Copyright by the American Institute of Physics (AIP). Dong, SX; Zhai, JY; Li, JF; et al., "Small dc magnetic field response of magnetoelectric laminate composites," Appl. Phys. Lett. 88, 082907 (2006); http://dx.doi.org/10.1063/1.2178582 ## Small dc magnetic field response of magnetoelectric laminate composites Shuxiang Dong, Junyi Zhai, JieFang Li, and D. Viehland Citation: Applied Physics Letters 88, 082907 (2006); doi: 10.1063/1.2178582 View online: http://dx.doi.org/10.1063/1.2178582 View Table of Contents: http://scitation.aip.org/content/aip/journal/apl/88/8?ver=pdfcov Published by the AIP Publishing Over **700** papers & presentations on multiphysics simulation ## Small dc magnetic field response of magnetoelectric laminate composites Shuxiang Dong,^{a)} Junyi Zhai, JieFang Li, and D. Viehland *Materials Science and Engineering, Virginia Tech, 213 Holden Hall, Blacksburg, Virginia 24061* (Received 21 November 2005; accepted 30 January 2006; published online 23 February 2006) We have found that small long-type magnetoelectric (ME) laminate composites of magnetostrictive ${ m Tb}_{1-x}{ m Dy}_x{ m Fe}_{2-y}$ and piezoelectric ${ m Pb}({ m Zr},{ m Ti}){ m O}_3$ are quite sensitive to small dc magnetic field ($H_{ m dc}$) variations, when driven by a constant ac magnetic field. The sensitivity limit is $H_{ m dc} < 10^{-3}$ Oe (10^{-7} Tesla) using a constant amplitude low frequencies drive, and $H_{ m dc} < 10^{-4}$ Oe (10^{-8} Tesla) under resonant drive. In addition, an unusual ME switching effect—a 180° phase shift—was observed, in response to changes in the sign of a small $H_{ m dc}$. © 2006 American Institute of Physics. [DOI: 10.1063/1.2178582] The magnetoelectric (ME) effect¹ in materials which are simultaneously ferromagnetic and ferroelectric has been a research topic in recent years. Previous reports about ME effects have focused on the ac magnetic field (H_{ac}) response of single phase and multiphase laminate ME materials.^{2–17} However, magnetic sensors for applications in magnetic anomaly detection¹³ require high sensitivity to near-dc frequencies. Previously,14 we reported a ME multilayer composite for low-frequency $H_{\rm ac}$ signal detection, with working frequencies as low as 5×10^{-3} Hz. In this case, a constant dc magnetic bias (H_{dc}) was applied along the length axis of the laminate, and small variations in $H_{\rm ac}$ detected. However, as is well known, the ME effect is a strong function of $H_{\rm dc}$. Thus, using a constant H_{ac} drive, ME laminates have the potential to be used for small H_{dc} signal detection.¹⁸ Here, we will show that longitudinally magnetized and transversely polarized (or L-T) laminates of $Tb_{1-x}Dy_xFe_{2-y}$ (Terfenol-D) and piezoelectric Pb(Zr,Ti)O₃ (PZT) have: (i) An ability to detect small H_{dc} variations; and (ii) posses an unusual ME switching effect—an 180° phase change—in response to changes in the sign of a small H_{dc} . Our dc magnetic sensor consisted of a L-T mode ME laminate and a coil wrapped around it that carried a small ac current I_{ac} , as shown in Fig. 1. The laminate configuration is similar to that of a prior report, ¹¹ but its dimensions were notably smaller $(2.5 \times 