Data quality in automation of food production

About this activity
For this activity, you are going to be a group of plant scientists. We are going to focus on plant growth. We are trying to optimize the system; this requires good data to input into the automated systems to tell it what to do to maximize production and minimize cost and environmental impact. Your job is to collect the best data that you can.

SOLs and CTE competencies:
- CS 6.10: use models and simulations to formulate, refine, and test hypotheses.
- CS 7.8: discuss the correctness of a model representing a system by comparing the model’s generated results with data that were observed in the system being modeled.
- Sci 6.1: demonstrate an understanding of scientific and engineering practices…
- Ag 8002: 44. Identify basic requirements for plant growth and development.
- Ag 8004: 40. Perform an agriculture/agriscience experiment.
- CTE Prof Comp: Demonstrate proficiency with technologies, tools, and machines common to a specific occupation.

Learning objectives:
1. Determine through experimentation, observation and data collection, and data analysis the effects of nutrient application(s) on plant growth.
2. Explain the role of data quality in ensuring food safety and security in automation of food production.
3. Describe techniques for ensuring validity and reliability of data in experimental design.
You will need:

1. Seeds
2. Containers
3. Soil
4. Fertilizer
5. Water
6. Measuring Equipment
7. Personal Protective Equipment
8. Precision Agriculture Fact Sheet

Vocabulary:

1. **Independent variable**: the variable that is changed by the researcher.
2. **Dependent variable**: the variable that responds to changes and is measured by the researcher.
3. **Controlled variable**: a variable that is not changed (held constant) in a study.
4. **Validity**: accuracy of a measure; do the results actually represent what they are supposed to?
5. **Reliability**: consistency of a measure; if you measure the same thing in the same way, do you get the same result?
6. **Precision agriculture**: A farm management technique that uses observations and measurements to optimize production.
7. **Automated**: carried out by machines or computers without needing human control.
8. **Fertilizer**: a substance added to soil to increase its fertility.
9. **Cyberbiosecurity**: identification of the weak spots between biosecurity, cybersecurity, and cyber-physical security to safeguard data and systems.
10. **Germinate**: to begin to grow from a seed.
11. **Bolting**: when a plant grows flower stalks and produces seeds too early to produce a good harvest.
12. **Leaf**: flat green blade growing out from the stem; main site of photosynthesis.
13. **Foliage**: leaves of a plant, typically a mass of leaves.
14. **Micronutrients**: elements that are essential for plants that are needed in small amounts.
15. **Macronutrients**: elements that are essential for plants that are needed in large amounts.
16. **Nitrogen cycle**: the processes that move nitrogen through the atmosphere, soil, water, plants, animals and bacteria in a repeating cycle.

Safety:

Follow all relevant safety procedures as described by your facilitator and general laboratory safety rules, including but not limited to:

1. Proper handling of all materials
2. Personal Protective Equipment (PPE)
3. Proper disposal and storage of chemicals and materials
Measurement and Experimental Design: Record your plan as developed in the group planning discussion.

Variables
- Independent variable:
- Dependent variable(s):
- Control variables:

Data collection plan

<table>
<thead>
<tr>
<th>Data to collect</th>
<th>What will it tell us?</th>
</tr>
</thead>
</table>

Tools for collecting data:

Plan for recording data:

Experimental procedures
- Plan for caring for plants:

Plan for applying fertilizer:

Data analysis plan
- Calculations:
- Plots/graphs:
STEP 2

Planting: Record your planting procedures here.

STEP 3

Plant Growth and Data Collection: Follow the procedures in your plan for the whole growth experiment. Make sure you:
- Follow your plan for watering and fertilizer application
- Pay attention and make sure you record everything you did
- Record your data/observations

STEP 4

Data Analysis and Draw Conclusions: Follow your data analysis procedures and then answer the following questions:

- What was the relationship between your dependent and independent variables?
- What evidence supports this claim?
Recommendations for Automated System:

For this activity, you have been a plant scientist. Your data will help to optimize an automated growing system, helping the programmer tell it what to do to maximize production and minimize cost and environmental impact.

What would you recommend as fertilizer application rates for this system?

Defend your recommendation using your data and quality control measures that you used during your experiment.

Connections to Cyberbiosecurity: You will discuss the following questions with your group:

- If we were to build an automated system to grow the same plants that we did, what would you look for to know that the system is working?
- How would you know if the system was "hacked" (i.e., controls were tampered with)?
- If you were in charge of making sure an automated system was operating properly, how would you monitor the system? What safeguards would you put in place?
Questions

Share
What are the benefits and drawbacks to precision farming?
What are some career opportunities that might exist in precision farming now and in the future?

Generalize
Why is measurement important in optimizing plant growth and minimizing environmental impact?
Why is the scientific method important for data quality?

Apply
What are some other types of agricultural production that could benefit from automation?
Learn more

To learn more about cyberbiosecurity concepts in this activity, you can read the Fact Sheets in the Cyberbiosecurity Education Resource Collection at https://doi.org/10.21061/cyberbiosecurity

These topics are a good place to start to build on what you learned in this activity:

- Cyberbiosecurity
- Data Literacy
- Precision Agriculture
- Sensors

Acknowledgments

This activity was developed by Anne Brown, Sally Farrell, Dan Sturgill, and Morgan Paulette. Hannah H. Scherer, David Smilnak, Donna Westfall-Rudd, Joseph Simpson, and Erika Bonnett provided editorial support. It was reviewed by additional members of the project team and advisory board, including Sally Farrell, Jonette Mungo, and Teresa Lindberg.

Authors

Funding

This work is supported, in part, through the USDA National Institute of Food and Agriculture, Women and Minorities in Science, Technology, Engineering, and Mathematics Fields (WAMS) Grants Program, award #2020-38503-31950.
What is an Open Educational Resource?

The idea behind Open Educational Resources (OER) is simple but powerful—educational materials made freely and legally available on the Internet for anyone to reuse, revise, remix and redistribute. These digital materials have the potential to give people everywhere equal access to our collective knowledge and provide many more people around the world with access to quality education by making lectures, books, and curricula widely available on the Internet for little or no cost.

This definition of OER is provided by The William and Flora Hewlett Foundation.

How to access these templates

The main landing page for these resources is https://doi.org/10.21061/cyberbiosecurity.

This page includes a downloadable and editable Word document for the:

- Student fact sheet
- Student activity sheet
- Faculty guide

Did you know that you can customize and share your version of this resource?

This resource is licensed with a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license. This means you are free to copy, share, adapt, remix, transform, and build on the material for any primarily noncommercial purpose as long as you follow the terms of the license: https://creativecommons.org/licenses/by-nc-sa/4.0.

*Best practice is to list the title, author, source, and license.

How to cite this version