D

L3
)0
PHIGS Based Phong Rendering Emulation Software

by
Krishnan V. Kolady

thesis submitted to the Faculty of the
Virginia Polytechnic Institute and State University
in partial fulfiliment of the requirements for the degree of
Master of Science
in

Mechanical Engineering

APPROVED:

di AT

Dr. Arvid Myklebust, Chairman

MM
. Jgaram Dr. M. P. Deisenroth

May 29, 1990

Blacksburg, Virginia

7

oSS
VESS
1990

b5

PHIGS Based Phong Rendering Emulation Software
by
Krishnan V. Kolady
Dr. Arvid Myklebust, Chairman
Mechanical Engineering
(ABSTRACT)

Discussed is the design, implementation and use of a graPHIGS (IBM PHIGS) based sub-system
that provides for shading of graphical models using the Phong shading technique. The ISO
standard for 3D graphics, PHIGS, provides for wireframe display and manipulation of graphics
data. PHIGS + implementations, while providing this capability, will not be widely available for
some time. This capability will provide a generally useful extension to PHIGS for use by PHIGS
based applications. The software provides the applications programmer with a graPHIGS based
instruction set which acts as a superset to the current graPHIGS calls. Using the provided functions
the user can quickly do hidden surface elimination and Phong rendering of 3-D models in 3-D
views. The program contains approximately 15,000 lines of C code and uses graPHIGS inquiries

and calls for information retrieval and datastructure maintenance.

Acknowledgements

First of all, I would like to thank Dr. Jayaram for his support and guidance he provided throughout
the project. I would like to thank my advisor Dr. Myklebust for his constant optimism and

encouragement. Thanks are also extended to Dr. Deisenroth.

I wish to thank J. R. Gloudemans and the rest of the crew for making my workload as little as

possible during the crunch time.
Thanks to IBM Graphics Products Division in Kingston, N.Y., for funding this study.

Finally, I thank my mother and father for their love and support.

Acknowledgements iii

Table of Contents

1.0 Introductioncouiiiiiinniiiieosneseronsssanseasnnesasonsnsens 1
1.1 Problem definition and Objectivesttt nannn 2
12 Background e e e e e 3
1.3 Thesis Organmizationioititin ittt ittty 4
20 Literature SUrVEYceceeevernesssnsonnonncosnsss Ceeee i 6
3.0 Design Considerationscoitiiiiriinitiretteesssosrsannnnssaenes 10
3.1 GraPHIGS+ considerationscieiuiuiiiineeneeinnnnnnnnns. 11
3.1.1 GraPHIGS + geometric primitivesttt teneeeennnas 11
312 Colormodel ... e et e e 12
313 Geometric normal e e e 12
3.1.4 Back-face processifg . .. oo vvvvii it e 13
315 Light SOUICES . oo i ittt it it ittt et e e e 13
3.2 Visiblesurface algorithm i e et 14
40 User reqUIreMeEntS veveeeosororoeterossssenossesossssessssenons 16

Table of Contents iv

5.0 Functional Requirementscivuveeeotrocsesoscnoscrscnsssaennans 19

6.0 Software Functional Description00iitiiiiirioeerrietrorannnneans 22
6.1.1.1 Modified graPHIGS+ update 23
6.1.1.2 Polygon 3withdatac .0 it irnnnnnnnn 23
6.1.1.3 Compute polygon 3 geometricnormal it 24
6.1.1.4 Setdepthcuemodeiiiiiiiiiiiiiiii i, 25
6.1.1.5 Set area Propertiesotetemmimnniiet ettt 25
6.1.1.6 Set back area PropPertiescvveveeeereneneeroreerennennaas 26
6.1.1.7 Setlight sourcestate I 27
6.1.1.8 Set face distinguishingmode e e 27
6.1.1.9 Setfacecullingmodeiii ittt 28
6.1.1.10 Set back interior colorttt e e e 29
6.1.1.11 Set light source representation . ..o v vt ittt nnnneeereaas 29
6.1.1.12 Sethlhsrmode it i 30

7.0 Detaileddesignconviieninerniiiitssisssssessstosasnsanasssanans 31

7.1 graPHIGS eXtension iittin ittt ttieeieneritnanaosnoenannanen 32
7.1.1.1 PHIGS+ routines and data structuresccoitteviinninnannn 34
7.1.1.2 Retrieving view and structure information o 35

7.2 Visibility detectionttt e et e 38

7.3 Phong lighting and shadingmethods 41
7.3.1.1 Lightingmodelsttt ittt 41
7.3.1.2 Shading calculationsiiiiiiiiiii e e 43

8.0 Implementationiiiiitetiiiiineeeereoeeonnensssctenssannas 50

8.1 graPHIGS extensionc.uiuuuuntitetot e nnnanuneeeeeennnnnn 51
8.1.1.1 PHIGS+ routines and data structurescouiuuiunnnn... 51

Table of Contents v

8.1.1.2 Retrieving view and structure information 52

8.2 Visibility detection e e e e 63
8.3 Phong lighting and shadingmethods i iiiinnnn. 67
90 Resultsand Future Workc. ittt innnnnerrreennns 69
100 Referencesc..iuuii ittt nnioranieeonsereonoseeerosssoennnnas 71
Appendix A. Flowcharts ittt ittt eiieetoninnecsnenanas 74
7 240

Table of Contents vi

List of Illustrations

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

L o R

o

10.
11.
12.
13.

Schematic of graPHIGS internal data structure 36
Tree structure for structure hierarchy manipulation 37
Spot light sources.t i e et e 44
Vertex normal interpolationon scanline c.uiiiii it 45
Phong's reflectance model i e e e 47
Linked list data structure to maintain Phong shading structures 56
Binary tree data structure for structure hierarchy 57
Attribute tree data SLIUCTUIEttt e e e 58
Cross-referencing nodes of the two data structurescuon... 59
Facetree data structureo iiiiiiiiiiiiiiii i 61
Data structures and cross-referencing 0ttt 62
Edge preprocessing to maintain parity at verticesc.o0ieaaa.. 65
Type definition for the edge and face list. 66

List of Hlustrations vii

1.0 Introduction

The current version of graPHIGS (the IBM version of PHIGS graphics standard) allows the
applications programmer to create and manipulate 3-D wireframe models with ease. But there is
no easy method for the applications programmer to view 3-D models with hidden surface and
shading applied to the faces. This thesis describes the design and implementation of a Phong

rendering emulation software based on PHIGS for IBM 5080 graphics devices.

The initial releases of graPHIGS (prior to version 2.0) did not support shading and advanced
geometric modeling primitives (example: NURBS, parametric surfaces, etc.). graPHIGS version
2.0 includes these advanced features, but they are supported only on the new IBM 6090 platforms
(in hardware). Thus, for the benefit of the users of graPHIGS on the IBM 5080 devices, these
features could be implemented as support software which emulates the performance of the 6090

features.

Introduction 1

1.1 Problem definition and Objectives

The objective of this research and development effort is to create a device independent rendering
system which relies on graPHIGS (IBM PHIGS) for support. This system is to be added on as a
superset to the current graPHIGS instruction set and allow graPHIGS users to render scenes using
Phong shading methods. The software should be able to function on the currently available IBM

5080 terminals (with 128 colors and no hardware z-buffer).

The current graPHIGS instruction set does not have any functions to support the rendering
pipeline, for example, advanced output primitives to include normals and colors at the vertices of

the 3-D polygons, parametric surfaces, lighting and hidden surface processing, etc.

Thus, the proposed system must incorporate all these new “graPHIGS + " requirements and must
supply the user with the appropriate functions. (These are discussed in detail in the appendix on
Software Functional Description.) The system must also maintain a software frame buffer (virtual

frame buffer) for processing the image.

Finally, the system must include a fast and precise rendering scheme using Phong’s model for the
lighting and shading computations. The model created after the computations must be displayed

using currently available graPHIGS primitives.

Different aspects of the design considerations are discussed in the forthcoming chapters.

Introduction 2

1.2 Background

The CAD/CAM laboratory at VPI & SU has been actively using graPHIGS since the first release
of graPHIGS in 1985. graPHIGS forms a major part of a graduate course in the Mechanical
Engineering department. graPHIGS is used extensively for various research projects in the
CAD/CAM laboratory. In 1987, a research effort was started at VPI & SU (through a grant from
NASA - Ames Research Center) to create an interactive, system-independent CAD system for

conceptual design of aircraft (ACSYNT).

Recently ACSYNT Institute was created at VPI by NASA-Ames and Amtek. Presently eight
aerospace companies and several government agencies have joined the Institute and will be using

this software.

PHIGS was chosen as the graphics software to be used for this research effort and the IBM
VM/CMS system with graPHIGS was chosen to be the code development platform. Since
PHIGS + (with advanced rendering features) implementations were not available at that time, a
system for generating constant-shaded images was created based on graPHIGS. This shading
software, although limited in its capabilities, demonstrated the feasibility and importance of having
advanced shading functions for the IBM 5080, based graPHIGS. The Phong shading method

developed in this thesis is intended to improve the rendering process in ACSYNT.

The work described in this thesis was funded by an IBM research grant and the prototype

developed is part of the deliverables of the research project.

Introduction 3

1.3 Thesis Organization

In this thesis a detailed description of the design for the graPHIGS based Phong rendering software

1s presented. The organization of this thesis breaks the project down into the following sections,

1) Literature survey,

2) Overall design considerations,
3) User requirements,

4) Functional requirements,

5) Detailed design

6) Implementation,

7) Results and future work, and

8) Appendices including the flowcharts.

It is hoped that this structure will allow various types of readers to quickly find the material of
interest. Those readers who are interested in learning to use to application programmer interface
program should refer to the section on Software Functional Requirements. Finally, readers with

an overall interest in this project should refer to the section on detailed design.

For convenience, in this report the terms “PHIGS” and “PHIGS + " are used to refer to the ISO
standard and the term “graPHIGS + ” is used to refer to graPHIGS including the planned superset
for Phong shading emulation. PHIGS nomenclature and bindings have been used through out to

maintain consistency with the standard.

The software requirements in the report include some of the advanced geometric modeling features
(curves, surfaces, etc.) which have already been implemented in graPHIGS version 2.0. These

features are included in this report because the rendering system has been designed such that if these

Introduction 4

modeling features are supported by IBM 5080 devices in the future, the new primitives can also be

shaded using this rendering system without any change to the application software.

Introduction 5

2.0 Literature survey

Gouraud [Gour71] was one of the first to work on the idea of smooth shaded images of curved
surfaces. The surface was tesselated into small polygons to take care of hidden surface problems.
The technique used to shade the polygons were to find the intensities at the polygon vertices and
interpolate the calculated intensity over the whole patch. Even though Gouraud worked on this
more than two decades ago, most high-end workstations in the market today employ his technique
(with built-in hardware) to do the shading of tesselated surfaces. Problems faced by the Gouraud
shading method were the Mach band effect and the lack of specular reflections in the interior of the

polygons.

Catmull [Catm74, Catm75] worked on a totally different approach of shading parametric surfaces.
He found computationally inexpensive methods to subdivide a surface down to the pixel level and
then render them. Even though this technique was very compute intensive and did not gain much
popularity, Catmull was the first to introduce the concept of z-buffer which is today implemented

in hardware in most graphics workstations.

Literature survey 6

BuiTuong Phong [Phon75] later extended Gouraud’s work to get better specular reflections on the
surface. Instead of interpolating the color over the polygon, Phong chose to interpolate the normal
to the surface at each point of the polygon and then calculate the intensity at that point. This
technique reduced the optical illusion of the Mach band effect considerably. For his lighting model,
Phong used the laws of optics to produce better rendered scenes. Phong’s initial lighting model has
been improved by others to include better light source definitions. Even today, though Phong’s
shading model is too expensive to be implemented in real time, “Gouraud shading with Phong

lighting” (Phong’s improved lighting model), is a commonly used shading model.

Tom Duff [Duff79] analyzed the works of Gouraud and Phong and presented a faster mathematical
model to calculate the Phong shading intensities. Both Gouraud and Phong shading suffer from
the defect that if the scene (together with the light sources) is rotated along an axis perpendicular
to the viewing window, the shading changes since both these shading techniques employ scan line

interpolation. Duff presented a rotation independent shading method.

Several people worked on improving the illumination model to improve the shadow, reflection and
refraction effects simulated by the shading model. Blinn [Blin77] introduced shading techniques
where the specular highlights were dependent on the light direction, thereby improving the
reflection model. The surface to be shaded was simulated by a collection of mirror-like microfacets
oriented in random directions. The reflections from these were approximated to find the specular
reflection. Cook [Cook82] presents work on generating realistic color models depending on the
material of the surface and the light sources. He accounts for the color shifts with change of the
reflectance vector. He presents results with different renderings of metallic surfaces. Most shading
calculations were done on a local scale, since the visible surface algorithm could not present the
global information to the shader. Whitted [Whit80] presented a technique to store the global lighting
information in a tree structure for each pixel which is then used by the shader. This method
accurately simulates the effects of shadows, reflections and refractions. Hall and Greenberg [Hall83]

further improved on the illumination model presented by Whitted by including the Fresnel

Literature survey 7

relationships for wavelength and angle of incidence dependence of the transmitted and reflected

light.

Visible surface or hidden surface algorithms form an initial and inherent part of any shading process.
Bouknight [Bouk70] was among the first to present scan line visible surface algorithms. He presents
a detailed discussion on the y-sorted and x-sorted list. He also uses coherence to improve the
algorithm. Sutherland et. al. [Suth74] presented one of the first papers on comparison of different
hidden surface techniques. The paper presents a detailed study of ten of the earliest visible surface
algorithms. The paper attempts to understand the similarities and differences of the various visible
surface algorithms and their operation. It discusses the hidden surface problem from the point of
view of “sorting”. It shows that the order of sorting and the types of sorting used, formed the major
differences among the different algorithms. Finally it also gives a comparative study of the various

algorithms.

Franklin Crow [Crow77| classifies the shadow algorithms for scan line visible surface algorithms
into three: shadow computation during scanout, two-pass approach and projected shadow

polygons. He gives a comparative study of the three techniques.

Lane and Carpenter [Lane79] extend the scan line algorithms for shading parametrically defined
surfaces. The authors subdivide the surface to a certain degree of flatness before rendering it. James
Clark [Clar79] presents an improved subdivision technique to subdivide the surface faster and
improve the checks on the flatness of the edge before subdivision. This is used to avoid the
“crack” problem encountered when neighboring patches are not subdivided equally. Lane et. al.
[Lane80] presented a survey of three different techniques to render parametric surfaces, based on
edge insertion, edge tracking and subdivision of patches. Schweitzer and Cobb [Schw82] present a
technique to render bicubic patches without producing polygonal approximation of the surfaces.
Shades are computed by calculating a cubic approximation to the normal surface, and interpolating

- along the scan line.

Literature survey 8

Whitted [Whit82] presents a software test-bed system in which the model data is initially converted
and routed through a structure called a “span buffer” which retains some of the high-resolution,
three-dimensional data of the object description. This structure is then post-processed to produce
many different imaging effects. Fiume [Fium83] presents an architecture for a general-purpose
ultracomputer whose ‘“serial semantics/parallel execution” feature can be exploited in the
formulation of a scan conversion algorithm. Crocker [Croc84] improves on the efficiency of the
scan-line hidden surface algorithm by using invisibility coherence. Crocker suggests that often a
large portion of any 3-D scene is invisible. Crocker maintains a minimum visible z-depth which
categorizes the objects as visible and invisible, and a few final checks confirm this. The invisible
objects are not updated, saving considerable compute time. Nelson Max [Max86] uses an
adaptation of the shadow volume technique by Crow to apply to atmospheric illumination and

shadows.

Although much work has been done on dithering and display on bilevel displays, the literature is
sparse on color quantization and color dithering. Heckbert [Heck82] introduces concepts of color
quantizatio;i based on the popularity algorithm and median cut algorithm which is the basis to
choose the best colors for the look-up table. Heckbert uses a three pass process for the color
quantization; namely determining the color distribution, selecting the colors for the look-up table,

and redrawing the image.

Literature survey 9

3.0 Design Considerations

There are two major considerations in the design of this rendering system. The first is the
graPHIGS+ add-on to the current graPHIGS instruction set and the structure hierarchy
manipulation of the current graPHIGS data structure. The second is the actual computation and

display of the shaded image.

In the first part of the design, care should be taken to smoothly integrate the current graPHIGS
instruction set with the new graPHIGS + calls. Moreover, the structure operations performed by
this rendering software should not affect the normal processing of the graPHIGS structure hierarchy

and structure manipulation.

In the second part, the emphasis is on creating a fast and precise algorithm for the shading
computations using Phong’s lighting and shading models. Since the visible surface or hidden
surface algorithm is usually the most “compute intensive” process in any rendering pipeline, a fast

and suitable visibility detection algorithm is also required.

Design Considerations 10

3.1 GraPHIGS+ considerations

Since the objective is to design a set of functions which will add-on to the original set of graPHIGS

calls, it is of utmost importance, to not change the effect of the original graPHIGS calls in any way.
Some of the other important aspects of the design which need to be considered are:

s GraPHIGS + geometric primitives
» Color model

= Geometric normal

= Back-face processing

= Light sources

= Visible surface algorithms

3.1.1 GraPHIGS + geometric primitives

GraPHIGS + should augment the set of graPHIGS output primitives by introducing a set of higher
level output primitives. These primitives will allow for combinations of vertex normals, vertex
colors, facet normals, facet colors and edge flags to be specified. Some of the primitives that

PHIGS + allows for are:

= Polyline set 3 with data
= Fill area 3 with data (Polygon 3 with data)
=« Fill area set 3 with data (Polygon set 3 with data)

= Extended cell array 3 (Extended 3-D pixel primitive)

Design Considerations 11

= Trangular strip 3 with data

= Quadrilateral mesh 3 with data
» Polyhedron 3 with data

= Non-uniform B-spline curve

» Parametric polynomial curve

= Non-uniform B-spline surface

= Parametric polynomial surface

All these geometric primitives should eventually be supported by the graPHIGS + instruction set.
Since the emphasis in this project is on the Phong rendering scheme, only one PHIGS + output
primitive (Polygon 3 with data) has been considered in this désign. For all the other primitives the

same design can be extended without major changes.

