SOME PERFORMANCE TESTS OF
CONVEX HULL ALGORITHMS

D.C.S. Allison
M.T. Noga

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 2406l

CS830001

Abstract: The two-dimensional convex hull algorithms of Graham,
Jarvis, Eddy, and Akl and Toussaint are tested on four different
planar point distributions. Some modifications are discussed for both
the Graham and Jarvis algorithms. Timings taken of FORTRAN
implementations indicate that the Eddy and Akl-Toussaint algorithms are
superior on uniform distributions of points in the plane. The Graham
algorithm outperformed the others on those distributions where most of
the points were on or near the boundary of the hull.

Key Words: Convex hull, computational geometry, sorting, distributive
partitioning.

1. Introduction

No problem in the field of computational geometry haé received more
attention during the last few years than the computation of the convex
hull. This problem may be stated as follows: Given a set S of N
points in two dimensional Euclidean space, determine those points in S
which are the vertices of the minimum-area convex po!ygon that will en-
tir‘ely.contain S. _There are a number of important applications where it
is necessary to compute the convex hull, for- example in character re-
cognition [22], statistics [17], and computer graphics [28]. 'Research
has been directed towards producing algorithms which have good ex-
pected case behavior on several of the standard distributions of points
_in the plane. Among these are the Graham algorithm [131, which re-
quires an explicit sort step, the gift-wrapping approach of Jarvis [16]
(see also [10]), and the divide and conquer schemes of Eddy [11] and
Akl and Toussaint [3,4]. We will focus our attention on several of the
recent modifications [2,6,30], including one of our own [24]-, which lead
to faster and cleaner implementations of both the Graham and Jarvis al-
gorithms. These will be tested against coded versions of the Eddy and
Akl-Toussaint algorithms which were obtained from the éuthors. All al-
gorithms compute the ordered convex hull of the set [25], the sequence
of vertices in the order in which they appear along the boundary of the

hull. -

2. Graham Algorithm

Historically, the Graham algorithm [13] represents one of the first
attempts to produce a computationally efficient solution to a geometric
problem. Before giving Graham's algorithm we first examine an algor-
ithm due to Sklansky [31] to determine the convex hull of a simple
non-intersecting polygon P. This algorithm is the precursor of the
Graham algorithm.

Sklansky's algorithm is based upon systematically removing all con-
- cave vertices of P. Starting at an arbitrary vertex point on the poly-
gon, a counterclockwise scan is made in which each vertex point j is
tested for concavity. Each test may be accomplished in constant time
by checking if j is on the left-hand side of a directed line from its two
neighboring points i and k; Fig. 1. If j is found to be concave (on
the left-hand side) it is immediately deleted from P and the scan tempo-
rarily backtracks clockwise one point. (This is because removal of a
point from P may make the previous vertex point concave.} The algor-
ithm terminates when all points have been examined at least once, and
the last point examined was convex. An easy induction argument suff-
ices to prove that th.is aigoritﬁm requires O(N) time to complete.

Unfortunately, Sklansky's procedure as described above is incorrect
(see [20]). There are some polygons on which it will fail to produce
the correct answer. However, for many polygons it will work, and one
such class is the star-shaped poiygons. A polygon P is stér‘—shaped if
and only if there exists a point z, interior to P, such that for all ver-
tices ve P, the line zv is contained in P. That is, there is at least one

point z inside P that can see all of the vartices of P.

Fig. 1. A simple non-intersecting polygon P.
Vertex j will be deleted since it is on the
left-hand side of a directed line segment
from i to k.

4
Relating this back to the convex hull of a set of points S, Graham
simply ordered the points by polar angle about an interior point z of
the hull. The reordered points of S implicitly define a star-shaped po-
lygon and consequently the remainder of Graham's algorithm is nearly
identical to Sklansky's. A minor difference is that as a result of the
ordering step there may be subsequences of points that have the same
polar angle (lie along the same ray). In this case only the outermost
points, those with the greatest amplitude, are retained. We give a
summary of the Graham algorithm and its worst-case analysis below.
Step 1: Convert the points of S to (r,8) polar coordi-
nates about any point z which is interior to the convex hull
of S. Graham stated that z can be computed in at most
O(N) time (but usually much less time) by testing 3 element
subsets of S for collinearity and taking the centroid of the
first triangle found.
Step 2: Order the points by increasing ' polar angle;
Fig. 2. This requires O(NlogN) time in the worst-case
[15].

