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ABSTRACT 

 
As time passes, change occurs. With this change comes the need for surveillance. One may be a 

technician on an assembly line and in need of a surveillance technique to monitor the number of 

defective components produced. On the other hand, one may be an administrator of a hospital in 

need of surveillance measures to monitor the number of patient falls in the hospital or to monitor 

surgical outcomes to detect changes in surgical failure rates. A natural choice for on-going 

surveillance is the control chart; however, the chart must be constructed in a way that 

accommodates the situation at hand. Two scenarios involving attribute control charting are 

investigated here. The first scenario involves Poisson count data where the area of opportunity 

changes. A modified exponentially weighted moving average (EWMA) chart is proposed to 

accommodate the varying sample sizes. The performance of this method is compared with the 

performance for several competing control chart techniques and recommendations are made 

regarding the best preforming control chart method. This research is a result of joint work with 

Dr. William H. Woodall (Department of Statistics, Virginia Tech). The second scenario involves 

monitoring a process where items are classified into more than two categories and the results for 

these classifications are readily available. A multinomial cumulative sum (CUSUM) chart is 

proposed to monitor these types of situations. The multinomial CUSUM chart is evaluated 

through comparisons of performance with competing control chart methods. This research is a 

result of joint work with Mr. Lee J. Wells (Grado Department of Industrial and Systems 

Engineering, Virginia Tech) and Dr. William H. Woodall (Department of Statistics, Virginia 

Tech).  
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Chapter 1  
 
 
 
 

Introduction 
 

Process monitoring is an essential aspect of industrial quality control and public health 

surveillance. A useful tool in process monitoring is the control chart. The control chart is used to 

check for process stability by plotting values of a statistic as a function of time, where the 

statistic is based on the measurement of the quality characteristic of interest. The control chart 

can be used to quickly detect process shifts so measures can be taken to correct the process, to 

estimate process parameters to determine process capability, and to reduce variation in the 

process (Montgomery (2009)). 

 Walter A. Shewhart was one of the pioneers in quality control and has been credited with 

creating the first control chart while working at Bell Telephone Laboratories in the 1920’s. These 

control charts, referred to as Shewhart charts, continue to be powerful process monitoring tools 

(Shewhart (1939)). The Shewhart charts are especially useful in Phase I monitoring because the 

charts are able to detect large process shifts quickly. Phase I is a retrospective analysis where the 

objectives include understanding the process behavior, determining if the process is in statistical 

control, and establishing control limits to be used in future monitoring of the process. The next 

phase, Phase II, involves real-time process monitoring that builds on the information learned in 

Phase I. 

 While Shewhart charts are useful in Phase I monitoring, different methods have been 

developed to meet specific Phase II objectives. In Phase II, one of the major objectives is to 

detect small process shifts quickly. The cumulative sum (CUSUM) chart introduced by Page 

(1954) and the exponentially weighted moving average (EWMA) chart proposed by Roberts 

(1959) are two effective techniques for detecting process shifts quickly. Unlike the Shewhart 
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chart that only takes into account information from the most recent sample observation, EWMA 

and CUSUM charts accumulate information over time. This allows the EWMA and CUSUM 

charts to be more sensitive to smaller process shifts. Phase II control charting is the focus of the 

work in this dissertation. 

 Control charts are developed to handle both continuous and attribute data. The data 

studied in this dissertation are attribute data particularly Poisson and multinomial observations. 

The control charts studied for Poisson count data also must take into account varying sample 

sizes. Control charting techniques that accommodate varying sample sizes are necessary in both 

healthcare surveillance and industrial applications. This can be the case when monitoring the 

number of defective components produced where the number of components sampled varies, or 

in healthcare where the incidence of infection is being monitored as the population changes over 

time. In both cases the changing area of opportunity must be taken into account. Chapter 2 

discusses control charting for Poisson count data as the area of opportunity changes. In this 

chapter, we compare the performance for different control charting techniques that have been 

proposed in literature with the performance for a new EWMA approach. This research is a result 

of joint work with Dr. William H. Woodall (Department of Statistics, Virginia Tech) and has 

been published in the Journal of Quality Technology (Ryan and Woodall (2010)). 

Chapter 3 focuses on control charting methods in a multinomial framework. Suppose one 

is monitoring post-surgery infection for a hospital. Instead of limiting the variable of interest to 

whether or not the patient developed the infection, one is interested in when the patient is free of 

infection, has a minor infection, or has a major infection. This is a situation that requires the use 

of a multinomial CUSUM chart.  

The multinomial CUSUM chart is an extension of the Bernoulli CUSUM chart proposed 

by Reynolds and Stoumbos (1999). The Bernoulli CUSUM chart can be used to monitor a 

process that produces a continuous stream of inspection data where the outcome is binary, e.g., 

conforming and non-conforming. However, suppose one has a process where components can be 

classified into more than two categories, e.g., conforming, minor non-conforming, and major 

non-conforming. For these situations, the data now follow a multinomial distribution instead of a 

Bernoulli distribution. 

If the original objective had been to monitor the infection rate where the outcome was 

binary, either the infection exists or does not exist, then Reynolds and Stoumbos (1999) have 
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shown that the Bernoulli CUSUM chart is the best monitoring approach. Unlike the competing 

p-chart and binomial CUSUM chart, the data does not have to be aggregated over time for 

monitoring. The Bernoulli CUSUM approach takes advantage of situations where a continuous 

stream of inspection data exists. However, when the outcome of interest now has three 

categories, e.g., free of infection, minor infection, and major infection, the Bernoulli CUSUM 

chart can no longer incorporate the additional category and a multinomial CUSUM chart is 

needed. 

The performance of the multinomial CUSUM chart is compared to the performance for 

competing control chart methods. This research is a result of joint work with Mr. Lee J. Wells 

(Grado Industrial and Systems Engineering Department, Virginia Tech) and Dr. William H. 

Woodall (Department of Statistics, Virginia Tech) and has been accepted for publication in JQT 

(Ryan et al. (2011)).  

The next chapter, Chapter 2, is the manuscript titled, “Control Charts for Poisson Count 

Data with Varying Sample Sizes.” This is followed by Chapter 3, the manuscript, “Methods for 

Monitoring Multiple Proportions When Inspecting Continuously.” Finally, Chapter 4 discusses 

conclusions from the current research and future research ideas. 
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Chapter 2  
 
 
 

 

Control Charts for Poisson Count Data with Varying 
Sample Sizes 

 
 

ANNE G. RYAN1 and WILLIAM H. WOODALL 

Virginia Tech, Blacksburg, VA 24061-0439 

 

Various cumulative sum (CUSUM) and exponentially weighted moving average 

(EWMA) control charts have been recommended to monitor a process with Poisson 

count data when the sample size varies. We evaluate the ability of these CUSUM 

and EWMA methods in detecting increases in the Poisson rate by calculating the 

steady-state average run length (ARL) performance for the charts. Our simulation 

study indicates that the CUSUM chart based on the generalized likelihood ratio 

method is best at monitoring Poisson count data at the out-of-control shift for 

which it is designed when the sample size varies randomly. We also propose a new 

EWMA method which has good steady-state ARL performance.  

Key Words: Average Run Length; Cumulative Sum Chart; Exponentially Weighted 

Moving Average Chart; Statistical Process Control. 

                                                 
Ms. Ryan is a Ph.D. candidate in the Department of Statistics. Her e-mail address is 

agryan@vt.edu. 
Dr. Woodall is a Professor in the Department of Statistics. He is a fellow of ASQ. His e-mail 

address is bwoodall@vt.edu.  
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 Introduction 

One area of importance in quality control is detection of change for situations with count 

data where the area of opportunity (sample size) is not constant over time. Examples of varying 

sample size are prevalent in the industrial setting. Suppose one examines the number of 

nonconformities in batches, for example, but the batch size is changing across samples. The 

varying batch size must be taken into account when constructing the control chart. 

Situations with varying sample sizes are also common in healthcare surveillance, as when 

monitoring the incidence of disease in a changing population or the number of new infections in 

a hospital. Here the size of the at-risk population could change over time, requiring varying 

sample sizes. Therefore, steps must be taken to accommodate these changes when monitoring the 

rates. 

A common approach to modeling rates is to use the Poisson distribution. Let ଵܺ, 	ܺଶ,	 . . . 

be a sequence of observed counts where ݊ଵ, ݊ଶ, . . . are the respective sample sizes. We assume 

that ଵܺ, ܺଶ	,	 . . . are independent Poisson observations and that ௜ܺ  has an in-control mean of ݊௜ߣ଴ 

and an out-of-control mean of particular interest ݊௜ߣଵ, ݅ ൌ 1, 2, …	. We focus on the one-sided 

case where ߣଵ ൐  .଴ߣ

 The Shewhart u-chart is one of the most common alternatives at handling such changes 

in the area of opportunity. The u-chart is an attribute chart for Poisson random variables that is a 

plot of the average number of non-conformities per inspection unit, i.e., 
௑೔
௡೔
, ݅ ൌ 1, 2, … ,݉	,	 with 

upper and lower control limits. The retrospective u-chart based on ݉ observations signals when 

one of the plotted points exceeds the control limits, which are given as  

 
௜ܮܥܷ ൌ തݑ ൅ ௨ටܮ

௨ഥ

௡೔
				and ௜ܮܥܮ ൌ തݑ െ ௨ටܮ

௨ഥ

௡೔
, ݅ ൌ 1, 2, … ,݉ ,  (1)  

respectively, where ݑത ൌ
∑ ௑೔
೘
೔స

∑ ௡೔
೘
೔సభ

. Often ܮ௨ ൌ 3, resulting in the usual three-sigma limits 

(Montgomery (2009)). There is no LCL for sample ݅ if LCL୧ ൏ 0.  

There are two distinct phases associated with control charting. Phase I is a retrospective 

analysis of previously taken samples. The objectives include understanding the process behavior, 

determining if the process is in statistical control, and establishing control limits to be used in 

future monitoring of the process. The next phase, Phase II, involves real-time process monitoring 
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that builds on the information learned in Phase I. The ݑ-chart in Equation (1) is a useful tool for 

Phase I control charting, where ݉ is the number of historical values available.  

The control limits for the ݑ-chart during Phase II control charting are  

 
௜ܮܥܷ ൌ ଴ߣ ൅ ௨ටܮ

ఒబ
௡೔
		 and ௜ܮܥܮ ൌ ଴ߣ െ ௨ටܮ

ఒబ
௡೔
, ݅ ൌ ݉ ൅ 1 ,݉ ൅ 2,…	,  (2) 

where ߣ଴ is the in-control mean number of non-conformities per inspection unit. Again, there is 

no LCL at sample ݅ if LCL୧ ൏ 0. The value of ߣ଴ is estimated from the Phase I analysis in 

practice, but usually assumed to be a known constant in comparisons of control-chart 

performance.  

 While the ݑ-chart can be used to monitor processes with varying sample sizes in both 

Phase I and Phase II control charting, one drawback is that Shewhart charts are not sensitive to 

detecting small parameter shifts during Phase II analyses. A major objective is to detect changes 

in incidence rates as quickly as possible. Therefore, more sensitive charts like the cumulative 

sum (CUSUM) control charts and exponentially weighted moving average (EWMA) control 

charts are often utilized during Phase II analyses (Montgomery (2009)).  

The task of accounting for varying sampling sizes when using both CUSUM and EWMA 

charts has been studied by several researchers. Mei et al. (2011) proposed using a CUSUM 

technique derived from a generalized likelihood-ratio method. Yashchin (1989) and Hawkins and 

Olwell (1998) previously recommended using this weighted CUSUM statistic, but only Mei et 

al. (2011) studied the properties of the chart. Mei et al. (2011) also proposed two other 

adaptations of the CUSUM chart.   

Yashchin (1989) modified the CUSUM technique based on the log-likelihood ratio to 

include a geometric weighting factor that assigns less weight to past observations. Shu et al. 

(2010) studied the performance of two geometrically weighted CUSUM techniques compared to 

other weighted CUSUM methods for monitoring with Poisson data when the sample size varies.  

Another CUSUM technique, recommended by Rossi et al. (1999) and Rossi et al. (2010), 

is based on a standardization transformation of the observed counts. We refer to this as the 

standardized CUSUM chart. They claimed this CUSUM procedure can handle situations, 

especially in healthcare, where the size of the at-risk population varies over time. 

Rather than using CUSUM techniques for fast detection, Dong et al. (2008) advised using 

EWMA methods. The statistics that are weighted by the EWMA method are the observed counts 
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divided by the corresponding sample sizes. A similar use of this type of EWMA chart was 

employed by Martz and Kvam (1996), where both an EWMA chart and a Shewhart chart were 

used to check for trends or patterns over time. The central idea in both papers is to divide the 

observed counts by the corresponding sample sizes in order to handle varying sample sizes. 

The CUSUM and EWMA techniques are intended to handle changes in sample size, but 

it is not clear which method is most effective. We answer this question by comparing the 

different techniques using average run length (ARL) performance. The ARL of a control chart is 

the average number of points that are plotted before a chart signals. This signal can be a true 

signal of a shift in the process or a false alarm, meaning the chart signaled when, in fact, there 

was no shift. The out-of-control ARL (or ARLଵ) is the expected number of samples before a shift 

is detected, while the in-control ARL (or ARL଴) is the expected number of samples before a false 

alarm. The goal is usually to minimize the ARLଵ value over a range of process shifts while 

requiring a specified value of ARL଴. The measured ARL values can either be zero-state or 

steady-state ARL values. Zero-state ARL values are based on sustained shifts in the parameter 

that occur under the initial startup conditions of the control chart, while steady-state ARL values 

are based on delayed shifts in the parameter.   

The steady-state ARL metric is the best measurement of performance for the comparisons 

of the various methods considered in our paper. The first reason for using steady-state ARL 

performance over zero-state ARL performance involves the fact that the EWMA chart has a 

slight advantage over the CUSUM chart at early stages of monitoring. At the initial stages of 

monitoring, the variance of the EWMA statistic is smaller, which leads to tighter control limits.  

As a result, the one-sided EWMA chart has a slight head start over the competing CUSUM 

charts. 

The second, more important, argument against using zero-state ARL analyses is based the 

idea that the optimal smoothing parameter for the EWMA chart approaches zero when 

considering zero-state ARL performance. Frisén (2009) stated that many researchers found the 

optimal smoothing constant for the EWMA chart to be around ݎ ൌ .2. However, Frisén and 

Sonesson (2006) revealed how this “optimal” value was, in fact, not optimal because it was 

based on the local minimum zero-state ARLଵ value and not the global minimum. The global 

minimum occurs as ݎ approaches zero, which gives approximately equal weight to all of the 

observations. This chart design is not reasonable, however, if one wants to detect delayed shifts 
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in the parameter. In a discussion of Frisén (2009), Knoth (2009) pointed out that this problem 

with the smoothing constant approaching zero is primarily seen with one-sided EWMA charts, 

which are the types of EWMA charts compared in our paper. These two concerns associated with 

using zero-state ARL performance have prompted us to examine steady-state ARL performance. 

The CUSUM and EWMA methods are explained in the next section. Then simulation 

results for steady-state ARL performance are given for the situation where the sample size is 

fixed in order to lay a foundation for comparisons. This is followed by a section with simulation 

results where sample sizes vary randomly to evaluate the performance of the proposed methods. 

Next, simulation results are given for comparisons of ARL performance for Poisson processes 

with low-counts. An example is given in the following section to illustrate and compare the use 

of two EWMA charts, the ݑ-chart, and a CUSUM chart. The last section provides our concluding 

remarks and future research ideas. Additional ARL comparisons are given in the appendix.  

Cumulative Sum and Exponentially Weighted Moving-Average 

Methods 

 The first method we define is a standardized CUSUM chart for Poisson count data 

proposed by Rossi et al. (1999) and Rossi et al. (2010). They compared three techniques to 

transform the Poisson counts into approximately normal random variables. The first 

transformation is  

 
ܼଵ,௜ ൌ

௜ܺ െ ݊௜ߣ଴
ඥ݊௜ߣ଴

, ݅ ൌ 1, 2, … . 
 

This transformation is based on the asymptotic normality of the observed count, ௜ܺ, with an 

approximate in-control mean ݊௜ߣ଴ and approximate standard error ඥ݊௜ߣ଴. The second 

transformation is the square-root transformation, i.e.,  

 ܼଶ,௜ ൌ 2൫ඥ ௜ܺ െ ඥ݊௜ߣ଴ ൯ , ݅ ൌ 1, 2, … ,  

with approximate in-control mean and standard error of ඥ݊௜ߣ଴ and ½, respectively. This 

normalizing transformation stabilizes the variance. The final transformation is the average 

(called half-sum) transformation of the previous two transformations. Rossi et al. (1999) 

recommended using a CUSUM chart with the half-sum standardizing transformation because 

they found the half-sum transformation produced ARL values closest to the ARL values 
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estimated by Ewan and Kemp (1960) for a Poisson variate. The recommended half-sum 

transformation is 

 
ܼଷ,௜ ൌ

௜ܺ െ 3݊௜ߣ଴ ൅ 2ඥ ௜ܺ݊௜ߣ଴
2ඥ݊௜ߣ଴

, ݅ ൌ 1, 2, … .  (3)  

The resulting distribution for the transformation in Equation (3) will be approximately 

normal with an approximate in-control mean of 0 and an approximate standard error of 1. Rossi 

et al. (1999) then defined the CUSUM statistics as follows: 

௜ܵ ൌ max൫0, ௜ܵିଵ ൅ ܼଷ,௜ െ ݇൯ , ݅ ൌ 1, 2, …		, 

where the chart signals if ௜ܵ ൒ ݄. The constant ݇ is referred to as the reference value and it is 

often chosen to be halfway between the in-control mean and the out-of-control mean. Rossi et al. 

(1999) recommend using the specified values for ARL଴ and ARLଵ to determine ݄ and ݇.  

In situations where the in-control mean is small, the values for ARL଴ are lower than 

anticipated when the Rossi et al. (1999) standardized CUSUM chart with the fixed reference 

value, ݇, is used as discussed in Rogerson and Yamada (2004) and Höhle and Paul (2008). To 

resolve these issues Rossi et al. (2010) proposed a standardized CUSUM chart with a varying 

reference value.   

 The varying reference value, ݇௜, is half the value of the out-of-control mean at each 

sample point. The out-of-control mean when ߣ ൌ   ଵ is approximatelyߣ

 
;ଷ,௜ܼൣܧ ଵ൧ߣ ൌ

݊௜ߣଵ െ 3݊௜ߣ଴ ൅ 2݊௜ඥߣ଴ߣଵ
2ඥ݊௜ߣ଴

, ݅ ൌ 1, 2, …	,  

with a standard error approximately equal to 1. The varying reference limit becomes  

݇௜ ൌ
;ଷ,௜ܼൣܧ ଵ൧ߣ

2
, ݅ ൌ 1, 2, …		. 

For the half-sum transformation in Equation (3), the values of ܼଷ,௜ and ݇௜ are substituted into the 

following CUSUM statistic formula:  

 ଵܵ,௜ ൌ max൫0, ଵܵ,௜ିଵ ൅ ܼଷ,௜ െ ݇௜൯ , ݅ ൌ 1, 2, …	, (4)  

where ଵܵ,଴ ൌ 0.  The chart signals if ଵܵ,௜ ൒ ݄ଵ, where the value ݄ଵ is determined based on the 

specified value of ARL଴. 
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The generalized likelihood ratio (GLR) CUSUM method proposed by Yashchin (1989), 

Hawkins and Olwell (1998), and Mei et al. (2011) is based on the statistics  

 
ܵଶ,௜ ൌ max ቆ0, ܵଶ,௜ିଵ ൅ ௜ܺ െ

݊௜ሺߣଵ െ ଴ሻߣ

lnሺߣଵሻ െ lnሺߣ଴ሻ
ቇ , ݅ ൌ 1, 2, …, (5)  

where ܵଶ,଴ ൌ 0. The chart signals if ܵଶ,௜ ൒ ݄ଶ , where the value ݄ଶ is determined based on the 

specified value of ARL଴. Mei et al. (2011) showed how the construction of the GLR CUSUM 

statistic is similar to constructing a test of a null hypothesis using the GLR method. 	

The next two methods we review are two alternative methods proposed by Mei et al. 

(2011). The first alternative method, referred to as the weighted likelihood ratio (WLR) CUSUM 

procedure, is based on the statistics 

 
ܵଷ,௜ ൌ max ൬0, ܵଷ,௜ିଵ ൅

௜ܺ

݊௜
െ

ଵߣ െ ଴ߣ
lnሺߣଵሻ െ lnሺߣ଴ሻ

൰ , ݅ ൌ 1, 2, …	. (6)  

The starting value ܵଷ,଴ is 0, and the chart signals if ܵଷ,௜ ൒ ݄ଷ.   

 Another method proposed by Mei et al. (2011) introduced varying thresholds into the 

CUSUM statistic in Equation (5) to account for the varying samples sizes. Instead of having a 

constant decision interval, the threshold method uses the same CUSUM statistics in Equation (5), 

but signals when ܵଶ,௜ ൒ ݊௜݄ସ.  Mei et al. (2011) referred to this method as the adaptive threshold 

method (ATM).  