3.1.2 Color model

GraPHIGS supports four color models: RGB, CIE, HSV and HLS. In the development of this
design the color model has been restricted to RGB. Ultility routines for conversion between RGB

and CIE will be provided.

3.1.3 Geometric normal

The geometric normal is used for determining if a facet of an area defining primitive is back-facing

or front-facing. Facet normals, if supplied, are used as the geometric normal. If facet normals are

Design Considerations 12

not supplied with the primitive, a geometric normal is computed for each facet. For a Polygon 3
with data, the cross product of the vectors between the first three points is to be used as the

geometric normal.

3.1.4 Back-face processing

PHIGS+ provides control over back-face area defining primitives via the “SET FACE
DISTINGUISHING MODE” structure element. For the purpose of front/back determination
test, area defining primitives are divided into facets. The geometric normal of the facet is then used

as the deciding factor in the test.

For the purpose of this design, the distinguishing attribute between the front and the back-face
polygons is restricted to the polygon interior color index attribute. Thus the user can specify a

different color for the back-faces to distinguish them on the screen.

3.1.5 Light sources

PHIGS + allows the light sources to be one of the following types:

= AMBIENT: Ambient light sources have a light source color and affect an area defining

primitive independently of the orientation and position of the primitive.

Design Considerations 13

3.2

DIRECTIONAL: Directional light sources have a light source color and light source
direction. Conceptually they are located at infinity. They affect an area defining primitive

based on the primitive’s orientation, but independently of its position.

POSITIONAL: Positional light sources have a light source color, light source position
and attenuation coefficients. They affect an area defining primitive based on the

primitive’s position and orientation.

SPOT: Spot light sources have a light source color, light source position, light source
direction, attenuation coefficients, concentration exponent, and spread angle. When
lighting a particular point, it is intended that light source intensity is scaled by the cosine,
raised to the concentration exponent, of the angle between the light source direction and
the vector from light source position to the point being lit. If the point lies outside of the
cone of influence, its color is not affected by the reflectance calculation for this light

source.

Visible surface algorithm

Visible surface algorithms or hidden surface algorithms can be classified in several ways. They can

be classified broadly into (a) continuous algorithms and (b) point-sampled algorithms. Of these the

point-sampling algorithms can be further classified into:

Z-buffer algorithms
ray-tracing algorithms

painter’s algorithms

Design Considerations 14

= scan-line algorithms

Since Phong’s rendering model uses a scan-line approach to render the scene, it is natural to use a

scan-line algorithm to implement the software frame buffer (virtual frame buffer).

Design Considerations 15

4.0 User requirements

This section specifies the assumed needs of those using the graPHIGS based Phong rendering
scheme being developed. This document does not address how the proposed system or the

prototype will meet the user’s needs, but only lists the needs to aid the design of the software.

It is assumed that the proposed scheme is to be used as a device-independent instruction set, which

will add-on as a superset of the available graPHIGS functions.
The proposed system should:

e Allow the user to create shaded frames of 3-D models in 3-D views, specified using area

defining primitives.

e Provide the user with a fast and precise rendering system, using Phong’s equations for lighting

and color computations.

¢ Allow the user to specify the 3-D model using any of the following area defining primitives (in

addition to those currently supported by graPHIGS):

User requirements 16

= Polygon 3 with data

» Trangle strip

» Quadrilateral mesh

= Polyhedron

= Non-uniform B-spline surface and

= Parametric polynomial surface

¢ Allow the user to specify the following surface characteristics:

= Ambient reflection coefficient
» Diffuse reflection coefficient

= Specular reflection coefficient
= Specular color

= Specular exponent

=« Transparency coefficient

¢ Allow the user to specify light sources acting on the 3-D model using the following types of

light sources:

» Ambient light sources
= Directional light sources
= Positional light sources

= Spot light sources

e Allow the user to activate any combination of the specified light sources at any time.

e Allow the user to specify the color model used.

e Allow the user to reduce the update time required for the display of the shaded frames

depending on the “coarseness” of the display.

User requirements 17

e Allow the user to set the “coarseness” of the display (or the display time, as they are inversely
proportional) to different settings. The settings may be real settings between 0.0 and 1.0, where

0.0 corresponds to least shading time and 1.0 corresponds to the best possible picture.

¢ Allow the user to terminate the updating of the shaded frame at any time.

e Allow the user to check the progress of the shading computation when the process is not in
real time. This could be achieved by providing the user with an inquiry routine. This would

allow the user to terminate the process at his/her discretion.

e Update the screen partially during the shading process, so that the user may terminate the

process at his or her discretion.

e Allow the user to specify whether depth cueing should be activated.

User requirements 18

5.0 Functional Requirements

The Software Functional Requirements contain the technical requirements of the software relative
to I/O device handling, processing functions, definitions of technical constraints, and stipulation of

control functions. The following are the functional requirements of the proposed system:
e Control

= Modified graPHIGS + update
¢ Output primitive structure elements

=« Polygon 3 with data

» Polygon set 3 with data

= Triangle strip 3 with data

s Quadrilateral mesh 3 with data
= Polyhedron with data

= Non-Uniform B-spline surface

= Parametric polynomial surface

Functional Requirements 19

Utility functions to support output primitives

= Compute fill area set geometric normal

Indirect attribute selection

= Set depth cue representation

Individual attribute selection

» Set rendering color model

= Set area properties

= Set back area properties

= Set interior shading method
» Set light source state

= Set face distinguishing mode
= Set face culling mode

= Set back interior color

Workstation attribute table definition

= Set light source representation

Hidden surface attributes

= Set HLHSR mode

Inquiry functions for workstation state list

» Inquire depth cue representation

= Inquire list of light source indices

Functional Requirements

20

= Inquire light source representation

¢ Inquiry functions for workstation description table

= Inquire light source facilities
= Inquire predefined light source representation

» Inquire curve and surface facilities

Functional Requirements

21

6.0 Software Functional Description

To use the designed rendering software the user must define the scene to be rendered using area
defining primitives. At present the allowed area defining primitive which the software has been
designed to support is Polygon 3 with data. The user must also set the “Interior lighting calculation
mode” flag within the structure (or any other root structure within which the Phong structure is

executed) in which he/she has defined the area defining primitives.

If the programmer now uses the modified update to update the workstation the defined view(s)

within the workstation will be rendered and the image will be dispayed on the screen.

In addition, the user has the option of setting the light sources, activating and deactivating them,
setting back-face processing mode, setting face distinguishing mode, and setting the hidden surface

processing mode within the structure to be rendered.

The following is a detailed description of the routines which are presently available to the user:

Software Functional Description 22

6.1.1.1 Modified graPHIGS + update

phigs_update(wsid, nviews, views)

State required: (PHOP, WSOP, *, *)
Input:

* wsid - integer, workstation to be updated
® nviews - integer, number of views to be processed

* views(*) - integer, array of views

Description: Modified update for Phong rendering processing. The user can specify the views
to be processed within the workstation, or specify nviews =0 in which case all the views on the

workstation will be processed.

6.1.1.2 Polygon 3 with data

gppld3(faflag, vflag, gnorm, nv, coords, colors, norms)

State required: (PHOP,*,STOP,*)
Input:

e faflag - integer, code indicating what information applying to the entire fill area is specified.
Valid values are:

Software Functional Description 23

. 1 - None

= 2 - Geometric Normal

vilag - integer, data specified at each vertex. Valid values are:

= 1 - Coordinate data only

= 2 - Coordinate and color values

s 3 - Coordinate and normal values

= 4 - Coordinate, color and normal value
gnorm(*) - real, normal in modelling coordinates
nv - integer, number of vertices

coords(*) - real, coordinate date (x,y,z)

colors(*) - real, color data (r,g,b)

norms(*) - real, normal vector

Description: Polygon 3 with data is used to specify the area defining primitive within an open

structure.

6.1.1.3 Compute polygon 3 geometric normal

gpemgn(nv, coords, err, gnorm)

State required: (PHOP,**,*

Input:

nv - integer, number of vertices specified

coords(*) - real, coordinates of the vertices

Software Functional Description

24

Output:

® err - error code

e gnorm(*) - real, geometric normal

Description: Utility routine to compute the geometric normal

6.1.1.4 Set depth cue mode

gpsdcu(mode)

State required: (PHOP,*,STOP,*)

Input:

® mode - integer, depth cue mode. Valid values are:
=] - deactivated

= 2. activated

Description: Set depth cue mode as a structure element

6.1.1.5 Set area properties

" gpsap(ambce, difc, spec, speccol, specexp, trans)

Software Functional Description

25

State required: (PHOP,*,STOP,*)

Input:

® ambc - real, ambient reflection coefficient
e difc - real, diffuse reflection coefficient

¢ spec - real, specular reflection coefficient
® speccol(*) - real, specular color

® specexp - real, specular exponent

® trans - real, transparency coefficient

Description: Sets the surface properties for an area defining primitive

6.1.1.6 Set back area properties

gpbsap(ambe, difc, spec, speccol, specexp, trans)

State required: (PHOP,*,STOP,*)

Input:

¢ ambc - real, ambient reflection coefficient
e difc - real, diffuse reflection coefficient

® spec - real, specular reflection coefficient
® speccol(*) - real, specular color

® specexp - real, specular exponent

e trans - real, transparency coefficient

Software Functional Description

26

Description: Sets the surface properties for back-facing areas

6.1.1.7 Set light source state

gpslss(nact, act, ndeact, deact)

State required: (PHOP,*,STOP,*)

Input:

® nact - integer, number of activated light sources
e act(*) - integer, index numbers of light sources to be activated
¢ ndeact - integer, number of deactivated light sources

e deact(*) - integer, index numbers of the light sources to be deactivated

Description: Used to activate and deactivate light sources to be included in the lighting

calculations for the area primitives below this element in the structure.

6.1.1.8 Set face distinguishing mode

gpsfdm(mode)

State required: (PHOP,*,STOP,*)

Software Functional Description 27

Input:

¢ mode - integer, mode. Valid values are:
= 1-NO

= 2-YES

Description: Used to decide whether the front and back-faces are to be displayed.

6.1.1.9 Set face culling mode

gpsfem(mode)

State required: (PHOP,*,STOP,*)

Input:

® mode - integer, face culling mode. Valid values are:
= 1 - both front and back-faces are displayed
s 2 - only front-faces are displayed

= 3 - only back-faces are displayed

Description: Used to decide which faces are to be displayed.

Software Functional Description

28

6.1.1.10 Set back interior color

gpsbic(color)

State required: (PHOP,*,STOP,*)

Input:

® color(*) - real, color values (r,g,b)

Description: Used to set the interior color for the back-faces

6.1.1.11 Set light source representation

gpslsr(wsid, index, itype, col, pos, dir, exp, att, angle)

State required: (PHOP,WSOP,**

Input:

e wsid - integer, workstation identifier

e index - integer, light source representation index

® itype - integer, light source type. Valid values are:
= 1 - ambient
= 2 - directional

=« 3 - positional

Software Functional Description

29

» 4 - spot
® col(*) - real, color value (r,g,b)
® pos(*) - real, position (X,y,z)
e dir(*) - real, direction vector
e exp - real, concentration exponent
® att(*) - real, attenuation coefficients

® angle - real, cone angle.

Description: Used to set the light source representation

6.1.1.12 Set hihsr mode

gpshrm(wsid, hrm)

State required: (PHOP,WSOP,*,*

Input:

* wsid - integer, workstation identifier

® hrm - integer, HLHSR enable flag. Valid values are:
=] - disabled
= 2-enabled

Description: Used to enable hidden surface mode

Software Functional Description

30

7.0 Detailed design

The next three sections give details on the design of the three major parts of the system, namely,

1) graPHIGS extension 2) visibility detection and 3) Phong lighting and shading models.

The chapter on graPHIGS extension gives details on one of the most important aspects of the
project. This part concerns the retrieval of model data and view data from the graPHIGS structures
and workstation tables, and setting up the data structure to store the information to render the

views. This is done solely with the available inquiry routines that graPHIGS provides.

Once the scene data and model data have been recovered from the graPHIGS structures, the next
phase is the preprocessing of this data for the visible surface algorithm. This involves forming the
data structure for the edge and face data, maintaining an active edge list for each scanline, and

finding the visible surface data in world coordinates for the rendering process.

The rendering process uses the visible surface data in world coordinates, (i.e. point coordinates,
normals, surface properties, active light source data) and uses the Phong lighting and shading

models to evaluate the intensity of the polygon at that point. This intensity is then loaded into the

Detailed design 31

virtual frame buffer and displayed as a pixel primitive (in a structure having 0.5 priority) in the same
view from which all the data was retrieved. This structure is then deleted, and will disappear during

the next workstation update.

Due to the limited color display on the IBM 5080 workstations (8 bits/pixel), the algorithm requires
a dithering algorithm which renders the scene using the best possible colors. This problem has not

been dealt with in this thesis, though it will be dealt with in the near future.

7.1 graPHIGS extension

In creating the Phong rendering environment on top of graPHIGS, the primary consideration was
to design the new system to be completely integrated with the current graPHIGS instruction set.
Thus, in addition to accessing the new data structure for the additiohal primitives, attributes and
other accessories (e.g. light sources), the system must retrieve the necessary information for

rendering the scene from the graPHIGS data structure using available graPHIGS inquiry routines.

Thus, in the rendering process, in addition to the visible surface algorithm there is one other process
which may prove to be very compute intensive - i.e. building the scene to be rendered from the
graPHIGS data structure. This involves building the transformations from the root structures of
the active views to the “Phong shading structure”, i.e. the structure in which the flag for the shading
method has been set to Phong shading method, and retrieving the view information - view

mapping, view orientation and view clipping.
For retrieving the above data, graPHIGS provides the user with the following inquiry routines:
e WSL Inquiries:

Detailed design 32

= GPQAR - Inquire Set of Associated Roots

= GPQRYV - Inquire Set of Roots in View

= GPQRYVX - Inquire Requested Viewing Transformation
= GPQVR - Inquire Set of Views Which Contain Root

¢ WDT Inquiries:

= GPQHD - Inquire Maximum Hierarchy Depth
= GPQNYV - Inquire Number of Definable View Table Entries

¢ General Inquiries:

= GPQEMO - Inquire Error Handling Mode
s GPQEMS - Inquire Error Message

= GPQEP - Inquire Element Pointer

= GPQETS - Inquire Element Type and Size
= GPQEXS - Inquire Executed Structures

Before discussing the details of retrieving the scene information and building the scene to be
rendered, the method of displaying the scene using graPHIGS primitives are presented below along

with the associated limitations of such a display.

It was proposed in the design that the rendered scene be displayed on the terminal using the 2-D
pixel primitive (or several 2-D pixel primitives, depending on the limitations of the primitive on a
particular display device). This 2-D pixel primitive would extend to the height and width of the
view window limits. This pixel primitive would be drawn in a structure with a structure priority
of 0.5 within the view. Since, the 2-D pixel primitive would cover the entire window for the view,
other graPHIGS primitives in the scene (e.g. text, line, etc.) which are in structures with a priority
lower than 0.5 would not appear on the screen. Thus, it is up to the discretion of the user to set

his/her other structures either in front of or behind the 2-D pixel primitive structure.

Detailed design 33

All the changes made to the graPHIGS data structure by the rendering process (to display the

shaded image on the screen) will be removed after updating the workstation.

Each view is processed from the root with the lowest priority to the root with the highest priority
within that particular view. If in any root there exists a “Phong shading structure” (a structure in
which the lighting calculation mode is set to PHONG - 4) within its hierarchy, the polygons in that
structure are processed depending on whether the hidden surface flag is set ON or OFF, and the
shaded colors are written into the virtual frame buffer. After all the roots in a view have been

processed, the virtual frame buffer is displayed using the 2-D pixel primitive.

7.1.1.1 PHIGS+ routines and data structures

In addition to the Phong rendering scheme the system should provide the user with PHIGS +
functions for the lighting data structure, the rendering scheme, additional rendering primitives and
attributes. The graPHIGS implementation of all these will be effected with the use of application

data structure elements.

To implement the proper functioning of the additional data structures to be maintained, it was
designed that the entire subset of the Phong rendering calls would act as a finite state machine.
The user is provided with a Phong open (vpoppg) and Phong close {(vpclpg) call which would
dynamically allocate space for the additional data structures used and close them. The Phong open

call (vpoppg) requires a state of “workstation open”.

For the implementation of the data structures for the new PHIGS + primitives and lighting, the
use of simple arrays and linked lists should be sufficient. The data structure should incorporate least

search time at the expense of memory. It is assumed that the simplest representation is best.

Detailed design 34

7.1.1.2 Retrieving view and structure information

In order to render the scene, information about the views must be retrieved from the graPHIGS
data structure using the inquiry routines within graPHIGS: the views that are associated with a
workstation, the details of each view, i.e. the view orientation, the view reference point, viewport

limits, window limits, etc..

Collecting the polygon data and its associated attributes in World Coordinates (WC) is the compute
intensive process. Because of the inherent hierarchical structure of graPHIGS, all possible paths
from the root structure to the Phong shading structure must be determined. After that, within every
path, each structure in the path should be opened and the transformation matrix and the surface
attributes collected till just before the Phong shading structure. Then, the Phong shading structure

should be queried to get the polygon data and transform it into world coordinates.

