the true posi-
tive rate (TPR) and false positive rate (FPR) at 100 dif-
ferent peak-calling thresholds from 0.99 and 10–15. Thresh-
olds were applied to both the EGR1 and Pol II sets, and
AUC was calculated with the R package ROC. Subsam-
pling of EGR1 bam files to between 25% to 95% of orig-
inal reads was performed using samtools. Five separate, but
consistent, seeds were used at each subsampling percent-
age. Matthew’s correlation coefficient (MCC) was calcu-
lated in R (mltools) at each percentage and each seed using
a MACS2 q-value cutoff of 0.05 for both EGR1 and Pol II
peaks.

RESULTS

Profiling genome-wide binding of RNA Pol II, TFs, and en-
zymes

RNA Pol II, TF or enzyme binding has been conventionally
studied after crosslinking using reagent such as formalde-
hyde that firmly immobilizes the protein to the genomic
DNA (49,50). However, our initial results showed that our
low-input MOWChIP-seq technology (15,17) yielded low-
quality results when at least 100,000 to 1 million cells were
crosslinked and sonicated to create the chromatin fragments
before Pol II-S5 ChIP (Supplementary Figure S1). The data
quality decreased when less cells were used (Supplementary
Figure S1A). 53,817 and 17,561 peaks were yielded in the
two technical replicates of the sonicated crosslinked sam-
ples using 100,000 cells, compared to 114,811 and 140,695
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peaks generated by nMOWChIP-seq using 10,000 cells per
assay. Data on crosslinked samples had a Jaccard index of
0.23 between replicates, lower than nMOWChIP-seq sam-
ples (0.48). We verified the size distribution of sonicated
crosslinked chromatin and found no abnormality in terms
of fragmentation efficiency (Supplementary Figure S1D).
Because crosslinking and sonication have been successfully
used in conventional ChIP-seq of Pol II using millions of
cells, it is likely that the data quality issues here are spe-
cific to low-input assays (<100,000 cells per assay). In our
Pol II-S5 in GM12878 profiling experiments, crosslinked
MOWChIP with 50,000 cells yielded an average of 0.74 ng
ChIP DNA, while nMOWChIP with 50,000 cells yielded an
average of 0.51 ng ChIP DNA.

We then applied nMOWChIP-seq to profile protein bind-
ing to the genome. MNase digestion was previously ap-
plied in native ChIP to probe mostly histone modifications
(36) and also non-histone proteins including Pol II and TFs
(26,37–41). In our process (Figure 1A), tissues were first me-
chanically homogenized to extract nuclei and cultured cells
were directly used. Nuclei or cells were lysed and digested
with MNase to yield chromatin fragments with size range
appropriate for ChIP (150–600 bp). That was followed by
the MOWChIP process (15,17). Briefly, in a microfluidic
chamber with a partially closed sieve valve, antibody-coated
magnetic IP beads were packed into a dense bed. All chro-
matin fragments were forced through the bead bed, dras-
tically increasing the adsorption efficiency of targeted frag-
ments. Oscillatory washing was then applied to remove non-
specific binding, and the beads with bound chromatins were
transferred out of the chamber for DNA elution, library
preparation and sequencing.