 It is important to notice that the GLR, WLR, and ATM methods are all equivalent when 

the sample sizes are constant. These methods are then the same as the method proposed by Lucas 

(1985). Lucas (1985) used Markov chains to calculate the ARL values of CUSUM charts for 

Poisson count data with fixed sample sizes. Also, Moustakides (1986) proved this method, which 

is based on a likelihood-ratio approach, to have optimality properties in detecting a change in 

distribution. However, differences among the procedures arise when the samples sizes vary, and 

the optimality property may no longer apply. 

 Mei et al. (2011) explored the GLR, WLR, and ATM methods both theoretically and 

through a simulation study. They studied cases for which the sample size was either 

monotonically increasing or monotonically decreasing. They found the performance of the GLR 

CUSUM chart to be better than that of the WLR CUSUM chart when the sample sizes were 

decreasing and worse when the sample sizes were increasing. The ATM method seemed to have 
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the overall best performance because its relative performance did not depend so much on the 

sample-size pattern. In our simulation study we consider the cases in which the sample sizes vary 

randomly. 

 The next procedure to be considered is the EWMA method recommended by both Dong 

et al. (2008) and Martz and Kvam (1996).  The EWMA statistics are 

 
ܼ௜ ൌ ݎ ௜ܺ

݊௜
൅ ሺ1 െ ,ሻܼ௜ିଵݎ ݅ ൌ 1, 2, … , (7)  

where ܼ଴ ൌ ݎ ଴  andߣ ∈ ሺ0,1ሿ is the smoothing parameter that determines the weights assigned to 

past data. More weight is given to past data points as ݎ gets closer to 0, which results in better 

detection of smaller shifts. However, one concern with making the value of ݎ too small is the 

inertial effect. As discussed by Woodall and Mahmoud (2005), an adverse inertial effect occurs 

when the value of the EWMA statistic is on one side of the centerline and the shift in the 

parameter occurs toward the opposite side of the centerline. Because much weight is given to 

past data, this can cause a delay in the detection of the shift in the parameter.  On the other hand, 

if ݎ is set to a large value, it can take longer for a small shift to be detected. When ݎ ൌ 1, the 

EWMA chart is equivalent to the Shewhart chart, which is most effective in detection of large 

shifts. It has been suggested to use values of ݎ in the interval 0.05 ൑ ݎ ൑ 0.25 (Montgomery 

(2009)); however, Dong et al. (2008) suggested using ݎ ൌ .9.  Martz and Kvam (1996) found the 

EWMA chart to perform well when ݎ ൌ .1, but they also recommended using a Shewhart chart 

in conjunction with the EWMA chart to detect large shifts. 

Dong et al. (2008) explored three different control limit approaches for their EWMA 

method. Since they were focused on detecting an increase in the incidence rate, they used only 

upper control limits for the three methods. The first set of upper control limits are based on the 

exact variances of the EWMA statistics, i.e., 

 
ଵ,௜ܮܥܷ ൌ ଴ߣ ൅ ଶݎଵටܮ ∑ ሺ1 െ ሻଶ௜ିଶ௝ݎ ఒబ

௡ೕ
௜
௝ୀଵ , ݅ ൌ 1, 2, … ;  (8)  

the second set of  upper control limits is 

 
ଶ,௜ܮܥܷ ൌ ଴ߣ ൅ ଶටܮ

ఒబ
௡బ

௥

ଶି௥
ሾ1 െ ሺ1 െ ሻଶ௜ሿݎ ݅ ൌ 1, 2, …݉;  (9)  
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while the third upper control limit, which is based on the asymptotic variance as ݅ → ∞ in 

Equation (9), is 

 
ଷܮܥܷ ൌ ଴ߣ ൅ ଷඨܮ

଴ߣ
݊଴

ݎ
2 െ ݎ

. (10) 

The value ݊଴ is the minimum sample size of all the values of ݊௜, ݅ ൌ 1, 2, …݉. A signal is given 

when ܼ௜ exceeds the UCL.   

The use of the minimum sample size in the control-limit computations leads to a problem 

related to the overall objective of the EWMA control chart. Both the EWMA and CUSUM charts 

were developed as Phase II methods. These charts are effective at monitoring a process that has 

been operating in control. This means one will not know beforehand the minimum sample size of 

the entire set of samples because the samples are being taken in real time. Knowledge of the 

minimum sample size is required to use the EWMA statistics with the UCLs in Equation (9) or 

Equation (10) as Phase II charts. We index the UCLs in Equation (9) and Equation (10) by 

݅ ൌ 1, 2, … ,݉, where ݉ is the number of samples taken in Phase I, to indicate that it seems 

reasonable to use these methods only in Phase I. We note, however, that the EWMA approach is 

not appropriate for Phase I since quick detection of a rate increase is no longer an objective.   

Martz and Kvam (1996) gave the control limits based on the exact variance but used the 

EWMA chart only with Phase I data. For their simulation study they considered both equal and 

unequal sample sizes. 

Another issue with the EWMA charts of Dong et al. (2008) is that there is no reflecting 

lower barrier. They are only interested in detecting an increased rate so they simply remove the 

LCL. The exclusion of this limit allows the EWMA statistics to take on very small values, which 

then could lead to serious inertial problems, especially if the value of ݎ is small (Woodall and 

Mahmoud (2005)). A much better approach is to use a reflecting barrier at ܼ௜ ൌ  ଴, as proposedߣ

by Crowder and Hamilton (1992) in a different context. Martz and Kvam (1996) recommended 

an EWMA chart that has both upper and lower control limits, but again it seems as if they are 

using a Phase II method in Phase I.     

We propose using a new EWMA method that differs from the EWMA techniques 

discussed by Dong et al. (2008). Our EWMA chart, which we refer to as the modified EWMA 

method (EWMA-M), has a lower reflecting barrier at ܼ௜ ൌ  ଴ and the control limits are based onߣ
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the exact variances of the EWMA statistics, as seen in Equation (8). We consider a range of 

values for the smoothing constant, ݎ, to illustrate the need to select the value of ݎ based on the 

shift size of interest.    

Simulation Results for Constant Sample Size 
 

    In this section we summarize the results of a simulation study comparing the steady-state 

ARL performance of the previously discussed EWMA and CUSUM methods where the sample 

sizes are fixed, without loss of generality at ݊௜ ൌ 1	for ݅ ൌ 1, 2, … . This study provided baseline 

information about the performance of the EWMA and CUSUM methods. We expected that if a 

method had poor performance when the sample sizes were fixed, then the performance of this 

method would likely remain poor when the sample sizes were allowed to vary.   

One method compared will be referred to as the weighted CUSUM method, which 

represents the GLR, WLR, and ATM CUSUM methods. Because the sample size is constant, all 

three of these CUSUM methods, along with the Lucas (1985) CUSUM method, are equivalent. 

The next technique compared is the standardized CUSUM chart in Equation (4). The last two 

methods compared are EWMA techniques. One EWMA method, called EWMA-3, has control 

limits based on the asymptotic variance of the EWMA statistics as seen in Equation (10). The 

smoothing constant for the EWMA-3 technique is set to ݎ ൌ .9, the value recommended in Dong 

et al. (2008). The second EWMA technique is our new EWMA method, EWMA-M. This chart 

has control limits in Equation (8), which are based on the exact variances of the EWMA 

statistics. The smoothing constant takes on values  ݎ ൌ .05, .1, .15, and	.2, allowing us to choose 

the best smoothing constant for the parameter shift of interest.    

In our simulation study we used 10,000 repetitions to estimate each ARL value. The 

values of ܮ for the EWMA methods and ݄ for the CUSUM methods used in the steady-state 

simulation study were determined so that the charts had zero-state ARL଴ values equal to 200. The 

process was run at an in-control state for 50 samples and then the shift in the parameter occurred.  

If a simulated chart signaled that the rates had increased during the first 50 samples, then that 

particular run was discarded and a new set of 50 samples were generated. Table 2.1 contains the 

different combinations of ߣ଴ and ߣଵ values studied. Other combinations we considered yielded 

similar conclusions to those obtained with these combinations. 
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Table 2.1. Combinations of ࣅ૙ and ࣅ૚ Studied Through Simulation 

 ଵߣ ଴ߣ

6 7 

6 8 

6 9 

10 12 

10 14 

10 18 

10 20 

 

Table 2.2 presents the steady-state ARL values for various shifts in the Poisson mean 

where ߣ଴ ൌ 10 and ߣଵ ൌ 12.  The weighted CUSUM chart ARL values are slightly less than the 

standardized CUSUM chart ARL values for small shifts in the mean. Once the mean has shifted 

to approximately ߣ ൌ 13, the standardized CUSUM chart starts to have slightly better 

performance. Both the weighted and standardized CUSUM charts have considerably better 

performance for detection of small shifts compared to the EWMA-3 method of Dong et al. 

(2008). It is not until the mean has undergone a shift to ߣ ൌ 18 that the EWMA-3 method begins 

to have better performance.   

The simulation results reveal for small shifts of interest it is best to use the EWMA-M 

chart with ݎ ൌ .05. This EWMA-M chart has better performance compared to all the other 

EWMA methods for shifts up to ߣ ൌ 12. The EWMA-M chart with ݎ ൌ .05	also has quicker 

detection compared to the weighted CUSUM and standardized CUSUM methods for mean shifts 

of ߣ ൌ 12 or less.   

The steady-state ARL performance comparison for the case where ߣ଴ ൌ 10 and ߣଵ ൌ

14	is shown in Table 2.3. The weighted CUSUM chart slightly outperforms the standardized 

CUSUM chart for shifts in the mean of ߣ ൌ 15	or less. For very small shifts the best chart is the 

EWMA-M chart with ݎ ൌ .05. We will see that the best value of ݎ for the EWMA-M method 

increases as the mean shift of interest increases. Also notice that the EWMA-3 method with the 

large smoothing constant does not have quick detection until very large shifts in the mean occur.   



15 
 

Table 2.2. Comparison of ARL Values for ࣅ૙ ൌ ૚૙ and 	ࣅ૚ ൌ ૚૛ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 16.33 ݄ଵ ൌ ଵܮ 4.68 ൌ ଵܮ 2.24 ൌ ଵܮ 2.47 ൌ ଵܮ 2.59 ൌ ଷܮ 2.66 ൌ 2.85 

 Weighted ߣ

 CUSUM 

Standardized  

CUSUM 

EWMA-M 

ݎ) ൌ .05) 

EWMA-M 

ݎ) ൌ .1) 

EWMA-M 

ݎ) ൌ .15) 

EWMA-M 

ݎ) ൌ .2) 

EWMA-3 

ݎ) ൌ .9) 

10.25 114.65 117.26 115.09 119.80 123.69 126.33 153.17 

10.50 71.47 73.31 67.84 73.77 78.43 83.08 118.15 

10.75 47.37 49.27 44.78 49.62 54.59 57.65 91.14 

11.00 33.36 34.65 31.55 34.67 37.80 41.28 72.28 

11.50 19.38 19.93 19.12 20.10 21.62 23.40 46.05 

12.00 13.10 13.43 13.06 13.45 14.01 14.82 31.71 

13.00 7.67 7.66 8.00 7.75 7.66 7.96 16.10 

14.00 5.44 5.40 5.81 5.40 5.28 5.30 9.30 

15.00 4.27 4.19 4.62 4.15 3.97 3.91 5.96 

16.00 3.53 3.49 3.80 3.42 3.21 3.13 4.13 

18.00 2.64 2.63 2.91 2.56 2.40 2.30 2.44 

20.00 2.16 2.17 2.37 2.08 1.93 1.83 1.72 

 

Table 2.3. Comparison of ARL Values for ૃ૙ ൌ ૚૙ and 	ૃ૚ ൌ ૚૝ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 10.50 ݄ଵ ൌ ଵܮ 2.95 ൌ ଵܮ 2.24 ൌ ଵܮ 2.47 ൌ 2.59 Lଵ ൌ 2.66 Lଷ ൌ 2.85 

  Weighted ߣ

CUSUM 

Standardized  

CUSUM 

EWMA-M 

ݎ) ൌ .05) 

EWMA-M 

ݎ) ൌ .1) 

EWMA-M 

ݎ) ൌ .15) 

EWMA-M 

ݎ) ൌ .2) 

EWMA-3 

ݎ) ൌ .9) 

10.25 131.22 131.86 115.09 119.80 123.69 126.33 153.17 

10.50 86.94 88.39 67.84 73.77 78.43 83.08 118.15 

10.75 60.88 61.97 44.78 49.62 54.59 57.65 91.14 

11.00 43.15 44.73 31.55 34.67 37.80 41.28 72.28 

11.50 24.88 25.62 19.12 20.10 21.62 23.40 46.05 

12.00 15.41 15.88 13.06 13.45 14.01 14.82 31.71 

13.00 8.10 8.30 8.00 7.75 7.66 7.96 16.10 

14.00 5.30 5.35 5.81 5.40 5.28 5.30 9.30 

15.00 3.89 3.91 4.62 4.15 3.97 3.91 5.96 

16.00 3.13 3.12 3.80 3.42 3.21 3.13 4.13 

18.00 2.28 2.26 2.91 2.56 2.40 2.30 2.44 

20.00 1.83 1.84 2.37 2.08 1.93 1.83 1.72 
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Tables 2.4 and 2.5 present steady-state ARL values where again ߣ଴ ൌ 10, but now 

ଵߣ ൌ 18 and ߣଵ ൌ 20, respectively. With the larger values of ߣଵ, the steady-state ARL values of 

the weighted CUSUM methods and the standardized CUSUM methods are very close. The 

increase in ߣଵ also causes a decrease in the difference between the ARL values of the CUSUM 

methods and the EWMA-3 method, but the CUSUM methods continue to have better detection 

of smaller shifts. As the shift in the mean increases, the methods tend to perform similarly. 

 The simulation results in Tables 2.4 and 2.5 illustrate the idea that the value of ݎ for the 

EWMA-M method should be chosen based on the size of the shift of interest. When one is 

interested in mean shifts from ߣ଴ ൌ 10 to ߣଵ ൌ 18, one should choose ݎ ൌ .2. As the size of the 

shift of interest increases, so too should the value or ݎ. 

The case where ߣ଴ ൌ 10 and ߣଵ ൌ 20 was the only situation studied by Dong et al. 

(2008). Our results indicate that the EWMA-3 charts begin to have better performance as the 

shift in the mean increases. This explains their recommendation of using a smoothing parameter 

ݎ ൌ .9 because EWMA charts with large values of ݎ are known to be effective at detecting large 

shifts in the Poisson rate. Dong et al.’s (2008) simulation study did not address smaller shifts in 

the mean or cases with varying sample sizes.   

Table 2.4. Comparison of ARL Values for ࣅ૙ ൌ ૚૙ and 	ࣅ૚ ൌ ૚ૡ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 6.39 ݄ଵ ൌ ଵܮ 1.56 ൌ ଵܮ 2.24 ൌ ଵܮ 2.47 ൌ ଵܮ 2.59 ൌ ଷܮ 2.66 ൌ 2.85 

  Weighted ߣ

CUSUM 

Standardized 

 CUSUM 

EWMA-M 

ݎ) ൌ .05) 

EWMA-M 

ݎ) ൌ .1) 

EWMA-M 

ݎ) ൌ .15) 

EWMA-M 

ݎ) ൌ .2) 

EWMA-3 

ݎ) ൌ .9) 

10.25 143.23 143.07 115.09 119.80 123.69 126.33 153.17 

10.50 108.24 108.30 67.84 73.77 78.43 83.08 118.15 

10.75 79.92 80.28 44.78 49.62 54.59 57.65 91.14 

11.00 61.96 62.15 31.55 34.67 37.80 41.28 72.28 

11.50 37.72 37.94 19.12 20.10 21.62 23.40 46.05 

12.00 24.14 24.45 13.06 13.45 14.01 14.82 31.71 

13.00 11.50 11.62 8.00 7.75 7.66 7.96 16.10 

14.00 6.63 6.67 5.81 5.40 5.28 5.30 9.30 

15.00 4.44 4.47 4.62 4.15 3.97 3.91 5.96 

16.00 3.26 3.28 3.80 3.42 3.21 3.13 4.13 

18.00 2.13 2.13 2.91 2.56 2.40 2.30 2.44 

20.00 1.62 1.62 2.37 2.08 1.93 1.83 1.72 
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Table 2.5. Comparison of ARL Values for ૃ૙ ൌ ૚૙ and 	ૃ૚ ൌ ૛૙ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 4.95 ݄ଵ ൌ ଵܮ 1.18 ൌ ଵܮ 2.24 ൌ ଵܮ 2.47 ൌ ଵܮ 2.59 ൌ ଷܮ 2.66 ൌ 2.85 

  Weighted ߣ

CUSUM 

Standardized  

CUSUM 

EWMA-M 

ݎ) ൌ .05) 

EWMA-M 

ݎ) ൌ .1) 

EWMA-M 

ݎ) ൌ .15) 

EWMA-M 

ݎ) ൌ .2) 

EWMA-3 

ݎ) ൌ .9) 

10.25 153.94 154.86 115.09 119.80 123.69 126.33 153.17 

10.50 117.70 118.58 67.84 73.77 78.43 83.08 118.15 

10.75 89.04 89.52 44.78 49.62 54.59 57.65 91.14 

11.00 68.95 69.77 31.55 34.67 37.80 41.28 72.28 

11.50 42.77 43.39 19.12 20.10 21.62 23.40 46.05 

12.00 27.81 28.32 13.06 13.45 14.01 14.82 31.71 

13.00 13.10 13.51 8.00 7.75 7.66 7.96 16.10 

14.00 7.63 7.77 5.81 5.40 5.28 5.30 9.30 

15.00 4.85 4.96 4.62 4.15 3.97 3.91 5.96 

16.00 3.50 3.53 3.80 3.42 3.21 3.13 4.13 

18.00 2.17 2.18 2.91 2.56 2.40 2.30 2.44 

20.00 1.63 1.63 2.37 2.08 1.93 1.83 1.72 

 

Tables 2.6, 2.7, and 2.8 present the steady-state ARL values for different shifts in the 

Poisson mean when ߣ଴ ൌ 6. These results support the conclusions found in the previous 

simulation results where ߣ଴ ൌ 10. For small shifts in the mean, the weighted CUSUM chart 

slightly outperforms the standardized CUSUM chart across the values of ߣ, while both 

procedures significantly outperform the EWMA-3 procedure. We notice, for example, that when 

the shifted mean of interest ߣଵ ൌ 7, the weighted CUSUM and standardized CUSUM procedures 

have ARL values of 22.29 and 23.05 respectively at ߣ ൌ 7, while the EWMA-3 chart has an 

ARL of 51.40.   

The simulations with ߣ଴ ൌ 6 also reinforce the concept of choosing the smoothing- 

constant value based on the size of the shift of interest. In Table 2.6, the ARL values for the 

EWMA-M with ݎ ൌ .05 rival the ARL values for the weighted CUSUM chart for small mean 

shifts. When the value of ߣଵ increases from 7 to 8, as seen in Table 2.7, the best performing chart 

for the shift of interest is now the EWMA-M chart with ݎ ൌ .1. In Table 2.8, where ߣଵ ൌ 9, the 

EWMA-M chart with ݎ ൌ .15 has the quickest detection on average. Both CUSUM methods and 

the EWMA-M method are better at detecting small shifts in the Poisson mean compared to the 

EWMA-3 method. This is because the EWMA-3 chart has a smoothing constant ݎ ൌ .9, which 
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was recommended by Dong et al. (2008). This high value of the smoothing constant causes the 

statistics that are weighted by the EWMA method to be mainly based on the last two data points, 

much more like standard Shewhart charts. This results in a chart that detects large shifts in the 

mean quickly, but is less sensitive to small shifts. 