To find the paths from the root structure to the Phong shading structure and build the
transformations (and collect surface attributes) along the path, the graPHIGS data structure
(Figure 1 on page 36) is queried and a tree structure (Figure 2 on page 37) of all the structures
being executed within the root structure is formed. As the tree is built, if a leaf node (tip structure)
which is a Phong shading structure is found, a process is started to traverse up the tree and label
all the nodes in the path as useful. Once the tree is built, it is traversed down through all the useful
nodes and the transformation matrices are queried at each structure. These transformation matrices
are to be stored in a separate data stfucture, depending on the node structure, the executed structure
and the occurrence number of the executed structure. This data structure, to store the
transformations, can be implemented as a simple array, or a well balanced binary tree. Along with
these transformations the surface characteristics set within that particular node structure are also
stored. After building the transformations, the tree is traversed again, collecting the path to the
current root. On reaching the leaf node (the Phong shading structure), the transformations for that

path are queried from the data structure and the polygons of the Phong shading structure are

Detailed design 35

WORKSTATION

Figure 1. Schematic of graPHIGS internal data structure

Detailed design

36

Figure 2. Tree structure for structure hierarchy manipulation

Detailed design

37

queried and placed in a bin. After processing all the Phong structures executed within a particular
root, the whole bin is processed to fill up the virtual frame buffer with the appropriate color values.

Then the root with the next higher priority is processed.

Collection of polygon data within a Phong shading structure is done along with the transformation
computation traversal. In that traversal of the tree, when a Phong shading structure is reached, the
list of processed Phong structures is checked to see if the current structure has been processed. If
it has not been processed before, the structure is queried to build objects with the correct attributes.
Once the transformations for the different paths are built, the polygons are transformed and added

to the list of objects in the scene.

The back-face processing and face distinguishing are perforrned when the polygon data from within
a Phong shading structure are collected. If back face processing mode is “ON” the polygons are
sorted, with the front facing polygons forming one object and the back facing polygons forming

another object.

Once the view information and the object information within the scene to be rendered are available,
there is enough information to start the actual rendering process. The rendering process can again
be broken up into two sub-processes, the visibility detection (virtual frame buffer) algorithm and

the shading computation. These are discussed in detail in the following sections.

7.2 Visibility detection

The visibility detection algorithm constitutes one of the most compute intensive phases of a
rendering pipeline. There are several different types of visible surface algorithms which are

commonly used:

Detailed design 38

Z-buffer algorithm
Painters algorithm
Scan line algorithm

Ray tracing technique

The PHONG shading method uses the scan line information to compute the intensity at a visible
point. Hence a scan line algorithm is probably the best for solving the visible surface problem.
The scan line algorithm returns the intersection of the scan plane with a visible facet. The shading
algorithm computes the normal vectors at the edges of the scan line, by interpolating the normals
at the vertices. These normals are then interpolated over the visible portion of the polygon on the

scan line.

In most scan line techniques the object data (in object space) is maintained as a linked list of edges
and faces. The maximum y-value of the face is also stored. This is done so that the intersection

check for each scan line is reduced to the list of active polygons.

A spanning scan line method maintains one scan line of z-buffer into which the intersections of the
scanplane are processed. In order to start the process of visibility detection, the objects are sorted
by y value. An active list of edges and intersecting polygons is maintained as each scan line is
processed. Thus, at any time, there are three lists of faces; the active list, the list of polygons which
are above the scan line and the list of polygons which are below the scan line. When the maximum
y value of the polygon is above or equal to the scan line (constant y value) and the minimum is
below the scan line, the polygon is added to the active list. The intersections of the scan plane with
the polygons in the viewing volume create segments of lines from different faces. The segments are
subdivided at the edge overlap and the intersection areas, to create span sections. The scan line is
then processed from left to right (increasing values of x), processing a z-soﬁ to get the visible scan

line. The shading module then calculates the intensity at each pixel and writes the color values into

" the virtual frame buffer.

Detailed design 39

This technique can also be extended to parametric surfaces. A first pass is made at all the surfaces
to find the maximum y value associated with each surface. The surfaces are subdivided until a
surface can be approximated by a planar facet. The limit is usually the size of a pixel. These are

then processed as explained above.

To implement this procedure in a graPHIGS environment, the polygon data in modeling
coordinates (MC) must be transformed into device coordinates (DC). The process of collecting the
model data is done in several steps. In the first pass of building the tree structure, the Phong
shading structure is queried to build objects (polygons with the same attributes), at the same time
as the transformations for the nodes higher up in the tree structure are determined. These objects
are stored in two groups. Any object which lies after the first global transformation within the
Phong shading structure has already been completely transformed into world coordinates. The
others have been partially transformed, since the global transformation of the tree above the Phong
shading structure must be applied to them. Once the tree structure and all the transformations have
been built, the tree is traversed for every path to the Phong shading structure, building the global
transformations and collecting all shading attributes set in the tree structure. This global
transformation is then applied to the non-processed objects of the Phong shading structure to get
the objects in world coordinates. All the Phong structures are processed to get a collection of
objects in the scene in WC. The viewing information and the workstation transformation are then

used to convert this data into device coordinates (DC).

The viewing volume is a rectangular block in device coordinates. The viewing volume can then
be processed by stepping down the device coordinates in raster steps to get scan planes (y =
constant). The scan planes intersect with the model to get scan line segments. After the spanning
segments of the visible faces are determined, each visible point on the object is passed back to the
shading computation module in world coordinates (WC) along with the edge points. The color

computations are done in WC, and are directly fed into the frame buffer for display.

Detailed design 40

Thus a virtual frame buffer, (the size of the display in device coordinates) should be maintained.
The shading module stores the RGB primary color values into the virtual frame buffer. Since the
2-D pixel primitive does not have direct color indexing and also the IBM 5080 workstations have
a color table limitation of 128 colors (with graPHIGS), the virtual frame buffer must be post
processed to select the most commonly used colors to define the color table. The rest of the colors

are indexed to the nearest color available in the color table.

The frame buffer is then converted into a color index array which is displayed using a 2D pixel
primitive in a structure which is associated with the view being processed with a priority of 0.5.
Since the pixels of the 2D pixel primitives are specified in modelling coordinates, a local
transformation which reverses the effect of the viewing transformation is specified before the 2D
pixel array primitive. After the updating the workstation, this structure and all the deleted structure

references are reset before passing the control back to the applications program.

7.3 Phong lighting and shading methods

7.3.1.1 Lighting models

In this design of Phong shading, only local lighting is considered. Therefore mirror and shadow
effects cannot be created using this shading method. Once the basic rendering method is created,
transparency, mirror effects, shadows and other features can be built in without major design

changes.
Four types of light sources have been identified for inclusion in this design:
= Ambient

Detailed design 41

= Positional
= Directional

= Spot

The characteristics for any light source can be set using the “Set Light Source Representation”
function. Light sources can be activated and deactivated using the structure element “Set Light
Source State”. This element acts as an attribute for the primitives being shaded by maintaining a
set of active light sources for every primitive which can be shaded (in this design the only primitives
which fall into this category are the Polygon 3 and the Polygon 3 with data). The lights sources

which are activated for each object are maintained in the data structure for the object.

Lighting effects can be calculated by first calculating the intensity of the light reaching the geometric
primitive and then calculating the amount of light that is reflected in the direction of the viewer’s
eye. If “S” represents the intensity of the light source being considered and “I” represents the

intensity of the incident light at a point on an object, for ambient and directional light sources:

For Positional light sources, the intensity of incident light is attenuated by two attenuation

coefficients, a, and g, which can be specified in the “Set Light Source Representation” call.

S .
a + @|(P — O)

where,

P is the location of the light source (in WC) and

O is the location of the illuminated point on the object (in WC)

For Spot light sources,

Detailed design 42

S cos’¢
a4 + @|(P - O)

where,
c is the light source concentration exponent and

¢ is the angle between the incident ray vector and the direction of the light source (as shown

in Figure 3 on page 44).

If the illuminated point falls outside the spread angle (6) of the light source (ie. ¢ > 0),

I = 0

7.3.1.2 Shading calculations

In the Phong Shading method, the normal to the surface of an object (at the illuminated point is
calculated by interpolating the normals at the vertices of the polygon. Referring to Figure 4 on

page 45, if P is the illuminated point on the object (which is represented by polygons), then

QQ = ufll\A + (l—u)rlz\B OSuSl
e = tny + (1— g 0<r<1
where,
A0
AB

Detailed design 43

Figure 3. Spot light sources.

Detailed design

44

Figure 4. Vertex normal interpolation on scanline

Detailed design

SCAN LINE

45

BR
BC

QP
OR

and QP represents the unit normal at the point P.

After calculating the normal at the illuminated point and the intensity of the incident light from
each light source, the intensity of light reflected towards the viewers eye can be calculated using the

following equations (based on Phong’s specular reflection model):

n "
: Iy A A A A
Io= kg)la+ > i kAol + K(ReS)]
i=1

=

I, = Intensity of reflected light

o~
1l

Intensity of incident ambient light

I, = Intensity of incident non-ambient light

k, = ambient reflection coefficient

k, = diffuse reflection coefficient

= specular reflection coefficient

n = specular exponent

Detailed design 46

Figure 5. Phong’s reflectance model

Detailed design

o>

47

K = arbitrary constant (usually K=1)

d = distance from perspective viewpoint to illuminated point (OE in Figure 5 on page 47)

A

n = unit normal at the illuminated point

A . . . 3 .

L = unit vector from the illuminated point to the light source

A 13 . - . . . 3 . .

S = unit vector from illuminated point to the perspective viewpoint (or projection vector for

parallel projection)

ANA A .
2(neL)n — L = unit reflectance vector
n, = number of ambient light sources
n, = number of non-ambient light sources

The term (d + K) in the previous equation accounts for the depth cueing of the shaded image. For
use with the graPHIGS, the distance “d” is the distance from the illuminated point to the projection

reference point. If depth cueing is not desired, the value of (d + K) should be set to 1.

For colored light source falling on colored objects, the equation needs to be modified to:

n,

n
- Iy A A A
(R = koD Z(Iai)c + Z d _:_,CK [kq Dc(”’\°Lj) + kg SC(RJ'.S)n]
i=1 -
=

where,

¢ = R, G, B for the three color primaries

Detailed design 48

and,

Diffuse color component of the surface

R
I

Specular color component of the surface

j%)
I

Detailed design

49

8.0 Implementation

The next three sections give details of the implementation of the three major parts of the project
for which the design was created, namely, 1) graPHIGS extension, 2) visibility detection and 3)

Phong h'ghting and shading models.

The implementation was done on the IBM-RT network so that the speed of the process was
unaffected by any other processes. The AIX operating system also provided an ideal environment
to develop C code. Since there were no language limitations, C was chosen as the programming
language. C provides for recursive programming techniques and efficient data structures with
pointer referencing. All these advanced programming techniques were used in the implementation
to allow efficient data structures. The “binary tree” data structure was used to implement most of

the data structures.

The design and implementation of the code was done with a “top-down” design methodology.
The coding was done with easy code readability and extensive commenting in mind. There is
almost 50% of comment statements within the code itself. Each routine was developed to form a

- compact logical block. Each routine was coded in a separate file and has an introductory header

Implementation 50

block with the module name, routine description, input, output and local variables used, and
references to external global variables used. All type and macro definitions were done in a separate
file called “declare_ph.h” which was then included in all the source code files. In the development
of the code the use of global variables was limited to the minimum possible, with each of the major
data structures having just one pointer to the data structure as a global variable. All the global
variables were declared in the file “global_ph.h” and was included once in the “phong_update.c”
file.

With this background on the implementation methodology, we shall now discuss in detail the data

structures used for the implementing the different sections of the rendering pipeline.

8.1 graPHIGS extension

In the implementation of the rendering process the graPHIGS extension forms the initial phase.
In this section we consider the implementation of the additional PHIGS + routines which the
applications programmer can access to provide all the additional information required for rendering
(additional primitive information, lighting information, etc.), and the data structures required to
store them in the graPHIGS environment. We shall also consider the implementation of the data

structures for information retrieval from graPHIGS to render the scene.

8.1.1.1 PHIGS+ routines and data structures

For the implementation of additional structure elements, no new data structures are required since

all of them are stored within the graPHIGS data structure as application data and can be retrieved

Implementation 51

during update. But there are some elements which are not structure elements, like the additional
workstation state list elements of light source and depth cue representation. These are to be
implemented as an array of appropriate data types. These arrays are dynamically allocated during
the “Phong open” call. This implementation of dynamic arrays of data types allows for least search

time at the cost of memory.

Additional PHIGS + primitives, for example Polygon 3 with data, are implemented as two
structure elements. The first of which is an application data element which stores the vertex
coordinates, normal and color information and the second is a standard Polygon 3 structure
element. The advantage of this implementation is that when the user does not use the modified
Phong update call, the regular graPHIGS update processes the Polygon 3 primitive. This
implementation suffers from the disadvantage that the user is not aware of the two structure
elements, when he/she is inserting only one. Thus, either the user should be warned of this or some
graPHIGS calls will need to be modified (e.g. offset element pointer should be modified to consider

the two elements as one offset, etc).

8.1.1.2 Retrieving view and structure information

In the rendering process, the hidden surface algorithm requires the scene content information
(polygon information in world coordinates) and the view information (view orientation, mapping,
etc.). Thus at the time the user calls the modified Phong update call, the first part of the process

is the information retrieval from the scene.

In the information retrieval the view information is fairly straight forward. GraPHIGS provides the
routine “GPQRVE” (Inquire requested view table entries) which returns the number of view table
entries and the associated view indices in decreasing priority for the specified workstation. This

routine is used to check whether the views specified by the user are actually part of the view table

Implementation 52

entries. Also when the user has not provided a list of views and requires all the active views on the
workstation to be rendered, this routine is used to get the list of view entries. When the user
requires all views to be rendered, all views other than view with index “0” will be rendered. It was
implemented not to render view “0” as the pixel primitive on the 5080’s do not have the display
capability of covering the entire screen, and also it is assumed that the user will use the shading
routines to render 3-D scenes, and view “0” will most probably be used to display 2-D objects

(menu items, etc.).

The query routine “GPQRVX"” (Inquire Requested Viewing Transformation) returns the view
orientation matrix, the view mapping matrix, the view reference point, clipping information,
background shield information, border information, and a flag specifying whether the view is active
or not. After the initial check to see whether the view is active further calculations on that view

are performed.

The “GPQADS"” (Inquire Actual Maximum Display Surface Size) provides the device display size
in raster units and “GPQWSX” (Inquire Workstation Transformation) returns the transformations
from the NPC (Normalized Projection Coordinates) system to DC (Device Coordinates) system.

These two transformations are concatenated to get the transformation from the NPC to DC system.

The above transformations are used to calculate all the primitive description in device coordinates
(DC) to pass it through the scan line visible surface detection algorithm. In addition, the above
transformations are also used to calculate the 3-D point that the pixel primitive will start from in
world coordinates (WC). The whole scene is rendered one scan line at a time, hence each scan line
is an independent pixel primitive. To draw the pixel primitive we require the starting point and the
number of pixels to be drawn. The number of rows and columns of raster units required to cover
the viewing area is calculated from the mapping of NPC (normalized projection coordinates) to
DC (device coordinates). This information is used to allocate the frame buffer memory and the

starting points of each individual scan line.

Implementation 53

Once the view information is retrieved, and it is confirmed that the view is active, and the pixel data
has been calculated, the next step is to retrieve the 3-D primitive data with associated attributes and
convert everything into device coordinates (DC) to preprocess the data for the scan line visible

surface algorithm.

The polygon data collection from the graPHIGS structures is a very compute intensive process
since each structure has to be opened and each structure element has to be queried for its element
content to check whether it is an element which the rendering process requires. This is true for the
whole structure hierarchy, since all the attributes and transformations are passed down to the

children.

To reduce the time taken to collect all this data the structures are categorized into three groups for
the data retrieval process. The first category is classified as the “Phong shading structures” which
are the structures which need to be queried for the 3-D primitive data, associated attributes and
transformations. The second category is the “parent structures” which are the structures which
need to be queried only for the attributes and transformations which are passed down to the Phong
shading structures. The third category is all the other structures which need not be opened at all,
since we are not affected by any of those structures. The data collected from the first and second
categories of structures are then rendered and drawn as pixel primitives within the view. This pixel

primitive shows up as the rendered scene in the view during the regular graPHIGS update.

Four separate data structures are maintained to retrieve and store information from the structures.
The first is a simple linked list of integer data fields which contain structure identifiers. This data
structure exists throughout the Phong process, i.e. from Phong update to Phong close. The
“yplcmo” (set lighting calculation mode) call provided to the user is a structure element which
classifies the structure into the first category, i.e. “Phong shading structure”. At the time the user
uses this call to set a structure element, an application data element (with lighting calculation code)

is placed within the structure and an element is added to the linked list. The elements of this linked

Implementation 54

list are updated every time the modified Phong update is called. Thus this linked list maintains the
list of Phong shading structures which must be opened for 3-D primitive and attribute retrieval.
Figure 6 on page 56 shows the data type and the schematic of the data structure for the example

structure hierarchy considered in Figure 1 on page 36

The second data structure is a binary tree structure which converts the graph structure of the
graPHIGS structure hierarchy (shown in Figure 1 on page 36) into a binary tree structure from the
root structure associated with the view to the “Phong shading structure”. This data structure now
has only one path from the root to every leaf node. During the modified Phong update, after the
view information is retrieved, the “GPQRYV” (Inquire Set of Roots in View) call is used to retrieve
the roots associated with each view. This routine also returns the corresponding priorities of each
root structure. Although it has not been implemented, this information can be used to process the
root structure with the lowest priority first and the root structure with the highest priority last if the

hidden surface algorithm is not being applied.