Using GM12878, a lymphoblastoid and ENCODE tier 1
cell line, we showed that our method could generate high
quality ChIP-seq data with input as little as 1,000 cells
per assay for Pol II-S5 (ab5131) (Figure 1B). Cells were
first digested in tube by MNase and volumes equal to the
desired cell numbers were portioned for nMOWChIP as-
says. Pearson correlations between technical replicates were
0.87, 0.84, 0.60, and 0.54 for 50,000-, 10,000-, 2,000-, and
1,000-cell samples on RNA Pol II-S5, respectively (Figure
1C). We benchmarked our data against ENCODE data ob-
tained using conventional ChIP-seq method and 20 million
cells per assay. We examined the number of peaks called
and the fraction of reads in peaks (FRiP) for data qual-
ity (Supplementary Table S1). The nMOWChIP-seq Pol
II data produced averagely 136,504, 127,753, 65,076 and
26,724 peaks with 50,000, 10,000, 2,000 and 1,000 cells
per assay, respectively, compared to 111,350 peaks from
the ENCODE data obtained using 20 million cells. We
examined the overlap of peaks produced by these assays
using decreasing number of cells (Supplementary Figure
S2). For each dataset associated with a specific cell num-
ber, common peaks were identified by merging peaks that
overlap for more than 50% of their peak region between
technical replicates. 47% of the common peaks produced
from the 1,000-cell samples overlapped with those from
all the other 3 datasets (2,000, 10,000, and 50,000 cells
per assay). Only 2% of the common peaks from 1,000-
cell dataset do not overlap with any common peaks from
other conditions. We observed that most common peaks

identified by the low-cell-number assays coincided with the
strongest peaks in the large-cell-number datasets (Figure
1B). FRiP measures the amount of background in the data
and nMOWChIP-seq Pol II data showed a decrease from
49.8% to 9.4% with cells per assays decreasing from 50,000
to 1,000, far exceeding the 1% threshold recommended by
ENCODE (51).

We also determined that the binding of Pol II was stable
enough to be preserved at −80◦C, a unique property not ob-
served in histone modifications or TFs. From our testing,
MNase-digested chromatin can be frozen at −80◦C or on
dry ice for 2 d without substantial degradation in data qual-
ity for Pol II. We digested 40,000 cells and stored the chro-
matin on dry ice for 2 d. Volumes equal to 10,000 cells were
then portioned for MOWChIP-seq and the data is shown as
‘10,000-st’ (Supplementary Figure S3).

It is worth noting that our nMOWChIP-seq Pol II-S5
profile shows higher signal than the corresponding EN-
CODE profile at regions that are close to the transcrip-
tion ending site (TES) (Supplementary Figure S4). We con-
ducted nMOWChIP-seq using two different Pol II-S5 anti-
bodies (ab5131 and ab5408, with the latter used in the EN-
CODE data). For example, compared to the ENCODE data
taken using conventional ChIP-seq technology, extra peaks
near the TES regions can be observed in both nMOWChIP-
seq datasets at genes PTGES3 and NACA (Supplementary
Figure S4A). Similar genome-wide trend can be seen in the
average ChIP-seq signal per gene over promoter and gene
body (Supplementary Figure S4B).

We profiled a transcription factor, early growth response
protein 1 (EGR1), using as few as 5,000 GM12878 cells
(Figure 1B and C, Supplementary Table S1). Pearson cor-
relation coefficients between the technical replicates were
0.87, 0.87, 0.63, and 0.67 for 100,000-, 50,000-, 10,000-, and
5,000-cell samples, respectively (Figure 1C). EGR1 data
generally show lower peak numbers and FRiP than Pol II
data, as shown by both nMOWChIP-seq and ENCODE
data. FRiP ranged from 8.4% to 3.2% in our nMOWChIP-
seq EGR1 data. We also profiled another TF MEF2C (Sup-
plementary Table S1). A large percentage of the EGR1
(85%) and MEF2C (75%) peaks overlap with Pol II peaks
(Supplementary Figure S5).

Finally, we applied nMOWChIP-seq to examine the bind-
ing of histone deacetylase HDAC2 in GM12878 cells (Fig-
ure 1B and C, Supplementary Table S1). At least 50,000 cells
were required to generate good quality data on HDAC2
binding. An average of 1,394 (FRiP = 1.2%) and 8527
peaks (FRiP = 3.1%) were generated using 50,000 and
100,000 cells per assay, compared to 1820 peaks of EN-
CODE data obtained using 10 million cells (FRiP = 0.3%).
The nMOWChIP-seq FRiP values still compare favor-
ably to those of ENCODE when they are calculated from
overlapping peaks between technical replicates (2.06% and
0.93% for 100,000 and 50,000 cells compared to 0.03% of
ENCODE). We also examined HDAC2 binding in mouse
brain cells (Supplementary Figure S6). Both unsorted nu-
clei mixture and neuronal nuclei were used to verify that
nMOWChIP can profile HDAC2 in tissue samples and
sorted nuclei. 100,000 mixed nuclei and 80,000 FACS-
sorted NeuN + neuronal nuclei from PFC were used in
each assay and an average of 3193 (FRiP ∼13.1%) and 2112
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(FRiP ∼10.4%) peaks were produced (Supplementary Ta-
ble S1).