Table 2.6. Comparison of ARL Values for ࣅ૙ ൌ ૟ and 	ࣅ૚ ൌ ૠ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 16.14 ݄ଵ ൌ ଵܮ 5.71 ൌ ଵܮ 2.24 ൌ ଵܮ 2.47 ൌ ଵܮ 2.61 ൌ ଷܮ 2.69 ൌ 2.89 

 Weighted ߣ

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05) 

EWMA-M 

ݎ) ൌ .1) 

EWMA-M 

ݎ) ൌ .15) 

EWMA-M 

ݎ) ൌ .2) 

EWMA-3 

ݎ) ൌ .9) 

6.25 89.68 92.69 95.77 100.64 107.00 110.68 133.84 

6.50 49.78 51.83 51.96 56.83 62.38 66.83 97.26 

6.75 32.18 33.03 33.04 35.92 39.39 42.86 70.53 

7.00 22.29 23.05 22.88 24.41 26.54 29.12 51.40 

7.25 17.03 17.07 17.19 17.82 19.33 21.01 40.05 

7.50 13.42 13.61 13.79 13.98 14.96 15.92 30.71 

7.75 11.29 11.27 11.40 11.20 11.62 12.50 24.35 

8.00 9.58 9.44 9.74 9.39 9.75 10.10 19.35 

9.00 6.09 5.97 5.99 5.64 5.58 5.61 9.29 

10.00 4.50 4.36 4.45 4.04 3.88 3.86 5.32 

11.00 3.63 3.56 3.58 3.18 3.03 2.94 3.56 

12.00 3.02 2.99 2.98 2.66 2.52 2.41 2.57 

13.00 2.65 2.61 2.61 2.30 2.17 2.04 2.01 

14.00 2.38 2.35 2.32 2.04 1.91 1.81 1.68 

 

All of our simulations for constant sample sizes indicate that the weighted CUSUM chart 

performs well for shifts for which it is designed and also for shifts around this value. However, 

the EWMA-M chart has comparable performance to the weighted CUSUM charts when the 

appropriate smoothing constant is chosen based on the shift of interest. It is apparent that the 

lower smoothing constant and the lower reflecting barrier have a major impact on the 

performance of the EWMA chart for monitoring Poisson counts with constant sample sizes.  
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Table 2.7. Comparison of ARL Values for ૃ૙ ൌ ૟ and ૃ૚ ൌ ૡ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 11.20 ݄ଵ ൌ ଵܮ 4.00 ൌ ଵܮ 2.24 ൌ ଵܮ 2.47 ൌ ଵܮ 2.61 ൌ ଷܮ 2.69 ൌ 2.89 

 Weighted ߣ

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05) 

EWMA-M 

ݎ) ൌ .1) 

EWMA-M 

ݎ) ൌ .15) 

EWMA-M 

ݎ) ൌ .2) 

EWMA-3 

ݎ) ൌ .9) 

6.25 103.50 106.15 95.77 100.64 107.00 110.68 133.84 

6.50 59.54 61.62 51.96 56.83 62.38 66.83 97.26 

6.75 37.54 38.93 33.04 35.92 39.39 42.86 70.53 

7.00 25.50 26.76 22.88 24.41 26.54 29.12 51.40 

7.25 18.46 19.40 17.19 17.82 19.33 21.01 40.05 

7.50 14.53 14.92 13.79 13.98 14.96 15.92 30.71 

7.75 11.40 11.62 11.40 11.20 11.62 12.50 24.35 

8.00 9.49 9.67 9.74 9.39 9.75 10.10 19.35 

9.00 5.63 5.61 5.99 5.64 5.58 5.61 9.29 

10.00 4.00 3.93 4.45 4.04 3.88 3.86 5.32 

11.00 3.21 3.10 3.58 3.18 3.03 2.94 3.56 

12.00 2.64 2.60 2.98 2.66 2.52 2.41 2.57 

13.00 2.31 2.27 2.61 2.30 2.17 2.04 2.01 

14.00 2.03 1.99 2.32 2.04 1.91 1.81 1.68 

Table 2.8. Comparison of ARL Values for ૃ૙ ൌ ૟ and 	ૃ૚ ൌ ૢ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 8.61 ݄ଵ ൌ ଵܮ 3.01 ൌ ଵܮ 2.24 ൌ ଵܮ 2.47 ൌ ଵܮ 2.61 ൌ ଷܮ 2.69 ൌ 2.89 

 Weighted ߣ

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05) 

EWMA-M 

ݎ) ൌ .1) 

EWMA-M 

ݎ) ൌ .15) 

EWMA-M 

ݎ) ൌ .2) 

EWMA-3 

ݎ) ൌ .9) 

6.25 109.80 111.60 95.77 100.64 107.00 110.68 133.84 

6.50 66.21 67.72 51.96 56.83 62.38 66.83 97.26 

6.75 43.16 44.33 33.04 35.92 39.39 42.86 70.53 

7.00 29.42 30.33 22.88 24.41 26.54 29.12 51.40 

7.25 21.20 21.67 17.19 17.82 19.33 21.01 40.05 

7.50 16.15 16.85 13.79 13.98 14.96 15.92 30.71 

7.75 12.46 12.87 11.40 11.20 11.62 12.50 24.35 

8.00 10.20 10.38 9.74 9.39 9.75 10.10 19.35 

9.00 5.59 5.63 5.99 5.64 5.58 5.61 9.29 

10.00 3.80 3.83 4.45 4.04 3.88 3.86 5.32 

11.00 2.94 2.93 3.58 3.18 3.03 2.94 3.56 

12.00 2.41 2.38 2.98 2.66 2.52 2.41 2.57 

13.00 2.08 2.04 2.61 2.30 2.17 2.04 2.01 

14.00 1.84 1.78 2.32 2.04 1.91 1.81 1.68 
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The lack of a reflecting lower barrier could also be a reason for the elevated EWMA-3 

ARL values. Gan (1990) and Borror et al. (1998) used Markov chains to calculate ARL values 

for EWMA charts with count data and constant sample size. Gan (1990) performed ARL 

computations for both one-sided and two-sided charts, but Borror et al. (1998) only performed 

ARL computations for EWMA charts with both upper and lower control limits. We ran 

simulations to estimate the ARL values computed by Borror et al. (1998), but the lower bound 

was removed. We found that on average our ARL values for a given increase in the parameter 

were about 10% higher than the ARL values for the methods that have both upper and lower 

bounds.      

Simulation Results for Varying Sample Sizes 

In this section, we extend our study of the steady-state ARL performance of the proposed 

EWMA and CUSUM charts to varying sample size cases. By allowing the sample sizes to vary, 

we are able to see if the performance of the charts is consistent with our results from the fixed 

sample size study. Through these comparisons, we are able to recommend the methods that work 

best for monitoring processes with count data when the sample sizes vary randomly.   

 The CUSUM methods to be compared are the GLR CUSUM method based on the 

statistics in Equation (5), the WLR CUSUM method based on the statistics in Equation (6), and 

the standardized CUSUM method based on the statistics in Equation (4). One of the EWMA 

methods, which we will call the EWMA-1 chart, has UCLs based on the exact variances of the 

EWMA statistics given in Equation (8) and has ݎ ൌ .9. The second EWMA method compared is 

our new EWMA method, the EWMA-M chart. Like the EWMA-1 chart, the UCLs are based on 

the exact variance in Equation (8), but unlike the EWMA-1 chart there is a reflecting lower 

barrier at ߣ଴. We also evaluate the EWMA-M chart based on different smoothing constants, in 

particular for ݎ ൌ .05, .1, .15, .2,	and . 5.  

The varying sample sizes were implemented by placing a continuous uniform 

distribution, ܷሺܽ, ܾሻ, ሺܾ ൐ ܽሻ, on ݊௜ for ݅ ൌ 1, 2, … . Various combinations of the upper and 

lower limits for the uniform distribution were studied to ensure that the uniform distribution 

placed on the sample sizes had no influence on the relative performance of the methods. The 

combinations of the parameters studied were ሺܽ, ܾሻ ൌ ሺ10, 15ሻ, ሺ10, 20ሻ, and ሺ10, 50ሻ. The 

lower bound of 10 was used because this is the same minimum sample size used in Dong et al.’s 
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(2008) simulation study. Each of the estimated ARL values for the varying sample size cases 

were obtained from 10,000 simulations. The control limits were set so that the zero-state 

ARL଴ ൌ 200. As in the constant sample size case, the process was run for 50 samples while in-

control. If a simulated chart signaled during those first 50 samples, that particular run was 

discarded.  

Because the sample sizes are varying, we are now able to distinguish between the 

performance of the three CUSUM methods. Table 2.9 shows estimated steady-state ARL values 

for all methods when ߣ଴ ൌ 1 and ߣଵ ൌ 1.2 with ܽ ൌ 10	 and ܾ ൌ 15. Because the sample size 

varies, shifts in the Poisson mean, ݊௜ߣଵ, ݅ ൌ 1, 2, … , will also vary. The results reveal that the 

GLR CUSUM chart outperforms the other CUSUM methods for shifts in ߣ from 1 to  1.2, which 

corresponds to shifts in the Poisson mean as small as 10 to 12 and shifts as large as 15 to 18. The 

standardized CUSUM method has similar or better ARL performance beyond ߣ ൌ 1.2, while 

both the GLR and standardized CUSUM methods have the same or better ARL performance than 

the WLR CUSUM methods for all shifts in the Poisson rate beyond ߣ ൌ 1.2.   

 The CUSUM methods outperform the EWMA-1 methods except for the extremely large 

shifts, which is attributed to the high smoothing constant value for the EWMA-1 chart. However, 

the ARL performance of the EWMA-M charts is more comparable to that of the CUSUM charts. 

The smaller smoothing constants make the EWMA-M technique more sensitive to smaller shifts. 

This is shown in Table 2.9 where the EWMA-M method with ݎ ൌ .05 outperforms the CUSUM 

methods for shifts up to ߣ ൌ 1.2. At this value the GLR CUSUM has the quickest detection, 

which is expected because this is the out-of-control shift for which the GLR CUSUM chart was 

designed to detect quickly. 

 The ARL comparisons for the control charting methods when ߣ଴ ൌ 1 and ߣଵ ൌ 1.2 are 

illustrated in Figure 2.1. Each line in the graph represents the ratios of the ARL values for one of 

the eight control charting methods divided by the ARL values for the GLR CUSUM chart. When 

the ratio is greater than one, the control charting method is worse than the GLR CUSUM chart at 

detecting that particular shift in the Poisson rate. When the ratio is less than one, the control 

charting method is better than the GLR CUSUM chart at detecting that particular shift in the 

Poisson rate. These same ratio comparisons are given in Figures 2.2, 2.3, and 2.4 for situations 

where the out-of-control rate differs from 1.2. 
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 At the shift of interest, ߣଵ ൌ 1.2, notice that the ratios for all the control charting methods 

are above one. This indicates the GLR CUSUM chart has the best ARL performance compared 

to the other control charting methods when the Poisson rate shifts to 1.2. The GLR CUSUM 

chart also has good ARL performance for shifts around ߣ ൌ 1.2.  

The ratios displayed in Figure 2.1 reinforce the recommendation that the smoothing 

constant for the EWMA chart should be chosen based on size of the shift one is interested in 

detecting. Notice that the EWMA-M chart with ݎ ൌ .05 is the best performing method for the 

small shifts, while the EWMA-M chart with ݎ ൌ .5 and the EWMA-1 chart with ݎ ൌ .9 perform 

best for large shifts in the Poisson rate.       

Table 2.9. Comparison of ARL Values for ૃ૙ ൌ ૚ and 	ૃ૚ ൌ ૚. ૛, where ࢇ ൌ ૚૙, ࢈ ൌ ૚૞ with ۺ܀ۯ૙ ൎ ૛૙૙. 

݄ଶ ൌ 16.97	 ݄ଵ ൌ 4.37	 ݄ଷ ൌ 1.38	 ଵܮ ൌ 2.24 ଵܮ ൌ 2.45 ଵܮ ൌ 2.57 ଵܮ ൌ 2.65	 ଵܮ ൌ 2.84 ଵܮ ൌ 2.82

 ߣ

GLR  

CUSUM 

Standardized 

CUSUM 

WLR  

CUSUM 

EWMA-M

ݎ) ൌ .05ሻ 

EWMA-M

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M

ݎ) ൌ .5ሻ 

EWMA-1

ݎ) ൌ .9ሻ 

1.025 108.71 110.59 110.01 106.52 111.11 115.56 119.59 136.01 147.38 

1.05 65.24 67.04 65.82 61.16 67.44 72.22 77.60 97.67 113.75 

1.075 43.13 44.65 43.72 39.77 43.02 46.70 50.89 70.07 84.84 

1.1 29.27 30.04 29.57 27.77 29.63 32.83 35.82 50.51 65.68 

1.15 16.92 17.23 16.94 16.67 17.13 18.20 19.92 29.42 40.98 

1.2 11.18 11.49 11.46 11.53 11.48 11.80 12.56 18.38 26.79 

1.3 6.58 6.57 6.69 7.17 6.63 6.63 6.66 8.65 13.01 

1.4 4.68 4.67 4.74 5.17 4.69 4.54 4.51 5.19 7.52 

1.5 3.63 3.61 3.67 4.12 3.67 3.46 3.44 3.56 4.66 

1.6 2.99 3.01 3.04 3.43 3.04 2.86 2.76 2.71 3.27 

1.8 2.28 2.29 2.31 2.62 2.30 2.15 2.03 1.85 1.98 

2 1.89 1.90 1.90 2.15 1.88 1.74 1.66 1.44 1.45 
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shift in which the chart was designed to detect quickly, which this case is ߣଵ ൌ 1.5. This is 

illustrated by the fact that the ratios for all the methods are above one at ߣ ൌ 1.5 indicating that 

the ARLଵ values for the control charting methods are all greater than the ARLଵ value for the GLR 

CUSUM chart. This relationship remains true for many of the shifts in the rates around ߣ ൌ 1.5. 

 

Table 2.10.  Comparison of ARL Values for ࣅ૙ ൌ ૚ and 	ࣅ૚ ൌ ૚. ૞, where ࢇ ൌ ૚૙, ࢈ ൌ ૚૞ with ۺ܀ۯ૙ ൎ ૛૙૙ 

݄ଶ ൌ 9.04	 ݄ଵ ൌ 2.25	 ݄ଷ ൌ .74	 ݄ସ ൌ .58 ଵܮ ൌ 2.24 ଵܮ ൌ 2.45 ଵܮ ൌ 2.57	 ଵܮ ൌ 2.65 ଵܮ ൌ 2.82

	ߣ

GLR  

CUSUM 

Standardized  

CUSUM 

WLR  

CUSUM 

ATM 

CUSUM 

EWMA-M

ݎ) ൌ .05ሻ 

EWMA-M

ݎ) ൌ .1ሻ 

EWMA-M 

ݎ) ൌ .15ሻ 

EWMA-M

ݎ) ൌ .2ሻ 

EWMA-1

ݎ) ൌ .9ሻ 

1.025 130.95 131.61 131.43 154.62 106.52 115.37 115.56 119.59 147.38 

1.05 90.10 91.73 91.51 119.11 61.16 69.98 72.22 77.60 113.75 

1.075 63.02 63.92 63.49 91.20 39.77 44.40 46.70 50.89 84.84 

1.1 45.02 46.23 45.90 72.29 27.77 30.90 32.83 35.82 65.68 

1.15 24.90 25.80 25.31 46.23 16.67 17.25 18.20 19.92 40.98 

1.2 15.51 16.03 15.76 30.68 11.53 11.47 11.80 12.56 26.79 

1.3 7.51 7.77 7.72 15.14 7.17 6.73 6.63 6.66 13.01 

1.4 4.69 4.76 4.74 8.45 5.17 4.71 4.54 4.51 7.52 

1.5 3.34 3.37 3.41 5.23 4.12 3.68 3.46 3.44 4.66 

1.6 2.65 2.65 2.66 3.58 3.43 3.05 2.86 2.76 3.27 

1.8 1.87 1.86 1.90 2.09 2.62 2.32 2.15 2.03 1.98 

2 1.52 1.51 1.50 1.48 2.15 1.90 1.74 1.66 1.45 
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૚ and 	ࣅ૚ ൌ ૚

ଵܮ 4 ൌ 2.4

M

ሻ 

EWMA-M

ݎ) ൌ .1ሻ

115.37

69.98

44.40

30.90

17.25

11.47

6.73 

4.71 

3.68 

3.05 

2.32 

1.90 

nd 	ૃ૚ ൌ ૚. ૡ, w
CUSUM; 
WMA-M (r =.

૚. ૡ where ࢇ ൌ

ଵܮ 5 ൌ 2.5

M

ሻ 

EWMA-M

ݎ) ൌ .15

115.56

72.22

46.70

32.83

18.20

11.80

6.63

4.54

3.46

2.86

2.15
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Table 2.12 provides the first evidence of the EWMA-1 chart performance being 

comparable to that of the CUSUM methods. When the mean shift of interest has increased to a 

quite large value between 20 and 30, the ARL values for the EWMA-1 method and the CUSUM 

methods become more comparable. The EWMA-M chart with ݎ ൌ .5 and the EWMA-1 chart 

with ݎ ൌ .9	have similar performance at the shift of primary interest ߣଵ ൌ 2, but the GLR 

CUSUM chart still outperforms both EWMA methods at this shift. The improved performance 

for the EWMA-1 chart is also illustrated in Figure 2.4.      

Table 2.12.  Comparison of ARL Values for ࣅ૙ ൌ ૚ and 	ࣅ૚ ൌ ૛ where ࢇ ൌ ૚૙, ࢈ ൌ ૚૞ with ۺ܀ۯ૙ ൎ ૛૙૙ 

݄ଶ ൌ 4.68	 ݄ଵ ൌ 1.06	 ݄ଷ ൌ .39	 ଵܮ ൌ 2.24 ଵܮ ൌ 2.45 ଵܮ ൌ 2.57 ଵܮ ൌ 2.65	 ଵܮ ൌ 2.84 ଵܮ ൌ 2.82

 ߣ

GLR  

CUSUM 

Standardized  

CUSUM 

WLR  

CUSUM 

EWMA-M

ݎ) ൌ .05ሻ 

EWMA-M

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M

ݎ) ൌ .5ሻ 

EWMA-1

ݎ) ൌ .9ሻ 

1.025 147.06 148.81 148.44 106.52 115.37 115.56 119.59 136.01 147.38 

1.05 111.54 114.58 113.44 61.16 69.98 72.22 77.60 97.67 113.75 

1.075 83.41 86.41 85.36 39.77 44.40 46.70 50.89 70.07 84.84 

1.1 64.44 66.83 65.58 27.77 30.90 32.83 35.82 50.51 65.68 

1.15 39.43 41.54 40.92 16.67 17.25 18.20 19.92 29.42 40.98 

1.2 24.88 26.69 25.79 11.53 11.47 11.80 12.56 18.38 26.79 

1.3 11.69 12.57 12.05 7.17 6.73 6.63 6.66 8.65 13.01 

1.4 6.52 7.07 6.91 5.17 4.71 4.54 4.51 5.19 7.52 

1.5 4.13 4.39 4.28 4.12 3.68 3.46 3.44 3.56 4.66 

1.6 2.97 3.08 2.99 3.43 3.05 2.86 2.76 2.71 3.27 

1.8 1.87 1.91 1.89 2.62 2.32 2.15 2.03 1.85 1.98 

2 1.41 1.43 1.43 2.15 1.90 1.74 1.66 1.44 1.45 
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Table 2.13. Comparison of ARL Values for ࣅ૙ ൌ ૚ and ࣅ૚ ൌ ૛ where ࢇ ൌ ૚૙, ࢈ ൌ ૞૙ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 2.82	 ݄ଷ ൌ .16	 ݄ଵ ൌ .46	 ଵܮ ൌ 2.21 ଵܮ ൌ 2.43 ଵܮ ൌ 2.54 ଵܮ ൌ 2.61	 ଵܮ ൌ 2.77 ଵܮ ൌ 2.75

 ߣ

GLR  

CUSUM 

WLR  

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05ሻ 

EWMA-M 

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M 

ݎ) ൌ .5ሻ 

EWMA-1 

ݎ) ൌ .9ሻ 

1.025 145.13 152.00 149.96 83.06 89.53 95.57 99.11 115.05 130.39 

1.05 106.33 117.65 113.26 42.12 45.41 50.28 53.55 71.40 86.34 

1.075 77.37 89.52 84.92 25.11 26.93 29.63 31.81 44.50 58.15 

1.1 56.69 69.70 64.90 17.47 18.26 19.09 20.85 29.38 40.34 

1.15 31.45 40.55 37.49 10.49 10.13 10.33 10.65 14.44 21.27 

1.2 18.60 25.29 23.07 7.41 6.94 6.90 6.89 8.40 12.31 

1.3 7.60 10.39 9.52 4.76 4.26 3.99 3.90 4.03 5.22 

1.4 3.84 4.91 4.61 3.54 3.13 2.89 2.79 2.59 2.93 

1.5 2.33 2.85 2.71 2.86 2.52 2.33 2.21 1.96 2.01 

1.6 1.68 1.94 1.82 2.43 2.13 1.96 1.86 1.59 1.57 

1.8 1.20 1.27 1.24 1.92 1.68 1.53 1.44 1.23 1.20 

2 1.06 1.08 1.07 1.62 1.40 1.26 1.20 1.10 1.08 

Simulation Results for a Poisson Process with Low Counts 

The in-control mean in the previous simulation study is at least ten. In this section we 

extend our study of control charts for varying sample sizes to situations where the in-control 

mean is small. In practice, processes with small Poisson rates are referred to as low-defect-rate 

processes. Saniga et al. (2009) presented a case study exploring count data where the counts 

were low. They modeled these counts using the binomial distribution; however, their methods 

could be adapted to handle Poisson count data. Saniga et al. (2009) focused on Phase I methods 

and concluded that that the best procedure for evaluating the capability and performance of a 

process was to use CUSUM and Shewhart charts simultaneously. Unlike Saniga et al. (2009) we 

focus on Phase II performance analyses. This section is composed of steady-state ARL 

comparisons for EWMA charts and CUSUM charts when the minimum in-control mean is one. 

Each of the estimated steady-state ARL values for the varying sample size cases were 

obtained from 100,000 simulations. The control limits were set so that the zero-state ARL଴ ൌ

200. As in previous simulations, the process was run for 50 samples while in-control. If a 

simulated chart signaled during those first 50 samples, that particular run was discarded. The 
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varying sample size was implemented by placing a continuous uniform distribution, ܷሺ10, 15ሻ, 

on ݊௜ for ݅ ൌ 1, 2, … . The in-control Poisson rate for all simulations is ߣ଴ ൌ .1. 