Next, the “GPQEXS"” (Inquire Executed Structures) call is used recursively to form the binary tree
structure. At each node a check is made to see whether the structure is a “Phong shading
structure”. If so, then the inquiry process is terminated, the Phong shading structure is made a leaf
node and all the nodes from the Phong shading structure to the root node are marked as useful.
All the useful nodes in the binary tree form the second category of structures, namely the parent
structures, whose attributes and transformations are inherited by the Phong shading structures.
Figure 7 on page 57 shows the type declaration and the corresponding structure of the Structure

hierarchy data structure for the example case considered.

After the Structure hierarchy data structure has been created, each parent structure (nodes which
have been marked useful) is opened and the elements are queried to collect the transformations and
structure attributes. The “GPQETS” (Inquire Element Type and Size) and “GPQE” (Inquire
Element Content) inquiry routines are used to inquire the element content. The parent structure

is opened and the transformations and attributes are collected until an “executed structure” element

Implementation 55

/* type definition for a linked list with integer items */
typedef struct int_list node {

int strid;

struct int_list_node *next;
} int_list;

Figure 6. Linked list data structure to maintain Phong shading structures

Implementation

56

USERR. PATH

Figure 7. Binary tree data structure for structure hierarchy

Implementation

Figure 8. Attribute tree data structure

Implementation

58

Figure 9. Cross-referencing nodes of the two data structures

Implementation

59

is reached. At this point the current transformations and attributes are placed in an attribute node.
These are the transformations and attributes associated with the first executed structure in the root
structure. This process is continued till the last element has been processed. Once the attribute tree
has been formed, the nodes in the Structure hierarchy data structure are cross-referenced to the
attributes nodes in the attribute tree as shown in Figure 9 on page 59. To avoid repeating the
search for attributes, the same attribute nodes are referenced to all the occurrences of the same root

structure.

After the attribute tree data structure has been created, a face tree data structure is build for all the
Phong shading structures using the “GPQETS” and “GPQE” inquiry routines. The face tree
contains a pointer to the next structure node and a pointer to the face list. The face list is a list of
nodes containing a pointer to the vertex list, and the associated attributes of the face. The vertex
list contains coordinate data, normal data and color data at each vertex. In addition each vertex
node has a vertex break flag which is set to TRUE whenever the vertices are from two different
subareas. Each Phong structure leaf node in the original Structure hierarchy data structure is

cross-referenced to the corresponding face list in the face tree data structure.

Figure 10 on page 61 shows the the schematic of the face tree data structure for the example
considered. This completes the data retrieval from the graPHIGS data structure. Figure 11 on
page 62 shows all the data structures and their cross referencing for the example considered. This

data is now passed into the scan line algorithm.

Implementation 60

Figure 10. Face tree data structure

Implementation

61

Figure 11. Data structures and cross-referencin

Implementation

62

8.2 Visibility detection

The previous section showed the data is retrieved and stored in the various data structures and how
the data structures have been cross-referenced for easy access. The next step in the rendering

process is the transformation of this data into device coordinates (DC).

This is done by traversing the structure hierarchy data structure and concatenating the attributes
and transformations as we traverse the tree structure. At the leaf node (Phong shading structure)
these attributes and transformations are concatenated with the attributes and transformations of
each and every face of the structure and the face is then added to a face list in device coordinates.
As the data in the structure hierarchy data structure is in world coordinates (WC), a transformation
matrix from world coordinates to device coordinates has to be applied to transform the data into
device coordinates. Traversing all the useful paths of the structure hierarchy data structure will give

us all the polygons required in device coordinates.

In the collection of the polygon data in device coordinates, a check for front facing and back facing
polygons could be made, and depending on the face culling mode, polygons could be placed in the

face list with the appropriate attributes. This was not incorporated in the prototype developed.

The next logical step in the rendering pipeline is the clipping of these polygon data to the window
limits and near and far clipping planes. In the implementation of this prototype it was assumed that
all the polygons rendered were within the clipping volume, and hence the clipping algorithm was
not implemented. A simple version of the Sutherland-Hodgman clipping algorithm could be

implemented, if the polygon data needs to be clipped.

Having got the data in device coordinates, the actual scan line algorithm is done to process the

hidden surface and to display the scene. A simplified outline of the YXZ sorting process of the scan

Implementation 63

line algorithm was described in the detailed design. We shall now go into the details of the

implementation of the process.

A simplified version of the scan line algorithm could be stated as follows; for each scan line, the
intersections of the scan line with all edges of the polygon are found, and sorted by x-values, and
then the pixels between consecutive pairs of intersections are filled in with the appropriate
intensities. At each intersection of the edge with the scan line the parity of the polygon changes,
from inside to outside or vice versa. In the above brief description of the process (which will
expanded later to give a detailed explanation of the data structures used), some special cases have

to be considered.

Horizontal edges need not be included in the process, as they are automatically filled.

Any vertex produces two intersections with the scan line, and depending on whether the vertex
is a local extremum or not, the upper y value of the lower edge is reduced by one scan line so
that the parity does not change. Figure 12 on page 65 shows how the y value is changed for

the vertices which are not at local extremum.

To reduce the burden of finding the intersections of each polygon with the scan line we preprocess
the face list to an edge list. This edge list is sorted into bins by the starting y-value of each edge.

Figure 13 on page 66 shows the type definitions for the edge data and face list and a schematic
of the data structure. To minimize the memory space used a pointer is maintained from the face
list to the original face in the structure hierarchy data structure so that all the attributes need not
be copied into the new face list. In the edge data we maintain the x intersection of the edge with
the lowest scan line, the reciprocal of the slope of the edge in the xy-plane. This value is added to
the X intersection when we step across scan lines to get the new x intersection of the edge with the
next scan line. The depth, coordinate and normals with the corresponding increments in the x
direction are also stored. The depth is used to find out which polygon can be seen when several

polygons overlap and the coordinate and normal values are used in the intensity calculations.

Implementation 64

Figure 12. Edge preprocessing to maintain parity at vertices

Implementation

65

/* type definition for face data */
typedef struct face_ data node {

boolean inside;

float intcol([3],

speccol[3];

surfprop surf;

face_list *face;

struct face data node *next:
} face_data;

/* type definition for edge */
typedef struct edge node {
face_data *face;
short y_upper,
y_lower:;
float x_int,
recip_slope,
depth,
depth_y,
depth_inc,
coord{3],
coord_inc{3],
norm([3],
norm_inc[3];
struct edge_node *next;
} edge;

/* type definition for covers */
typedef struct cover_list_node {
edge *edata;
float depth,
coord[3],
coord_inc[3],
norm([3],
norm_inc[3];
struct cover_list_node *next;
} cover_list;

Figure 13. Type definition for the edge and face list.

Implementation

In device coordinates the y value increases from bottom to top, the x value increases from left to
right and the z value increases from front to back. The edge table is maintained as an array of
pointers to the edges starting on that particular scan line. During the visibility detection algorithm,
a simplified list of the active edges at each scan line is maintained. The list is started by adding all
the edges starting on the scan line to the active edge list (from the edge table). This list is then
sorted by the x intersection value. Using the active edge list information we fill in the intensities
of all the pixels. Then all the edges with a y-upper value less than or equal to the current scan line
are deleted, and the x intersection value is updated for the next scan line. This process is repeated

till the whole screen is processed.

Filling in the pixels using the active edge list information becomes complicated when we have
several overlapping polygons.‘ To implement this, a data type called ‘“covers” is used, which
maintains a list of pointers to polygons which are currently covered. Figure 13 on page 66 gives
the data type for “covers”. The data type covers has a pointer to the edge rather than the face.
This is done so that the covers can use the data within the edge and the face data structures. While
processing the active edge list data (sorted by x intersections), at each edge, a corresponding cover
is added or removed, from the cover list depending on how the parity changes at that edge. The
cover list is now checked for the cover with minimum depth to give the visible polygon. The
coordinate and normal data for the visible polygon are incremented and this data is passed on to

the shading routine which calculates the intensity of the polygon.

8.3 Phong lighting and shading methods

The lighting and shading models implementation are very direct and straight forward. All the
equations shown in the design were implemented to give the intensity of the pixel depending on the

* number and type of lights acting on the polygon.

Implementation 67

One important point worth mentioning with regard to the shading model is that, graPHIGS or
PHIGS + does not provide for input of mesh information. That is, if the' vertex normals of
neighboring polygons do not match up or if the vertex normals of the polygons are not given then
we will see a faceted rendered model instead of a smooth shaded image. The applications
programmer must make sure that the vertex normals of all neighboring polygons match up. To
make this process easier for the applications programmer, a utility routine to compute the average
geometric normal for a polygon is provided in the list of interface routines. This can be used to find
the normal for each polygon and geometric normals of neighboring polygons can be averaged to

get the normal at the vertex. This normal data can the be passed to the Polgyon 3 with data call.

This completes the description of the implementation of a prototype of the Phong rendering

process.

Implementation 68

9.0 Results and Future Work

The Phong rendering software was successfully implemented on the IBM-RT (with 5080 head)
workstation. Even though the implementation was done on the IBM-RT, the code developed is
as such “device independent” and can be ported and successfully used in any UNIX environment
supporting “graPHIGS”. The time required to render a scene is approximately linearly
proportional to the model size and the number of pixels covered on the screen. The time is
dependent on the model size because the larger the model, the greater the time required to retrieve

the data from graPHIGS data structure.

Most of the original design was implemented. The graPHIGS data retrieval and data storage data
structures were optimized for maximum efficiency in speed. The algorithm used for visibility
detection is one of the elementary scan line techniques. The speed of the visibility detection may
be further improved by testing out other methods. The lighting and shading models were

implemented without any problems.

Results and Future Work 69

In the implementation of the prototype the development of the clipping algorithm and the back face
processing were skipped. These can be incorporated into the rendering scheme without too much

effort.

Although the intensity calculation is done using the Phong shading models, the 128 color look-up
table (with graPHIGS) and the 16 shades per gun limitation on the 5080 gives severe banding effects
on the rendered model. A good quantization technique for finding the best possible colors to fill
the color table and map the intensities to the closest possible colors in the look-up table is required.
This in conjunction with dithering will enhance the results to a considerable degree. Without these,

the Phong rendering scheme is an overkill for the 5080 heads.

Currently, work is being done at the CAD/CAM laboratory of VPI & SU to develop a quantization
scheme for limited color display of scenes. Little work has been done on the quantization of
multi-dimensional data. Heckbert [Heck82] discusses methods to quantize images. He discusses
ways to break up the color cube into segments based on the color statistics of the image and find
the best possible colors for the look-up table and quantize the image. This forms the basis for the

current research being done.

Once a good quantization and dithering technique can be coded and the image produced by the
Phong rendering software can be encoded using this technique, the images produced by the software

can be successfully used on the IBM 5080s by application programmers.

The work described in this thesis was funded by an IBM research grant, and the prototype

developed is part of the deliverables of the research project.

Results and Future Work 70

10.0 References

[Blin77] Blinn, J. F., “Models of Light Reflection for Computer Synthesized Pictures,”

Proceedings of SIGGRAPH 77, Computer Graphics, 11, No. 2, 1977, pp.192-198

[Bouk70] Bouknight, W. J., “A Procedure for Generation of Three-Dimensional Half-Toned
Computer Graphics Presentations,” Communications of the ACM, 13, No. 9, Sept. 1970,

pp.527-536

[Catm74] Catmull, E. E., “A Subdivision Algorithm for Computer Display of Curved

Surfaces,” Ph.D. Dissertation, University of Utah, Salt Lake City, Utah, Dec. 1974

[Catm75] Catmull, E. E., “Computer Display of Curved Surfaces,” Proceedings of the IEEE

Conference on Computer Graphics, Pattern Recognition and Data Structures, May 1975, 11

[Clar79] Clark, J. H., “A Fast Scan-Line Algorithm for Rendering Parametric Surfaces”

Proceedings of SIGGRAPH ’79, Computer Graphics, 13, No. 2, Aug. 1979, pp.174

References 71

[Cook82] Cook, R. L. and K. E. Torrance, “A Reflectance Model for Computer Graphics,”

ACM Transactions on Graphics, 1, No. 1, Jan. 1982, pp.7-24

[Croc84] Croc, G. A., “Invisibility Coherence for Faster Scan-Line Hidden Surface
Algorithms,” Proceedings of SIGGRAPH ‘84, Computer Graphics, 18, No. 3, July 1984,
pp.96-102

[Crow77] Crow, F. C., “Shadow Algorithms for Computer Graphics,” Proceedings of
SIGGRAPH '79, Computer Graphics, 11, No. 2, 1977, pp.242-248

[Duff79] Duff, T., “Smoothly Shaded Rendering of Polyhedral Objects on Raster Displays,”
Proceedings of SIGGRAPH °79, Computer Graphics, 13, No. 2, Aug. 1979, pp.270-275

[Fium83] Fiume, E., A. Fournier, and L. Rudolph, “A Parallel Scan Conversion Algorithm
with Anti-Aliasing for a General-Purpose Ultracomputer,” Proceedings of SIGGRAPH ’83,

Computer Graphics, 17, No. 3, July 1983, pp.141-150

[Gour71] Gouraud, H., “Computer Display of Curved Surfaces,” IEEE Transactions on

Computers, C-20, 6, June 1971, pp.623-629

[Hall83] Hall, R. A. and D. P. Greenberg, “Computer Display of Curved Surfaces,” 4 Testbed

Jor Realistic Image Synthesis, 3, No. 8, Nov. 1983, pp.10-20

[Heck82] Heckbert, P. S., “Color Image Quantization for Frame Buffer Display” Proceedings
of SIGGRAPH ’82, Computer Graphics, 16, No. 3, July 1982, pp.297-307

[Lane79] Lane, J. M. and L. Carpenter, “A Generalized Scan Line Algorithm for the
Computer Display of Parametrically Defined Surfaces,” Computer Graphics and Image

Processing, 11, 1979, pp.270-297

References 72

[Lane80] Lane, J. M., L. Carpenter, T. Whitted and J.F. Blinn, “Scan Line Methods for
Displaying Parametrically Defined Surfaces,” Comrmunications of the ACM, 23, No. 1, Jan.
1980, pp.23-34

[Max86] Max, N. L., “Atmospheric [llumination and Shadows,” Proceedings of SIGGRAPH
‘86, Computer Graphics, 20, No. 4, Aug. 1986, pp.117-124

[Phon75] Bui-Tuong, Phong, “Illumination for Computer Generated Pictures,”

Communications of the ACM, 20, No. 2, Feb. 1977, pp.100-106

[Schw82] Schwietzer, D. and E. S. Cobb, “Scanline Rendering of Parametric Surfaces,”
Proceedings of SIGGRAPH ’82, Computer Graphics, 15, No. 3, Aug. 1981, pp.17-27

[Suth74] Sutherland, I.E., R.F. Sproull, and R. A. Schumacker, “A Characterization of Ten
Hidden-Surface Algorirthms,” Computing Surveys, 6, No. 1, 1974, pp.1-55

[Whit80] Whitted, T., “An Improved Illumination Model for Shaded Displays,”
Communications of the ACM, 23, No. 6, June 1980, pp.343-349

[Whit82] Whitted, T., and D.M. Weimer, “A Software Testbed for the Development of 3D
Raster Graphics Systems” ACM Transactions on Graphics, 1, No. 1, Jan. 1982, pp.43-58

References 73

Appendix A. Flowcharts

This section contains the program specification flowcharts for the designed software. The
flowcharts are arranged according to module numbers. The application programmer access
functions are placed in the beginning with module numbering starting with “A”. Then the rendering
scheme flowcharts are module numbered starting with “P”, and finally the utility routines starting

with “U” are placed at the very end.

Appendix A. Flowcharts 74

v PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPLCMO MODULE : Al

DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE
ALLOWS THE USER TO SET THE LIGHTING
DATE : 3/9/90 CALCULATION MODE

PRINT WARNING
HESSAGE

Appendix A. Flowcharts

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : ASTR_PHLIST MODULE:Al .3
DESIGNED BY: KRISHNAN KOLADY |NOTE:ADDS THE CURRENT STRUCTURE ID TO THE
PHONG LIST
DATE : 3/9/90

Appendix A. Flowcharts

76

r

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

ANODE_PHLIST

MODULE:Al.3.3

DESIGNED BY:

KRISHNAN KOLADY [NOTE:ADDS THE CURRENT STRUCTURE IDENTIFIER

DATE :

3/9/90

AS A NODE IN THE PHONG LIST

Appendix A. Fiowcharts

Al.3.3

77

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : SETPH_ADATA MODULE :Al .5
DESIGNED BY: KRISHNAN KOLADY [NOTE:SETS A PHONG SHADING STRUCTURE LABEL
DATE . 3/9/90 WITHIN THE CURRENT STRUCTURE

Appendix A. Flowcharts

ALB

78

\/al

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VvPICD MODULE : A2
DESIGNED BY: KRISHNAN KOLADY [NOTE:API ROUTINE
T SET INTERIOR COLOR DIRECT
DATE : 3/23/90 STATE REQUIRED- (PHOP,® ,STOP,e)

Appendix A. Flowcharts

79

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPSCI MODULE : A3
DESIGNED BY: KRISHNAN KOLADY [NOTE:API ROUTINE
SET SPECULAR COLOR INDEX
DATE : 3/23/90 STATE REQUIRED-(PHOP,e,STOP,e)

Appendix A. Flowcharts

INSERT
APPLICATION
DATA

30

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPSCD MODULE : A4
DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE
SET SPECULAR COLOR DIRECT
DATE : 3/23/90 STATE REQUIRED-(PHOP,®,STOP, e)

Appendix A. Flowcharts

81

yr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPSPR MODULE : AS
DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE -
SET_SURFACE PROPERTIES
DATE : 3/23/90 STATE REQUIRED-(PHOP, s, STOP @)

Appendix A. Flowcharts

82

r PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPBICI MODULE : A6

DESIGNED BY: KRISHNAN KOLADY ums:gg_xr ggg}:?ﬁﬁamn COLOR I
DATE : 3/23/90 STATE REQUIRED-(PHOP,e ,STOP,e)

WsICI

INITIALIZE THE
APPLICATION
DATA

APPLICATION
DATA

Appendix A. Flowcharts

yr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPBICD MODULE : A7
DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE
SET_BACK INTERIOR COLOR DIRECT
DATE : 3/23/90 STATE REQUIRED-(PHOP, e, STOP, e)

Appendix A. Flowcharts

84

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : VPBSCI MODULE : A8
DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE -
SET BACK SPECULAR COLOR INDEX
DATE : 3/23/90 STATE REQUIRED-(PHOP,e,STOP, e}

Appendix A. Flowcharts

AS

=

APPLICATION
DATA

{GPINAD)

INSERT
APPLICATION
DATA

85

L VI

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPBSCD MODULE : A9
DESIGNED BY: KRISHNAN KOLADY (NOTE:API ROUTINE
SET BACK SPECULAR COLOR DIRECT
DATE : 3/23/90 STATE REQUIRED- (PHOP,e,STOP,®)

(GPINAD)

INSERT
APPLICATION
DATA

Appendix A. Flowcharts

86

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPBSPR MODULE : A 10
DESIGNED BY: KRISHNAN KOLADY |[NOTE:API ROUTINE
SET BACK SURFACE PROPERTIES
DATE : 3/23/90 STATE REQUIRED-(PHOP,s,STOP,e)

DATA

INSERT
APPLICATION
DATA

Appendix A. Flowcharts

87

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : VPHLCI MODULE : Al l
DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE
T SET HIGHLIGHTING COLOR INDEX
DATE : 3/23/90 STATE REQUIRED- (PHOP,®,STOP,e)

Appendix A. Flowcharts

ANl

88

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : VPHLCD MODULE :A12
DESIGNED BY: KRISHNAN KOLADY [NOTE:API ROUTINE
SET _HIGHLIGHTING COLOR DIRECT
DATE : 3/23/90 STATE REQUIRED-(PHOP,s ,STOP,e)

Al2

INITIALIZE THE
DATA TO BE
PACKED

?