Step 3: If it is the case that 91. =0 delete the

i+l ’
point closest to z. Additionally, any point with an ampli-
tude riy = 0 can also be deleted. All of these points can be
eliminated in O(N) time by using a linked-list data struc-
ture,

Step 4: The remaining points of S can now be consid-

ered the vertices of a star-shaped polygon. For each se-

quence of 3 consecutive vertices i, j, and k in S, j is

Fig. 2. Ordering the points by polar angle.

checked to see if it is concave with respect to points i aﬁd
K. jis deleted from S whenever it is concave resulting in
a new sequence o.f points which in turn must be checked
for concavity. As explained earlier this step may be car-
ried out in O(N) time.

The worst-case running time of the algorithm is clearly

O(NlogN).

3. _Implementation of the Graham Algorithm

To implement the Graham convex huli algorithm one might be tempt-
ed to. use trigonometric functions in converting S to (r,8) coordinates.
The problem is that on modern computers trigonometric functions are
very time consuming operations. Typically, for every sine function
call, several floating point multiplications can be carried out in the same
amount of time.

A \&ay to avoid using trigonometric functions is to set z equal to the
bottommost point of the set [6]. The bottommost point is the point with
minimum y-coordinate. (If there is more than one such point, the mini-
mum x-coordinate point is chosen.) The points may then be ordered by
sldpe [24] as:

if (xs # x,) or (y; # Yy)

then 8;:= (x5 - x,)/ (x5 - Xzl * (yy = vy)) (1)

.e!se 8y :% -2
Each @]. will be in the range from -1 < @1.< P (-1 for the smallest an-
gles) except when i has the same coordinates as z. In this case we set

91- to a value smailer than -1 (3 convenient choice is -2). The compu-

6
tation for each point takes at most three comparisons (1 for the abso-
lute value), two subtractions, and one division. An extra array of size
N is needed to store the angular values.

The ordering process should be carried out by use of a pointer sort
[28]. in this way we avoid an exchange in each of the arrays repre-
senting x, y, and ©. Any one of the distributive sorting algorithms
[5,19,21,23] can easily be modified for pointer sorting. This will in-
sure that the Graham algorithm will have O(N) or near O(N) expected
case time' complexity over a wide range of planar point distributions
[9,24]. The amount of extra array storage required to implement the
sort described in [5] is approximately 2%N.

Once the points are ordered, a circular doubly linked-fist can be
formed using the pointers from the sort step. The list pointers require
2N array locations. By making one pass through the entire list, all
points coincident with the bottommost point and innermost points along
identical rays can then be eliminated.

The linked-list is also available to delete points, if necessary, in
the final step of the algorithm. Each of the three point concavity tests
may be carried out by using the vector scalar product [6,8,31] as fol-
tows:

if (x5 = %x3) = lyg - y;) > (Yj % (@)

then keep j in the convex hull, else delete j from any further consider-

'Vi).(x

ation as a possible vertex point of the hull. No trigonometric functions
are required, only 2 multipiications, 4 subtractions, and 1 comparison.
At the completion of the algorithm the linked-list will contain the

convex hull in standard form. (A polygon P is in standard form if its

7
vertices occur in counterclockwise order beginning with the vertex that
has least y-coordinate. All vertices must be distinct with no three
consecutive vertices collinear [30].) - This canonical representation is
designed to simplify the implementation of other geometric algorithms
wh‘ich require convex hull preprocessing. Not including the sort step,
a total of 5N array locations is required to implement the aigorifhm (in-

cluding 2N to hold the x,y coordinates of the set S).

4. The Jarvis Algorithm

Imagine that each point of a planar set is represented by a small
peg which has been inserted into a flat piece of wood. The convex hull
of the set may be identified by attaching a long section of string to the
bottommost peg and then subsequently wrapping it around in a counter-
clockwise fashion taut against the pegs until they have all been encir-
cled (lasso style). Each peg where the string changes direction is a
vertex point of the hull.

