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Abstract
This project aims to design and develop a one-class text classification system tailored to process crisis-related web pages to gain data insights at a high precision. Unlike traditional binary classifiers, our approach addresses the practical challenge of classifying documents when only examples of one class - i.e., the crisis event and related articles are available -  and the negative class is undefined or highly variable. One-class classification (OCC) offers a more effective solution for this problem by treating non-crisis content as outliers or anomalies.
The final deliverable will be an integrated web application that allows users to input URLs related to a crisis event. The backend will scrape, clean, and preprocess webpage content using tools such as requests and BeautifulSoup. The core machine learning engine, implemented using both traditional OCC algorithms (One-Class SVM) and advanced deep learning methods (specifically the DOCC method with PyTorch), will evaluate each page for relevance. Results will be presented through a React-based user interface, supported by a FastAPI backend and SQLite database for persistent storage and retrieval.
Our pipeline consists of data collection, preprocessing, model training, evaluation and visualization, all integrated into a web app, developed through end-to-end testing. After finalizing the technology stack and dividing roles, we have currently implemented the first version of our front-end and ML model.
This project not only serves a practical societal need by identifying and surfacing timely crisis information but also deepens our understanding of anomaly detection and full-stack application development in a real-world setting.
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[bookmark: _ekhszk2nhqv3]Chapter 1 Introduction
1.1 [bookmark: _319wyalwydex]Problem Statement
In the wake of a crisis—whether it’s a hurricane, a disease outbreak, or a large protest—quickly finding reliable information online can make all the difference. Crisis-related pages appear in many forms: detailed news articles, eyewitness blog posts, short social media updates, and official bulletins from governments or NGOs. They use different layouts, writing styles, and specialized terms, so a one-size-fits-all approach often misses important content or flags too much noise.
Traditional text classifiers require two sets of examples: pages that are about the crisis and pages that are not. The “not crisis” category, however, is basically everything else on the web—an endless, ever-changing mix of topics. Trying to collect a representative sample of unrelated pages is not only overwhelming but also leads to mistakes: the system either learns too much from a narrow set of negatives or becomes confused by the variety of content it can’t cover.
Our approach is simpler. We train the system only on pages we know are about the crisis, teaching it the patterns, words, and structures those pages share. Anything that resembles those patterns is marked as relevant, while completely different pages are ignored. This way, we never have to spell out all the ways a page can be unrelated—we only need to show what a crisis page looks like.
The result is a flexible tool that adapts to different page designs and writing styles, keeps false hits to a minimum so analysts aren’t overwhelmed, and still catches the key updates and reports. It can run on demand when a new URL list comes in, or be scheduled to re-check important seed lists every day or hour. In fast-moving situations, this gives first responders, journalists, and aid organizations a clear, accurate view of the latest crisis information without wading through unrelated content.
1.2 [bookmark: _lgzopbvrj6lu]General Approach
The goal of the Crisis Events One-Class Text Classification project is to develop a crisis-tailored preprocessing pipeline for filtering crisis-related text using a variety of machine learning models.
The Crisis Events One-Class Text Classification project shows the detection of crisis-related content using machine learning and web scraping. Users can submit URLs or upload ZIP files, which are processed through a scraper and text preprocessing pipeline that cleans and vectorizes the data. The system allows an authorized admin to train a model on either a One-Class SVM model or Deep One-Class Classification. A user can then use these pretrained models to classify relevant crisis content, with results displayed in a very user interactive React-based web interface which is backed by a FastAPI backend and SQLite database. Future improvements include cloud deployment, Named Entity Recognition (NER), and scalability enhancements to refine accuracy and expand functionality.


[bookmark: _ukqmy2kleeyx]Chapter 2 Requirements
2.1 [bookmark: _jeuk8fmvy6oe]Functional Requirements


· URL Input Form: Users must be able to submit one or more URLs via the frontend interface.