The ARL performance for the GLR CUSUM chart, standardized CUSUM chart, WLR 

CUSUM chart, EWMA charts with ݎ ൌ .05, .1, .15, .2, .5	and a reflecting lower barrier at ߣ଴ ൌ .1, 

and an EWMA chart with ݎ ൌ .9 and no reflecting lower barrier is compared. However, the form 

of the GLR CUSUM chart slightly differs from Equation (5). Rather than dividing out the 

constant ln ቄ஛భ
஛బ
ቅ during the derivation of the CUSUM statistic, we leave this constant in our GLR 

CUSUM chart formulation. This leads to less variability in ݄ଶ, the decision interval for the GLR 

CUSUM chart. The value of ݄ଶ in the simulation study with ߣ଴=10 ranges from 16.97 to 4.68, as 

displayed in Tables 2.9 through 2.12. The range of ݄ଶ is much smaller for the current simulation 

study, 3.56 to 2.82, because ln ቄఒభ
ఒబ
ቅ remains as part of the GLR CUSUM statistics. The revised 

GLR CUSUM statistics are 

 
ܵଶ,௜ ൌ max ቆ0, ܵଶ,௜ିଵ ൅ ln ൜

ଵߣ
଴ߣ
ൠ ቈ ௜ܺ െ

݊௜ሺߣଵ െ ଴ሻߣ
lnሼߣଵሽ െ lnሼߣ଴ሽ

቉ቇ , ݅ ൌ 1, 2, …, (11) 

where ܵଶ,଴ ൌ 0. The chart signals if ܵଶ,௜ ൒ ݄ଶ. 

 The ARL performance for all control charting methods for a Poisson process with an in-

control rate of ߣ଴ ൌ .1 and an out-of-control rate of ߣଵ ൌ .2 is given in Table 2.14. Recall that the 

varying sample sizes lead to an in-control Poisson mean as small as 1 and an out-of-control 

Poisson mean as large as 3. The results are very similar to those given for Poisson processes with 

larger means. The GLR CUSUM chart is performing best for the out-of-control shift in which the 

chart was designed to detect, ߣଵ ൌ.2. The performance for the EWMA charts support the 

suggestion that the smoothing constant should be chosen based on the shift of interest. Notice 

that for small shifts the EWMA-M chart with ݎ ൌ .05 has the quickest detection, while the 

EWMA-M chart with ݎ ൌ .5 has the best detection for large shifts. The EWMA-1 chart with a 

smoothing constant of .9 begins to have better performance for the larger shifts, but again this 

chart is at a disadvantage because there is no reflecting lower barrier in place. 
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Table 2.14. Comparison of ARL Values for ࣅ૙ ൌ. ૚ and ࣅ૚ ൌ. ૛ where ࢇ ൌ ૚૙, ࢈ ൌ ૚૞ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 2.82	 ݄ଷ ൌ .16	 ݄ଵ ൌ .46	 ଵܮ ൌ 2.33 ଵܮ ൌ 2.61 ଵܮ ൌ 2.77 ଵܮ ൌ 2.89	 ଵܮ ൌ 3.25 ଵܮ ൌ 3.28

 ߣ

GLR  

CUSUM 

WLR  

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05ሻ 

EWMA-M 

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M 

ݎ) ൌ .5ሻ 

EWMA-1 

ݎ) ൌ .9ሻ 

0.11 101.55 102.24 106.36 92.69 97.60 102.41 105.49 123.15 130.78 

0.12 58.17 58.65 62.23 49.45 53.90 58.09 61.73 78.77 90.21 

0.13 36.78 37.20 39.82 30.86 33.51 36.46 39.03 53.45 64.32 

0.14 25.20 25.44 27.39 21.67 23.12 24.87 26.67 37.79 47.56 

0.15 18.29 18.52 19.76 16.44 17.10 18.14 19.51 27.81 35.94 

0.16 14.02 14.22 15.06 13.14 13.28 14.02 14.83 21.06 27.95 

0.17 11.24 11.38 11.96 10.92 10.88 11.23 11.79 16.45 22.18 

0.18 9.34 9.42 9.84 9.35 9.21 9.34 9.69 13.27 18.06 

0.20 6.89 6.99 7.12 7.26 6.94 6.94 7.08 9.10 12.40 

0.22 5.45 5.52 5.57 5.97 5.60 5.53 5.54 6.72 9.08 

0.24 4.50 4.56 4.55 5.09 4.71 4.57 4.57 5.26 6.85 

0.30 3.05 3.07 3.04 3.55 3.22 3.08 3.00 3.11 3.73 

0.40 2.05 2.07 2.05 2.46 2.21 2.09 2.01 1.90 2.02 

0.50 1.61 1.61 1.62 2.13 1.73 1.64 1.57 1.44 1.46 

 

As ߣଵ increases, the best value for the smoothing constant of the EWMA chart also 

increases. The ARL results for a Poisson process with ߣ଴ ൌ .1 and ߣଵ ൌ .3 and a Poisson process 

with ߣ଴ ൌ .1 and ߣଵ ൌ .4 are given in Tables 2.15 and 2.16. When ߣଵ ൌ .3, the best preforming 

EWMA chart at that shift of interest is the EWMA-M chart with ݎ ൌ .2. When ߣଵ increases to .4, 

the best performing EWMA chart at that particular shift is the chart with ݎ ൌ .5. However, the 

overall best performing chart at the shift of interest in both cases is the GLR CUSUM chart.    
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Table 2.15. Comparison of ARL Values for ࣅ૙ ൌ. ૚ and ࣅ૚ ൌ. ૜ where ࢇ ൌ ૚૙, ࢈ ൌ ૚૞ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 3.56	 ݄ଷ ൌ .265	 ݄ଵ ൌ 2.11	 ଵܮ ൌ 2.33 ଵܮ ൌ 2.61 ଵܮ ൌ 2.77 ଵܮ ൌ 2.89	 ଵܮ ൌ 3.25 ଵܮ ൌ 3.28

 ߣ

GLR  

CUSUM 

WLR  

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05ሻ 

EWMA-M 

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M 

ݎ) ൌ .5ሻ 

EWMA-1 

ݎ) ൌ .9ሻ 

0.11 116.29 118.32 119.99 92.69 97.60 102.41 105.49 123.15 130.78 

0.12 72.26 73.23 75.87 49.45 53.90 58.09 61.73 78.77 90.21 

0.13 47.74 48.87 51.15 30.86 33.51 36.46 39.03 53.45 64.32 

0.14 33.16 33.93 36.02 21.67 23.12 24.87 26.67 37.79 47.56 

0.15 24.16 24.72 26.36 16.44 17.10 18.14 19.51 27.81 35.94 

0.16 18.17 18.62 19.76 13.14 13.28 14.02 14.83 21.06 27.95 

0.17 14.17 14.53 15.53 10.92 10.88 11.23 11.79 16.45 22.18 

0.18 11.49 11.72 12.48 9.35 9.21 9.34 9.69 13.27 18.06 

0.20 7.98 8.14 8.60 7.26 6.94 6.94 7.08 9.10 12.40 

0.22 5.99 6.13 6.35 5.97 5.60 5.53 5.54 6.72 9.08 

0.24 4.77 4.87 5.00 5.09 4.71 4.57 4.57 5.26 6.85 

0.30 2.97 3.00 3.02 3.55 3.22 3.08 3.00 3.11 3.73 

0.40 1.89 1.92 1.89 2.46 2.21 2.09 2.01 1.90 2.02 

0.50 1.47 1.48 1.45 2.13 1.73 1.64 1.57 1.44 1.46 

Table 2.16. Comparison of ARL Values for ࣅ૙ ൌ. ૚ and ࣅ૚ ൌ. ૝ where ࢇ ൌ ૚૙, ࢈ ൌ ૚૞ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 3.43	 ݄ଷ ൌ .201	 ݄ଵ ൌ 1.465	 ଵܮ ൌ 2.33 ଵܮ ൌ 2.61 ଵܮ ൌ 2.77 ଵܮ ൌ 2.89	 ଵܮ ൌ 3.25 ଵܮ ൌ 3.28

 ߣ

GLR  

CUSUM 

WLR  

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05ሻ 

EWMA-M 

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M 

ݎ) ൌ .5ሻ 

EWMA-1 

ݎ) ൌ .9ሻ 

0.11 125.02 125.46 128.06 92.69 97.60 102.41 105.49 123.15 130.78 

0.12 81.40 81.78 85.17 49.45 53.90 58.09 61.73 78.77 90.21 

0.13 56.15 56.50 60.02 30.86 33.51 36.46 39.03 53.45 64.32 

0.14 39.82 40.19 43.07 21.67 23.12 24.87 26.67 37.79 47.56 

0.15 29.56 29.98 32.40 16.44 17.10 18.14 19.51 27.81 35.94 

0.16 22.13 22.36 24.52 13.14 13.28 14.02 14.83 21.06 27.95 

0.17 17.32 17.65 19.29 10.92 10.88 11.23 11.79 16.45 22.18 

0.18 14.06 14.22 15.59 9.35 9.21 9.34 9.69 13.27 18.06 

0.20 9.48 9.58 10.50 7.26 6.94 6.94 7.08 9.10 12.40 

0.22 6.97 7.08 7.66 5.97 5.60 5.53 5.54 6.72 9.08 

0.24 5.38 5.45 5.87 5.09 4.71 4.57 4.57 5.26 6.85 

0.30 3.12 3.15 3.29 3.55 3.22 3.08 3.00 3.11 3.73 

0.40 1.89 1.90 1.91 2.46 2.21 2.09 2.01 1.90 2.02 

0.50 1.43 1.44 1.42 2.13 1.73 1.64 1.57 1.44 1.46 
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 Table 2.17 displays the ARL values for a Poisson process with an in-control mean as 

small as one and an out-of-control mean as large as 7.5. These are the largest shifts studied for 

the low-count Poisson processes. At the shift of interest (ߣଵ ൌ .5ሻ, the performance of the 

CUSUM methods and the EWMA-M chart with ݎ ൌ .5 is similar.  

Table 2.17. Comparison of ARL Values for ࣅ૙ ൌ. ૚ and ࣅ૚ ൌ. ૞ where ࢇ ൌ ૚૙, ࢈ ൌ ૚૞ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 3.11	 ݄ଷ ൌ .156	 ݄ଵ ൌ .96	 ଵܮ ൌ 2.33 ଵܮ ൌ 2.61 ଵܮ ൌ 2.77 ଵܮ ൌ 2.89	 ଵܮ ൌ 3.25 ଵܮ ൌ 3.28

 ߣ

GLR  

CUSUM 

WLR  

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05ሻ 

EWMA-M 

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M 

ݎ) ൌ .5ሻ 

EWMA-1 

ݎ) ൌ .9ሻ 

0.11 129.08 129.50 132.33 92.69 97.60 102.41 105.49 123.15 130.78 

0.12 86.30 86.75 89.94 49.45 53.90 58.09 61.73 78.77 90.21 

0.13 61.26 61.32 65.27 30.86 33.51 36.46 39.03 53.45 64.32 

0.14 44.14 44.33 47.62 21.67 23.12 24.87 26.67 37.79 47.56 

0.15 33.21 33.38 36.01 16.44 17.10 18.14 19.51 27.81 35.94 

0.16 25.22 25.28 27.80 13.14 13.28 14.02 14.83 21.06 27.95 

0.17 19.89 20.00 22.05 10.92 10.88 11.23 11.79 16.45 22.18 

0.18 16.05 16.13 17.80 9.35 9.21 9.34 9.69 13.27 18.06 

0.20 10.83 10.89 12.14 7.26 6.94 6.94 7.08 9.10 12.40 

0.22 7.88 7.92 8.85 5.97 5.60 5.53 5.54 6.72 9.08 

0.24 6.05 6.06 6.68 5.09 4.71 4.57 4.57 5.26 6.85 

0.30 3.34 3.36 3.59 3.55 3.22 3.08 3.00 3.11 3.73 

0.40 1.92 1.92 1.98 2.46 2.21 2.09 2.01 1.90 2.02 

0.50 1.43 1.43 1.45 2.13 1.73 1.64 1.57 1.44 1.46 

 

The ARL performance for Poisson processes with low counts and varying sample sizes 

closely resembles the ARL performance for Poisson processes with higher counts and varying 

sample sizes and Poisson processes with a fixed sample size. The GLR CUSUM chart continues 

to have quick detection at the out-of-control shift for which the chart is designed to detect 

quickly. Also, the EWMA-M chart has comparable ARL performance when the smoothing 

constant is selected based on the size of the out-of-control shift one is interested in detecting. The 

performance of the EWMA-1 chart is only comparable for large shifts like those shifts given in 

Table 2.17. Also, the alternative formulation for the GLR CUSUM chart given in Equation (11) 

does not affect the ARL performance for the chart and the decision intervals are less variable, 
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which could lessen simulation time when determining the values of ݄ଶ for specified in-control 

ARL values.  

Example 

To illustrate the use of the EWMA charts and CUSUM charts, we reexamined the 

example provided by Dong et al. (2008). The dataset in Table 2.18 displays counts of adverse 

events for a product in a pharmaceutical company. We let ௜ܺ stand for the adverse event count, 

while ݊௜ is the product exposure in (millons) for each quarter between July 1, 1999 and 

December 31, 2004, for ݅ ൌ 1, 2, … , 22. We consider the GLR CUSUM chart, the EWMA-1 

chart with the UCLs in Equation (8), the Phase II u-chart with the control limits given in 

Equation (2), and the EWMA-M chart based on the exact variances in Equation (8) with ݎ ൌ .2 

and a reflecting barrier at	ߣ଴ ൌ 4. We used ݎ ൌ .9 for the smoothing constant associated with the 

EWMA-1 chart, which is the same value used by Dong et al. (2008). We also considered the in-

control incidence rate of ߣ଴ ൌ 4 and the out-of-control incidence rate of ߣଵ ൌ 7, as did Dong et 

al. (2008).   

We treated the data in Table 2.18 as Phase II data. The values of ܮଵ for the EWMA-1 

chart and EWMA-M chart, ܮ௨ for the u-chart, and ݄ଶ for the GLR CUSUM chart were found 

through a simulation study with 10,000 replications, where the ARL଴ value was set to 100. The 

varying sample sizes used for the simulations were sampled with replacement from the product 

exposures given in Table 2.18. The simulation led to the constants ܮଵ ൌ 2.697 for the EWMA-1 

chart, ܮଵ ൌ 2.43 for the EWMA-M chart, ܮ௨ ൌ 	2.687 for the Phase II u-chart, and ݄ଶ ൌ 4.96 

for the GLR CUSUM chart. Note that the value ܮଵ for the EWMA-1 used by Dong et al. (2008) 

to obtain ARL଴ ൒ 100	was ܮଵ ൌ 2.3263. This value was found using approximate analytical 

bounds derived by Dong et al. (2008). Our simulation study yielded a more accurate value of ܮଵ, 

which we used to construct our EWMA-1 control chart. 

 

 
 
 



35 
 

Table 2.18. The Number of Adverse Events, Product Exposures and  
Rate for Each Quarter Reported During July 1, 1999-December 31, 2004 

Time 

݅ 

Adverse Event 

Count 

 ௜ܺ 

Product Exposure 

݊௜ (in millions) 

Rate 

(Per Million 

Units) 

1 1 0.206 4.854 

2 0 0.313 0.000 

3 0 0.368 0.000 

4 0 0.678 0.000 

5 1 0.974 1.027 

6 0 0.927 0.000 

7 3 0.814 3.686 

8 3 0.696 4.310 

9 3 0.659 4.552 

10 2 0.775 2.581 

11 5 0.731 6.840 

12 5 0.71 7.042 

13 2 0.705 2.837 

14 4 0.754 5.305 

15 4 0.682 5.865 

16 3 0.686 4.373 

17 4 0.763 5.242 

18 3 0.833 3.601 

19 8 0.738 10.840 

20 3 0.741 4.049 

21 2 0.843 2.372 

22 2 0.792 2.525 

 

Figures 2.5, 2.6, 2.7, and 2.8 depict the plots of the GLR CUSUM chart, the u-chart, the 

EWMA-1 chart, and the EWMA-M chart, respectively. The u-chart, the EWMA-1 chart, and the 

EWMA-M chart alarm at time point 19, which is in the first quarter of 2004. The signaling of the 

Shewhart u-chart at time point 19 is expected because there is a sharp spike in the incidence rate. 

Likewise, we also expect the EWMA-1 chart to signal at time point 19 because the large 

smoothing constant ݎ ൌ .9 causes the EWMA-1 chart to behave similarly to the Shewhart u-

chart. The EWMA-M chart with the reflecting barrier also signals at time point 19. Even though 

the EWMA-M chart has a smaller smoothing constant compared to the EWMA-1 chart, the 
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EWMA-M chart is still able to detect the spike in the incidence rate. On the contrary, the 

CUSUM chart fails to alarm at time point 19 because it is less sensitive to a single large observed 

count. This example illustrates the similarities between the EWMA-1 chart with ݎ ൌ .9 and the 

Shewhart u-chart and also shows that a EWMA chart with a smaller smoothing constant can 

detect large spikes in the incidence rate.  
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Figure 2.5. GLR CUSUM Chart, where ૃ૙ ൌ ૝ for the Drug-Adverse Event Example. 
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Figure 2.6. u-Chart, where ࣅ૙ ൌ ૝ for the Drug-Adverse Event Example. 
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Figure 2.7. EWMA-1 Chart, where ࣅ૙ ൌ ૝ for the Drug-Adverse Event Example. 
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Figure 2.8. EWMA-M Chart, where ࣅ૙ ൌ ૝ for the Drug-Adverse Event Example. 

Conclusions 

The results from our simulation study reveal that the GLR CUSUM chart has superior 

ARL performance at the out-of-control shift for which the chart is designed to detect quickly 

compared with the standardized CUSUM chart and WLR CUSUM chart. The GLR CUSUM 

chart also has quick detection at ranges of shifts around this specified shift. 
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The newly introduced EWMA-M charts have good ARL properties at detecting various 

parameter shifts. The features of the EWMA-M chart include using control limits based on the 

exact variances of the EWMA statistics, so there is no issue of an unknown minimum sample 

size in Phase II, implementing a reflecting lower barrier to protect against inertial problems, and 

choosing the smoothing constant for the chart based on the primary shift of interest. Through our 

simulation study for varying samples sizes, we see that the GLR CUSUM chart always has 

smaller steady-state ARL values at the out-of-control shift for which it was designed to detect, 

but an EWMA-M chart with the appropriate smoothing constant has comparable ARL 

performance at the out-of-control shift of interest and in some cases has better ARL performance 

for ranges of shifts around the specified out-of-control shift. One minor drawback to the EWMA-

M chart is having to determine the value of the smoothing constant, ݎ. 

The results from our simulations both with fixed sample sizes and varying sample sizes 

indicate that the CUSUM methods and the EWMA-M methods outperform the EWMA methods 

of Dong et al. (2008) in detecting small shifts in the Poisson rates. We were not surprised that the 

EWMA methods recommended by Dong et al. (2008) did a good job detecting large shifts in the 

rates because they used ݎ ൌ .9. These EWMA charts were much like Shewhart charts, which are 

known to be able to quickly detect large shifts in the parameter of interest.          

It is assumed that the observed counts in our paper are independent Poisson observations 

where the both the in-control mean and out-of-control mean are specified. A more general 

approach is to instead estimate the in-control mean at each time point. The out-of-control mean 

could then be computed based on the increase or decrease in the in-control mean one wishes to 

detect. Höhle and Paul (2008) studied the performance for different control charts in situations 

where the in-control mean was estimated at each time point using a seasonal log-linear model. 

The out-of-control mean was then characterized by a multiplicative shift.  

Höhle and Paul (2008) compared the ARL performance for the following four control 

charts: a CUSUM chart based on the likelihood-ratio formulation (equivalent to our GLR 

CUSUM chart), Rossi et al.’s (1999) standardized CUSUM chart with the fixed reference limit, 

Rogerson and Yamada’s (2004) time-varying Poisson CUSUM chart, and the generalized 

likelihood-ratio chart (GLR chart). Rogerson and Yamada’s (2004) time-varying Poisson 

CUSUM chart follows closely to the CUSUM chart based on the likelihood-ratio formulation; 

however, they incorporated a scaling factor to determine the contribution of the observed counts 
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to the cumulative sum. The scaling factor is a ratio of the overall decision interval and the time 

varying decision intervals, where the overall decision interval is determined using the Poisson 

CUSUM chart with a constant mean based on the mean of the time varying parameter and the 

specified ARL଴. The time-varying decision intervals are determined using the varying means at 

each time point and the specified ARL଴. The GLR chart involves the maximization of the log-

likelihood ratio across all possible shifts.         

The simulation study performed by Höhle and Paul (2008) revealed that the CUSUM 

chart based on the likelihood-ratio formulation performed well for the shift in which the chart 

was designed to detect and also for shifts close to the shift of interest. The GLR control chart 

performed well for many of the smaller shifts, while the standardized CUSUM chart did not 

perform well at even meeting the specified in-control ARL. Rogerson and Yamada’s (2004) 

time-varying Poisson CUSUM chart had comparable performance with the GLR chart and the 

likelihood-ratio CUSUM chart, but the time-varying Poisson CUSUM chart was never the best 

performing chart.   

Using techniques like Poisson regression allows for more flexibility when estimating the 

in-control means. Höhle and Paul (2008) provided a detailed analysis regarding the performance 

for CUSUM procedures and the GLR chart. In future research, it would be of interest to compare 

the performance of these charts with the EWMA chart where the smoothing constant is chosen 

based on the size of the shift one is interested in detecting. 