For computational pur';:aoses, this gift-wrapping approach was first
formulated in 2-dimensions by R.A. Jarvis [16]. Later Akl [2] report-
ed on two problems that may arise if the original algorithm is applied.
These involved a bad choice of the initial origin and the necessity of
including an intermediate step which eliminates points on the interior of
the huil as the algorithm progresses. The algorithm below includes the
modifications suggested by Akl to remedy these problems.

Step 1: Determine the bottommost point of the set and

use this point as the initial origin (as suggested in [21).

Step 2: A radius arm extended parallel to the x-axis is
affixed to the initial origin and swung in a counferciockwise
direction until another point of the set is 'encountered;

Fig. 3. This point must be on the convex hull.

Step 3: The last point found may t‘hen be used as the
origin for a new scan of the radius arm whereby the next
point is identified.

Step 4: Any point found to lie in the region enclosed
by a line from the initial origin to the last point found can
be deleted since these points are interior to the hull (this
step must be included [2]).

Step 5: Repeat steps 3 and 4 until the initial origin is
reencountered. |

The complexity of the algorithm can be anywhere from linear to
quadratic. (O(N) to O(N2)) depending upon the number o.f‘ points that
are expected to be on the hull and the‘distribution of the points in-
volved [16,24,30]. Concerning specific distributions, several results
from stochastic geometry [26,27] can be used to analyze the average
time used by the Jarvis algorithm. These are summarized in table 1
below:

Table 1T - Average time complexity of the Jarvis algorithm

w--—a——----—-‘---q-——-—.-—--u-——------o-—--—--------qﬁ-—--ﬂ--—--.

Distribution Average time complexity
Uniform in a
convex polygon O(NlogN)
Uniform in a
circle O(N®*)
Normal in the
plane O(NlogN}

Uniform on the
boundary of a circle C(N?)

~
-~

-
-

The gift-wrapping approach.

Fig. 3.

S. _Implementation of the Jarvis Algorithm

We have found that a few of the ideas used in the Graham algorithm
may be usefully applied in the Jarvis implementation. Tenatively, we
assume that all points in S are on the hull. As the algorithm progress-
es points will be deleted from S and, if the points are on the hull,
their indices stored in an auxilary array H. At the compiétion of the
algorithm, H will identify the ordered convex hull in standard form.
The deletion of points from § may be handled by using a doubly linked
list data structure (similar to the Graham implementation).

After initializing the linked-list the bottommost point z is located
and placed into H; we may then delete z from any further considera-
tion.

In anticipation of the point deletion phase, we evaluate and store
the angular displacement of rays emanating from the first hull vertex z
to the other points of S. If during the process of evaluating the an-
gles a point coincident with z is found then it is deleted from the list
of possible hull vertices; no evaluation of an angle is necessary. The
angular value 61- of each point may be computed as:

8 = ~(x; - X2}/ (xs - X1t lyy = v). (3)

This formula is identical to the one used in the ordering step of the
Graham algorithm (formula (1)). |

Clearly, the point L which generates the minimum angle is the next
vertex on the hull (for equal angles we pick the one furthest from the
origin). This point may be placed inte H and deleted from §S. Any
point with an angle identical to that of the last hull vertex L fsund may

also be deleted.