Appendix A. Flowcharts

89

r

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPLSS MODULE :A I3
DESIGNED BY: KRISHNAN KOLADY NOTE:QE:{’ Egg:;%NEO{JRCE STATE
DATE : 3/23/90

STATE REQUIRED-(PHOP,s ,STOP,e)

ALLOCATE SPACE
DATA RECORD

APPLICATION
DATA

INITIALIZE
ACTIVATED
LI6HT LIST

INITIALIZE
DEACTIVATED
LIGHT LIST

Appendix A. Flowcharts

(GPINAD)

INBERT
APPLICATION
DATA

90

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPPGD3 MODULE:Al4
DESIGNED BY: KRISHNAN KOLADY [NOTE:API ROUTINE - VPPGD3
POLYGON 3 WITH DATA
DATE: 5/24/90 STATE REQUIRED - (PHOP,e,STOP,s)

ALLOCATE

FOR

THE DATA
RECORD

COPY
POATA

COPY
SADATA

(orra3)

ORAWY A

REQULAR
POLYRON 3

Appendix A. Flowcharts

91

W

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPCMGN MODWLE :AlS
DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE - VPCMGN
COMPUTE GEOMETRIC NORMAL
DATE : 5/24/90 STATE REQUIRED - (PHOP,e,e,s)

Appendix A. Flowcharts

AlB

DO FOR
I=0
.l

DEFINE
GNORN (0)

DEFINE
GNORM(|}

DEFINE
GNORM(2)

92

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPLSR MODULE :Al6
DESIGNED BY: KRISHNAN KOLADY [NOTE:API ROUTINE - VPLSR
SET _LIGHT SOURCE REPRESENTATION
DATE : 6/1/90 STATE REQUIRED - (PHOP, e, e,)

CASE | CASE 2 CASE 3 CASE 4
12 3 14 1]

DEFINE TYPE DEFINE TYPE OEFINE TYPE
TO 8E T0 BE T0 BE
Y0 BE DIRECTIONAL POSITIONAL apar
AND AND AND

PERFORM PERF ORM
CALCULATIONS CALCULATIONS CALCULATIONS

Appendix A. Flowcharts

93

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPOPPG MODULE : A17
DESIGNED BY: KRISHNAN KOLADY |NOTE: API ROUTINE - VPOPPG
OPEN PHONG SHADING API
DATE : 5/30/90 STATE REQUIRED - (PHOP,WSOP e, o)

Appendix A. Flowcharts

{A” vPoPPe)

9ET
PHONG
OPEN

SET_COLTABLE

SET_THE
WORKSTATION
COLOR TABLE

ALLOC_LIGHTS

ALLOCATE BPACE
LIGHTS

94

r

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : SET_COLTABLE MODULE :A17.1
DESIGNED BY: KRISHNAN KOLADY (NOTE: INII%?L%%%S é(IJLaR |$iéLEDLORS OF THE
DATE : 5/30/90 A
Al2.})
SET_coLTARLE
1
INITIALTZE THE
INDEX NMMBER
2
o For ‘
—0
I<=l0
* s
DO FOR
3 Ie2?
I<=42
(wor) 1
SET THE
COLOR TABLE .
DEFINE
e ()
. 10
SET
oty &t
(1]
(ePCR)
SET
COLOR
3 "
DO FOR
p {31}
I<=26
%%
hd 12
{GPCR) < RETURN)
SET
COLOR
REP .
2
SET
'thL T0
2680

Appendix A. Flowcharts

95

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

ALLOC_LIGHTS

MODULE :A17.2

DESIGNED BY:

KRISHNAN KOLADY |NOTE:ALLOCATES THE SPACE FOR THE

DATE :

6/1/90

LIGHTS DATA STRUCTURE

Appendix A. Flowcharts

Al7.2

==

ALLOCATE
SPACE FOR
THE MAXTMUM

NUMBER
OF LIGHT SOURCES

1e0
I<aMAX_LIGHTS-)
ool

INITIALIZE ALL
THE LIGHTS
TO AMBIENT

96

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : VPCLPG MODULE :A 18
DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE '- VPCLPG
T OPEN PHONG SHADING API
DATE : 6/1/90 STATE REQUIRED - (PHOP, WSOP e, e)

Appendix A. Flowcharts

AlS

97

v

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : FREE_LIGHTS MODULE :Al18.1
DESIGNED BY: KRISHNAN KOLADY |NOTE:FREES THE LIGHT SPACE ALLOCATED
DATE : 6/1/90

Appendix A. Flowcharts

Als.d

FREE THE
LIGHT SPACE
ALLOCATED

98

vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPOCI MODULE : A22

DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE
SET DEPTH CUE INDEX
DATE : 3/23/90 STATE REQUIRED-(PHOP,e,STOP,e)

Appendix A. Flowcharts

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : VPHID MODULE : A9

DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE .
T SET HLHSR IDENTIFIER
DATE : 3/23/90 STATE REQUIRED- (PHOP,® ,STOP,®)

Appendix A. Flowcharts 100

r

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : VPFCMO MODULE : A20
DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE
SET FACE CULLING MODE
DATE : 3/23/90 STATE REQUIRED- (PHOP,®,STOP,e)

Appendix A. Flowcharts

101

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : VPFDMO MODULE : A21
DESIGNED BY: KRISHNAN KOLADY (NOTE: g(é%[’ ROUTINE

FACE DISTINGUISHING MODE
DATE : 3/23/90 STATE REQUIRED- (PHOP,s,STOP ,e)

Appendix A. Flowcharts 102

vIr PROGRAM SPECIFICATION — PHONG SHADING
MODULE NAME : VPDCI MODULE : A22
DESIGNED BY: KRISHNAN KOLADY |NOTE:API ROUTINE
DATE 3/23/90 STATE REQUIRED- (PHOP , » ,STOP @)

=D

INITIALIZE THE
APPLICATION
DATA

(GPINAD)

INSERT
APPLICATION
DATA

Appendix A. Flowcharts 103

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PHONG_UPDATE MODULE : PHI

DESIGNED BY: KRISHNAN KOLADY |NOTE:AN UPDATE CALL TO INITIATE THE
DATE. 3/9/90 PHONG RENDERING ALGORITHM

MI..
RESET_STRUCT

RESET ALL
GRAPHIOS
STRUCTURES

Appendix A. Flowcharts 104

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PRO_PHONG MODULE : PHI . |

DESIGNED BY: KRISHNAN KOLADY |NOTE:PROCESSES PHONG STRUCTURE TO GET
STRUCTURE INFO,CONTENT,AND DATA AND
DATE : 3/9/90 RENDERS THE SCENE

Appendix A. Flowcharts 105

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME: PRO_PHNG_STS [MODULE:PHI.I.|

DESIGNED BY: KRISHNAN KOLADY |NOTE:UPDATES THE PHONG STRUCTURE LIST
IN THE DATABASE
DATE : 3/9/90

GET THE

UPDATE PHONG
STRUCTURE
DATA STRUCTLRE

Appendix A. Flowcharts 106

I

PROGRAM SPECIFICATION - PHONG SHADING

Appendix A. Flowcharts

MODULE NAME : UPDT_PHLIST MODULE :PHI.1.1.4
DESIGNED BY: KRISHNAN KOLADY |NOTE:CHECKS THE CURRENT STRUCTURE FOR THE
PHONG LABEL AND UPDATES THE DATA
DATE : 3/9/90 STRUCTURE
LG
UPOT_PHLIST

107

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME: DNODE_PHLIST MODULE :PHI .1.1.4.5

DESIGNED BY: KRISHNAN KOLADY |NOTE:DELETES THE STRUCTURE IDENTIFIER
DATE : 3/9/90 PASSED IN FROM THE PHONG LIST

PHI.I.1.4.8

Appendix A. Flowcharts 108

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PRO_VIEWS MODULE : PHI . 1.3

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES OBJECT AND VIEW INFORMATION
DATE. 3/20/90 AND RENDERS SCENE USING PHONG MODEL

PHI.1.3

UPOT_VIEWS

UPDATE
THE
VIEW LIST

DELETE
FRAME
SUFFER SPACE

Appendix A. Flowcharts . 109

Appendix A. Flowcharts

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : WKSTN_MAT MODULE :PH!.1.3.1
DESIGNED BY: KRISHNAN KOLADY |NOTE: RETRIEVES WORKSTATION TRANSFORMATION
DEVICE COORDINATES DATA AND
DATE : 5/24/90 PUTS INTO A TRANSFORMATION MATRIX
PHE.LL30)
WCSTN_MAT
(ePQVEX)
INQUIRE
THE
WORKSTATION
-O
2
DO FOR
o0
I<=3
]
L]
DISP_MAT
GET THE
g \TRIX
3
us 10
0O FOR MAT_RLT
5’::3 CONCATENATE
L] THE TWO
MATRICES
11
=
3
SET
MAT(I)(J) = 0.0
]
CALCULATE SET
MAT(I) (V) MAT(X)(J) = 1.0

110

vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : DISP_MAT MODULE :PHI .1.3.1.9

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES THE ACTUAL MAXIMUM DISPLAY
SURFACE AND COMPUTES THE
DATE : 5/24/90 TRANSFORMATION MATRIX

PHI.1.3.1.9

DISP_MAT

TN

DO FOR
Je0

sl

SET
DISPMAT(I) (J)
0.0

A

DISPMA’

CALCULATE I} 9
DISPMAT(I) (J)

-]

T

Appendix A. Flowcharts

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : UPDT_VIEWS MODULE :PHI .1.3.2
DESIGNED BY: KRISHNAN KOLADY [NOTE:UPDATES THE VIEW LIST PASSED IN BY
THE USER
DATE : 3/9/90
PHI.1.3.2

I<=NVIEWS-)
el

JKaVN- |
.

VIEWS(I)=W(J)
1

L]
£93
&

;ﬂﬁ
i

Appendix A. Flowcharts . 112

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

GET_NSTRID

MODULE :PHI .1.3.3

DESIGNED BY:

KRISHNAN KOLADY

DATE :

5/24/90

NOTE :GETS N_STRUCTURE IDENTIFIERS WHICH
NEVER EXISTED BEFORE. THE SEARCH IS
STARTED FROM THE STARTING VALUE

Appendix A. Flowcharts

PHI.I.3.3

I=0
I<oN-1
]

;-

113

r PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : VIEW_MAT MODULE :PHI .1.3.6
DESIGNED BY: KRISHNAN KOLADY [NOTE:RETRIEVES THE - VIEWING TRANSFORMATION
DATE : 5/24/90
PHI.L.3.6
VIEW_MAT

ve 3
MATINV
13
INVERT THE
WC 10 Ve
MATRIX
RETUN
FALSE
4
INTTIALTZE
e us s
WATMULT
CONCATENATE
s ALL THE
MATRICES
PRIWT
PROGECTIEN v ’
MATRIX ATMLT
CONCATENATE
. AL THE
MATRICES
EYE_WC
R w 1
LD
COORDINATES MATAT
CONCATENATE
2 AL THE
sATRICES
VC_PC_pAT
FoRM THE
Vo - 1
T1om
MATRIX PDX_DATA
GET_THE DATA
FOR THE
PIXEL ARRAY
1”2
RETWN
TRUE

Appendix A. Flowcharts 114

r PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PRU_MAT MODULE :PH! .1.3.6.5

DESIGNED BY: KRISHNAN KOLADY |NOTE:FORMS THE PROJECTION MATRIX AND
THE PERSPECTIVE MATRIX
DATE : 5/24/90

PHI.1.3.6.8

PRUMAT

CALCLATE
w(2) (3

MATMLT

CONCATENATE
E

Two
MATRICES

Appendix A. Flowcharts 1S

I PROGRAM_SPECIFICATION - PHONG SHADING
MODULE NAME : EYE_WC MODULE :PHI .1.3.6.6
DESIGNED BY: KRISHNAN KOLADY |NOTE :FINOS TH%EEYE POSITION IN WORLD
DATE : 6/1/90 DINATES
PHI.1.3.6.6

0o FOR

1=0
<=2

*e]

Je0
I¢=2
La2d

Appendix A. Flowcharts 116

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : VC_NPC_MAT MODULE : PHI . 1.3.6.7

DESIGNED BY: KRISHNAN KOLADY |NOTE:FORMS THE MATRIX TO NORMALIZE
THE VIEWING COORDINATES
DATE : 5/30/90

PHI.1.3.6.7

CALCIRATE
THE SCALING
VALUES

CALGULATE THE
VALUES

THE OUTPUT
MATRIX

00 FOR
1s0
£254

QET THE

Appendix A. Flowcharts 117

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

PIX_DATA

MODULE:PH! .1.3.6.11

DESIGNED BY:

KRISHNAN KOLADY |NOTE :RETRIEVES PIXEL INFORMATION

DATE :

5/30/90

Appendix A. Flowcharts

PHI.1.3.6.11

PIX_DATA

INITIALIZE THE
POINT TO
EWPORT

DO FOR
1=0

3

118

r

PROGRAM SPECIFICATION - PHONG SHADING

Appendix A. Flowcharts

MODULE NAME : ALLOC_EDGEL MODULE :PHI .1.3.8
DESIGNED BY: KRISHNAN KOLADY |NOTE: éLkO%nEEgU;EEN?SgebIST SPACE
DATE : 5/30/90 o
PHILI.3.8
ALLDG_EDGEL.
1
€0GE LIST
P,
2
oELIST-NLL FALSE
3
PRINT
ERROR
MESSAGE
{
4
DO FOR
1=0
T<oNRON- |

*e]

s
INITIALTZE THE
EDGE LI8T

119

vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : ALLOC_FRMBUF MODULE :PHI .1.3.1

DESIGNED BY: KRISHNAN KOLADY [NOTE:ALLOCATES THE VIRTUAL FRAME BUFFER
SPACE FOR THE SPECIFIC VIEW

DATE : 5/24/90
LINENT
ALLOC_FRIOUF
I
ALLOCATE FRAME
SPACE
FOR ONE
SCAN LINE
2
TRUE FALSE
3
PRINT
ERROR
MESSAGE

Appendix A. Flowcharts 120

r PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME: FREE_FRMBUF MODULE :PH!.1.3.1.3

DESIGNED BY: KRISHNAN KOLADY |NOTE:FREES THE VIRTUAL FRAME BUFFER
SPACE FOR THE SPECIFIC VIEW
DATE : 5/24/90

PHI.1.3.1.3

Appendix A. Flowcharts 121

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

FREE_EDGEL

MODULE :PHI .1.3.14

DESIGNED BY:

KRISHNAN KOLADY

NOTE : FREES THE EDGE LIST AND FACE LIST

DATE :

5/30/90

SPACE FOR THE CURRENT VIEW

Appendix A. Flowcharts

PHI.L.3. 18

i
&

122

yr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : RESET_STRUC MODULE :PHI .4

DESIGNED BY: KRISHNAN KOLADY |NOTE:RESETS PHIGS STRUCTURE HIERARCHY AND
DELETES ALL DATA STRUCTURES THE PHONG

DATE : 3/20/90 RENDERING SCHEME HAS USED

Appendix A. Flowcharts 123

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : DEL_DB MODULE :PHI .4.3

DESIGNED BY: KRISHNAN KOLADY [NOTE:DELETES THE ATTRIBUTE TREE AND
ROOT TREE DATA STRUCTURES
DATE : 3/19/90

PHE .43

-

FREE_ATT_TR

DELETE THE
ATTRIBUTE
TREE DATA
STRUCTURE

Appendix A. Flowcharts 124

W

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : FREE_FACE_TR MODULE :PHI .4.3.1
DESIGNED BY: KRISHNAN KOLADY |NOTE:FREES THE FACE TREE DATA STRUCTURE
DATE : 5/24/90

-
3
00 FoR
FREEING
e
ATTRIBUTE
LisT
“ s
FREE
THE
NODE
PHILC3.1 b
FREE_FACE_TR
FREE
THE
3
TREES
12
’
00 FOR
FREEING
THE
VERTEX
LisT
o "
VERTEX L3
ast CLNT

Appendix A. Flowcharts

125

Appendix A. Flowcharts

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME: FREE_ATT_TR MODULE :PHI .4.3.3
DESIGNED BY: KRISHNAN KOLADY NME:;;;ESETEBE ATTRIBUTE TREE DATA
DATE : 5/24/90
~(
DO FOR
FREEING
THE
ATTRIBUTE
ST
8
FREE
THE
NGDE
PHI.4.3.3 7
FREE_ATT_TR
FREE
THE
LY.]
TREES
FREE
THE
LIGHTS
LIsT
to
FREE
THE
CURRENT
NODE

126

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME: FREE_ROOT_TR MODULE :PH! .4.3.5

DESTGNED BY. KRISHNAN KOLADY |NOTE :FREES THE ROOT TREE
DATE : 5/30/90 ATA

Appendix A. Flowcharts 127

vr

PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PRO_ROOTS MODULE : PH2)
DESIGNED BY: KRISHNAN KOLADY |NOTE:FINDS ROOTS ‘ASSOCIATED WITH VIEW AND
BUILDS PHIGS STRUCTURE HIERAR
DATE : 3/20/90 AS BINARY TREE
PH2
)
1
(@PQRV)
QUERY
SET OF
ROOTS
N
VIeEw
J)
2
FOR
I=0
TCoNSTRID-|

FALSE

=
Appendix A. Flowcharts

128

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

CHK_PROROOTS

MODULE :PH2 .3

DESIGNED BY:

KRISHNAN KOLADY

NOTE : CHECKS IF THE STRUCTURE IDENTIFIER

DATE .