Comparison of Pol II and Pol II-S5 binding profiles

We used two antibodies to differentiate the binding of Ser-
ine 5 phosphorylated subset of Pol II (Pol II-S5, ab5131)
and all Pol II regardless of its phosphorylation status (Pol
II-total, ab817, clone 8WG16). Our data showed the dis-
tinction (Figure 2). The two profiles on GM12878 cells were
similar in a large fraction of the genome (Figure 2A). How-
ever, some genes (ACTG1 and MDM2 as examples) with
Pol II binding over the entire gene body showed that Pol
II-total profile captured the initial binding of unphospho-
rylated Pol II at TSS, which was absent in Pol II-S5 profile
in comparison (Figure 2B). We examined the signal strength
at promoter region and gene body, computed the ratio for
all genes and compared between Pol II-total and Pol II-S5
profiles. 51% of mutual genes with both Pol II-total and Pol
II-S5 bindings showed a higher ratio of promoter over gene
body signal intensity (fold change > 2) in Pol II-total data
than in Pol II-S5 data. During the course of binding to a
gene, Pol II is unphosphorylated during the pre-initiation
stage, but undergoes phosphorylation once a short (20–60
bp) mRNA begins to transcribe (2). Being able to differen-
tiate the distinct forms of Pol II is important when the ex-
act Pol II binding status on specific genes is of interest (e.g.
whether pre-initiation or activated Pol II dominates pausing
at a TSS).

To determine whether Pol II-total or Pol II-S5 was more
effective in predicting TF binding sites, we analyzed the
overlap of either Pol II-total peaks or Pol II-S5 peaks with
EGR1 peaks at varying peak-calling thresholds, shown as
receiver operating characteristic (ROC) curves that display
the true positive rate (TPR) versus the false positive rate
(FPR) (Figure 2C). To quantify the predictive quality, we
calculated the area under the curve (AUC) for each of the
ROC curves using our EGR1 binding data as the gold stan-
dard. We found that Pol II-S5 profile had a higher predictive
value than Pol II-total (0.899 vs 0.845 using nMOWChIP-
seq data, and 0.871 vs 0.807 using ENCODE data). We
also tested if Pol II-S5 was more robust than Pol II-total
with samples of lower quality (Figure 2D). For this, we sub-
sampled our EGR1 data from 25% to 95% of the original
reads, with 5 replicates at each sampling. We then calculated
the average Matthew’s correlation coefficient (MCC), a ro-
bust single value quantifier of classifier quality, of the five
replicates at each subsampling percentage. Pol II-S5 outper-
formed Pol II-total, both in our data and in ENCODE’s,
regardless of TF data quality.

Differential RNA Pol II binding in prefrontal cortex and cere-
bellum of mouse brain

We applied nMOWChIP-seq to profile Pol II binding in
mouse PFC and cerebellum. PFC have roles in cogni-
tive functions, decision-making and short-term memory
(52,53), while cerebellum controls motor functions and co-
ordination (54). We reasoned that the functional difference
between the two regions should reflect on the binding of Pol
II and TFs that have recognized roles in the brain. There
have not been published ChIP-seq data confirming this.