i0
The last point found L can be considered the origin of a coordinate
system in which the remaining points of S fall into one of quadrants 1,
2, 3; or 4; Fig. 4. The point which makes with L the angle of
minimum value is the next point on the hull. The comput_afion may be
carried out most efficiently by noting that quadrant 1 angles < quadrant
2 angles < quadrant 3 angles < quadrant 4 angles [16]. Assume induc-
tively that as we work through the points of S, i indexes the point
temporarily accepted as having the minimum angle, and that j indexes
the point being considered as a réplacement for i. Three cases arise
when comparing i and j-) K j is in a higher numbered quadrant
than i, then j may be immediately rejected as the 'next point' candidate;
no evaluation of an angle is necessary., {ii) .!f i and j are in the same
quadr_'ant, then angIej is computed and compared with angie;. In the
case that anglei > ang!ej, we set | := j and anglej := anglej. (If an-
glei = ang!ej take the point that is farthest from L.} (i) 1fj is in a
quadrant of lower value than i, we compute anglej and set i := j and
ang!e}. = angfej.‘ Quadrant determination can be madé by examining
the sign of the quantities (xj -xL) and (yJ. - yL). Angular displace-
ment may be determined by using variations of formula (1). For quad-
rants 1 and 3 we set
angiej i= -(xj - xL)/((xJ.)t (yJ- -y,
and for quadrants 2 and 4 we set
angiej 1= -(yj - YL)/((XJ. - XL) * (Yj aR/ROR
Any point found to be on or to the right side of a line from the initial
origin (bottommost point) to the new hull vertex | may be deleted from

the linked-list. Steps 3 and 4 ara performed in an iterative fashion by

180°

90° .

270°

Fig. 4. Quadrant method for'determining the next point
on the hull.

OO

H
setting L := j and repeating the procedure until the number of remain-
ing points in the list is either one or zero. (If one point remains it
" must be on the hull and is added to H.)

Once the basic algorithm is complete the list pointers and array H
can be used to reform a linked-list that contains the convex hull in

standard from. The total storage required to implement the algorithm is

6N,

6. The Eddy Algorithm

One of the most useful tools in the design of algorithms is the di-
vide and conquer technique. The basic idea is to split a problem of
size N into M smaller subproblems ail of approximately the same size.
Each subproblem may then be further resplit (in a recursive fashioh)
until it is more profitable to apply a direct method to solve each sub-
problem. Often it js necessary to do further work building up the re-
sults of the subproblems to arrive at the total solution of the problem.

Several divide and conquer schemes have been devised for convex
hull computation. The Eddy algorithm (W. F. Eddy [11]) is probably
the best known of these schemes. The algorithm makes use of triangles
composed of points already known to be on the hull (extreme points) to
quickly eliminate those points interior to the boundary of the hull.

The first step is to locate two points that are certain to be on the
hull. Practical choices are the bottommost and topmost points of the sat
S; Fig. 3. The points are then partitioned into two lists, one to the
left of line BT, and the other to the right of BT. During the parti-

tioning process we keep track of the highest points above and beiow

Fig. 5. Partitioni_ng process of the Eddy
algorithm,

12
tine BT. These points, which are obviously on the hull, are labeled as
L and R in Fig. 5. We now concentrate on the list to the left of line
BT; the procedure will be identical for the list to the right of BT.
Any points inside {or on the perimeter) of the triangie BLT are not on
the hull and can be eliminatad. The remaining points are placed into
two lists, one above line BL, and the other above line LT. The trian-
gle elimination step may then be carried out recursively on each of
these new lists. The recursion bottoms out and backtracks whenever a
sub-list of the original set of points is empty.

It may be noted that this algorithm is similar to the sorting algor-
ithm Quicksort [28]. The key to the s‘peed of Quicksort is the parti-
tioning of ah unsorted list into two sublists of approximately the same
size such that all elements in the first list are smaller than those of the
second list. This phase only requires a number of ope.rations propor-
tional to the size of the original list. It is also possible in the case of
the Eddy algorithm- to partition a list of N points in O(N) operations.
The only numerical calculation required is the determination of whether
a point is above, below, or on a given line.

Bacause the Eddy algorithm is operationally analagous to Quicksort,
the worst case running time is O(N2). However, like Quicksort, an
extremely pathological circumstance must present itself for this to occur
[9]. Depending on the distribution of points, perfor-mance.is most like-
ly to be O(N) or O(NlogN). Table 2 gives the average time complexity

for several specific distributions of points in the plane.

13

Table 2 - Average time complexity of the Eddy algorithm

Uniform in a

convex polygon O(N)
Uniform in a
~ circle _ O(N)
Normal in the

plane O{N)
Uniform on the

boundary of a circle O(NlogN)

Implementation details can be found in [12]). The computer program

given there requires storage space of approximately 7N.