Also, in future research, it would be important to study the effects of estimation error on 

the performance of the CUSUM charts and EWMA charts compared in our paper. The EWMA 

and CUSUM charts are designed assuming that the in-control Poisson rate, ߣ଴, is estimated 

without error during a Phase I analysis or as in Höhle and Paul’s (2008) research using Poisson 

regression. However, in practice we know estimation error does exist. Jensen et al. (2006) gave a 

literature review on the effects of parameter estimation on control chart properties. 

The control charts in our paper are based on Poisson count data that are assumed to be 

independent observations. However, in practice there may be situations where autocorrelation in 

the samples exists. A future research topic could be studying the effect of autocorrelation on the 

performance of the charts discussed in our paper. Weiss and Testik (2009) studied a CUSUM 

chart based on a Poisson integer-valued autoregressive model of order 1, where the sample size 

remains constant. This CUSUM chart monitors both the Poisson mean and changes in the 
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autocorrelation structure. It would be of interest to extend this CUSUM chart that monitors both 

the Poisson mean and the autocorrelation structure to situations where the sample sizes vary. 

Appendix A: ARL Comparisons for ࢁሺ૚૙, ૛૙ሻ and ࢁሺ૚૙, ૞૙ሻ 

Table 2.A1. Comparison of ARL Values for ࣅ૙ ൌ ૚ and 	ࣅ૚ ൌ ૚. ૛ where ࢇ ൌ ૚૙, ࢈ ൌ ૛૙ with ۺ܀ۯ૙ ൎ ૛૙૙ 

݄ଶ ൌ 17.491 ݄ଵ ൌ 4.145 ݄ଷ ൌ ଵܮ 1.21 ൌ ଵܮ 2.24 ൌ ଵܮ 2.45 ൌ ଵܮ 2.57 ൌ ଵܮ 2.64 ൌ ଵܮ 2.83 ൌ 2.80 

 ߣ

GLR  

CUSUM 

Standardized  

CUSUM 

WLR  

CUSUM 

EWMA-M

ݎ) ൌ .05ሻ 

EWMA-M

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M

ݎ) ൌ .5ሻ 

EWMA-1

ݎ) ൌ .9ሻ 

1.025 105.12 106.86 106.92 109.11 112.71 116.45 134.36 142.26 142.26 

1.05 62.23 63.27 63.02 63.81 69.80 72.52 91.29 106.57 106.57 

1.075 40.64 41.24 40.89 40.37 44.59 47.62 66.17 78.79 78.79 

1.1 26.99 28.25 28.25 28.53 31.14 32.81 47.00 59.78 59.78 

1.15 15.01 15.34 15.49 16.53 17.44 18.17 26.92 36.39 36.39 

1.2 10.06 10.09 10.15 11.19 11.40 11.62 16.29 23.44 23.44 

1.3 5.77 5.82 5.94 6.87 6.59 6.55 7.64 10.93 10.93 

1.4 4.12 4.16 4.21 4.99 4.64 4.48 4.67 6.04 6.04 

1.5 3.24 3.25 3.30 3.97 3.68 3.47 3.26 3.82 3.82 

1.6 2.71 2.71 2.74 3.31 3.02 2.86 2.56 2.71 2.71 

1.8 2.06 2.07 2.07 2.55 2.31 2.15 1.80 1.71 1.71 

2 1.69 1.72 1.72 2.11 1.90 1.78 1.42 1.31 1.31 
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Table 2.A2. Comparison of ARL Values for ࣅ૙ ൌ ૚ and 	ࣅ૚ ൌ ૚. ૞ where ࢇ ൌ ૚૙, ࢈ ൌ ૛૙ with ۺ܀ۯ૙ ൎ ૛૙૙ 

݄ଶ ൌ 9.04 ݄ଵ ൌ 2.0815 ݄ଷ ൌ ଵܮ 641. ൌ ଵܮ 2.24 ൌ ଵܮ 2.45 ൌ ଵܮ 2.57 ൌ ଵܮ 2.64 ൌ ଵܮ 2.83 ൌ 2.80 

 ߣ

GLR  

CUSUM 

Standardized  

CUSUM 

WLR  

CUSUM 

EWMA-M

ݎ) ൌ .05ሻ 

EWMA-M

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M

ݎ) ൌ .5ሻ 

EWMA-1

ݎ) ൌ .9ሻ 

1.025 128.95 130.53 132.54 104.53 109.11 112.71 116.45 134.36 142.26 

1.05 87.94 89.64 91.41 60.63 63.81 69.80 72.52 91.29 106.57 

1.075 59.71 62.06 63.34 38.11 40.37 44.59 47.62 66.17 78.79 

1.1 42.39 44.51 45.36 27.36 28.53 31.14 32.81 47.00 59.78 

1.15 23.25 24.59 24.56 16.72 16.53 17.44 18.17 26.92 36.39 

1.2 13.83 14.53 14.72 11.97 11.19 11.40 11.62 16.29 23.44 

1.3 6.61 6.90 7.01 7.65 6.87 6.59 6.55 7.64 10.93 

1.4 4.10 4.22 4.28 5.75 4.99 4.64 4.48 4.67 6.04 

1.5 2.95 2.96 3.07 4.62 3.97 3.68 3.47 3.26 3.82 

1.6 2.34 2.34 2.43 3.90 3.31 3.02 2.86 2.56 2.71 

1.8 1.68 1.66 1.73 3.06 2.55 2.31 2.15 1.80 1.71 

2 1.36 1.35 1.38 2.54 2.11 1.90 1.78 1.42 1.31 

Table 2.A3. Comparison of ARL Values for ࣅ૙ ൌ ૚ and 	ࣅ૚ ൌ ૚. ૡ where ࢇ ൌ ૚૙, ࢈ ൌ ૛૙ with ۺ܀ۯ૙ ൎ ૛૙૙ 

݄ଶ ൌ 5.836 ݄ଵ ൌ 1.29 ݄ଷ ൌ ଵܮ 4229. ൌ ଵܮ 2.24 ൌ ଵܮ 2.45 ൌ ଵܮ 2.57 ൌ ଵܮ 2.64 ൌ ଵܮ 2.83 ൌ 2.80 

 ߣ

GLR  

CUSUM 

Standardized  

CUSUM 

WLR  

CUSUM 

EWMA-M

ݎ) ൌ .05ሻ 

EWMA-M

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M

ݎ) ൌ .5ሻ 

EWMA-1

ݎ) ൌ .9ሻ 

1.025 140.84 143.93 144.94 104.53 109.11 112.71 116.45 134.36 142.26 

1.05 104.03 108.45 109.17 60.63 63.81 69.80 72.52 91.29 106.57 

1.075 74.02 77.60 78.51 38.11 40.37 44.59 47.62 66.17 78.79 

1.1 55.41 59.06 59.17 27.36 28.53 31.14 32.81 47.00 59.78 

1.15 31.85 34.66 34.87 16.72 16.53 17.44 18.17 26.92 36.39 

1.2 19.52 21.49 21.27 11.97 11.19 11.40 11.62 16.29 23.44 

1.3 8.86 9.69 9.54 7.65 6.87 6.59 6.55 7.64 10.93 

1.4 4.96 5.31 5.21 5.75 4.99 4.64 4.48 4.67 6.04 

1.5 3.29 3.46 3.44 4.62 3.97 3.68 3.47 3.26 3.82 

1.6 2.44 2.51 2.53 3.90 3.31 3.02 2.86 2.56 2.71 

1.8 1.65 1.66 1.68 3.06 2.55 2.31 2.15 1.80 1.71 

2 1.29 1.30 1.32 2.54 2.11 1.90 1.78 1.42 1.31 
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Table 2.A4. Comparison of ARL Values for ࣅ૙ ൌ ૚ and 	ࣅ૚ ൌ ૛ where ࢇ ൌ ૚૙, ࢈ ൌ ૛૙ with ۺ܀ۯ૙ ൎ ૛૙૙ 

݄ଶ ൌ 4.395 ݄ଵ ൌ 1.29 ݄ଷ ൌ ଵܮ 3237. ൌ ଵܮ 2.24 ൌ ଵܮ 2.45 ൌ ଵܮ 2.57 ൌ ଵܮ 2.64 ൌ ଵܮ 2.83 ൌ 2.80 

 ߣ

GLR  

CUSUM 

Standardized  

CUSUM 

WLR  

CUSUM 

EWMA-M

ݎ) ൌ .05ሻ 

EWMA-M

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M

ݎ) ൌ .5ሻ 

EWMA-1

ݎ) ൌ .9ሻ 

1.025 145.71 148.27 146.87 104.53 109.11 112.71 116.45 134.36 142.26 

1.05 109.68 115.44 115.82 60.63 63.81 69.80 72.52 91.29 106.57 

1.075 80.94 85.01 84.88 38.11 40.37 44.59 47.62 66.17 78.79 

1.1 61.34 64.68 65.10 27.36 28.53 31.14 32.81 47.00 59.78 

1.15 36.68 40.52 40.06 16.72 16.53 17.44 18.17 26.92 36.39 

1.2 23.02 25.22 24.97 11.97 11.19 11.40 11.62 16.29 23.44 

1.3 10.47 11.68 11.42 7.65 6.87 6.59 6.55 7.64 10.93 

1.4 5.82 6.37 6.27 5.75 4.99 4.64 4.48 4.67 6.04 

1.5 3.66 3.94 3.91 4.62 3.97 3.68 3.47 3.26 3.82 

1.6 2.58 2.74 2.70 3.90 3.31 3.02 2.86 2.56 2.71 

1.8 1.67 1.70 1.71 3.06 2.55 2.31 2.15 1.80 1.71 

2 1.29 1.30 1.31 2.54 2.11 1.90 1.78 1.42 1.31 

 

Table 2.A5. Comparison of ARL Values for ࣅ૙ ൌ ૚ and ࣅ૚ ൌ ૚. ૛ where ࢇ ൌ ૚૙, ࢈ ൌ ૞૙ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 18.97	 ݄ଷ ൌ .78	 ݄ଵ ൌ 3.339	 ଵܮ ൌ 2.21 ଵܮ ൌ 2.43 ଵܮ ൌ 2.54 ଵܮ ൌ 2.61	 ଵܮ ൌ 2.77 ଵܮ ൌ 2.75

 ߣ

GLR  

CUSUM 

WLR  

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05ሻ 

EWMA-M 

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M 

ݎ) ൌ .5ሻ 

EWMA-1 

ݎ) ൌ .9ሻ 

1.025 92.53 103.73 94.59 83.06 89.53 95.57 99.11 115.05 130.39 

1.05 48.80 57.84 51.31 42.12 45.41 50.28 53.55 71.40 86.34 

1.075 28.95 34.56 30.57 25.11 26.93 29.63 31.81 44.50 58.15 

1.1 18.46 22.13 19.28 17.47 18.26 19.09 20.85 29.38 40.34 

1.15 9.55 11.19 10.02 10.49 10.13 10.33 10.65 14.44 21.27 

1.2 6.29 7.43 6.49 7.41 6.94 6.90 6.89 8.40 12.31 

1.3 3.64 4.22 3.71 4.76 4.26 3.99 3.90 4.03 5.22 

1.4 2.63 3.01 2.67 3.54 3.13 2.89 2.79 2.59 2.93 

1.5 2.10 2.37 2.14 2.86 2.52 2.33 2.21 1.96 2.01 

1.6 1.79 2.01 1.81 2.43 2.13 1.96 1.86 1.59 1.57 

1.8 1.44 1.54 1.42 1.92 1.68 1.53 1.44 1.23 1.20 

2 1.26 1.25 1.20 1.62 1.40 1.26 1.20 1.10 1.08 
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Table 2.A6. Comparison of ARL Values for ࣅ૙ ൌ ૚ and ࣅ૚ ൌ ૚. ૞ where ࢇ ൌ ૚૙, ࢈ ൌ ૞૙ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 8.615	 ݄ଷ ൌ .4109	 ݄ଵ ൌ 1.562	 ଵܮ ൌ 2.21 ଵܮ ൌ 2.43 ଵܮ ൌ 2.54 ଵܮ ൌ 2.61	 ଵܮ ൌ 2.77 ଵܮ ൌ 2.75

 ߣ

GLR  

CUSUM 

WLR  

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05ሻ 

EWMA-M 

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M 

ݎ) ൌ .5ሻ 

EWMA-1 

ݎ) ൌ .9ሻ 

1.025 125.09 139.72 130.28 83.06 89.53 95.57 99.11 115.05 130.39 

1.05 78.33 98.82 86.03 42.12 45.41 50.28 53.55 71.40 86.34 

1.075 52.10 67.76 58.51 25.11 26.93 29.63 31.81 44.50 58.15 

1.1 33.83 47.40 39.11 17.47 18.26 19.09 20.85 29.38 40.34 

1.15 16.83 24.17 19.48 10.49 10.13 10.33 10.65 14.44 21.27 

1.2 9.45 13.19 11.06 7.41 6.94 6.90 6.89 8.40 12.31 

1.3 4.14 5.44 4.60 4.76 4.26 3.99 3.90 4.03 5.22 

1.4 2.54 3.19 2.75 3.54 3.13 2.89 2.79 2.59 2.93 

1.5 1.87 2.20 1.95 2.86 2.52 2.33 2.21 1.96 2.01 

1.6 1.52 1.76 1.56 2.43 2.13 1.96 1.86 1.59 1.57 

1.8 1.22 1.28 1.20 1.92 1.68 1.53 1.44 1.23 1.20 

2 1.10 1.09 1.07 1.62 1.40 1.26 1.20 1.10 1.08 

 

Table 2.A7. Comparison of ARL Values for ࣅ૙ ൌ ૚ and ࣅ૚ ൌ ૚. ૡ where ࢇ ൌ ૚૙, ࢈ ൌ ૞૙ with ۺ܀ۯ૙ ൎ ૛૙૙ 

 ݄ଶ ൌ 4.593	 ݄ଷ ൌ .25	 ݄ଵ ൌ .841	 ଵܮ ൌ 2.21 ଵܮ ൌ 2.43 ଵܮ ൌ 2.54 ଵܮ ൌ 2.61	 ଵܮ ൌ 2.77 ଵܮ ൌ 2.75

 ߣ

GLR  

CUSUM 

WLR  

CUSUM 

Standardized 

CUSUM 

EWMA-M 

ݎ) ൌ .05ሻ 

EWMA-M 

ݎ) ൌ .1ሻ 

EWMA-M

ݎ) ൌ .15ሻ 

EWMA-M 

ݎ) ൌ .2ሻ 

EWMA-M 

ݎ) ൌ .5ሻ 

EWMA-1 

ݎ) ൌ .9ሻ 

1.025 138.76 149.58 144.84 83.06 89.53 95.57 99.11 115.05 130.39 

1.05 96.81 113.92 107.38 42.12 45.41 50.28 53.55 71.40 86.34 

1.075 68.21 86.19 79.08 25.11 26.93 29.63 31.81 44.50 58.15 

1.1 47.89 65.41 58.00 17.47 18.26 19.09 20.85 29.38 40.34 

1.15 25.64 36.66 31.64 10.49 10.13 10.33 10.65 14.44 21.27 

1.2 14.72 22.06 18.68 7.41 6.94 6.90 6.89 8.40 12.31 

1.3 5.96 8.59 7.47 4.76 4.26 3.99 3.90 4.03 5.22 

1.4 3.12 4.17 3.69 3.54 3.13 2.89 2.79 2.59 2.93 

1.5 2.05 2.58 2.33 2.86 2.52 2.33 2.21 1.96 2.01 

1.6 1.57 1.80 1.68 2.43 2.13 1.96 1.86 1.59 1.57 

1.8 1.19 1.27 1.20 1.92 1.68 1.53 1.44 1.23 1.20 

2 1.07 1.08 1.07 1.62 1.40 1.26 1.20 1.10 1.08 
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As technology advances, the need for methods to monitor processes that produce 

readily available inspection data becomes essential. In this paper a multinomial 

cumulative sum (CUSUM) chart is proposed to monitor in situations where items 

can be classified into more than two categories, the items are not put into 

subgroups, and the direction of the out-of-control shift in the parameter vector can 

be specified. It is shown through examples that the multinomial CUSUM chart can 

detect shifts in category probabilities at least as quickly, and in most cases faster, 

than using multiple Bernoulli CUSUM charts. The properties of the multinomial 

CUSUM chart are determined through a Markov chain representation. If the 

direction of the out-of-control shift in the parameter vector cannot be specified, we 

recommend the use of multiple Bernoulli CUSUM charts.   
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Introduction 

When choosing a process monitoring technique, one of the first requirements is to consider 

the type of data being measured. Attribute data, such as counts or pass/fail-type data, are 

collected in many healthcare and industrial applications. For example, one might have 

manufactured parts that are classified as either conforming or nonconforming. The objective 

would be to detect changes in the proportion of nonconforming components. This situation is an 

example of monitoring with attribute data, reviews of which were provided by Woodall (1997) 

and Topalidou and Psarakis (2009). 

The traditional approach for monitoring the fraction of nonconforming items, ݌, is to use the 

Shewhart p-chart, which plots the proportion of nonconforming items for each sample. An 

alternative to the p-chart is the binomial cumulative sum (CUSUM) chart. Gan (1993) discussed 

the construction of the binomial CUSUM chart where the plotted CUSUM statistics are based on 

the proportion of nonconforming items for each sample. However, suppose a process that is 

being monitored produces a continuous stream of inspection data leading to immediately 

available information. Because the binomial CUSUM chart and the p-chart are both based on the 

proportion of nonconforming items for specified samples of sizes ݊ ൐ 1, the monitoring process 

must wait until the required number of inspected items can be aggregated. As a result, p-charts 

and binomial CUSUM charts have an inherent delay in detecting shifts in the underlying 

proportion, which causes slower detection of process changes and a loss of information regarding 

when shifts occur.   

Reynolds and Stoumbos (1999) proposed using a Bernoulli CUSUM chart to take advantage 

of readily available inspection data. The Bernoulli CUSUM chart is a special case of the 

binomial CUSUM chart when ݊ ൌ 1.  Because each sampling point for the Bernoulli CUSUM 

chart consists of a single observation, Reynolds and Stoumbos (1999) used the average number 

of observations to signal (ANOS) in place of the average run length (ARL) for easier 

comparisons to charts based on sample proportions with ݊ ൐ 1. In our paper, we will use the 

term ARL instead of ANOS since all of the methods we compare have ݊ ൌ 1. Reynolds and 

Stoumbos (1999) compared the ANOS performance of the Bernoulli CUSUM chart with the 

Shewhart p-chart and the binomial CUSUM chart. They found that Bernoulli CUSUM charts 
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will detect shifts in ݌ much faster (on average) compared to both p-charts and binomial CUSUM 

charts in situations where there is a continuous stream of inspection data. 

Reynolds and Stoumbos (1999) discussed the two-sided Bernoulli CUSUM chart; however, 

they focused on the one-sided Bernoulli CUSUM chart where the objective is to detect an 

increase in the proportion of nonconforming items, ݌, reflecting a decrease in the quality of the 

process. The Bernoulli CUSUM chart given in Reynolds and Stoumbos (1999) is based on the 

CUSUM likelihood ratio formulation. We let ଵܺ, 	ܺଶ, ... be a sequence of independent Bernoulli 

random variables, where  

ܺ௧ ൌ ቊ1											if	the	
tht 	item	is	nonconforming

0 								otherwise																																									
	 , ݐ ൌ 1, 2, …	. 

It is assumed that ݌଴ is the in-control probability of a nonconforming item and ݌ଵ is the out-of-

control probability of a nonconforming item of interest to detect quickly. The Bernoulli CUSUM 

statistics are 

 ܵ௧ ൌ maxሺ0, ܵ௧ିଵ ൅ ௧ሻܮ , ݐ ൌ 1, 2, … , (1) 

where ܵ଴ ൌ 0. The values for the log-likelihood scores, ܮ௧, in the form given by Steiner et al. 

(2000) are 

 

௧ܮ ൌ

ە
۔

lnۓ ൬
1 െ ଵ݌
1 െ ଴݌

൰ if ܺ௧ ൌ 0

ln ൬
ଵ݌
଴݌
൰ if ܺ௧ ൌ 1

. (2)

The chart signals if ܵ௧ ൐ ݄, where the decision limit ݄ is determined based on a specified value 

of the in-control ARL, ARL଴. 

The p-chart, binomial CUSUM chart, and Bernoulli CUSUM chart can all be used to monitor 

the proportion of nonconforming items. However, suppose that instead of classifying items as 

conforming or nonconforming, the items are now being classified into more categories, e.g., 

conforming, minor nonconforming, and major nonconforming. An example of multiple 

classifications is seen in the inspection of clothing. A garment with no flaws is classified as 

“conforming” and sent to the retailer to be sold at full price. A garment with a limited number of 

minor flaws is classified as “seconds” and is sent to an outlet store to be sold at a discount, while 

a garment classified as “defective” is scrapped. There are other situations where binary outcomes 

can be extended to more than two categories. Steiner et al. (2000) focused on a 30-day post-
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operative mortality rate. Suppose that instead of considering only whether a patient lives or dies 

after surgery, it is of interest whether the patient lives, develops a major complication, or dies in 

the thirty days following the procedure. The outcome of interest has now been extended to three 

categories rather than two, which leads to additional information regarding the condition of the 

patients after surgery. With multiple categories of classification, the process no longer produces 

Bernoulli or binomial random variables; but instead produces multinomial random variables. A 

review of multinomial and multiattribute quality control charts was given by Topalidou and 

Psarakis (2009).   