3/19/90

PASSED IN HAS BEEN PROCESSED AS A
ROOT AND RETURNS A BOOLEAN VALUE

Appendix A. Flowcharts

o

1

INITIALIZE THE
TEMPORARY POINTER

00 WHILE
THP .NE.NALL
[

-NOT .RET_CODE

129

r PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : BUILD_TREE MODULE :PH2 .4

DESIGNED BY: KRISHNAN KOLADY |NOTE:BUILDS THE TREE STRUCTURE FOR THE
DATE 3/19/90 STRUCTURE IDENTIFIER PASSED IN

Pa.e

B
i
i
i

. 7
WAXE_CHILD
WARK THE
CHILD AS MAL b
TE STRUCTURE

Appendix A. Flowcharts 130

\zal PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : MAKE_CHILD MODULE :PH2.4.7

DESIGNED BY: KRISHNAN KOLADY |[NOTE:CREATES CHILD TREE STRUCTURE FOR
DATE. 3720790 THE GIVEN STRUCTURE IDENTIFIER

PH2.4.7

2
TERMINATE
MARK THE NODE
THE oD A8 NOT UsEFL
n 267 12
WARK_USEFUL WAKE_OHILD
WARK THE MWAKE THE
PATH USEFL. GILD NOGE
‘ 13
INGERT AT THE
HEAD OF
THE LIST
[
ror
o0
I<=NETRID- |

o]

Appendix A. Flowcharts 131

r

PROGRAM SPECIFICATION - PHONG SHADING

Appendix A. Flowcharts

MODULE NAME : MARK_USEFUL MODULE :PH2.4.7.11
DESIGNED BY: KRISHNAN KOLADY [NOTE: gﬁgg‘éﬁvﬁ‘é&mgkﬁsySLP%SHRE<EE
DATE : 3/20/90 STRUCTURE A
PH2.4.7.11
MARK_USEFUL

132

r

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : FIND_XFORM MODULE :PH2 .5
DESIGNED BY: KRISHNAN KOLADY |NOTE:FINDS TRANSFORMATIONS AND ATTRIBUTES
WITHIN SPECIFIED CHILDREN TO CARRY
DATE : 3/19/90 TO CHILDREN AND PUT IN DATA STRUCTURE

Appendix A. Flowcharts

133

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FIND_NDXFORM MODULE :PH2.5.5

DESIGNED BY: KRISHNAN KOLADY [NOTE:GETS ATTRIBUTE LIST POINTER AND SETS
REFERENCES OF THE NODES TO THEIR

DATE : 3/19/90 RESPECTIVE ATTRIBUTES
P2.8.8
s FIND_NOXFORM
GET_ATT_PTR
e 1
ATTRIBUTE
LIST
i Bp g e
PO

Appendix A. Flowcharts

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

GET_ATT_PTR MODULE:PH2.5.5.3

DESIGNED BY:

KRISHNAN KOLADY |[NOTE:GETS POINTER TO THE ATTRIBUTE LIST

DATE :

STI
3/20/90 FROM THE ATTRIBUTE DATA STRUCTURE

Appendix A. Flowcharts

2.6.8.3

GET_ATT_PTR

CHX_ATT_TREE

CHECK FOR
STRUCTURE IN
EXISTING TREE

TO THE LIST

135

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

CHK_ATT_TREE MODULE :PH2.5.5.3.1

DESIGNED BY:

KRISHNAN KOLADY |NOTE:CHECKS CURRENT ATTRIBUTE DATA

DATE :

STRUCTURE FOR PROCESSED STRUCTURE
3/19/90 IDENTIFIER

Appendix A. Flowcharts

PH2.86.5.3.1

CHK_ATT_TREE

DO WHILE
TP .NE.NMAL

STRID

136

r PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : PRO_ATT_TREE MODULE :PH2.5.5.3.3

DESIGNED BY: KRISHNAN KOLADY |NOTE:PROCESSES A NEW TREE FOR THE CURRENT
STRUCTURE IDENTIFIER
DATE : 3/20/90

PH2.5.8.3.3

PRO_ATT_TREE

Appendix A. Flowcharts 137

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME: PRO_ATT_LIST MODULE :PH2.5.5.3.3.2

“ESIGNED BY: KRISHNAN KOLADY |NOTE: CREATES LIST OF TRANSFORMATIONS AND
TRIBUTES TO PASS DOWN TO THE
DATE : 3/20/90 STRUCTURE HIERARCHY

#42.6.5.3.3.2

PRO_ATT_LIST

{ePEP)

AT ©

NOT
END OF LIST

Appendix A. Flowcharts 138

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : INIT_ATTNODE MODULE :PH2.5.5.3.3.2.2
DESIGNED BY: KRISHNAN KOLADY |NOTE:INITIALIZES THE ATTRIBUTE LIST NODE
DATE : 3/20/90

PH2.8.8.3.3.2.2

INIT_ATTNODE

aag :

Appendix A. Flowcharts 139

vyr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PRXF_STEL MODULE :PH2.5.5.3.3.2.6
DESIGNED BY: KRISHNAN KOLADY [NOTE PROCESSES STRUCTURE ELEMENT OF
CURRENTLY OPEN STRUCTURE AND RETRIEVES
DATE: 3/20/90 TRANSFORMATION AND ATTRIBUTE DATA
£H2.8.5.3.3.2.6
PRYF_STEL
1
4
TYPE
H
INT. COL GLOBAL XFORM MODEL . XFORM &X. STRUCT
s 3 7 s b4
XF1IcI YXFGTRNSS XFMTRNES WFEXST
(OPQE)
QET GLOBAL PROCESS EXECUTE CUERY
Lt TRNGFOBATION 3 | | TRANFOBATION 3 aber vl
1o
PRXF_APIEL
APT
STRUCTURE
ELEMENT

Appendix A. Flowcharts

140

r

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : XFICI MODULE :PH2.5.5.3.3.2.6.5
DESIGNED BY: KRISHNAN KOLADY [NOTE:RETRIEVES INTERIOR COLOR INDEX
FROM CURRENTLY OPEN STRUCTURE
DATE : 3/23/90

PH2.6.8.3.3.2.6.5

XF1CI

Appendix A. Flowcharts

141

r

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

XFGTRNS3 MODULE :PH2.5.5.3.3.2.6.6

DESIGNED BY:

KRISHNAN KOLADY [NOTE:RETRIEVES GLOBAL TRANSFORMATION

DATE :

MATRIX DATA FROM CURRENTLY
3/20/90 OPEN STRUCTURE

fH2.56.6.3.3.2.6.6

Appendix A. Flowcharts

142

\74 PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : XFMTRNS3 MODULE :PH2.5.5.3.3.2.6.7
DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES MODELING TRANSFORMATION
MATRIX DATA FROM CURRENTLY OPEN
DATE : 3/20/90 STRUCTURE

PH2.6.5.3.3.2.6.7

TYPE
-
1
PRECONCATENATE POSTCONCATENATE REPLACE
us i 12 Ué 13
MATMR.T MATILT MATCOPY
MATIPLY MATIPLY COPY ONE
MATRIX
MATRICES MATRICES INTO ANOTHER
Ué 14 18
MATCOPY MATCOPY
COPY ONE
MATRIX MATRIX

Appendix A. Flowcharts

143

vrr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : XFEXST MODULE :PH2.5.5.3.3.2.6.8

DESIGNED BY: KRISHNAN KOLADY |NOTE :PROCESSES EXECUTE STRUCTURE ELEMENT
DATE 3/20/90 IN CURRENTLY OPEN STRUCTURE

2.56.5.3.3.2.6.8

YFEXST

Appendix A. Flowcharts

144

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PRXF_APIEL MODULE :PH2.5.5.3.3.2.6.10
DESIGNED BY: KRISHNAN KOLADY [NOTE :PROCESSES THE STRUCTURE ELEMENTS

CREAT! Y THE API AND RETRIEVES
DATE : 5/24/90 THEAIEEOEMAT¥SN

PH2.8.6.3.3.2.6.10

xreICI XFeact xFocT XFFON0 XHCT
RETRIEVES RETRIEVES RETRIEVES RETRIEVES RETRIEVES
iR PELAR OEPTH FACE HIGHLIGHTING
COLOR COLOR CUE QULLING COLOR
o= om OEX HobE Do
7 L] k4 10 "
XFBICD XFBecD XFosPR XFFOMO XFHLCD
RETRIEVES RETRIEVES RETRIEVES RETRIEVES RETRIEVES
BACK BACK BACK F. KIGHIGHTING
INTERTOR PELAR SURFACE OISTINGUISHING
CaLOR coLOR PROPERTIES

OEFALT

Appendix A. Flowcharts 145

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : XFBICI MODULE :PH2.5.5.3.3.2.6.10.2

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES BACK INTERIOR COLOR
— INDEX FROM CURRENTLY
DATE : 3/23/90 OPEN STRUCTURE

PH2.5.8.3.3.2.6.10.2

XFBICI

Appendix A. Flowcharts 146

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : XFBSCI MODULE : PH2.5.5.3.3.2.6.10.3

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES BACK SPECULAR COLOR INDEX
OATE. 3723790 FROM CURRENTLY OPEN STRUCTURE

P42.6.6.3.3.2.6.10.3

Appendix A. Flowcharts 147

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : XFDCI MODULE :PH2.5.5.3.3.2.6.10.4

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES DEPTH CUE INDEX FROM
CURRENTLY OPEN STRUCTURE
DATE : 3723790

PH2.5.5.3.3.2.6.10.4

XFOCI

DECLARE
LOCAL
VARIABLES

Appendix A. Flowcharts 148

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : XFFCMO MODULE :PH2.5.5.3.3.2.6.10.5

DESIGNED BY: KRISHNAN KOLADY NOTE:gﬁ;géE¥E$ SQEE ggkté#SREODE FROM
DATE : 3/23/90 -

2.8.6.3.3.2.6.10.8

XFFOMO

DECLARE
LOCAL
VARIABLES

Appendix A. Flowcharts 149

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : XFHLCI MODULE :PH2.5.5.3.3.2.6.10.6
DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES HIGHLIGHTING COLOR INDEX
DATE 3/23/90 FROM CURRENTLY OPEN STRUCTURE

72.6.6.3.3.2.6.10.6

XFHLCI

Appendix A. Flowcharts

150

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME: XFBICD MODULE :PH2.5.5.3.3.2.6.10.7
DESIGNED BY: KRISHNAN KOLADY NOTE :RETRIEVES BACK INTERIOR COLOR

DIRECT FROM CURRENTLY OPEN
- DATE : 3/23/90 STRUCTURE

PH2.5.86.3.3.2.6.10.7

XFBICO

DECLARE
LOCAL
VARIABLES

TR_CO0ER ™\ #,

i

Appendix A. Flowcharts 151

yr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : XFBSCD MODULE :PH2.5.5.3.3.2.6.10.8

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES BACK SPECULAR COLOR
DIRECT FROM CURRENTLY
DATE : 3/23/90 OPEN STRUCTURE

PH2.5.5.3.3.2.6.10.8

Appendix A. Flowcharts 152

yr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : XFBSPR MODULE :PH2.5.5.3.3.2.6.10.9

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES BACK SURFACE PROPERTIES
FROM CURRENTLY OPEN STRUCTURE
DATE : 3/23/90

M2.5.5.3.3.2.6.10.9

ERR_CODE <2 FALSE. COPY DATA
NODE

PRINT

Appendix A. Flowcharts 153

W

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : XFFOMO MODULE :PH2.5.5.3.3.2.6.10.10
DESIGNED BY: KRISHNAN KOLADY (NOTE:RETRIEVES FACE DISTINGUISHING MODE
FROM CURRENTLY OPEN STRUCTURE
DATE : 3/23/90
2.8.8.3.3.2.6.10.10
XFFOMO
DECLARE
LOCAL
VARIABLES
2
3
ERR_CODE<2
]
8
PRINT
ERROR
MESSAGE

Appendix A. Flowcharts

154

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : XFHLCD MODULE:PH2.5.5.3.3.2.6.10.1

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES HIGHLIGHTING COLOR DIRECT
FROM CURRENTLY OPEN STRUCTURE
DATE : 3/23/90

PH2.8.5.3.3.2.6.10.11

Appendix A. Flowcharts 155

W

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : XFSPR MODULE :PH2 .5.5.3:3.2.6.10.12
DESIGNED BY: KRISHNAN KOLADY |NOTE: gsggéﬁ}[{ﬁ? ggg;AgREglﬁsRTIES FROM
DATE : 3/23/90
P2.6.5.3.3.2.6.10.12
XFePR
1
DECLARE
VARIABLES
2
ST2E .NE.MIBER Lt
3 4
ERR_CODE<2
1
[
PRINT
ERROR
MESSAGE

Appendix A. Flowcharts

156

yr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : XFSCD MODULE:PH2.5.5.3.3.2.6.10.13

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES SPECULAR COLOR DIRECT
FROM CURRENTLY OPEN STRUCTURE
DATE : 3/23/90

PH2.6.5.3.3.2.6.10.13

XFacD

DECLARE
LOCAL
VARIABLES

Appendix A. Flowcharts 157

r

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME: XFSCI MODULE:PH2.5.5.3.3.2.6.10.14
DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES SPECULAR COLOR INDEX
DATE 3/23/90 FROM CURRENTLY OPEN STRUCTURE

PH2.6.8.3.3.2.6.10.14

XFsC1

DECLARE
LOCAL
VARIABLES

PRINT

Appendix A. Flowcharts

158

vr

PROGRAM SPECIFICATION ~ PHONG SHADING

MODULE NAME: XFICD MODULE :PH2.5.5.3.3.2.6.10.15
DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES INTERIOR COLOR DIRECT
FROM CURRENTLY OPEN STRUCTURE
DATE : 3/23/90
PH2.5.5.3.3.2.6.10.18
*F1c0
I
DECLARE
LOCAL
VARIABLES
2
SIZE.0E.MIRER LA
3 .
T
ERR_CODE<2
1
]
PRINT
ERRCR
[

Appendix A. Flowcharts

159

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : XFLSS MODULE :PH2.5.5.3.3.2.6.10.16

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES LIGHT SOURCE STATE
FROM CURRENTLY OPEN STRUCTURE

DATE : 3/23/90
PH2.5.5.3.3.2.6.10.16
XFLss
3
(GPGE)
RETRIEVE
DATA FROM
CURRENT
STRUCTURE
ELDENT ALLOCATE SPACE
RETRIEVE DATA

Do FOR

1=0
I<oMAX_LIGHTS- |
ool

INITIALIZE
THE
LIGHTS
ARRAY

s
DO FOR
I=NACT 4
I<e3oMACT
el
10
’ FReE
THE
SPACE
OEACTIVATE
THE
LIGHTS I

Appendix A. Flowcharts 160

r PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : GET_FC_PTR MODULE : PH3

DESIGNED BY: KRISHNAN KOLADY [NOTE:GETS THE POINTER TO THE FACE LIST
DATE /2790 FROM THE FACE LIST DATA STRUCTURE

GET_FC_PTR

Appendix A. Flowcharts 161

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : CHK_FC_TREE MODULE : PH3 .2

DESIGNED BY: KRISHNAN KOLADY |NOTE :CHECKS FACE TREE STRUCTURE FOR THE
DATE 3/29/90 PROCESSED STRUCTURE IDENTIFIER

PH3.2

(e

OECLARE
LOCAL
VARIABLES

DO WHILE
PTR.NE.NULL
()
PTR->STRID
.NE.
STRID

33
%

Appendix A. Flowcharts 162

vyr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PRO_FC_TREE MODULE : PH3 . 4
DESIGNED BY: KRISHNAN KOLADY [NQTE:PROCESSES A NEW TREE FOR THE CURRENT
STRUCTURE ID
DATE : 4/2/90
LN

ALLOCATE SPACE
FOR LIST
TO BE

Appendix A. Flowcharts

163

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

INIT_FCNODE

MODULE :PH3.4.7

DESIGNED BY:

KRISHNAN KOLADY

NOTE : INITIALIZES THE FACE LIST NODE

DATE :