7. Akl-Toussaint Algorithm

Since the area of the triangles used to delete points in the Eddy al-
gorithm shrinks quite rapidly, it is questionable whether it is necessary
to carry out the recursion to such a deep level. S. G. Akl and G. T.
Toussaint [3,4] have developed a convex hull algorithm similar to
Eddy’s where divide and conquer techniques are used for only the first
few steps.

The first step involves finding the four extreme points xmin, ymin,
xmax, and ymax. Any points which fall inside the quadrilateral region
formed by these points may then be eliminated; Fig. 6.

Next, we find the extreme point k in each of the four extremal re-

glons whose coordinates (x,,y,) maximize the quantity
k" 7k

M MYk

where,
m, = *1 for regions 2 and 3,
m:t = -1 for regions 1 and 4,
m, = *1 for regions 1 and 2,

ymax

Region 2

Xmax
Region 1

xmin Region 3

[]
Region 4
'ymin

Fig. 6. Point deletion process of the Akl-Toussaint
algorithm, :

14
m, = -1 for regions 3 and 4.
This will allow all points failing inside each of the four triangles ijk
where i,j ¢ {xmin,ymin,xmax,ymax} 0 be removed from any further
consideration as possible extreme points of the hull.

For the final step, a vériation of the Graham zlgorithm is applied to
the remaining points in each region.

Akl and Toussaint [32] have shown that the average time complexity
of their algorithm is largely dependent upon the percentage of points
eliminated in the first step. For a uniform distribution of points inside
3 square, the time complexity will be O(N). Intuitively, the algorithm
should be fast for any uniform distribution of points spread over 3
convex region. The worst-case time complexity is O(NlogN). This be-
havior results whenever all (or most) of the points are passed to the
Graham algorithm in the final step.

Akl and Toussaint [1] use a iliberal amount of storage in their im-
plementation. Two arrays of size N hold the original coordinates.
Twelve arrays of size N are used to store the coordinates and indices
of points in the four extremal regions. Three arrays of fength N are
used to implement the Graham algorithm. Finally, one array of {ength
N stores the final list of those indices (from the original coordinate ar-
rays) which are on the hull.

The total array storage required is 18N.

15

8. Performance Evaluation and Discussion

in this section we report on a performance evaluation study between
the Graham, Jarvis, Eddy, and Akl-Toussaint convex hull algorithms.
All of the algorithms were coded in FORTRAN and run on an {BM 3032
(FORTX,0PT=2). The Graham and Jarvis algorithms were impiemented
using the |deas presented in sections 3 and 5. A coded version of the
Eddy algorithm was obtained from Collected Algorithms from the Associ-
ation of Computing Machinery [12]. As mentioned in the previous sec-
tion, an implementation of the Akl-Toussaint algorithm was receivad for
testing from the authors.

The following planar point distributions were chosen for testing:

(a) Uniform in a square,

(b) Uniform in a circle,

() Uniform in an annulus (inner radius 9/10 of outer radius),

(d) Uniform on the boundary of a circla.
Timings were recorded for sample sizes of 100, 250, 500, 1000, 2000,
and 4000 points. 100 runs were made for sample sizes of 100, 250, 500,
and 1000 points, 50 runs for 200 points, and 25 runs for 4000 points.
The only exception was in the case of the Jarvis algorithm where only 1
run was made on distribution (d) for all sample sizes. On this distri-
bution, performance was expected to be O(N2). |n the tables which

follow all times are for 100 runs and are given in seconds.

Table 3 - Uniform in a3 circle

-y—-—-—-------4—--*----—-----------.——n

N Graham Jarvis Eddy
100 .44 1.00 43
250 1.22 3.31 1.02
300 2.30 7.98 1.90

1000 4.80 19.36 3.80

2000 9.62 48.92 7.22

4000 19.96 95.84 14.44

..,_.,_-_.._....__.,,.__..,__..__..___._-__.__-____..