In the next section we describe a CUSUM procedure for multinomial data without 

subgrouping. The method is very similar to the use of CUSUM charts with grouped data as 

discussed by Steiner et al. (1996a).  It can also be viewed as an attribute version of the CUSUM 

method of Healy (1987), who used a univariate CUSUM method with multivariate normal data 

when the direction of the shift in the mean vector could be specified.  

Following the derivation of the multinomial CUSUM chart, the zero-state ARL performance 

of the multinomial CUSUM chart with three categories and multiple Bernoulli CUSUM charts is 

compared through a simulation study. Next, the multinomial CUSUM chart with four categories 

is discussed, and then the general form of the multinomial CUSUM chart for  ݊ ൐ 1 is given. 

This is followed by a section exploring the effects on the zero-state ARL performance of the 

multinomial CUSUM chart when the shift direction of the parameter vector is misspecified. 

Finally, we discuss the practical issues associated with multinomial control charting without 

subgrouping along with some extensions and conclusions. Technical details about the Markov 

chain representation used to calculate exact ARL values for the multinomial CUSUM chart are 

given in the appendix. Additional comparisons for trinomial processes and steady-state ARL 

analyses are also given in the appendix.  

Multinomial Control Charts 

One approach for monitoring processes when items fall into multiple categories is to use a p-

chart for each category. Duncan (1950) realized that as the number of categories increases, the 

use of multiple p-charts can become cumbersome. Thus Duncan (1950) advised using a control 

chart based on the chi-square distribution to monitor processes where items can be classified into 
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several categories, instead of using multiple p-charts. Marcucci (1985) and Nelson (1987) also 

considered the chi-square control chart.  

Tucker et al.  (2002) studied control charts for ordinal data. They proposed a control chart for 

monitoring a process with ordinal data that is based on the maximum likelihood estimates 

(MLEs) of the parameters of an assumed underlying, but unobservable, continuous distribution 

that was used to determine the probabilities associated with the various categories. Tucker et al.  

(2002) compared charts based on different underlying quality distributions with the chi-square 

control chart and found that control charts based on the MLEs were much better at detecting 

improvements in quality. They also found that the MLE control charts with a normal or logistic 

underlying distribution performed as well or better than the chi-square chart at detecting 

deterioration in quality.  

One common requirement of these control charts for multinomial random variables is that the 

observations be aggregated into samples. Again, the question rises concerning what is the best 

method for monitoring a process that produces a continuous stream of data where inspection 

results are immediately available. The argument by Reynolds and Stoumbos (1999), that 

signaling of process changes will be delayed if one must wait for samples to be taken before a 

control chart statistic can be computed, continues to hold when monitoring multinomial data. 

This situation motivates the use of a multinomial CUSUM chart where ݊ ൌ 1, which is a 

generalization of Reynolds and Stoumbos’ (1999) Bernoulli CUSUM chart.  

In industry there are situations where “grouping” a continuous variable is more practical 

because it may be easier, faster, or less expensive than obtaining a more exact measurement. The 

idea of monitoring processes where a continuous variable is classified into intervals or “groups” 

was extensively studied in Steiner et al. (1994), Steiner et al. (1996a,b), and Steiner (1998), 

where one does not take a continuous measurement on an item. Instead one only obtains enough 

information to classify the value of the quality characteristic into one of several groups, each 

defined by upper and lower limits. Steiner et al. (1994) proposed a k-step-gauge control chart 

that uses grouped observations to detect shifts in the mean of a normal distribution. Steiner et al. 

(1996b) suggested a k-step-gauge Shewhart control chart based on grouped observations for 

monitoring the mean and standard deviation of a process. Steiner (1998) proposed a k-group 

EWMA control chart which accommodates data that has been classified into groups. It is shown 

through ARL comparisons that the k-group EWMA control chart is nearly as efficient as the 
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EWMA control chart based on continuous observations for small mean shifts of interest. Steiner 

et al. (1996a) advocated using a CUSUM chart based on multinomial likelihoods for monitoring 

observations that are classified into groups.  

The multinomial CUSUM chart approach in Steiner et al. (1996a) is very similar to the 

multinomial CUSUM chart approach being proposed in our paper. However, the data studied by 

Steiner et al. (1996a) involved a continuous variable classified into groups. Therefore, the data 

and category probabilities have a structure that is determined by the underlying continuous 

distribution. The data being studied in our paper are attribute data, where no underlying 

continuous distribution exists. We could assume a hypothetical underlying continuous 

distribution, as in Tucker et al. (2002), to determine the out-of-control category probabilities if 

the categories are ordinal, but we do not do so. While our CUSUM procedure matches that 

proposed by Steiner et al. (1996a), the main differences lie in the distinction between the types of 

data and the increased flexibility in the design of our multinomial approach since the 

probabilities do not depend on any underlying distribution. In addition, we do not believe that it 

is generally recognized that the grouped data method applies with attribute data when there is no 

grouping of a continuous variable involved or when the categories are not ordered.  

We let ଵܺ, 	ܺଶ,	 ... be a sequence of independent multinomial random variables, where  

ܺ௧ ൌ ݅	if the ݐ௧௛ item is classified in the ݅௧௛ category, ݐ ൌ 1, 2, …, ݅ ൌ 1, 2, … , ݇. (3) 

Also, we let ݌଴,௜ and ݌ଵ,௜ be the in-control and out-of-control probability of being classified into 

category ݅ for ݅ ൌ 1, 2, … , ݇, respectively, where ∑ ଴,௜݌ ൌ 1௞
௜ୀଵ  and ∑ ଵ,௜݌ ൌ 1௞

௜ୀଵ . Like the 

Bernoulli CUSUM chart, the multinomial CUSUM chart is based on the CUSUM likelihood- 

ratio formulation. The multinomial CUSUM statistics are 

 ܵ௧ ൌ maxሺ0, ܵ௧ିଵ ൅ ௧ሻܮ , ݐ ൌ 1, 2, …  (4)

where ܵ଴ ൌ 0 and ܮ௧ is the log-likelihood ratio score for ݐ ൌ 1, 2, … . The values of ܮ௧ are 

 
௧ܮ ൌ ln ቆ

ଵ,௜݌
଴,௜݌

ቇ when ܺ௧ ൌ ݅, ݅ ൌ 1, 2, … , ݇, ݐ ൌ 1, 2, …	. (5)

The chart signals if ܵ௧ ൐ ݄௠, where the value ݄௠ is determined based on the specified value of 

ARL଴. When designing the multinomial CUSUM chart, it is important to examine the ratio of in-

control probabilities to out-of-control probabilities for the categories. If any of these ratios are 
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the same then the corresponding categories can be combined. This feature was also discussed in 

Steiner et al. (1996a) for the grouped data CUSUM chart. 

Since the aggregation of items into samples is not required, the multinomial CUSUM chart 

should quickly detect shifts in the category probabilities as long as the probabilities change in the 

anticipated direction as specified by the ݌ଵ,௜	values. Another alternative is to use multiple 

Bernoulli CUSUM charts to monitor the process. A simulation study is given in the next section 

which compares the ARL performance for the multinomial CUSUM chart against the 

simultaneous use of multiple Bernoulli CUSUM charts.  

Multinomial CUSUM and Bernoulli CUSUM Chart Comparisons 

Three cases are explored in this section to illustrate the usefulness of the multinomial 

CUSUM chart compared to using separate Bernoulli CUSUM charts. All three cases involve a 

process where components can be classified in one of the following three categories: good, fair, 

and bad. The methods would apply exactly the same, however, if the categories were unordered 

and listed simply as A, B, and C. The statistics of the multinomial CUSUM chart incorporate the 

three probabilities of classification. An alternative method for monitoring a process with multiple 

categories is to use a combination of Bernoulli CUSUM charts. One could use a Bernoulli 

CUSUM chart where either ݇ െ 1 Bernoulli CUSUM charts or ݇ Bernoulli CUSUM charts are 

run simultaneously. For a process with three categories, the three categories must be combined 

into two categories to use Bernoulli CUSUM charts for monitoring. This leads to three possible 

Bernoulli CUSUM charts, a Bernoulli CUSUM chart that focuses on the good category, a 

Bernoulli CUSUM chart that focuses on the fair category, and a Bernoulli CUSUM chart that 

focuses on the bad category. From these three Bernoulli CUSUM charts we choose two charts to 

run simultaneously and refer to this chart as the 2-Bernoulli CUSUM chart. Even though there 

are three parameters, intuitively one would think only two charts are necessary since the three 

proportions of interest must sum to one. However, there are three possible 2-Bernoulli CUSUM 

charts. For the sake of completeness we also study the simultaneous Bernoulli CUSUM method 

that consists of all three Bernoulli charts, i.e., the 3-Bernoulli CUSUM chart. 

The multinomial CUSUM chart and simultaneous Bernoulli CUSUM charts are compared 

based on their ARL values. The zero-state ARL values for the multinomial CUSUM chart were 

found using a Markov chain representation and the zero-state ARL values for the simultaneous 
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Bernoulli CUSUM charts were found using simulation. Steady-state ARL comparisons for all 

three cases are given in Appendix D. The multinomial CUSUM chart also had nice ARL 

performance in the steady-state ARL analyses. A detailed explanation of our Markov chain 

representation can also be found in the appendix.  

For our examples we considered three different cases for the design of the competing charts. 

The properties of the simultaneous Bernoulli CUSUM charts for Cases 1 and 2 were found using 

simulations, where each estimated ARL value was estimated using 100,000 simulations, while 

the ARL values for Case 3 were estimated using 1 million simulations. In order to obtain the 

upper control limits for simultaneous pairs of Bernoulli CUSUM charts, we first found control 

limits that resulted in individual Bernoulli CUSUM charts with ARL଴ values of two times the 

desired ARL଴ value for the simultaneous Bernoulli CUSUM chart. We will refer to these upper 

control limits as ݄௚, ݄௙, and ݄௕ for the Bernoulli CUSUM charts that focus on the good, fair, and 

bad categories, respectively. After the values of the upper control limits were determined for the 

individual charts, two of the three Bernoulli charts were run simultaneously and the upper 

control limits were slightly adjusted in order to achieve the desired overall value of ARL଴ more 

closely. A similar approach was used to find the control limits for the 3-Bernoulli CUSUM chart. 

The first case studied has the largest in-control and out-of-control probabilities for fair and 

bad components, compared to the other two cases. These probabilities are displayed in Table 3.1. 

Here we are concerned with detecting a decrease in the probability of good components, and 

increases in the probabilities of fair and bad components. Table 3.1 also contains adjusted out-of-

control probabilities, which are the probabilities that were adjusted slightly so that the Markov 

chain could be used to obtain exact ARL values for the multinomial CUSUM chart. A more 

detailed discussion of these adjustments can be found in the Appendix A.  

Table 3.1. Probabilities for Case 1 

Categories Good (1) Fair (2) Bad (3) 

In-Control 0.65 0.25 0.10 

Out-of-Control 0.45 0.30 0.25 

Adjusted Out-of-Control 0.4517 0.2999 0.2484 
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For Case 1, the ARL comparisons of the multinomial CUSUM chart and the simultaneous 

Bernoulli CUSUM charts are shown in Table 3.2. In all ARL comparison tables, the smallest 

ARL value appears in italicized font. It should be noted that the choice of which two Bernoulli 

CUSUM charts to run simultaneously impacts the performance of the 2-Bernoulli CUSUM chart. 

Among the three 2-Bernoulli CUSUM charts, the best performing chart (for the majority of 

shifts) is the chart that focuses on both the good and bad categories. The 2-Bernoulli CUSUM 

chart that focuses on the good and fair categories begins to have better ARL performance for 

large shifts. However, the multinomial CUSUM chart which incorporates the information from 

the three categories outperforms all of the simultaneous Bernoulli CUSUM charts for all 

probability shifts considered.  

The multinomial and simultaneous Bernoulli CUSUM charts are optimized for the 

probabilities indexed as Distribution 6. The ARL value for the multinomial CUSUM chart is 

21.57 while the corresponding ARL value of the 2-Bernoulli CUSUM chart which focuses on the 

good and bad categories is 24.03 for this distribution. The multinomial CUSUM chart also has 

quicker detection for both smaller and larger shifts, indicating that the multinomial CUSUM 

chart is preferred over the simultaneous Bernoulli CUSUM charts for Case 1 as long as the shifts 

in the category probabilities are in the direction for which the chart was designed.  

The 3-Bernoulli CUSUM chart has slower detection of parameter shifts compared to the 

multinomial CUSUM chart and the best performing 2-Bernoulli CUSUM chart. However, if one 

chooses to use a simultaneous Bernoulli CUSUM chart instead of the multinomial CUSUM 

chart, we recommend using the 3-Bernoulli CUSUM chart. Even though there is some delay in 

detection when using the 3-Bernoulli CUSUM chart, it is more difficult to determine the best 

performing 2-Bernoulli CUSUM chart out of the three possible charts. 
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Table 3.2. Zero-State ARL Comparisons for Case 1 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial

 CUSUM  

ARL 

݄௠ ൌ 2.95 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.72		

݄௕ ൌ 3.10 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 1.712	

݄௕ ൌ 3.332 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.93		

݄௙ ൌ 2.71 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.706		

݄௙ ൌ 1.7896 

݄௕ ൌ 3.506 

1 (in-control) 0.65 0.25 0.10 279.96 282.38 280.48 280.07 281.00 

2 0.625 0.255 0.12 153.82 155.35 174.79 178.67 171.06 

3 0.60 0.26 0.14 95.54 97.15 114.72 121.52 110.74 

4 0.55 0.27 0.18 47.45 49.37 59.72 64.63 56.38 

5 0.50 0.28 0.22 29.29 31.40 38.01 40.24 35.51 

6 0.4517 0.2999 0.2484 21.57 24.03 29.29 28.42 26.78 

7 0.35 0.35 0.30 14.26 16.22 20.27 17.11 17.70 

8 0.25 0.40 0.35 10.58 12.33 15.57 12.18 13.23 

9 0.15 0.45 0.40 8.40 9.93 12.59 9.47 10.57 

10 0.05 0.50 0.45 6.95 8.34 10.60 7.70 8.87 

The in-control and out-of-control probabilities for the fair and bad categories in Case 2 are 

slightly smaller than those seen in Case 1. The probabilities for Case 2 are given in Table 3.3. 

Again, we are examining a case where we are interested in detecting an increase in the 

probabilities of fair and bad components and a decrease in the probability of good components.  

Table 3.3. Probabilities for Case 2 

Categories Good (1) Fair (2) Bad (3) 

In-Control 0.94 0.05 0.01 

Out-of-Control 0.85 0.10 0.05 

Adjusted Out-of-Control  0.8495    0.0992 0.0513 

The ARL results for Case 2, displayed in Table 3.4, are similar to those seen in Case 1. Not 

only does the multinomial CUSUM chart have better ARL performance compared to the 

simultaneous Bernoulli CUSUM charts for the optimized shift indexed as Distribution 5, the 

multinomial CUSUM chart also has quicker detection for all other shifts considered. As in Case 

1, the best performing simultaneous Bernoulli CUSUM chart in Case 2 for most shifts in the 

distribution is the 2-Bernoulli CUSUM chart that focuses on the good and bad categories, while 
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the 2-Bernoulli CUSUM chart that focuses on the good and fair categories has better 

performance for some large shifts.  

Table 3.4. Zero-State ARL Comparisons for Case 2 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

 ଷ݌

PሺBadሻ 

Multinomial 

CUSUM  

ARL 

݄௠ ൌ 2.80 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.375	

݄௕ ൌ 2.8295 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 2.734	

݄௕ ൌ 2.9055 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.12	

	݄௙ ൌ 2.36 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.6288 

݄௙ ൌ 2.8288

݄௕ ൌ 2.9288 

1 (in-control) 0.94 0.05 0.01 500.61 502.88 501.23 499.20 505.39 

2 0.925 0.06 0.015 230.68 233.77 238.20 251.06 236.31 

3 0.89 0.08 0.03 74.35 77.25 83.43 92.41 81.02 

4 0.87 0.09 0.04 49.69 52.51 58.03 64.01 55.72 

5 0.8495 0.0992 0.0513 36.21 38.81 43.44 47.47 41.49 

6 0.80 0.15 0.05 26.41 27.62 31.38 28.11 29.12 

7 0.74 0.20 0.06 18.33 19.07 22.13 18.85 20.27 

8 0.60 0.30 0.10 10.12 10.86 12.72 10.73 11.57 

9 0.50 0.35 0.15 7.36 8.05 9.46 8.25 8.60 

10 0.40 0.40 0.20 5.79 6.36 7.48 6.72 6.84 

In the last case, Case 3, the in-control and out-of-control probabilities for the fair and bad 

components given in Table 3.5 are very small, resulting in a process that produces mostly good 

components. The ARL values for Case 3 are given in Table 3.6. The ARL values for both the 

multinomial CUSUM chart and 2-Bernoulli CUSUM chart that focuses on the good and bad 

categories are virtually the same for Case 3. This means there seems to be little advantage in 

using the multinomial CUSUM chart when the probability of having a fair or bad component is 

very small. Additional comparisons of ARL performance for trinomial processes are given in 

Appendix C.   

Table 3.5. Probabilities for Case 3 

Categories Good (1) Fair (2) Bad (3) 

In-Control 0.994 0.005 0.001 

Out-of-Control 0.985 0.01 0.005 

Adjusted Out-of-Control  0.9848 0.0099 0.0053 
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Table 3.6. Zero-State ARL Comparisons for Case 3 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial 

CUSUM  

ARL 

݄௠ ൌ0.8337 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 1.335 

݄௕ ൌ 0.0032 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ	1.13 

݄௕ ൌ 0.004 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 0.928 

݄௙ ൌ 0.865 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 1.60 

݄௙ ൌ 1.13 

݄௕ ൌ 1.38 

1 (in-control) 0.994 0.005 0.001 499.64 498.29 499.94 526.70 499.94 

2 0.99 0.0075 0.0025 227.69 226.91 227.86 254.74 227.86 

3 0.987 0.009 0.004 155.02 154.77 155.81 181.03 155.81 

4 0.9848 0.0099 0.0053 124.44 124.33 125.32 149.21 125.32 

5 0.98 0.015 0.005 98.43 98.38 99.46 107.20 99.46 

6 0.974 0.02 0.006 73.72 73.82 74.77 79.59 74.77 

7 0.96 0.03 0.01 45.09 45.15 45.65 50.40 45.65 

8 0.95 0.035 0.015 34.49 34.48 34.75 40.11 34.75 

9 0.94 0.04 0.02 27.97 27.95 28.09 33.33 28.09 

10 0.90 0.06 0.04 16.01 16.01 16.01 20.01 16.01 

11 0.85 0.09 0.06 10.67 10.67 10.67 13.33 10.67 

12 0.80 0.11 0.09 7.75 7.75 7.75 10.00 7.75 

13 0.70 0.17 0.13 5.22 5.22 5.22 6.66 5.22 

14 0.60 0.24 0.16 4.00 4.00 4.00 5.00 4.00 

15 0.50 0.30 0.20 3.20 3.20 3.20 4.00 3.20 

16 0.30 0.40 0.30 2.24 2.24 2.25 2.86 2.25 

A Multinomial Process with Four Categories 

As the number of classification categories increases, the complications associated with the 

use of simultaneous Bernoulli CUSUM charts escalate. These complications are illustrated 

through Case 4, a multinomial process with four classification categories. The probabilities for 

Case 4 are displayed in Table 3.7. 

Table 3.7. Probabilities for Case 4 

Categories 1 2 3 4 

In-Control 0.65 0.20 0.10 0.05 

Out-of-Control 0.40 0.325 0.175 0.10 

Adjusted Out-of-Control 0.3960 0.3283 0.1734 0.1023 



59 
 

An advantage of the multinomial CUSUM chart is there is only one control limit, ݄, that 

must be determined regardless of the number of categories. As the number of categories 

increases, the possible combinations of Bernoulli CUSUM charts increases, as does the number 

of control limits that must be determined. Also, the different combinations of Bernoulli CUSUM 

charts can have considerably different performance, even though the charts may have the same 

in-control ARL. It seems reasonable to use combinations of three-Bernoulli CUSUM charts or to 

use all four, i.e., the 3-Bernoulli CUSUM chart or the 4-Bernoulli CUSUM chart. We studied all 

four 3-Bernoulli CUSUM charts and the 4-Bernoulli CUSUM chart for Case 4. The ARL values 

were obtained from 100,000 simulations.  

The results for Case 4, given in Table 3.8, are similar to the results in Case 1. The 

multinomial CUSUM chart has better ARL performance compared to all five combinations of 

the simultaneous Bernoulli CUSUM charts studied. Among the simultaneous Bernoulli CUSUM 

charts, the 3-Bernoulli CUSUM chart focusing on categories 1, 3, and 4 has quickest detection 

for small shifts and the 3-Bernoulli CUSUM chart that focuses on categories 1, 2, and 3 has the 

quickest detection for the larger shifts. The average detection time for the 4-Bernoulli CUSUM 

chart is only slightly delayed compared to the best performing 3-Bernoulli CUSUM chart for 

each parameter shift of interest. 