2.5 \times 14 \text{ mm}^3)$. The working principle for H_{dc} signal detection is as follows: (i) A small constant ac magnetic field drive of $0.01 < H_{ac} < 1$ Oe was used to excite the laminate into vibration along its length axis, via the attached coils; and (ii) small variations in H_{dc} were detected as small induced voltage changes. Prior experimental studies^{2–17} have shown a linear relationship between the ME voltage coefficient $\alpha_{\rm ME}$ and an applied dc magnetic bias $H_{\rm dc}$ over the range of $0 < H_{dc} < 300$ Oe. Measurements of the ME voltage induced by variations in an external $H_{\rm dc}$ were performed in a magnetically shielded environment made of μ -metal, using a lock-in method. A small $I_{\rm ac}$ from the lock-in was used as an input to the coils about the laminate, exciting a small but constant H_{ac} . Experiments were performed at a lower-frequency (10³ Hz) drive of 1 Oe; and at higher frequencies ($\sim 8 \times 10^4$ Hz) under resonant drive conditions of $H_{\rm ac}$ =0.1 Oe, where a significant gain in the ME effect is known. 19 The dc magnetic signal is coupled to the ac voltage Figure 2 shows the induced ME voltage as a function of $H_{\rm dc}$ for an L-T laminate: (a) $-300~{\rm Oe} < H_{\rm dc} < 300~{\rm Oe}$, at $f=10^3~{\rm Hz}$ and $H_{\rm ac}=1~{\rm Oe}$; and (b) $-30~{\rm Oe} < H_{\rm dc} < 30~{\rm Oe}$, under a resonant drive ($\sim 8.4 \times 10^4~{\rm Hz}$) of $H_{\rm ac}=0.1~{\rm Oe}$. It can be seen that: (i) The induced ME voltage is a linear function of $H_{\rm dc}$ in both cases; and (ii) that $dV_{\rm ME}/dH_{\rm dc}=0.23~{\rm mV/Oe}$ at $10^3~{\rm Hz}$ and $H_{\rm ac}=1~{\rm Oe}$, but is enhanced to $\approx 1.2~{\rm mV/Oe}$ at $H_{\rm ac}=0.1~{\rm Oe}$ under resonant drive. These results clearly demonstrate that dc magnetic fields can be detected by ac voltage changes induced across the PZT layer. The sensitivity to small variations in $H_{\rm dc}$ can clearly be enhanced by a resonance signal gain. In addition, the right-hand axis of Fig. 2 shows an unexpected 180° phase shift upon reversal of the sign of $H_{\rm dc}$. Such reversals were found under small dc magnetic field changes ($H_{\rm dc}=\pm15~{\rm Oe}$), as shown in the inset of Fig. 2(a). Figure 3 shows the sensitivity limit of an L-T ME laminate to small dc magnetic field variations, while under resonant drive. It can be seen that $H_{\rm dc}$ signal changes as small as 0.1 m Oe (10^{-8} Tesla) can be repeatedly detected. We estimate the signal-to-noise ratio as ~ 10 in these data, indicating the feasibility to detect dc magnetic field variations in the $\sim 10^{-5}$ Oe ($\sim 10^{-9}$ Tesla) range. Furthermore, we note that this sensitivity limit could be further enhanced by replacing the piezoelectric PZT layer with a FIG. 1. (Color online) Illustration of our dc magnetic sensor, which is a L-T mode trilayer laminate of Terfenol-D/PZT/Terfenol-D. response; as for $0 < H_{\rm dc} < 300$ Oe, the ME voltage coefficient $(\alpha_{\rm ME})$ is known to be linearly proportional to $H_{\rm dc}$ $(\alpha_{\rm ME} = aH_{\rm dc})$, where a is a constant). Accordingly, this is an unusual magnetic sensor as variations in a dc signal $(H_{\rm dc})$ can be detected as changes in an ac response $(V_{\rm ac})$ —enabling sensitivity at near-static frequencies. ^{a)}Electronic mail: sdong@mse.vt.edu FIG. 2. Induced dc ME voltage response and phase shift of a L-T ME laminate as a function of dc magnetic field for (a) $-300 \, \text{Oe} < H_{\text{dc}} < 300 \, \text{Oe}$, at $f = 10^3 \, \text{Hz}$, and a constant ac drive of $H_{\text{ac}} = 1 \, \text{Oe}$; and (b) $-30 < H_{\text{dc}} < 30 \, \text{Oe}$, under a resonant drive of $H_{\text{ac}} = 0.1 \, \text{Oe}$. The inset in (a) shows responses of ME voltage V_{ME} and phase P to small step changes of dc magnetic field ($H_{\text{dc}} = \pm 15 \, \text{Oe}$). $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ one, and/or by using longitudinal-longitudinal or other complex laminate configurations. ^{11,15} In summary, we have found that ME laminates under a constant drive of $H_{\rm ac}=1$ Oe can detect small changes in an external dc magnetic field of $H_{\rm dc} \leq 10^{-4}$ Oe (10^{-8} Tesla). This is an unusual sensor in that variations in $H_{\rm dc}$ are detected as: (i) Changes in an ac voltage; and (ii) changes in sign of a small $H_{\rm dc}$ result in an 180° phase shift. We recognize that such dc magnetic sensors have potential for mag- FIG. 3. Sensitivity limit of small dc magnetic field changes for the L-T laminate, while under constant resonant drive (f_0 =84 kHz, H_{ac} =71 mOe). netic recording: in this case, domain orientation differences could be very sensitively read as an 180° shift in an induced voltage. ¹L. D. Landau and E. Lifshitz, *Electrodynamics of Continuous Media* (Pergamon, Oxford, 1960), p. 119. ²M. Avellaneda and G. Harshe, J. Intell. Mater. Syst. Struct. **5**, 501 (1994). ³T. Wu and J. Huang, Int. J. Solids Struct. **37**, 2981 (2000). ⁴K. Mori and M. Wuttig, Appl. Phys. Lett. **81**, 100 (2002). ⁵J. Ryu, A. V. Carazo, K. Uchino, and H. Kim, Jpn. J. Appl. Phys., Part 1 40, 4948 (2001). ⁶J. Ryu, S. Priya, K. Uchino, H. Kim, and D. Viehland, J. Kor. Ceram. Soc. 39, 813 (2002). ⁷C. W. Nan, L. Liu, N. Cai, J. Zhai, Y. Ye, and Y. H. Lin, Appl. Phys. Lett. **81**, 3831 (2002). ⁸C.-W. Nan, G. Liu, and Y. Lin, Appl. Phys. Lett. **83**, 21 (2003). ⁹G. Srinivasan, E. Rasmussen, B. Levin, and R. Hayes, Phys. Rev. B **65**, 134402 (2002). ¹⁰Y. Li, Sensors Online (http://sensorsmag.com/articles/1000/52/index.htm), Vol. 1. ¹¹S. X. Dong, J. F. Li, and D. Viehland, IEEE Trans. Ultrason. Ferroelectr. Freq. Control **50**, 1253 (2003). 12S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. 83, 2265 (2003). 13T. Clem, Nav. Res. Rev. 3, 29 (1997). ¹⁴S. X. Dong, J. Zhai, Z. Xing, J. F. Li, and D. Viehland, Appl. Phys. Lett. 86, 102901 (2005). ¹⁵S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. **85**, 5305 (2004). ¹⁶C. H. Tsang, R. E. Fontana, Jr., T. Lin, D. E. Heim, B. A. Gurney, and M. L. Williams, IBM J. Res. Dev. 42, 103 (1998). ¹⁷S. X. Dong, J. Zhai, F. Bai, J. F. Li, and D. Viehland, Appl. Phys. Lett. 87, 062502 (2005). ¹⁸M. Fiebig, J. Phys. D **38**, R123 (2005). ¹⁹S. X. Dong, J. F. Li, and D. Viehland, Appl. Phys. Lett. **85**, 3534 (2004); S. X. Dong, J. F. Li, and D. Viehland, *ibid.* **84**, 4188 (2004).