We mapped Pol II-total binding in B6 mouse brain us-
ing nuclei extracted from PFC and cerebellum with 50,000
nuclei used per assay (Figure 3). The genome-wide Pol II
profiles were substantially different between cerebellum and
PFC with Pearson’s correlation based on DiffBind affinity
score being 0.67, compared to an average of 0.96 between
technical replicates (Figure 3A and B). DiffBind analysis
identified 3021 peaks with higher levels of Pol II binding
in PFC than in cerebellum, and 1197 peaks having higher
binding in cerebellum (fold change > 2, P < 10–5). Differen-
tially bound peaks for Pol II-total are listed in Supplemen-
tary Dataset 1. Gene ontology (GO) analysis of these re-
gions showed that the regions with high Pol II binding inten-
sity in PFC were enriched in terms associated with memory,
learning and anxiety-related response (Figure 3C). Synap-
tic plasticity, one of the fundamentals of learning and mem-
ory, was also enriched along with its key components: long
term potentiation and depression (Figure 3C) (55). In con-
trast, the genomic regions with Pol II binding higher in cere-
bellum were enriched in terms that were specific to cerebel-
lum (e.g. cerebellum morphology and development) (Figure
3C).

We also examined the Pol II pausing index for the Pol II-
bound genes in PFC and cerebellum. Pol II pausing index
(PI) refers to the ratio of Pol II read density between pro-
moter proximal region (−30 to +300 bp of TSS) and gene
body (+300 bp of TSS to TES), with higher PI indicating
more Pol II binding near TSS (2,56). Pol II-bound genes
can be divided into three categories based on the PI value:
non-paused and expressed (PI < 2), paused and expressed
(2 < PI < 20), and paused and unexpressed (PI > 20).(2)
For example, Plk2, which is a gene known to participate in
rodent brain development and cell proliferation (57), and
Npas4, which is involved in regulating reward-related learn-
ing and memory (58), both showed dramatically higher PI
values in cerebellum than in PFC (Figure 3D). The data re-
vealed that they were actively expressed in PFC but paused
without expression in cerebellum. In contrast, Slc46a1 and
Rsph9 showed higher PI values in PFC than cerebellum.
While both were being expressed in the two tissues, there
was significant pausing of Pol II at TSS in PFC. This sug-
gests that PFC had more potential in transcribing these
genes at a short notice, such as Slc46a1, which encodes a
facilitative carrier for folate (59). Furthermore, we analyzed
the distribution of the PI in PFC and cerebellum (Figure
3E). 36% of genes were being actively expressed in PFC
(PI < 20), compared to only 25% in cerebellum. Mouse
brain displayed more pausing and less active transcription
compared to GM12878 (52% actively expressed genes, Sup-
plementary Figure S7A). This was also within our expecta-
tion because GM12878 cell line was maintained in log phase
and actively dividing, unlike brain cells in adult mice. By
examining the relationship between the PI and the gene ex-
pression level (derived from RNA-seq data), we show that
the PI is highly suggestive of gene expression level (Sup-
plementary Figure S7B). We identified Pol II-bound genes
that displayed significantly different pausing indexes be-
tween PFC and cerebellum (fold change > 3, minimal read
density > 0.02 read/bp) (Supplementary Table S2). Among
these, Igfbp6 is involved in myelin formation during central
nervous system (CNS) development (60), and Slc1a2 en-
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Figure 2. Comparison of Pol II-total and Pol II-S5 bindings in GM12878 cells. (A) Normalized Pol II-S5 and Pol II-total signal in GM12878 cells (50,000
cells per assay). (B) Normalized Pol II signal over genes ACTG1 and MDM2, showing the difference in Pol II-total and Pol II-S5 binding. Pol II-total
includes Pol II that is not phosphorylated. These non-active Pol II molecules tend to pause at promoter regions, while phosphorylated and active Pol II
(S5 being the majority) binds to the entire gene body. (C) Receiver operating characteristic (ROC) curves using ENCODE (SRX100400 and SRX100530)
and nMOWChIP-seq Pol II-total and Pol II S5 datasets predicting EGR1 binding peaks in GM12878 cells. (D) Matthew’s correlation coefficient (MCC)
plots of ENCODE and nMOWChIP-seq datasets being subsampled at different levels to predict EGR1 binding peaks in GM12878 cells.

codes excitatory amino acid transporter 2, responsible for
reuptake of 90% glutamate in CNS (61). Shank3 belongs to
the Shank gene family that plays a role in synapse forma-
tion (62), and Flrt2 encodes a member of the FLRT protein
family that is shown to regulate signaling during mouse de-
velopment (63).