—----p--a--——---_-_—--—_-_--g---.---—-.---

N Graham Jarvis Eddy
100 .47 94 43
250 1.18 2.62 97
500 2.39 6.02 1.91

1000 4.78 13.21 3.65

2000 8.78 29.02 7.36

4000 19.96 60. 60 14.48

—1-——---9—-4.-----q------‘—-—;---‘---‘-ﬂ-ﬁ

--—-—_—--..---..----—--.-—..._--..-----q..-—--.--..

N Graham Jarvis Eddy
100 .45 1.93 65
250 1.17 6.65 1.51
500 2.24 16.37 2.84

1000 4.69 52.63 5.58

2000 9.44 104.86 10.82

4000 19.76 262.48 21.60

-..--.-_-..-_.._—..--a.-—m—.-—-..-q.---»--—.----

-—-.--a.-.-..-_----—-—-.---_------.---.--q.--

N Graham Jarvis Eddy
100 41 6.90 1.25
250 1.01 42.50 3.54
500 2.01 164.00 7.80

1060 4.02 674.00 16.78

2000 8.16 2615.00 35.86

TN e e e o

T v - -

e e -

TR A s e a — m

SN -

TS -

A

R e

e

R e i o

16

17

Examination of tables 3, 4, 5, and & indicates that the results of
the performance testing are: (1) Contrary to previous reports [14,16],
the Graham algorithm js competitive with several of the divide and con-
Quer methods, and is to be strongly recommended on point distributions
similar to (¢) and (d), where most of the points are expected to be on
or near the boundary of the hull. (2) The Jarvis algorithm is a poor
performer relative to th_e other algorithms and cannot be recommended.
(3) The Eddy and Akl-Toussaint algorithms were designed to be fast_
for uniform distributions of points in the plane. The data in tables 3
and 4 indicate that these algorithms perform exceptionally well for these

distributions and are therefore highly recommendad in these situations.

9. Conclusion

All convex huil algorithms are intricately linked to the problem of
sorting. Finding the convex hull s really 3 two-dimensional sorting
problem, because the task of any convex hull algorithm is firstly to
discard those points that are not on the hull, and secondly to order the
remaining points exactly as they appear in sequence along the boundary
of the convex polygon. Among the algorithms we have examined, the
Graham aigorithm requires an éxplicit sort. step, the Eddy a!gorithm_ is
operationally similar to Quicksort, and the Akl-Toussaint algorithm is a
combination of these two methoeds. Even the Jarvis algorithm is relatad
to straight selection sorting,

It has been shown [33] that,.for' inputs of size N, finding the con-
vex hull takes C(NlegN) comparisons in the worst-case. The proof is

related to the one for sorting algorithms, which also reguires at least

18
O(NlogN) comparisons in the worst case. The implication is clear,
Convex hull algorithms are ultimately related to sorting algorithms and
vice-versa. Until a faster sorting algorithm is developed, it is unlikely
that any new convéx hull algorithm will exhibit a dramatic increase in

speed over any of jts predecessors.

10. Acknowfedgements

" The authors would like to thank Godfried Toussaint and Selim Akl
for words of €ncouragement, reference material, and computer pro-

grams.

[%

10.

11.

12.

13.

14,

REFERENCES

+ 3.G. AKkl, Personal communication.

- $.G. Akl, Two remarks on a convex hull algorithm, Info. Proc.

Lett. 8, no. 2 (1979), 107-108,

- $.G. Akl and G.T. Toussaint, Ffficient convex hull algorithms for

pattern recognition applications, Proc. Fourth International Joint
Conf. on Pattern Recogniition, Kyoto, Japan (1878), 1-5.

Proc. Lett. 7, mo. 5 (1978), 219-223.

. D.C.S. Allison and M.T. Noga, Usort: an efficient hybrid of

distributive partitioning sort, B.i.T. 22, (1982), 136-139.

- K.R. Anderson, A reevaluation of an efficient algorithm for

determining the convex hull of a finite planar set, Info, Proec. Lett.
7, no. 1 (1978), 53-55.

- J.L. Bentley and M.1. Shamos, Divide and conquer for linear

expected time, Info. Proc, Lett. 7, no. 2 (1978), 87-91.