Case 4 illustrates that the multinomial CUSUM chart exhibits good performance when the 

shift is in the direction for which the chart was designed. If the shift direction cannot be 

specified, then we recommend using the 4-Bernoulli CUSUM chart. Even though different 

combinations of Bernoulli CUSUM charts may have better ARL performance, as seen in Case 4, 

it is difficult to choose and design the best performing chart without a simulation study.  
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Table 3.8. Zero-State ARL Comparisons for Case 4 

D
is

tr
ib

ut
io

n 

 ସ݌ ଷ݌ ଶ݌ ଵ݌

Multinomial 

CUSUM 

ARL 

݄௠ ൌ 3.25 

3-Bernoulli 

CUSUM  

ARL 

݄ଵ ൌ 4.12 

݄ଶ ൌ 3.20	

݄ସ ൌ 2.49 

3-Bernoulli 

CUSUM 

ARL 

݄ଵ ൌ 3.87 

݄ଶ ൌ 3.31 

݄ଷ ൌ 2.80 

3-Bernoulli  

CUSUM  

ARL 

݄ଵ ൌ 3.98 

݄ଷ ൌ 2.82 

݄ସ ൌ 2.62 

3-Bernoulli 

CUSUM 

ARL 

݄ଶ ൌ 3.35 

݄ଷ ൌ 2.86 

݄ସ ൌ 2.66 

4-Bernoulli 

CUSUM 

ARL 

݄ଵ ൌ 4.575 

݄ଶ ൌ 3.43

݄ଷ ൌ 2.93

݄ସ ൌ 2.73 

1 (in-control)  0.65 0.20 0.10 0.05 286.99 279.76 282.59 281.83 282.13 285.19 

2 0.60 0.22 0.12 0.06 125.94 138.02 128.83 127.10 137.30 133.07 

3 0.55 0.24 0.14 0.07 66.71 78.47 71.64 71.07 82.77 76.82 

4 0.50 0.26 0.16 0.08 40.92 50.04 45.86 45.85 57.14 50.63 

5 0.46 0.28 0.17 0.09 30.00 36.95 34.71 34.90 45.88 38.89 

6 0.3960 0.3283 0.1734 0.1023 20.56 25.25 24.05 24.74 34.71 27.67 

7 0.35 0.34 0.19 0.12 16.37 20.39 19.45 19.90 29.35 22.39 

8 0.30 0.35 0.21 0.14 13.33 16.85 15.99 16.35 25.14 18.53 

9 0.25 0.36 0.23 0.16 11.22 14.24 13.60 13.93 21.86 15.75 

10 0.20 0.38 0.24 0.18 9.70 12.30 11.85 12.13 19.39 13.71 

11 0.15 0.40 0.25 0.20 8.53 10.78 10.56 10.72 17.43 12.09 

12 0.10 0.42 0.26 0.22 7.62 9.58 9.56 9.59 15.81 10.78 

13 0.05 0.43 0.28 0.24 6.87 8.64 8.74 8.63 14.47 9.68 

Extension of the Multinomial CUSUM Chart to Samples of Size ࢔ ൐ 1 

The multinomial CUSUM procedure described in Equation (3), Equation (4), and Equation 

(5) can be generalized to include samples of size ݊ ൐ 1 as outlined by Steiner et al. (1996a). For 

a sample where ݉ଵ,…	,݉௞ correspond to the numbers of observations in each of the 

݇	categories, the multinomial CUSUM statistics can be defined as  

 ܵ௧ ൌ maxሺ0, ܵ௧ିଵ ൅ ௧ሻܮ , ݐ ൌ 1, 2, …  (6) 

where ܵ଴ ൌ 0 and ܮ௧ is the log-likelihood ratio score for ݐ ൌ 1, 2, … . The values of ܮ௧ are 

 
௧ܮ ൌ෍݉௜ln ቆ

ଵ,௜݌
଴,௜݌

ቇ

௞

௜ୀଵ

, (7) 

where ݇ is the total number of categories.  The multinomial CUSUM chart signals when ܵ௧ ൐ ݄, 

where the decision limit, ݄, can be determined by simulation. 
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Effects of Misspecified Parameter Shifts 

The results thus far have indicated that the multinomial CUSUM chart performs just as well 

or better than Bernoulli CUSUM charts for monitoring multinomial processes when the shifts in 

the probabilities are in the anticipated direction. This begs the question of what are the effects on 

chart performance when the shifts in parameters are not in the anticipated directions or the shift 

direction is unknown. For these situations, we recommend using the ݇-Bernoulli CUSUM chart 

for monitoring rather than the multinomial CUSUM chart. 

In order to explore the effects of misspecifed parameter shifts, we studied two cases where 

modifications were made to Case 1. For both cases, the multinomial CUSUM chart and 

simultaneous Bernoulli CUSUM charts were designed to detect shifts in the probabilities as 

given in Table 3.1. In Case 1, the charts were designed to detect decreases in the probability of 

good components, but in this study, Case A, the probabilities of good components increase. The 

charts were also designed to detect increases in the probability of fair components, but the actual 

probabilities of fair components for Case A decrease. 

The results of the study of misspecification for Case A are given in Table 3.9. The 

comparisons reveal that the 2-Bernoulli CUSUM chart that focuses on both the good and bad 

categories outperforms the other combinations of simultaneous Bernoulli CUSUM charts and the 

multinomial CUSUM chart when the probabilities shift in directions for which the chart was not 

designed to detect.  

The second case, Case B, considers various parameter shifts in misspecified directions, 

which are displayed in Table 3.10. This case illustrates the weakness of the multinomial CUSUM 

chart for detecting shifts in misspecified directions. In Distribution 2 all three probabilities shift 

in the opposite direction compared to the shift direction the multinomial CUSUM chart was 

designed to detect. The multinomial CUSUM chart ARL for this parameter shift is 1081.05 

compared to the 2-Bernoulli CUSUM chart that focuses on the good and fair categories which 

has an ARL of 825.36. This illustrates that if one would like to detect improvements in the 

process, then a two-sided CUSUM chart is needed for monitoring. Also, among the 2-Bernoulli 

CUSUM charts, different charts perform considerably better than others for different shifts. In 

situations when the shift direction is unknown, it becomes difficult to choose the best 2-Bernoulli 
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CUSUM chart. Even though the 3-Bernoulli CUSUM chart does not have the best performance 

for each of the parameter shifts in Case B, the 3-Bernoulli CUSUM chart has comparable 

performance with the best 2-Bernoulli CUSUM chart. Therefore, for situations when the 

probability shifts cannot be specified or one is concerned that the probabilities may not shift in 

the specified direction, we recommend using the 3-Bernoulli CUSUM chart. Detection may be 

delayed to some extent compared to other combinations of Bernoulli CUSUM charts, but 

regardless of the number of categories there is only one ݇-Bernoulli CUSUM chart to consider 

and design. Other examples of misspecified shifts could be considered, but generally we would 

expect the performance of the multinomial CUSUM chart to be adversely affected. 

Table 3.9. Zero-State ARL Comparisons for Misspecified Parameter Shifts for Case A 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial 

CUSUM  

ARL 

݄௠ ൌ 2.95 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.72		

݄௕ ൌ 3.10 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 1.712	

݄௕ ൌ 3.332 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.93	

		݄௙ ൌ 2.71 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.706	

		݄௙ ൌ 1.7896 

݄௕ ൌ 3.506 

1 (in-control) 0.65 0.25 0.10 279.96 282.38 280.48 280.07 281.00 

2 0.66 0.22 0.12 193.53 184.30 235.12 343.98 244.93 

3 0.67 0.20 0.13 170.57 148.45 190.28 425.50 204.23 

4 0.68 0.18 0.14 152.01 120.50 149.29 529.12 163.29 

5 0.69 0.15 0.16 117.63 81.37 97.18 663.35 106.13 

6 0.72 0.10 0.18 104.19 59.06 68.09 1416.74 74.23 

7 0.73 0.07 0.20 85.56 45.46 51.54 1868.80 55.56 

8 0.74 0.05 0.21 79.98 40.48 45.71 2497.37 48.98 

9 0.75 0.02 0.23 67.91 32.95 36.99 3374.39 39.37 
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Table 3.10. Zero-State ARL Comparisons for Misspecified Parameter Shifts for Case B 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial 

CUSUM  

ARL 

݄௠ ൌ 2.95 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.72		

݄௕ ൌ 3.10 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 1.712	

݄௕ ൌ 3.332 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.93	

		݄௙ ൌ 2.71 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.706	

		݄௙ ൌ 1.7896 

݄௕ ൌ 3.506 

1 (in-control) 0.65 0.25 0.10 279.96 282.38 280.48 280.07 281.00 

2 0.70 0.23 0.07 1081.05 1122.26 827.42 825.36 879.27 

3 0.80 0.09 0.11 628.67 279.88 374.85 19420.49 445.12 

4 0.68 0.23 0.09 460.61 469.48 506.52 522.95 527.15 

5 0.60 0.32 0.08 317.04 194.82 105.36 109.90 105.41 

6 0.70 0.19 0.11 315.55 269.60 365.08 843.63 405.01 

7 0.50 0.45 0.05 298.7 55.80 37.75 38.47 37.83 

8 0.45 0.15 0.40 12.80 12.50 13.53 28.24 14.24 

9 0.40 0.20 0.40 11.81 12.34 13.51 21.38 14.04 

Conclusions 

There are many practical situations where categorical data are collected over time and these 

data have no underlying continuous distributions. The multinomial CUSUM chart is an extension 

of the Bernoulli CUSUM chart that uses all the information given by this type of data. In contrast 

to combining probabilities to create two categories as would be done when using multiple 

Bernoulli CUSUM charts, the number of categories is preserved when multinomial CUSUM 

charts are used since the statistics are based on the probabilities of being in each category. The 

examples explored in our paper reveal that the multinomial CUSUM charts performed just as 

well or better than the simultaneous Bernoulli CUSUM charts when the shifts in the probabilities 

are in the anticipated direction. Also, the multinomial CUSUM chart only requires one upper 

control limit to be determined, compared to multiple upper control limits if Bernoulli CUSUM 

charts are implemented.  

If one wants to detect shifts in the category probabilities in any direction, then the ݇-

Bernoulli CUSUM chart would be preferred, where each of the ݇ Bernoulli CUSUM charts focus 
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on one of the ݇ categories. We choose this approach compared to other combinations of 

Bernoulli CUSUM charts because of the difficulty associated with choosing the best combination 

of Bernoulli CUSUM charts without performing a simulation study. The ݇-Bernoulli CUSUM 

chart is also the preferred method for monitoring in situations when one believes that the 

probabilities may shift in unanticipated directions because the use of the ݇-Bernoulli CUSUM 

chart avoids some of the worst ARL performance that is associated with various simultaneous 

Bernoulli CUSUM charts and the multinomial CUSUM chart. Determination of further 

guidelines for the choice of the best performing Bernoulli CUSUM charts for multinomial 

processes is an objective for future studies. 

We have shown through examples that there are added benefits if a multinomial CUSUM 

chart is used when there are three or four categories. It is expected that these results could extend 

to situations where the multinomial process has any number of categories. It would also be of 

interest to investigate risk-adjustment with the multinomial CUSUM control chart as done by 

Steiner et al. (2000) with the Bernoulli CUSUM control chart. Other areas of future research 

include studying the effects of autocorrelation similar to the research in Mousavi and Reynolds 

(2009) and exploring effects of low count data on the performance of the control chart methods 

similar to the case study presented in Saniga et al. (2009).  

Finally, it would be of interested to the study the performance of the two-sided multinomial 

CUSUM chart. All the multinomial CUSUM charts in this paper are constructed to detect 

process deterioration. However, there may be situations when the objective is to detect both 

process deterioration and process improvement. One possible approach is to employ several 

multinomial CUSUM charts simultaneously that are designed for detecting shifts in different 

directions. This approach is analogous to Hawkins’ (1991, 1993) use of Healy’s (1987) method 

for monitoring a multivariate normal mean vector.  

Appendix A: The Markov Chain Representation 

The multinomial CUSUM chart properties can be determined through the use of Markov 

chains. This Markov chain representation is a generalization of the approach taken by Reynolds 

and Stoumbos (1999), which is simpler than the analytical approach taken by Steiner et al. 

(1996a). In order for the Markov chain to be applied correctly, the design of the CUSUM chart 
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must be in a form which results in a finite number of states (CUSUM statistic values) within the 

transition matrix of the Markov chain. In the case of the Bernoulli CUSUM chart, Reynolds and 

Stoumbos (1999) showed that this can be achieved by slightly adjusting the out-of-control value, 

 .ଵ݌

The same approach can be used to develop a Markov chain representation of the multinomial 

CUSUM chart. However, as the number of proportions being monitored increases above two, the 

determination of appropriate design values for the out-of-control probabilities, ݌ଵ,௜, becomes 

more difficult. One way to generate an appropriate Markov chain to analyze the multinomial 

CUSUM chart is to allow the statistic, ܵ௧, to only take integer values. This is possible by 

adjusting ݌ଵ,௜ to a value of ݌ଵ,௜
∗ , which forces ܮ௧ to take integer values, namely ܮ௧∗ , where 

 
∗௧ܮ ൌ ܽ ln ቆ

ଵ,௜݌
∗

଴,௜݌
ቇ for ܺ௧ ൌ ݅, ݅ ൌ 1, 2, … , ݇, ݐ ൌ 1, 2, … , (A1) 

where ܽ ൐ 0, and ݌ଵ,௜
∗  is a value close to ݌ଵ,௜, ݅ ൌ 1, 2, … , ݇.  Then Equation (4) becomes 

 ܵ௧∗ ൌ maxሺ0, ܵ௧ିଵ
∗ ൅ ௧∗ሻܮ , ݐ ൌ 1, 2, … , (A2) 

where ܵ௧∗ ൌ 0	and the CUSUM chart signals when ܵ௧∗ ൐ ݄ܽ௠.  Since ܵ௧∗ can only take on integer 

values, this becomes equivalent to signaling when ܵ௧∗ ൐  is the integer floor ۂ∙ہ where ,ۂ௠݄ܽہ

rounding function. We will refer to upper control limit ݄ܽہ௠ۂ as ݄௠∗ .  In order to achieve integer 

values for ܮ௧∗  we not only have to find appropriately adjusted values for ݌ଵ,௜, we must also 

determine one optimal value for ܽ that will satisfy our integer value constraint for all of the 

adjusted ݌ଵ,௜	values. To solve this problem, we propose the use of the following numerical 

optimization routine: 

 Minimize:							‖ܽܪଵ െ ,ۀଵܪܽہ ଶܪܽ െ ,ۀଶܪܽہ … , ௞ܪܽ െ  (A3)    ‖ۀ௞ܪܽہ

 Subject	To:				 ∑ ଵ,௜݌
∗௞

௜ୀଵ ൌ 1 

ଵ,௜݌௅ܥ  ൑ ଵ,௜݌
∗ ൑ ݅	for	ଵ,௜݌௎ܥ ൌ 1, 2, … , ݇		 

 ܽ௅ ൑ ܽ ൑ ܽ௎, 

where	ܪ௜ ൌ ln ൬
௣భ,೔
∗

௣బ,೔
൰, ۀ∙ہ is the integer rounding function, || ∙ || is the Euclidean norm of the 

element, ݌ଵ,௜
∗  is the adjusted value of ݌ଵ,௜, ܽ௅	and	ܽ௎	are lower and upper bounds on ܽ, 

respectively, and ܥ௅ and ܥ௎ provide lower and upper percentage bounds for allowable 

adjustments of ݌ଵ,௜, respectively. 
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To solve Equation (A3), the initial value for ݌ଵ,௜
∗  should be set to the corresponding ݌ଵ,௜ value. 

For any given multinomial CUSUM, there may exist an infinite number of "acceptable" local 

minimum solutions for developing the Markov chain. In addition, as the value of ܽ increases, the 

number of states in the Markov chain increases, resulting in higher computational costs in 

obtaining the chart properties. To deal with the aforementioned issues, we suggest that Equation 

(A3) be solved sequentially by increasing values of ܽ௅, ܽ௎, and the initial value of ܽ. After each 

sequential solution of Equation (A3), the values of ܽܪ௜	for	݅ ൌ 1, 2, … , ݇		should be checked to 

determine whether or not they are acceptable (close to being integers). If they are not acceptable, 

one should continue to the next solution; if they are acceptable, one should stop and obtain 

values for ܽ and ݌ଵ,௜
∗  for	݅ ൌ 1, 2, … , ݇. 

Appendix B: Markov Chain Model Example	

The Markov chain representation necessary for analyzing the properties of the multinomial 

CUSUM chart used in Case 1 of our paper is illustrated through the following example. Table 

3.1 presents the Case 1 in-control and out-of-control probabilities. For this analysis we set 

௅ܥ ൌ 0.99 and ܥ௎ ൌ 1.01, meaning that the original ݌ଵ,௜ values are allowed to change by a 

maximum of േ1%. The initial lower (ܽ௅) and upper (ܽ௎) bounds of the variable ܽ, are 0 and 10, 

respectively, and the initial value of ܽ is set at 5. This results in an optimal solution where, 

଴ܪܽ ൎ െ1.999, ܽܪଵ ൎ .9999, and ܽܪଶ ൎ 5.0000.  For the purposes of analyzing the Markov 

chain these values are considered acceptable, as they are essentially integers. The integer values 

will be referred to as ܽ଴, ܽଵ, and ܽଷ, respectively. The value of ܽ for this case is 5.4952, and the 

adjusted ݌ଵ,௜	values can be found in Table 3.1. The Markov chain design parameters for Case 1 

through Case 4 are shown in Table 3.B1. 
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Table 3.B1. Markov Chain Design Parameters for Case 1, Case 2, Case 3, and Case 4 

  Case 1 Case 2 Case 3 Case 4 

݄௠  2.9512 2.8023 0.8337  3.249  

ܽ  5.4952 128.4680 107.9466 18.1637 

݄௠∗   16 359 89 59 

ܽ଴  -2 -13 -1 -9 

ܽଵ  1 88 74 9 

ܽଶ  5 210 179 10 

ܽଷ  -- -- -- 13 

 

Once the values for ܪ௜ and ܽ have been determined, the transition probability matrix, ۿ, of 

the Markov chain can be generated. For this example, if an observation is in the good category 

the CUSUM statistic will decrease by -2, in the fair category the CUSUM statistic will increase 

by 1, and in the bad category the CUSUM statistic will increase by 5. Assuming ݌௜,௧ ൌ  ௜݌

(݅ ൌ 1, 2, 3	and ݐ ൌ 1, 2, …) and ݄௠ ൌ 2.95 gives the upper control limit for the Markov chain to 

be ݄௠∗ ൌ 16, resulting in the 	16 ൈ 16 transition probability matrix ۿ being equal to 

                     ܵ௧ାଵ
∗  

   0 1 ⋯ 5 ⋯ 13 ⋯ 15  

 

ܵ௧∗ 

ଷ݌ ଵ݌ 0 ଶ݌  

 ⋮ ⋮ ⋱ ⋱  

  ⋰ ⋰ ଵ݌ 2 

 ⋮  ⋱ ⋱ ⋱  

ଶ݌ ⋰ ⋰  10  ,                             (B1)

 ⋮  ⋱ ⋱  

ଷ݌ ⋰  14   

ଵ݌  15   

 

where all elements not identified otherwise are zero. Using the well known equation, we have 
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܈  ൌ ൣz୨൧
୘
ൌ ሺ۷ െ j	for	ሻିଵ૚ۿ ൌ 0,… , ݄௠∗ , (12) 

where ݖ௝ is the average time until absorption (signal) starting in state ݆, ۷ is the identity matrix, 

and 1 is a vector of ones. Since the CUSUM statistic starts off at zero ሺ	݆ ൌ 0ሻ, the average run 

length from our Markov chain representation is ݖ଴. 

Appendix C: Additional Comparisons for Trinomial Processes 

 The zero-state ARL performance for three additional trinomial processes is compared, 

where the three cases are named Case I, Case II, and Case III. Each chart has an in-control ARL 

of approximately 280 and the simultaneous Bernoulli CUSUM chart ARL values were estimated 

using 100,000 simulations. The Markov chain formulation was used to calculate ARL values for 

the multinomial CUSUM chart. 

 The category probabilities for Case I are displayed in Table 3.C1. The probabilities for 

good, fair, and bad components are all very close, which is different from any other cases we 

have studied. The zero-state ARL performance for Case I is given in Table 3.C2. When the 

category probabilities are very similar, the 2-Bernoulli CUSUM chart that focuses on good and 

fair components performs well for small parameter shifts. As the shifts become larger and closer 

to the shift the multinomial CUSUM chart is designed to detect, the multinomial CUSUM has 

better performance.      