4/2/90

Appendix A. Flowcharts

]
B

164

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PRO_FC_LIST MODULE: PH3.4.10

DESIGNED BY: KRISHNAN KOLADY |NOTE:CREATES THE LIST OF FACES WITH
T VERTICE AND ATTRIBUTE DATA IN THE
DATE : 4/2/90 CURRENT STRUCTURE

M3.6.10

PRO_FC_L187

DECLARE

©

3
33
5

il

{ePoPST) 1]

-

Appendix A. Flowcharts 165

\ 74 PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PRFC_STEL MODULE :PH3.4.10.6

DESIGNED BY: KRISHNAN KOLADY |NOTE:PROCESSES THE STRUCTURE ELEMENT OF
CURRENTLY OPEN STRUCTURE AND RETRIEVE
DATE : 4/2/90 FACE, VERTEX, AND ATTRIBUTE DATA

PH3.4.10.8

‘ PRFC_STEL »

DECLARE
LOCAL
VARIABLES

INT.COLOR INOEX GLOBAL . XFORN MODEL . XFORM X STRUCTURE AP .DATA
s 7 . ’ 10
FOMTRNEY FeExsT
FeIc FCaTRNGS o)
[2 oeT QuERY
INTERIOR GLOBAL MOOELING DxecuTe ELEMENT
STRUCTURE
&= TRANSFORMATION 3 | | TRANSFORMATION 3 Hlypitte CONTENT

Appendix A. Flowcharts 166

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FCIC1 MODULE :PH3.4.10.6.6

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES INTERIOR COLOR INDEX
DATE 2/2/90 FROM CURRENTLY OPEN STRUCTURE

PH3.4.10.6.6

FCIcl

i

Appendix A. Flowcharts 167

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

FCGTRNS3

MODULE :PH3.4.10.6.7

DESIGNED BY:

KRISHNAN KOLADY |NOTE:RETRIEVES GLOBAL TRANSFORMATION

DATE:

4/2/90

MATRIX DATA FROM CURRENTLY OPEN
STRUCTURE

PH3.4.10.6.7

DECLARE
LOCAL
VARIABLES

Appendix A. Flowcharts ’

SEY GLOBAL
MATRIX EXISTANCE

168

vy7r PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FCMTRNS3 MODULE :PH3 .4.10.6.8
DESIGNED BY: KRISHNAN KOLADY [NOTE:RETRIEVES MODELING TRANSFORMATION
MATRIX DATA FROM CURRENTLY OPEN
DATE : 4/2/90 STRUCTURE

P3.4.10.6.8

FONTRNGI

RINT
ERROR
EBSAGE
"
1"
T™e
.
*
TE ReFLACE
w 12w 13w Ie
MATIAT ALY MATCOPY
MLTIPLY LTIRLY
jrs w aX4 MATRIX
MATRICES WATRICES INTC AMOTHER
ue l 15 ue 1.
WATCOPY WATCOPY
o
4X4 MATRIX e MATRIX
INTD ANCTHER INTO ANCTHER

Appendix A. Flowcharts 169

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FCEXST MODULE :PH3.4.10.6.9

DESIGNED BY: KRISHNAN KOLADY |NOTE:PROCESSES EXECUTE STRUCTURE ELEMENT
IN CURRENTLY OPEN STRUCTURE

DATE : 4/2/90
PH3.4.10.6.9
FOEXST
8
!

7
FOR THE

DECLARE NEW NODE

VARIABLES

e

(13
‘ SET THE STRUCTURE
ID IN THE NEW
NODE_AND ADD
18 TO THE L18T
PRINT 16
ADD NEW NODE
T0 THE LIST
17

Appendix A. Flowcharts 170

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME: COPY_FCNODE MODULE :PH3.4.10.6.9.13

DESIGNED BY: KRISHNAN KOLADY |NOTE:COPIES THE OLD NODE DATA INTO
A NEW FACE LIST NQDE
DATE - 3/29/90

PH3.4.10.6.9.13

COPY_§ CNODE

DECLARE
LOCAL
VARIABLES

€T
5P,
ron e NEWNODE->LIGHTS

10
I<=2
el

1e0
I<nMAX_L1GHTS-1
1

Appendix A. Flowcharts 171

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PRFC_APIEL MODULE :PH3.4.10.6.12

DESIGNED BY: KRISHNAN KOLADY |NOTE :PROCESSES STRUCTURE ELEMENTS CREATED
BY THE API IN THE CURRENTLY OPEN
DATE : 4/2/90 STRUCTURE AND RETRIEVES INFORMATION

3.4 10.6.12

° 3
2 . 5 .
Feazcr Feascl FCOCT FOoFOH0 foLcx
RETRIEVES RETINEVES RETRIEVES RETRIEVES RETRIEVES
L. LT DEPTH FACE MIGHLIGHTING
COoLOR (3 COLOR
= INDEX INGEX
7 L] * 10 "
Fea1ch FOBSCD FoBePR FoFOIO FOHLCD
RETRIEVES RETRIEVES RETRIEVES RETRIEVES
BAcx i B . e
coLoR coLoR PROPERTIES WooE coLcr
awr_pece $PEC_DIRECT weC_ Do TNT_£O._DIRECT LIGHT_aRC_STATE POLYLN PATA
12 13 1o 18 1 17
FosPR FCocD Fescl FCIC0 FoLss FOPADI
RETRIEVES
RETRIEVES RETRIEVES e RETRIEVES RETRIEVES FoLYGN 3
SURFACE SPECULAR L INTERTOR am
PROPERTIES coor INEX oL STATE INFORMATION

DEFALT

Appendix A. Flowcharts 172

vyr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FCBICI MODULE :PH3.4.10.6.12.2

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES BACK INTERIOR COLOR INDEX
DATE 3/29/90 FROM CURRENTLY OPEN STRUCTURE

g.4.10.6.12.2

FCBICT

DECLARE
LOCAL
VARIABLES

i

Appendix A. Flowcharts 173

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : FCBSCI MODULE:PH3.4.10.6.12.3
DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES BACK SPECULAR COLOR INDEX
DATE 472790 FROM CURRENTLY OPEN STRUCTURE

P3.4.10.6.12.3

Feascl

Appendix A. Flowcharts

174

W

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

FCDCI MODULE :PH3.4.10.6.12 .4

NOTE :RETRIEVES DEPTH CUE INDEX FROM

DESIGNED BY: KRISHNAN KOLADY PCABENTLY OFEN STRECTHRE
DATE : 4/2/90
P3.4.10.6.12.4
Feoct
!
DECLARE
LOCAL
VARIABLES
2
SIZE N NIBER
3
ERR_CODE<2 ™\ £,
b
5
PRINT
ERROR
NESBAGE

Appendix A. Flowcharts

175

w

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME:

FCFCMO

MODULE:PH3 .4.10.6.12.5

DESIGNED BY:

KRISHNAN KOLADY |NOTE:RETRIEVES FACE CULLING MODE FROM

DATE:

4/2/90

CURRENTLY OPEN STRUCTURE

P3.4.10.6.12.8

foFomo

DECLARE
LOCAL
VARIABLES

Appendix A. Flowcharts

176

r

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : FCHLCI MODULE :PH3.4.10.6.12.6
DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES HIGHLIGHTING COLOR INDEX
DATE ©/2/90 FROM CURRENTLY OPEN STRUCTURE

PH3.4.10.6.12.6

Appendix A. Flowcharts

177

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FCBICD MODULE :PH3.4.10.6.12.7

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES BACK INTERIOR COLOR DIRECT
DATE. 3729790 FROM CURRENTLY OPEN STRUCTURE

PH3.4.10.6.12.7

FCBICD

Appendix A. Flowcharts 178

vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : FCBSCD MODULE :PH3 .4.10.6.12.8

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES BACK SPECULAR COLOR DIRECT
DATE 3/29/90 FROM CURRENTLY OPEN STRUCTURE

PH3.4.10.6.12.8

FCBscD

DECLARE
LOCAL
VARIABLES

Appendix A. Flowcharts 179

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : FCBSPR MODULE:PH3.4.10.6.12.9
DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES BACK SURFACE PROPERTIES
FROM CURRENTLY OPEN STRUCTURE
DATE . 4/2/90
PH3.4.10.6.12.9
FCBOPR
DECLARE
LOCAL
VARTABLES
3
ERR_CODE<2
1
]
PRINT
ERROR
MESSAGE

Appendix A. Flowcharts

DATA
NODE

180

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

FCFOMO

MODULE :PH3.4.10.6.12.10

DESIGNED BY:

KRISHNAN KOLADY |NOTE:RETRIEVES FACE DISTINGUISHING MODE

DATE:

4/2/90

FROM CURRENTLY OPEN STRUCTURE

PH3.4.10.6.12.10

Appendix A. Flowcharts

181

yr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME:

FCHLCD

MODULE :PH3.4.10.6.12.11

DESIGNED BY:

KRISHNAN KOLADY |NOTE:RETRIEVES HIGHLIGHTING COLOR DIRECT

DATE :

4/2/90

FROM CURRENTLY OPEN STRUCTURE

3.4.10.6.12.11

Appendix A. Flowcharts

182

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FCSPR MODULE :PH3.4.10.6.12.12

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES SURFACE PROPERTIES FROM
DATE ©/2/90 CURRENTLY OPEN STRUCTURE

PH3 . 4.10.6.12.12

Appendix A. Flowcharts 183

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FCSCD MODULE :PH3 .4.10.6.12.13

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES SPECULAR COLOR DIRECT FROM
DATE 272790 CURRENTLY OPEN STRUCTURE

PH3.4.10.6.12.13

FCSCO

Appendix A. Flowcharts 184

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FCSCI MODULE:PH3.4.10.6.12.14

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES SPECULAR COLOR INDEX FROM
CURRENTLY OPEN STRUCTURE
DATE . 4/2/90

PH3.4.10.6.12. 14

FCsCI

DECLARE
LOoCAL
VARIABLES

TRLE

sm.c’.w

B

Appendix A. Flowcharts 185

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FCICD MODULE:PH3.4.10.6.12.15

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES INTERIOR COLOR DIRECT
DATE 4/2/90 FROM CURRENTLY OPEN STRUCTURE

PH3.4.10.6.12.18

Fcico

Appendix A. Flowcharts 186

\7al PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : FCLSS

MODULE:PH3.4.10.6.12.16

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETRIEVES LIGHT SOURCE STATE FROM
CURRENTLY OPEN STRUCTURE
DATE - 4/2/90
PH3.4.10.6.12.16
FCLSS 1o
(ePQE)
TEVE
! DATA FROM
CURRENT
ELEMENT
DECLARE
LOCAL
VARIABLES
2
n
ALLOCATE SPACE
RETRIEVE DATA 0o FoR
x<mf_;x:wl-|
12
INTTIALIZE
THE
LIGHTS
ARRAY
13
.00 FoR -
Ia3
I<a2ONACT
ol
1.
LIaHTS
18
0O FOR
TaNACTe 4
TCJ4NACTNDEA
ol
16
DEACTIVATE
LIeHTS
|
"7
FREE
w“m RETURN
SPACE <)

Appendix A. Flowcharts

187

A7l

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

FCPGD3I

MODULE :PH3.4.10.6.12.17

DESIGNED BY:

KRISHNAN KOLADY

DATE :

4/2/90

NOTE :RETRIEVES POLYGON 3 WITH DATA
INFORMATION FROM THE CURRENTLY OPEN

STRUCTURE

PH3.4.10.6.12.17

RETRIEVE
INTEGER
FLAGS

DO FOR

I=0
ICoNeUB- 1|

sel

DO FOR
J=0
e

ADD TO TME
VERTEX LIST

NBER
OF VERTICES

Appendix A. Flowcharts

188

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME: MAKE_VERTEX |MODULE:PH3.4.10.6.12.17.14
DESIGNED BY. KRISHNAN KOLADY [NOTE:ADDS THE INEUT DATA AS A VERTEX
DATE : 5/24/90 ' L

PHI.4.10.6.i2.17.14

L]
4
DEFINE
NEWVX->COORD(I) €T W
VERTEX
LIsT
8
7
RESET
VIFLASE> O VXSTART
*

I=0
I3
£33

DATA

Appendix A. Flowcharts

189

vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : ADD_FCNODE MODULE :PH3.4.10.6.12.17.20
DESIGNED BY: KRISHNAN KOLADY |NOTE:ADDS THE CURRENT FACE NODE
TO THE LIST
DATE: 3/29/90

PH3.4.10.86.12.17.20

INSERT CURRENT
NQOE
IN LIST

Appendix A. Flowcharts 190

yr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME:

PRO_ROOT_TR [MODULE :PH4

CESIGNED BY:

KRISHNAN KOLADY |NOTE:PROCESSES THE ROOT DATA STRUCTURE

DATE :

AND ADDS ALL THE EDGES TO
5/30/90] THE EDGE LIST

Appendix A. Flowcharts

191

\ 74 PROGRAM SPECIFICATION - PHONG SHADING -
MODULE NAME : GET_PROROOTS MODULE :PH4 .5
DESIGNED BY: KRISHNAN KOLADY [NOTE :RETURNS THE POINTER TO THE ROOT TREE
STRUCTURE FOR THE STRUCTURE ID
DATE : 5/30/90 PASSED IN

Appendix A. Flowcharts

PHe .8
‘ GET_PROROOTS ’
1

INITIALIZE THE
TEMPORARY POINTER

—

TP .NE .NALL
-
TP->STRID
JNE
STRID

192

vyr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : ADD_EDGES MODULE :PH4 . |0
DESIGNED BY: KRISHNAN KOLADY |[NOTE:ADDS E£DGES FROM THE VERTEX LIST
TO THE EDGE LIST
DATE: 5/30/90

Do TILL
END OF LIST

FREE THE NEWLY
CREA
ATTRIBUTE NODE

Appendix A. Flowcharts 193

yr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME:

COPY_ATTNODE

MODULE :PH4.10.7

DESIGNED BY: KRISHNAN KOLADY [NOTE:COPIES THE_ OLD NODE DATA INTO
A NEW ATTRIBUTE NODE
[DATE : 5/30/90
PHe.10.7
COPY_ATTNODE
ué !
MATCOPY
TN
HATRIX
L]
2
SPACE FE 0o For
THE L1aHTS Teo
R

Appendix A. Flowcharts

CoPY THE
BACK
SURFACE.
€8
3
INITIALYIZE
THE
INTEGER
CoDE
12
DO FOR
I=0
TCapAX_LIGMTS- |
sl
13
INITIALIZE

3
:

§

194

vyr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : CONC_FACE MODULE :PH4.10.8 ’
DESIGNED BY: KRISHNAN KOLADY |NOTE:CONCATENATES THE ATTRIBUTES
OF THE FACE NODES
DATE : 5/30/90

PH4.10.8

(=

COPY THE
TRANSFORMATION
MATRIX

b

OEACTIVATED
LIGHT LIsT

Appendix A. Flowcharts 195

yr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : MAKE_FACE MODULE :PH4.10.9

DESIGNED BY: KRISHNAN KOLADY NOTE:?AEESL§5¥E¥0Fgngéggegggg TO THE
Al
DATE : 5/30/90

PH4.10.9

MAKE_FACE

INITIALIZE SPACE
THE FACE NODE

Appendix A. Flowcharts 196

vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : MAKE_VLIST MODULE:PH4.10.10
DESIGNED BY: KRISHNAN KOLADY NOTE:Ceg$§xA EDGE LIST FROM THE
DATE : 5/30/90 LIsT
3
PHA.10.10
MAKE_VLIST

INITIALIZE THE
VERTEX POINTERS

DO WMILE
FIRST .NE.NULL

A
5 8

Appendix A. Flowcharts 197

w

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : MAKE_EDGE MODULE:PH4.10.10.3
DESIGNED BY: KRISHNAN KOLADY |NOTE:MAKES AN EDGE FROM 2 VERTEX POINTERS
DATE : 5/30/90

PHe.10.10.3

SET E06E
DATA

)
A4

SET FACE
NORMAL

FACE NORMAL

CHECK WHETHER THE
= VERTEX_ NORMAL
18 SPECIFIED
ié
CALCULATE

Appendix A. Flowcharts:

i
DO FOR
I=0
I<=2
£33
s
2
SET EDGE
COPY COORDINATE
DATA “.’wo

PT_MAT
00 FOR
CONVERY THE
Te0 COORDINATES
x.c:xz To oc

g!
i
LH

3
;
¥

198

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : POST_EDGE MODULE :PH4.10.10.9 ,

DESIGNED BY: KRISHNAN KOLADY |NOTE:POST PRCCESS THE FIRST EDGE
AND _ADD ALL THE EDGES
DATE : 5/30/90 T0 THE EDGE LIST

PHe.10.10.9

POST_EDGE

TEST_EDGE

POST PROCESS
FIRST €DGE

DO WHILE
SLIST .NE.NULL

Appendix A. Flowcharts 199

yr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

TEST_EDGE MODULE:PH4.10.10.9.1

DESIGNED BY:

KRISHNAN KOLADY (NOTE:TESTS THE PREVIOUS AND CURRENT EDGES

DATE :

FOR _REDUCING THE VALUE OF THE Y_UPPER
5/30/90 OF THE LOWER EDGE

Appendix A. Flowcharts

PH4.10.10.9.! o

REDUCE THE
VALUE OF CURR

200

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : ADD_FACES MODULE :PH4 . 1}
DESIGNED BY: KRISHNAN KOLADY ([NOTE :PROCESSES THE ROOT DATA STRUCTURE TO