- A. Bykat, Convex hull of a finite set of points in two dimensions,

Info. Proc. Lett. 7, no. 8 (1978), 297-208.

. L. Devroye and T. Klincsek, Average time behavior of distributive

sorting algorithms, Computing 26, no. 1 (1981}, 1-7.

D.R. Chand and 5.5, Kapur, An algorithm for convex polytopes,
JACM 17, (1870, 78-86,

W.F. Eddy, 4 new convex hull algorithm for planar sets, ACM
Trans. on Math. Soft. 3, no. 4 (1977), 398-403.

W.F. Eddy, Aigorithm 523 CONVEX, o new convex hull algorithm
for planar sets, Coliected Algorithms from ACM, (19773,
323P1-523Ps.

R.L. Graham, An efficient algorithm for determining the convex hull
of a finite planar set, Info. Proc. Lett 1, no. 1 (1972), 132-133.

P.J. Green and B.w. Silverman, Constructing the cenvex hufl of g

set of points in the plane, The Computer Journal 22, no. 3 (1978),
262-2686,

- 18 -

15.

16.

17.

18.

8.

20.

21.

22.

24,

25.

26.

27.

28.

29.

30.

31.

20

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms,
Computer Science Press, {1978).

R.A. Jarvis, On the identification of the convex hull of a finite set
of points in the plane, info. Proc. Lett. 2, no. 1 (1973), 18-21.

M.G. Kendall, Discrimination and classification, Proc. International
Symposium on Multivariate Analysis, Edited by P.R. Krishnaiah,
Academic Press, New York, (1968).

J. Koplowitz and D. Jouppi, A more efficient convex hull algorithm,
Info. Proc. Lett. 7, no. 1 (1978), 56-57.

J.S. Kowalik and Y.B, Yoo, Implementing a distributive sort
program, Journal of Information and Optimization Sciences 2, no. 1
(1981), 28-33. '

D. McCallum and D. Avis, A linear algorithm for finding the convex
hull of a simple polygon, Info. Proc. Lett. 9, no. 5 (1979),
201-2086.

H. Meijer- and $.G. Akl, The design and analysis of a new hybrid
sorting algorithm, Info. Proc. Lett. 10, no. 4-5 (1980), 213-218.

G. Nagy and N. Tuong, Normalization techniques for handprinted
numerals, Comm. ACM 13, (1970), 475-481.

- M. van der Nat, A fost sorting algorithm, a hybrid of distributive

and merge sorting, info. Proc. Lett. 10, no. 3 (1980), 163-167.

M.T. Noga, Convex Hull Algorithms, Masters Thesis, Dept. of
Comp. Sci., Virginia Polytechnic institute and State University,
Blacksburg, VA, (1981). :

F.P. Preparata and S.J. Hong, Convex hulls of finite sets in two
and three dimensions, Comm. ACM 20, no. 2 (1977), 87-93.

H. Raynaud, Sur lenveloppe convexe des nuages des points
afeatoires dans R!, Appl. Prob. 7, 1970, 35-48.

A. Renyi and R. Rulanke, Zufallige konvexe Polygone in einem
Ringgebeit, Z. Wahrscheinlichkeits 9, (1968), 146-157.

R. Sedgewick, Implementing quicksort programs, Comm. ACM 21,
no. 10 (1978), 847-857.

M.l. Shamos, Geometric Complexity, Proc. Seventh Annual Symp,
on Theory of Computing, (1975), 224-233.

M.l. Shamos, Computational CGeometry, Ph.D. Thesis, Dept. of
Comp. Sci., Yale Univ., New Haven, CT, (1978).

J. Sklansky, Measuring concavity on a rectangular mosaic, |EEE
Trans. on Computers C-21, no. 12 (1872}, 1355-1362.

21
32. G.T. Toussaint, S.G. Akl

» and L.P. Devroye, Efficient convex hull
algorithms for points in two and more dimensions, Tech. Rep. No.

SOCS 78.5, School of Comp. Sci., McGill Univ., (1978).
33. A.C. Yao, A fower bound to

finding convex hulls, JACM 28, no. 4
(1981), 780-787.