Differential EGR1 and MEF2c binding in prefrontal cortex
and cerebellum of mouse brain

We also examined EGR1 and MEF2C (myocyte enhancer
factor-2 C) binding using nuclei extracted from mouse PFC
and cerebellum. Chromatin from 100,000 nuclei were used
in each assay, yielding high quality data that revealed dif-
ferential binding between the two regions of brain (Fig-
ure 4A). We picked several genes as examples (Figure 4A).
Kalrn (Kalirin) plays important roles in nerve growth (64).
Higher EGR1/MEF2C activity in PFC was observed on
Gria1(Glutamate receptor 1) which is involved in synaptic
transmission (65). Cacna1a is involved in movement disor-

der (66) and expression of Nfix can influence neural stem
cell differentiation (67). Zic1 and Zic4 belong to the fam-
ily of Zinc finger of the cerebellum (ZIC) protein family
(68), whose loss of function can lead to Dandy-Walker mal-
formation and incomplete cerebellar vermis (69). Higher
EGR1 binding on these four genes were seen in cerebel-
lum than in PFC. A large fraction of EGR1 and MEF2C
peaks (68–89%) appeared to overlap with Pol II peaks, in
both cerebellum and PFC (Supplementary Figure S8). We
observed correlated EGR1 and MEF2C profiles, with an av-
erage of Pearson’s correlation based on affinity score of 0.74
between the two TFs in PFC and 0.84 in cerebellum (Fig-
ure 4B). Such correlations were much higher than the one
observed in GM12878 cells (r ∼0.52). On the other hand,
EGR1 and MEF2C presented very different profiles be-
tween PFC and cerebellum, with the average correlation of
0.51 between the two brain regions for both TFs. We further
examined the binding difference between PFC and cerebel-
lum for these two TFs. Their binding sites were much more
heavily situated at promoters in PFC (79%) than in cerebel-
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Figure 4. Differential transcription factor binding in prefrontal cortex and cerebellum of mouse brain. (A) Normalized EGR1 and MEF2C signals at genes
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lum (60%) (Figure 4C). We further analyzed the data using
DiffBind to identify regions with significantly different level
of EGR1/MEF2C binding between PFC and cerebellum
(46). In total, DiffBind identified 1026 peaks with higher
EGR1 binding in cerebellum than in PFC, and 1563 peaks
with higher MEF2C binding in cerebellum than in PFC
(fold change > 2, P < 10–5). These regions were further an-
alyzed for GO term enrichment analysis using GREAT and
linked to walking behavior, motor coordination, and cere-
bellum morphology and development in the case of EGR1,
cerebellar development and limb coordination in the case
of MEF2C (Figure 4D). In contrast, very few differential
peaks (12 for EGR1 and 1 for MEF2C) were found to have
higher binding signal in PFC than in cerebellum and no GO
terms were found. Differentially bound peaks for TFs are
listed in Supplementary Dataset 2.

DISCUSSION

ChIP-seq profiling of proteins bound to the genome is gen-
erally much more challenging than that of modified his-
tones. Histone ChIP-seq can be conducted with crosslink-
ing and sonication or under native ChIP condition. Due to
the robust interaction between histones and genome, na-
tive ChIP-seq for histone modifications can have very high
efficiency. In contrast, previous ChIP-seq of protein bind-
ings often involves crosslinking and sonication that immo-
bilizes the protein to the interacting DNA sequence before
breaking chromatin into fragments. Crosslinking is often
considered necessary when TF, Pol II and enzyme interac-
tion with the genome is studied, due to perceived needs and
benefits for preservation of such interactions by crosslink-
ing. However, crosslinking and sonication potentially cause
epitope masking (70) and damage, respectively, and both af-
fect antibody-antigen interaction critically involved in ChIP
assays. Furthermore, crosslinking may also create artifact
peaks at highly transcribed regions due to protein-protein
crosslinking when carried out for long durations (e.g. 1 h)
(71). In comparison, there have also been reports of possible
bias for AT-rich regions and open chromatin when MNase
is used to fragmentize chromatin (72) although the effect is
possibly limited (73).