Table 3.C1. Probabilities for Case I 

Categories Good (1) Fair (2) Bad (3) 

In-Control 0.45 0.35 0.20 

Out-of-Control 0.25 0.45 0.30 

Adjusted Out-of-Control  0.2478 0.4475 0.3047 
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Table 3.C2. Zero-State ARL Comparisons for Case I 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial

 CUSUM  

ARL 

݄௠ ൌ 3.07 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.57		

݄௕ ൌ 2.62 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 2.50	

݄௕ ൌ 2.785 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.5057	

݄௙ ൌ 2.3057 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.885	

݄௙ ൌ 2.645 

݄௕ ൌ 2.875 

1 (in-control) 0.45 0.35 0.20 280.49 279.99 281.00 279.37 280.71 

2 0.425 0.37 0.205 189.92 201.95 195.13 177.37 189.35 

3 0.40 0.40 0.20 140.32 157.67 135.15 111.69 129.28 

4 0.35 0.43 0.22 73.27 81.14 82.80 66.62 75.04 

5 0.30 0.44 0.26 42.08 46.65 58.99 46.12 49.37 

6 0.2478 0.4475 0.3047 27.55 31.01 43.20 32.43 33.95 

7 0.20 0.50 0.30 21.57 24.63 35.82 24.28 26.59 

8 0.15 0.53 0.32 17.06 19.62 29.87 19.45 21.26 

9 0.10 0.55 0.35 13.94 16.12 25.61 16.19 17.60 

10 0.05 0.57 0.38 11.78 13.72 22.41 13.83 14.91 

 

 The category probabilities for Case II are given in Table 3.C3. In this case, the majority 

of the components produced are good. Table 3.C4 gives the zero-state ARL performance for 

Case II. Similar to the results for Cases 1 and 2, the multinomial CUSUM chart detects 

parameter shifts faster than any of the other control charting methods for most shifts studied. The 

2-Bernoulli CUSUM chart that focuses on good and bad components has the best ARL 

performance for small shifts compared to the other simultaneous Bernoulli CUSUM charts and 

the 2-Bernoulli CUSUM chart that focuses on good and fair components has the best 

performance for large parameter shifts.  

Table 3.C3. Probabilities for Case II 

Categories Good (1) Fair (2) Bad (3) 

In-Control 0.80 0.15 0.05 

Out-of-Control 0.65 0.25 0.10 

Adjusted Out-of-Control  0.6479 0.2475 0.1046 
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Table 3.C4. Zero-State ARL Comparisons for Case II 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial

 CUSUM  

ARL 

݄௠ ൌ 2.67 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.133			

݄௕ ൌ 2.268 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 2.744	

݄௕ ൌ 2.384 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.97		

݄௙ ൌ 2.47 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.347	

݄௙ ൌ 2.807 

݄௕ ൌ 2.447 

1 (in-control) 0.80 0.15 0.05 285.57 284.17 284.27 284.16 279.99 

2 0.775 0.165 0.06 163.11 159.51 165.30 168.11 160.33 

3 0.75 0.18 0.07 102.08 102.13 108.40 109.64 104.03 

4 0.72 0.20 0.08 66.19 68.49 74.25 71.15 70.06 

5 0.705 0.21 0.085 55.77 57.83 63.29 59.42 59.33 

6 0.69 0.22 0.09 47.00 50.01 55.33 50.90 51.52 

7 0.6479 0.2475 0.1046 32.37 35.19 40.27 35.14 36.73 

8 0.61 0.27 0.12 24.84 27.44 31.98 27.23 28.80 

9 0.56 0.30 0.14 18.89 21.17 25.24 20.78 22.29 

10 0.51 0.33 0.16 15.19 17.18 20.80 16.81 18.13 

11 0.43 0.39 0.18 11.68 13.31 16.36 12.76 14.03 

12 0.39 0.41 0.20 10.37 11.89 14.75 11.41 12.57 

13 0.34 0.44 0.22 9.13 10.52 13.14 10.06 11.11 

14 0.22 0.52 0.26 7.09 8.19 10.50 7.90 8.67 

15 0.09 0.60 0.31 5.68 6.62 8.63 6.52 6.90 

 

The category probabilities for Case III, given in Table 3.C5, are similar to the 

probabilities studied in Case I with the probability of good components being slightly larger for 

Case III. Table 3.C6 gives the zero-state ARL performance for Case III. The multinomial 

CUSUM chart continues to be the best chart for detecting parameter shifts quickly when the 

parameter shifts are in the direction in which the chart was designed to detect. Similar to Case II, 

the 2-Bernoulli CUSUM chart that focuses on good and bad components has the best ARL 

performance for small shifts compared to the other simultaneous Bernoulli CUSUM charts and 

the 2-Bernoulli CUSUM chart that focuses on good and fair components has the best 

performance for large parameter shifts. The overall conclusions involving the zero-state ARL 

performance for Cases I through III are the same as the conclusions for Cases 1 through 3. 

Appendix D gives steady-state ARL performance for Cases I through III.  
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Table 3.C5. Probabilities for Case III 

Categories Good (1) Fair (2) Bad (3) 

In-Control 0.55 0.30 0.15 

Out-of-Control 0.45 0.35 0.20 

Adjusted Out-of-Control  0.4481 0.3467 0.2052 

 

Table 3.C6. Zero-State ARL Comparisons for Case III 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial

 CUSUM  

ARL 

݄௠ ൌ 2.05 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.49		

݄௕ ൌ 1.79 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 1.585

݄௕ ൌ 2.015 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.07		

݄௙ ൌ 1.60 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.635	

݄௙ ൌ 1.645 

݄௕ ൌ 2.135 

1 (in-control) 0.55 0.30 0.15 279.43 276.33 278.07 278.87 280.36 

2 0.53 0.31 0.16 188.12 190.52 200.57 193.98 196.11 

3 0.51 0.32 0.17 133.63 139.27 151.83 142.03 145.98 

4 0.49 0.33 0.18 99.58 106.13 119.48 107.57 112.22 

5 0.47 0.34 0.19 77.34 83.73 97.72 84.26 89.43 

6 0.4481 0.3467 0.2052 59.85 66.09 79.50 67.31 71.43 

7 0.40 0.38 0.22 41.19 47.15 59.17 44.59 50.03 

8 0.33 0.42 0.25 27.25 32.14 42.35 29.37 33.69 

9 0.22 0.48 0.30 17.56 21.19 29.29 18.95 21.96 

10 0.12 0.53 0.35 13.17 16.10 22.69 14.26 16.62 

11 0.08 0.55 0.37 11.97 14.69 20.81 12.98 15.13 

12 0.02 0.58 0.40 10.54 12.99 18.53 11.44 13.37 

Appendix D: Steady-State ARL Analysis for Cases 1-3 

The steady-state ARL comparisons for Cases 1 through 3 and Cases I through III are 

given in Tables 3.D1 through 3.D6. The ARL values for all cases were estimated using 100,000 

simulations except Case 3 where 1 million simulations were used. For all cases, the control limits 

from the zero-state analyses were used. The process was run in the in-control state for 50 

samples and then the shift in the distribution occurred. If a simulated chart signaled the 
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distribution had shifted during the first samples, then that particular run was discarded and a new 

set of 50 samples were generated. The multinomial steady-state ARL values were also estimated 

using simulation instead of the Markov chain formulation.   

Through these comparisons, it does not appear that steady-state ARL analyses differ 

substantially from the zero-state ARL analyses. However, we do notice from the steady-state 

analyses that multinomial CUSUM chart is not always the best performing chart for small 

parameter shifts. In Table 3.D1, the 2-Bernoulli CUSUM chart that focuses on good and bad 

components has better performance than the multinomial CUSUM chart for the first two 

distribution shifts. The multinomial CUSUM chart is, however, still the best performing chart for 

the majority of the parameter shifts especially shifts close to the shift the multinomial CUSUM 

chart was designed to detect. A similar pattern appears in the steady-state analyses for the other 

cases.  

Table 3.D1. Steady-State ARL Comparisons for Case 1  

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial

 CUSUM  

ARL 

݄௠ ൌ 2.95 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.72		

݄௕ ൌ 3.10 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 1.712	

݄௕ ൌ 3.332 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.93		

݄௙ ൌ 2.71 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.706		

݄௙ ൌ 1.7896 

݄௕ ൌ 3.506 

1 (in-control) 0.65 0.25 0.10 280.63 282.38 280.48 280.07 281.00 

2 0.625 0.255 0.12 147.41 145.86 156.41 169.03 154.86 

3 0.60 0.26 0.14 89.99 89.21 101.51 113.45 99.02 

4 0.55 0.27 0.18 43.99 44.34 51.94 58.74 49.63 

5 0.50 0.28 0.22 26.66 27.57 32.62 35.86 30.71 

6 0.4517 0.2999 0.2484 19.53 20.79 24.73 24.78 22.86 

7 0.35 0.35 0.30 12.55 13.70 16.79 14.47 14.79 

8 0.25 0.40 0.35 9.18 10.23 12.75 10.12 10.89 

9 0.15 0.45 0.40 7.20 8.13 10.25 7.77 8.58 

10 0.05 0.50 0.45 5.95 6.74 8.58 6.30 7.13 
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Table 3.D2. Steady-State ARL Comparisons for Case 2 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

 ଷ݌

PሺBadሻ 

Multinomial 

CUSUM  

ARL 

݄௠ ൌ 2.80 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.375	

݄௕ ൌ 2.8295 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 2.734	

݄௕ ൌ 2.9055 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.12	

	݄௙ ൌ 2.36 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.6288 

݄௙ ൌ 2.8288

݄௕ ൌ 2.9288 

1 (in-control) 0.94 0.05 0.01 504.40 502.88 501.23 499.20 505.39 

2 0.925 0.06 0.015 223.34 222.83 222.97 237.57 221.91 

3 0.89 0.08 0.03 70.61 72.34 76.33 85.14 74.41 

4 0.87 0.09 0.04 46.78 48.36 52.33 57.89 50.63 

5 0.8495 0.0992 0.0513 33.80 35.31 38.67 42.90 37.17 

6 0.80 0.15 0.05 24.30 24.71 27.37 24.88 25.80 

7 0.74 0.20 0.06 16.70 16.93 19.03 16.44 17.70 

8 0.60 0.30 0.10 9.12 9.51 10.89 9.31 10.01 

9 0.50 0.35 0.15 6.61 7.05 8.14 7.16 7.47 

10 0.40 0.40 0.20 5.18 5.58 6.48 5.81 5.94 
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Table 3.D3. Steady-State ARL Comparisons for Case 3 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial 

 CUSUM  

ARL 

݄௠ ൌ 0.8337 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 1.335			

݄௕ ൌ 0.0032 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 1.13		

݄௕ ൌ 0.004 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 0.928	

݄௙ ൌ 0.865 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 1.60		

݄௙ ൌ 1.13 

݄௕ ൌ 1.38 

1 (in-control) 0.994 0.005 0.001 502.10 498.29 499.94 526.70 499.94 

2 0.99 0.0075 0.0025 220.93 219.44 220.56 235.29 220.56 

3 0.987 0.009 0.004 149.78 149.09 150.31 165.83 150.31 

4 0.9848 0.0099 0.0053 120.35 119.83 121.12 136.01 121.12 

5 0.98 0.015 0.005 93.87 93.51 94.83 96.59 94.83 

6 0.974 0.02 0.006 69.81 69.68 70.96 71.33 70.96 

7 0.96 0.03 0.01 42.39 42.40 43.26 44.82 43.26 

8 0.95 0.035 0.015 32.29 32.33 32.88 35.56 32.88 

9 0.94 0.04 0.02 26.15 26.18 26.58 29.56 26.58 

10 0.9 0.06 0.04 14.88 14.90 15.03 17.69 15.03 

11 0.85 0.09 0.06 9.89 9.90 9.98 11.79 9.98 

12 0.8 0.11 0.09 7.21 7.20 7.25 8.85 7.25 

13 0.7 0.17 0.13 4.84 4.84 4.87 5.89 4.87 

14 0.6 0.24 0.16 3.70 3.69 3.71 4.42 3.71 

15 0.5 0.3 0.2 2.96 2.96 2.97 3.54 2.97 

16 0.3 0.4 0.3 2.08 2.08 2.09 2.53 2.09 
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Table 3.D4. Steady-State ARL Comparisons for Case I 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial

 CUSUM  

ARL 

݄௠ ൌ 3.07 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.57		

݄௕ ൌ 2.62 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 2.50	

݄௕ ൌ 2.785 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.5057	

݄௙ ൌ 2.3057 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.885	

݄௙ ൌ 2.645 

݄௕ ൌ 2.875 

1 (in-control) 0.45 0.35 0.20 280.49 279.99 281.00 279.37 280.71 

2 0.425 0.37 0.205 179.54 185.80 171.73 160.80 168.07 

3 0.40 0.40 0.20 130.14 143.70 115.27 97.89 111.67 

4 0.35 0.43 0.22 65.93 71.46 68.16 56.94 62.45 

5 0.30 0.44 0.26 37.12 39.98 47.30 38.80 40.58 

6 0.2478 0.4475 0.3047 23.63 25.73 33.85 26.86 27.50 

7 0.20 0.50 0.30 18.18 20.18 27.49 19.77 21.35 

8 0.15 0.53 0.32 14.14 15.91 22.66 15.58 16.93 

9 0.10 0.55 0.35 11.41 12.94 19.20 12.90 13.96 

10 0.05 0.57 0.38 9.54 10.91 16.68 10.97 11.80 
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Table 3.D5. Steady-State ARL Comparisons for Case II 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial

 CUSUM  

ARL 

݄௠ ൌ 2.67 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.133			

݄௕ ൌ 2.268 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 2.744	

݄௕ ൌ 2.384 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.97		

݄௙ ൌ 2.47 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 3.347	

݄௙ ൌ 2.807 

݄௕ ൌ 2.447 

1 (in-control) 0.80 0.15 0.05 285.57 284.17 284.27 284.16 279.99 

2 0.775 0.165 0.06 150.72 146.83 148.68 156.59 144.76 

3 0.75 0.18 0.07 92.99 92.00 95.15 99.50 91.79 

4 0.72 0.20 0.08 59.99 60.71 63.62 63.96 60.56 

5 0.705 0.21 0.085 49.46 51.15 54.09 53.06 51.46 

6 0.69 0.22 0.09 42.18 43.79 46.81 45.10 43.97 

7 0.6479 0.2475 0.1046 28.40 30.33 33.31 30.75 30.87 

8 0.61 0.27 0.12 21.51 23.23 26.12 23.48 24.00 

9 0.56 0.30 0.14 16.26 17.72 20.36 17.72 18.42 

10 0.51 0.33 0.16 12.92 14.25 16.65 14.18 14.86 

11 0.43 0.39 0.18 9.84 10.95 13.04 10.66 11.44 

12 0.39 0.41 0.20 8.72 9.76 11.66 9.50 10.22 

13 0.34 0.44 0.22 7.67 8.59 10.33 8.34 9.02 

14 0.22 0.52 0.26 5.93 6.68 8.17 6.51 7.02 

15 0.09 0.60 0.31 4.75 5.38 6.69 5.27 5.62 
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Table 3.D6. Steady-State ARL Comparisons for Case III 

D
is

tr
ib

ut
io

n 

	ଵ݌

PሺGoodሻ 

	ଶ݌

PሺFairሻ 

	ଷ݌

PሺBadሻ 

Multinomial

 CUSUM  

ARL 

݄௠ ൌ 2.05 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.49		

݄௕ ൌ 1.79 

2-Bernoulli 

CUSUM  

ARL 

݄௙ ൌ 1.585	

݄௕ ൌ 2.015 

2-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.07		

݄௙ ൌ 1.60 

3-Bernoulli 

CUSUM  

ARL 

݄௚ ൌ 2.635	

݄௙ ൌ 1.645 

݄௕ ൌ 2.135 

1 (in-control) 0.55 0.30 0.15 279.43 276.33 278.07 278.87 280.36 

2 0.53 0.31 0.16 171.54 168.65 170.76 172.34 168.68 

3 0.51 0.32 0.17 119.61 120.31 126.00 123.33 122.67 

4 0.49 0.33 0.18 87.40 89.74 97.19 92.17 92.70 

5 0.47 0.34 0.19 66.95 70.12 78.44 71.17 72.81 

6 0.4481 0.3467 0.2052 51.17 54.27 63.01 56.20 57.55 

7 0.40 0.38 0.22 34.06 37.94 45.50 36.28 39.61 

8 0.33 0.42 0.25 22.05 25.13 31.66 23.38 26.08 

9 0.22 0.48 0.30 13.78 16.19 21.33 14.69 16.75 

10 0.12 0.53 0.35 10.21 12.16 16.48 10.95 12.60 

11 0.08 0.55 0.37 9.28 11.08 15.16 9.96 11.44 

12 0.02 0.58 0.40 8.11 9.75 13.41 8.73 10.09 
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Chapter 4 	
 
 
 
 

Conclusions and Future Work 
 

Control charting methods prove to be important tools in both industrial quality control 

and public health surveillance. The best performing control chart should be chosen for the 

situation at hand. In the Poisson case where the area of opportunity varies, comparisons reveal 

that the GLR CUSUM chart based on the likelihood-ratio formulation performs best for the shift 

in which the chart was designed to detect and also has the quickest detection for many shifts 

around the shift of interest.  

 The modified EWMA-M method with the reflecting lower barrier and control limits 

based on the exact variances of the EWMA statistics also performs well for many different shifts 

as long as the smoothing constant is chosen based on the size of the shift one is interested in 

detecting. In Dong et al. (2008) the EWMA chart with ݎ ൌ .9 was recommended to detect shifts 

in a Poisson process where the sample size varies. Our comparisons reveal that this chart with 

the high smoothing constant will only perform well when the shift of interest is very large. The 

chart, however, has poor performance when the objective is to detect small shifts quickly. In 

situations where the objective is to detect large shifts quickly, it may be beneficial to use a 

simple Shewhart chart rather than an EWMA chart with such a high smoothing constant. 

 In our research, we assume that the in-control Poisson rate, ߣ଴, is estimated without error 

and we assume the Poisson count data are independent observations. The effects of estimation 

error on the performance of the different control chart methods along with the effects of 

autocorrelation are areas for future research. 
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 In the multinomial case, the multinomial CUSUM chart based on the likelihood-ratio 

formulation has nice ARL properties when the category probabilities shift in the direction in 

which the multinomial CUSUM chart was designed to detect. For most parameter shifts the 

multinomial CUSUM chart is the best performing chart especially for parameter shifts that are 

close to the shift in which the chart was designed to detect.   

 When we began our research regarding control charting methods for multinomial data, 

we assumed that the different ݇ െ 1 simulatenous Bernoulli CUSUM charts would perform 

similarly and there would be no need to monitor with the ݇-Bernoulli CUSUM chart since the 

category probabilities must sum to one. Our simulation studies led to different conclusions. The 

selection of the categories to monitor when using the ݇ െ 1 simultaneous Bernoulli CUSUM 

charts has a significant impact on the performance of the chart. The performance of the ݇-

Bernoulli CUSUM chart also differs from the performance of the ݇ െ 1 simultaneous Bernoulli 

CUSUM charts. In situations where the objective is to detect shifts in any direction, then we 

recommend using the ݇-Bernoulli CUSUM chart as opposed to selecting one of the ݇ െ 1 

simultaneous Bernoulli CUSUM charts because of the difficulty associated with selecting the 

best performing ݇ െ 1 simultaneous Bernoulli CUSUM chart without performing a simulation 

study. Also, the ݇-Bernoulli CUSUM chart avoids some of the worst ARL performance that is 

associated with various simultaneous Bernoulli CUSUM charts and the multinomial CUSUM 

chart. Determination of further guidelines for the choice of the best performing Bernoulli 

CUSUM charts for multinomial processes is an objective for future studies.  

 Another area of future research would be to construct a risk-adjusted multinomial 

CUSUM chart similar to Steiner et al.’s (2000) risk-adjusted Bernoulli CUSUM chart. Risk-

adjustment is essential in many areas of public health surveillance and the multinomial CUSUM 

chart could be adapted to incorporate risk adjustment.  

 Finally, it would also be of interest to study the properties of a two-sided multinomial 

CUSUM chart. The research thus far has focused on the one-sided multinomial CUSUM chart 

where the only objective is to detect changes in the categories in a single specified direction. The 

two-sided multinomial CUSUM chart would allow for detection of process improvement as well 

as process deterioration. More generally, several multinomial CUSUM charts could be employed 

simultaneously, each designed for detection of shifts in different directions. This is analogous to 
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Hawkins’ (1991, 1993) use of Healy’s (1987) method in the case of monitoring a multivariate 

normal mean vector.  

  



83 
 

 

 
 

	
 
 

References 
 
 
 
 
 
(Not included in Chapter 2 or Chapter 3) 
 
 
Page, E. S. (1954). “Continuous Inspection Schemes”. Biometrics 41, pp. 100-115. 

 

Roberts, S. W. (1959). “Control Chart Tests Based on Geometric Moving Averages”. 

Technometrics 42, pp. 97-102. 

 

Ryan, A. G.; Wells, L. J.; and Woodall, W. H. (2011). “Methods for Monitoring Multiple 

Proportions When Inspecting Continuously". To appear in Journal of Quality 

Technology. 

 

Ryan, A. G. and Woodall, W. H. (2010). “Control Charts for Poisson Count Data with Varying 

Samples Sizes”. Journal of Quality Technology 42, pp. 260-275. 

 

Shewhart, W. A. (1939). Statistical Method from the Viewpoint of Quality Control. The Graduate 

School, the Department of Agriculture, Washington, D.C. 