CONCATENATE ATTRIBUTES AND COLLECT
DATE : 5/30/90 FACES AND EDGES

PH4 . I

ADOD_FACES

INITIALIZE THE
TEMPORARY POINTER

'Y _OLD
ATTRIBUTES
NEW NODE
\
3 12
00 TILL INCREMENT
THE
D OF
LIsT POINTER
13

Appendix A. Flowcharts 201

vr PROGRAM _SPECIFICATION - PHONG SHADING
MODULE NAME : CONC_ATT MODULE :PH4.11.8
DESIGNED BY: KRISHNAN KOLADY |NOTE :CONCATENATES THE ATTRIBUTES
DATE : 5/30/90 OF THE NODES

PHa . 11.8

CONC_ATT

COPY THE
TRANSFORMATION
MATRIX

LIGHT L1387

Appendix A. Flowcharts 202

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

DISP_FRMBUF MODULE : PHS

DESIGNED BY: KRISHNAN KOLADY NOTE:gaggEaYgPTEE 35R¥HELV§EQESRT
A
DATE : 5/24/90
PHS
DISP_Fra@uUF
|
(oPoPST)
OPEN
STRUCTURE
L]
2 pRINT
NEWLINE
PRINT GARACTER
AGE
ON THE
19
fepcLST)
cLose
THE
\ STRUCTURE
3
it
00 FoR
seoliBe a—
*sl n{Tt
L
4
12
pRINT RETURN
MESSAGE
]
FILL_SCAN
FIL T
FRAVE. BLFFER
AND
oIePLAY TT

7 8
INCREMENT BACKSPACE
THE THE
POINT SCREEN
VALUE MESSASE

Appendix A. Flowcharts

203

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FILL_SCAN MODULE : PH5 .5

DESIGNED BY: KRISHNAN KOLADY |NOTE :CALCULATES THE INTERSECTIONS OF A
SCAN LINE WITH THE EDGES AND FILLS
DATE : 5/30/90 THE SCANLINE WITH THE COLOR INDICES

Appendix A. Flowcharts 204

| v PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : AEL_EDGES MODULE :PH5 .5 . |

DESIGNED BY: KRISHNAN KOLADY (NOTE:ADDS EDGES FROM THE EDGE LIST
FOR THE CURRENT ROW TO THE
DATE : 5/30/90 ACTIVE EDGE LIST

(o)

DO WHILE
EDGELIST (NROW)

Appendix A. Flowcharts 205

vyr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

SORT_EDGES

MODULE :PH5.5.2

DESIGNED BY: KRISHNAN KOLADY

NOTE : SORTS THE EDGES IN THE ACTIVE

DATE : §/30/90 EDGE LIST
oS .82
SORT_EDGES
1
INTTIALIZE THE
TEMPORARY
POINTER
TO AEL
2
TRUE FALSE
\
3
00 WHILE
THP->NEXT
NE .
(T8

Appendix A. Flowcharts

206

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : DELT_EDGE MOCULE:PH5.5.2.7
DESIGNED BY: KRISHNAN KOLADY |NOTE:DELETES THE EDGE FROM THE LIST
DATE : 5/30/90
PHE.5.2.7

Appendix A. Flowcharts 207

vyr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : INST_EDGE MODULE :PHS.5.2.8

DESIGNED BY: KRISHNAN KOLADY |NOTE:INSERTS AN EDGE_INTO THE LIST IN
THE CORRECT POSITION
DATE : 5/30/90

PHE.5.2.8

INTO TEMPORARY
HEAD OF LIST POINTER

TN

DO WHILE
THP->NEXT .NE .NULL

Appendix A. Flowcharts 208

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FILL_PIXEL MODULE : PH5 .5.3
DESIGNED BY: KRISHNAN KOLADY |NOTE: gALCULATES THE INTENSITY PER PIXEL

THE _SCAN LINE AND DRAWS THE
DATE: 6/1/90 SCAN LINE

2 .
00 FOR
Do FOR
Ie0
Iso 1
Teop! (eAEL->%_INT) 1
] pAn
3 [
FILL SCANLINE
FILL SCAN LINE WITH SACKGROUND
BACKGROUND COLOR T FaRsT Ehae
.
FILL_PIX_GAP

(OPPXLI)

gl

Appendix A. Flowcharts 209

W

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME:

FILL_PIX_GAP

MODULE :PHS.5.3.6

DESIGNED BY:

KRISHNAN KOLADY |NOTE:CALCULATES THE INTENSITY PER PIXEL

DATE :

6/1/90

OF THE SCAN LINE BETWEEN EDGES

Appendix A. Flowcharts

"S.5.3.6

DO WILE
TMP-INEXT

FILL THE aAP
INFORMATION

”"S.8.3.6.3 ?
PRO_COVERS

IN COVERS

7

POINTERS

210

W

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

INIT_AEL

MODULE :PH5.5.3.6. |

DESIGNED BY:

KRISHNAN KOLADY

NOTE : INITIALIZES THE ACTIVE EDGE

DATE :

6/1/90

LIST BEFORE EACH SCAN LINE PROCESSING

Appendix A. Flowcharts

PHE.8.3.6.1

INIT_AEL

211

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME: PRO_COVERS MODULE : PH5.5.3.6.3
DESIGNED BY: KRISHNAN KOLADY |NOTE:PROCESSES THE FACES COVERING
THE PIXELS
DATE: 6/1/90

Appendix A. Flowcharts

—
DELETE ITéM Am_rgrm
THE LIST COVER LIST

212

vyr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : DEL_COVER MODULE :PH5.5.3.6:3 .4
DESIGNED BY: KRISHNAN KOLADY |NOTE:DELETES THE ITEM FROM THE
COVER LIST
DATE : 6/1/90

PHE .5.3.5.3.4

DO WHILE
THP=>NEXT .NE. ML
NEWEDGE»>F ACE
(TMP->EDATA) ->FACE]

Appendix A. Flowcharts 213

W

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

ADD_COVER

MODULE : PHG .5.3.6.3.5

DESIGNED BY:

KRISHNAN KOLADY

DATE:

6/1/90

NOTE : ADDS THE EDGE_TO THE COVER LIST
AS A FACE THAT IS COVERED

Appendix A. Flowcharts

PHE.5.3.6.3.6

el

214

r

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME: FIND_NEDGE MODULE :PH5.5.3.6.3.5.6
DESIGNED BY: KRISHNAN KOLADY |NOTE: FINDS THE NEXT EDGE POINTING TO
THE SAME FACE IN THE
DATE : 6/1/90

Appendix A. Flowcharts

PHE .B6.3.6.3.5.4

FIND_NEDGE

INITIALIZE THE
TEMPORARY
POINTER

DO WHILE

T NE.NLL

QUEDGE >FACE
Te->FACE

r

215

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : FILL_GAP MODULE :PH5.5.3.6.6

DESIGNED BY: KRISHNAN KOLADY |NQTE:FILLS THE FRAME BUFFER WITHIN
DATE o/1790 THE SPECIFIED LIMITS

HE.5.3.6.6

INITIALIZE THE
VISIRE
TO COVERS

2 14
00 FOR { RETURN)
Tex1 0o
Iéux2-1
3
3
INTTIALT2E
THE
POINTERS
"
\
12 13
. GET_INTENS
€T
DO WILE e FRMBUF (1) =0
NOT INTENSITY
B0 oF LIST
]

INCREMENT THE
DEPTH
OF THE SURFACE

00 FOR

Koo
K<=2
Radd

Appendix A. Flowcharts 216

W

PROGRAM SPECIFICATION - PHONG SHADING

Appendix A. Flowcharts

MODULE NAME : GET_INTENS MODULE :PH5.5.3.6.6.12
DESIGNED BY: KRISHNAN KOLADY |NOTE:FINDS THE INTENSITY OF THE PIXEL
FROM THE ACTIVE LIGHT SOURCES
DATE : 6/1/90
P5.6.3.6.6.12
1
Do FOR
Je0
1¢e2
(221
2
INTTIALTZE
ALL
INTENSITIES
3
0o FoR
i T LIaHTe 1
VIS->EDATA-DF ACE-DFACE-LIGHTS(I) | (5 o
ACTTVATED IS
i ~
J N 4 CALCULATE
— -— . &
coLor
"
pRINT
“ESBAGE
12
SCT_COLIND
o For odon Toex
K=o ’
Koz
oK
CONCATENATE N
(==)
7 oI
DErINE
VARTABLES

217

W

PROGRAM SPECIFICATION - PHONG SHADING

MODULE:PH5.5.3.6.6.12.8

NOTE : CALCULATES INTENSITY FOR GIVEN

MODULE NAME : CALC_COL
DESIGNED BY: KRISHNAN KOLADY
DATE: 6/1/90

LIGHT SOURCE

PHE.5.3.6.6.12.8

Appendix A. Flowcharts

CALC_cotL

CALC_INT

GET THE
INTENSITY
OF THE
LIGHT

Uil

UNIT_NORM

CALQRATE
VECTORS

CALCULATE
VECTORS

8_VECTOR

CALCLLATE
VECTORS

CALCRATE
VECTORS

urs

CALCULATE
PROOCUCTS

DO FOR

=0
I<=2
ool

RETURN THE
COLOR
INTENGTTY

218

vyr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : CALC_INT MODULE :PH5.5.3.6.6.12.8. 1

DESIGNED BY: KRISHNAN KOLADY |NOTE:CALCULATES INTENSITY DUE TO
LIGHT COLOR AND ANGLE
DATE . 6/1/90

PHE.5.3.6.6.12.8.1

DO FOR

I=0
I<=2
£33

0O FOR
s
1=0
I¢=2
ol
CAL
INTS(I)
10
- CALCULATE
INTS(I)

Appendix A. Flowcharts 219

vr PROGRAM SPECIFICATION - PHONG SHADING-.
MODULE NAME : CALC_POPHI MODULE :PH5.5.3.6.6.12.8.1.4

DESIGNED BY: KRISHNAN KOLADY |NOTE:FINDS ANGLE BETWEEN LIGHT
DIRECTION AND NORMAL
DATE : 6/1/90

PHE.B.3.6.6.12.8.1.4

0O FOR

I=0
1<=2
++]

VECTORS

uvi2 3

Appendix A. Flowcharts 220

vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : L_VECTOR MODULE :PH5.5.3.6.6.12.8.3
DESIGNED BY: KRISHNAN KOLADY |NOTE:FIND L VECTOR
DATE : 6/1/90

PHE.6.3.6.6.12.8.3

TN

Ut 8

Appendix A. Flowcharts 221

r PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : S_VECTOR MODULE :PH5.5.3.6.6.12.8 .4
DESIGNED BY: KRISHNAN KOLADY |NOTE:FIND S VECTOR
DATE : 6/1/90

PHE.6.3.6.6.12.8.4

DO FOR

J=0
I<=2
ol

uli 3

Appendix A. Flowcharts 222

vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : R_VECTOR MODULE :PH5.5.3.6.6.12.8.5
DESIGNED BY: KRISHNAN KOLADY |NOTE:FIND R VECTOR
DATE : 6/1/90

PHE.6.3.6.6.12.8.8

R_VECTOR

0O FOR
J=0
ool

INITIALXZE

Ul 4

Appendix A. Flowcharts 223

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : GET_COLIND MODULE :PH5.5.3.6.6.12.12

DESIGNED BY: KRISHNAN KOLADY |NOTE:GETS THE COLOR INDEX FOR
GIVEN INTENSITY
DATE : 5/30/90

AE.5.3.6.6.12.12

Appendix A. Flowcharts 224

vyr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

DEL_YUEDGES |MODULE:PH5.5.4

DESIGNED BY:

KRISHNAN KOLADY

NOTE :DELETES £DGES WHICH HAVE THE SAME

DATE :

5/30/90

Y _UPPER LIMIT AS THE CURRENT ROW FROM
THE ACTIVE €DGE LIST

Appendix A. Flowcharts

00 WHILE
TP .NE.NULL

225

Y7 PROGRAM SPECIFICATION = PHONG SHADING

MODULE NAME : UPDATE_XINT

MODULE :PHS .5.5

DATE : 6/1/90

DESIGNED BY: KRISHNAN KOLADY |NOTE:UPDATES THE EDG%NéNFORMATION

ACROSS A SCAN L

INITIALIZE
™ _TO
AEL

DO WHILE
TP .NE.NULL

INGREMENT THE

VALUES

INCREMENT
COORDINATE
AND

Appendix A. Flowcharts

226

W

PROGRAM SPECIFICATION =~ PHONG SHADING

MODULE NAME : CHK_4_LABEL MODULE : U1 .
DESIGNED BY: KRISHNAN KOLADY |NOTE :CHECKS WHETHER THE REQUIRED LABEL
DATE 3/9/90 EXISTS WITHIN THE STRUCTURE

ul

Appendix A. Flowcharts

227

\ 74 PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME: CHK_4_ITEM MODULE : U2

DESIGNED BY: KRISHNAN KOLADY |[NOTE :CHECKS WHETHER THE SPECIFIED ITEM
EXISTS AS AN APPLICATION DATA WITHIN
DATE : 3/9/90 THE OPEN STRUCTURE AND POINTER ELEMENT]

(GPOETS)

INQUIRE
ELEMENT
SIZE
AND
TYPE

Appendix A. Flowcharts 228

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

SEARCH_PHL

MODULE : U3

DESIGNED BY:

KRISHNAN KOLADY

NOTE : SEARCHES PHONG STRUCTURE LIST FOR

DATE:

3/20/90

THE STRUCTURE IDENTIFIER PASSED IN

Appendix A. Flowcharts

)
NS

229

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE

NAME :

IDENTITY

MODULE : U4

DESIGNED BY:

KRISHNAN KOLADY

NOTE : INITIALIZES THE INPUT MATRIX TO

DATE :

3/20/90

AN IDENTITY MATRI

Appendix A. Flowcharts

=D

DECLARE
LOCAL
VARIABLES

DO FOR
J=0
o]

.y

MAT(II(I) = 1.0

MTII}(D) = 0.0

230

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : MATMULT MODULE : US
DESIGNED BY: KRISHNAN KOLADY |NOTE:MULTIPLIES TWO 4X4 MATRICES
DATE : 3/20/90
us

< FATHT ’

DECLARE
LOCAL
VARIABLES

00 FOR
=0
ol

)
W

Appendix A. Flowcharts 231

vr

PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME :

MATCOPY

MODULE : U6

DESIGNED BY:

KRISHNAN KOLADY

NOTE : COPIES ONE 4X4 MATRIX INTO ANOTHER

DATE :

3/20/90

Appendix A. Flowcharts

DO FOR
1=0
]

DO FOR

.

MULTIPLY
THE Two
MATRICES

232

| vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : INIT_ATTNODE MODULE : U7

DESIGNED BY: KRISHNAN KOLADY |NOTE :INITIALIZES THE ATTRIBUTE LIST NODE
DATE : 3/20/90

&
;

Appendix A. Flowcharts 233

yr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME: MATINV MODULE : U8
DESIGNED BY: KRISHNAN KOLADY NOTE : INVERTS A 4X4 MATRIX
DATE: 5/24/9C
us
]
CALCULATE
MATTHP (K] (K)
N
1
00 FOR .
10 oo
I<=3
*e] 9’
DO FOR
13
‘ D el
2 1o
to ror
om0 e 1.E.K
JCo3
R
3
o R O
pon Y
MATRIX 1"
Jmo
Jea3
.
_{) 12
. J.NEK
’
DO FOR
Ked
K<a3
k<3 |
1 I3
{g TR
)]
Do FOR ! ?
=0 [
JCa3 1
= |

CALCULATE
MATTP (K) ()

Do FOR
I=0

ool

MATTP (T)TKEK!
IF_CONDITION

THAT 1 I8
-NOT_EQUAL
T0 K

Appendix A. Flowcharts

234

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : PT_MAT MODULE : U9
DESIGNED BY: KRISHNAN KOLADY |NOTE:GIVES THE PRODUCT OF A 4X| POINT IN

HOMOGENEOUS COORDINATES AND A
DATE : 5/24/90 4X4 MATRIX

PTWNT

DO FOR
I=0
»]

INITIALTZE
E
OUTPUT
POINT
\
3
oo For
o0
Je=3
*e)
4
DEFINE
PTOUT(I)

Appendix A. Flowcharts 235

vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : DOT MODULE :U10
DESIGNED BY: KRISHNAN KOLADY [NOTE:FINDS THE DOT PRODUCT OF TWO VECTORS
DATE : 6/1/90

;"o ot)

RETURN THE
DOT PRODUCT

2

)

Appendix A. Flowcharts 236

vr PROGRAM SPECIFICATION - PHONG SHADING

MODULE NAME : UNIT_NORM MODULE : Ul |

DESIGNED BY: KRISHNAN KOLADY |NOTE:RETURNS A UNIT VECTOR IN THE
DATE 6/1/90 DIRECTION OF THE GIVEN VECTOR

Ul

.
4
Do FOR
10
I<=2
-1
[
oIvIDE
VALUE
BY MAGN

Appendix A. Flowcharts 237

A /o PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : VEC_MAGN MODULE :U12 :

DESIGNED BY: KRISHNAN KOLADY [NOTE: g%zgﬁNgggtr‘SRMAGNITUDE OF THE
DATE : 6/1/90
uiz
Cmm)
!
CALCULATE MAGN

Appendix A. Flowcharts 238

vr PROGRAM SPECIFICATION - PHONG SHADING
MODULE NAME : CALC_DIST MODULE:UI3 °

DESIGNED BY: KRISHNAN KOLADY NOTE:%clécgléé"[rErg THE DISTANCE BETWEEN
DATE : 6/1/90

uy

Appendix A. Flowcharts 239

Vita

The author was born in 1965 and grew up in Bombay, India. After schooling in Don Bosco High
School, Bombay, he received a Bachelor of Technology degree in Mechanical Engineering in the
Fall of 1987 from the Government Engineering College, Trichur, Kerala. After completing his
master’s in Mechanical Engineering at Virginia Tech, the author will pursue a career as a Research

Associate at Virginia Tech.

Krishnan V. Kolady

Vita 240