In this work, by conducting nMOWChIP-seq without
crosslinking and sonication, we demonstrate a low-input
technology that works with as few as 1,000–50,000 cells per
assay for profiling a wide range of protein-genome inter-
actions. We show that nMOWChIP-seq method effectively
preserves the interaction between Pol II/TFs/enzyme and
the genome. In our approach, the required number of cells
depends on the robustness of the protein binding to the
genome under native ChIP conditions, the number of bind-
ing sites, and the quality of the antibody. Compared to the
state-of-the-art ChIP-seq data taken using millions of cells
per assay, our datasets generally show very high signal-to-
noise ratio and low background, which are characterized by
high FRiP values. Although side-by-side comparison is dif-
ficult due to the lack of matching cell type, input quantity
and antibody, our method appears to be at least compara-
ble to CUT&RUN (31,35) in terms of FRiP and peak num-
bers. For example, our data yielded 27,000–137,000 peaks
with a FRiP of 9–50% using 1,000–50,000 GM12878 cells

on Pol II-S5, and 2,700–16,000 peaks with a FRiP of 3–
8% using 5,000–100,000 GM12878 cells on EGR1 (Sup-
plementary Table S1). In comparison, CUT&RUN yielded
23,000 peaks with a FRiP of 20% on Pol II-S5 of K562
cells (35), 16,000–35,000 peaks with a FRiP of 12–27% us-
ing 1,000–100,000 K562 cells on CTCF (31), and 6,000–
11,000 peaks with a FRiP of 3% using 10,000 melanocytes
on SOX10 (GEO dataset GSE172066). The workflow has
been published as a detailed protocol with step-by-step
guide on setting up and running the assays (17). While it
requires certain specialized parts for fluid control, it is pos-
sible to set up with help of a technician with some engineer-
ing background. nMOWChIP-seq shows some biased sig-
nal towards TES when RNA Pol II is profiled. This was not
observed with other technologies including conventional
crosslinking-based ChIP-seq and CUT&Tag (33). This ef-
fect is possibly due to the absence of crosslinking for immo-
bilization with nMOWChIP-seq, although similar observa-
tion was not made with CUT&Tag (33).

Compared to histone modification data, ChIP-seq data
on Pol II, TFs, enzyme in tissues are very scarce. We ap-
plied nMOWChIP-seq to profile Pol II, and key TFs EGR1
and MEF2C in a brain-region-specific manner in cerebel-
lum and prefrontal cortex of mouse brain. We found that
Pol II and TF profiles are highly characteristic of the brain
regions. The Pol II binding profiles had 4,218 differential
peaks between cerebellum and PFC, while EGR1/MEF2C
profiles had > 1,000 differential peaks between the two
brain regions. The peaks with their intensity high in PFC
and low in cerebellum were highly enriched in functions in-
cluding cognition, learning or memory, while the peaks that
were high in cerebellum and low in PFC were enriched in
GO terms including walking behavior, motor coordination
and cerebellar cortex formation. The fact that the binding
profiles of these functional molecules are highly characteris-
tic of the functions of various brain regions indicate that Pol
II and the key TFs are critically involved in the molecular
dynamics associated with the spatial configuration of brain
functions. Our results suggest the possibility of deciphering
genome-wide non-histone molecular binding profiles to es-
tablish the connections between cells and their functions. In
the case of brain cells, the approach potentially allows us to
establish the neuroanatomical origin of a brain tissue.
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