· Web Scraping Engine: The system must scrape and extract text content from the provided webpages using Selenium and BeautifulSoup.

· Text Preprocessing Module: The system must clean and tokenize raw webpage text for model input.

· One-Class Classification Module: The system must classify input webpages using a one-class model trained on crisis event data and should support both traditional ML methods and deep learning-based models.

· Model Selection Feature: The frontend should allow users to choose which model to use for classification, or default to evaluating with all.

· Relevance Scoring: The system must return a relevance score (e.g., precision, recall, and F-1 score) for each URL processed.

· Result Display and Highlighting: The frontend must present results with a clear indication of which pages are likely relevant, with extracted text or summaries.

· Database Storage: All input URLs, extracted text, predictions, and scores should be stored in SQLite.

· Model Training Script: A separate training script must allow training OCC models on a new set of crisis event texts.

· API Endpoints (FastAPI): The backend must expose API endpoints for submitting URLs, triggering scraping + classification, returning results, storing or retrieving results from the database





2.2 [bookmark: _zhuatfveimxv]Non-Functional Requirements

· Performance:  The system should classify and respond within a few seconds per URL and web scraping and classification should scale to 10–20 URLs per batch.

· Usability: The UI should be intuitive and user-friendly, even for non-technical users.

· Extensibility: The system architecture should allow future integration of new models, such as LLMs or hybrid classifiers.

· Modularity: Scraping, preprocessing, classification, and storage components must be modular and independently testable.

· Security: The backend must validate user input to prevent injection or malicious URL submission.

· Reliability: The application should handle bad or non-responsive URLs gracefully (e.g., timeout, invalid format).

· Portability: The app should run on standard developer machines with minimal setup.

· Maintainability: Code should be clean, well-documented, and version-controlled using Git.

· Logging and Debugging: The backend should log scraping, prediction errors, and system warnings for easy debugging.

· Responsiveness (UI): The frontend should remain responsive during large batch operations.


[bookmark: _yx96ykerhvqf]Chapter 3 Design
3.1 [bookmark: _43l7rbs39vfr]System Architecture
The system is divided into four main components, each handling a specific part of the workflow:
· Machine Learning Model:
The machine learning model represents the central component of our project. This component determines if a webpage pertains to a crisis event. Our machine learning model uses either One-Class SVM or a custom DOCC with PyTorch. The model accepts cleaned and vectorized text through TFIDF and SVD methods before it performs any predictions to minimize noise and boost accuracy.
· Backend API:
FastAPI constructs the backend which manages all interactions between the frontend interface, the machine learning model, and the database system. Users submit input items such as URLs which the system sends for processing and classification before delivering the outcomes back to them. At the same time,  the  API controls user sessions and authentication operations.



· Frontend (React UI):
The frontend forms the user-facing layer of the application and is built using React with modular components and CSS for styling. It serves two types of users: Administrators and Regular Users, each with tailored views. Administrators can upload ZIP files of URLs, configure model parameters, and monitor training progress with real-time feedback and visualizations of model performance. Users, on the other hand, can upload URL collections, select a trained model, and classify content with immediate scoring and prediction results. The interface features live spinners for background tasks, conditional rendering for visual feedback, and model visualization tools integrated with the routing logic via React Router. Overall, the frontend ensures an intuitive and responsive experience for diverse user roles.
· Database (SQLite):
The database archives essential data such as user accounts and submitted URLs, along with raw and processed page content and model predictions. SQLite proved ideal for our project because it offers easy setup and uncomplicated functionality
[bookmark: _y9d0wu4loae]
[bookmark: _rt4uvffjj8z9]Chapter 4 Implementation
4.1 [bookmark: _9ronj7qx88rm]ML Model Progress
This project aims to be a modular component in a grand crisis web crawler and classification architecture, making the ML model component the most important aspect of this project. The ML pipeline can be visualized with the following diagram below:



Url input
Webscraper
Preprocessor 

Model train & test





URL Input
The user provides a ZIP file containing seed URLs related to a specific crisis theme (e.g., wildfires or shootings). The ZIP is unzipped, and URLs are extracted, downloaded, and prepared for scraping. This is handled by the processor.py module using Python packages like BeautifulSoup4 for HTML parsing and requests for fetching raw web page content.
Webscraper
Each URL is scraped to extract relevant visible text (titles, paragraphs, headings) while ignoring scripts, styles, and boilerplate content. The scraper also logs each successfully scraped title and flags any failed attempts (e.g., due to 403 or timeout errors). This ensures traceability and helps diagnose low-quality sources.
 [image: A screenshot of a computer program

AI-generated content may be incorrect.]




Preprocessor
Since raw scraped content is noisy and not ML-ready, the pipeline cleans and tokenizes the text. It removes excess whitespace and English stopwords (assuming English-language URLs). The cleaned text is converted to numerical format using TF-IDF (Term Frequency–Inverse Document Frequency), which emphasizes the most relevant words across documents. To further eliminate noise, the pipeline applies Truncated SVD (Singular Value Decomposition), keeping only the top latent components. The resulting normalized vectors represent high-quality inliers used for classification.
Model Training & Testing
Depending on the user’s choice, the preprocessed vectors are fed into either a One-Class Classification (OCC) model or a One-Class SVM. The model is trained to learn the boundary of the provided class (implicitly defined by the seed URLs). Evaluation is done using k-fold cross-validation to ensure generalizability. Key metrics such as precision, recall, and F1-score are reported per fold. If enabled, visualizations such as performance plots and TF-IDF term importance histograms are generated to assist interpretation.











[image: A graph with green and blue lines

AI-generated content may be incorrect.]
[image: A graph of a number of blue and white bars

AI-generated content may be incorrect.]
The graphs above show the filtration of URLs and the successful retrieval of “school” and “shootings” as the top keywords. The diagram to its immediate right shows the performance metrics across each fold of training and testing. The discrepancy between model precision and recall highlights the overfiltering of URLs, hinting that the model is producing multiple false negatives - an aspect we hope to tackle by the final deadline.
[bookmark: _ml8clvgs7a04][image: A screenshot of a black screen

AI-generated content may be incorrect.]















This screenshot displays the output of an SVM model being trained on text data that was vectorized using TF-IDF. The model initially extracted 5,000 features from 119 samples which were then reduced to 300 features for efficiency. The training process includes 5-fold cross-validation and the results show perfect precision (1.00) across all folds but varying recall scores indicating that while the model accurately identifies true positives, it misses a significant number of true positives. This is reflected in the F1 scores, which balance precision and recall. The script also generates and saves visualizations such as fold scores, decision boundaries, and term importance plots.


















4.2 [bookmark: _gi48maxg48es]Backend DB
We've successfully built and integrated the backend for our crisis classification system, ensuring smooth communication between the machine learning model, frontend, and database.
· API Endpoints: All core FastAPI routes are fully implemented and stable. These endpoints handle model training submission and job polling, user registration and login with role distinction, creating and uploading URL collections and fetching predictions and model visualizations.
· Database Design: The SQLite-based database schema is complete and production-ready. It is designed to support user management with admin and non-admin roles, model metadata storage, collection tracking for user-submitted URL batches and prediction results linked to both collections and models.
· Tables Created: We’ve implemented the following main tables:
· User: Stores credentials, email, and admin role.
· Model: Stores classifier type, description, training time, and plot paths.
· Collection: Represents a batch of URLs submitted for classification.
· CollectionItem: Stores individual URLs and prediction scores.
· User Login: Secure login and route protection are fully implemented using JWT-based token authentication. Features include registration and login flows for both admins and users, role-based access control for protected endpoints and automatic token attachment to frontend API calls via Axios interceptors
The following images are images of sections of the code that we implemented to give a small summary of each section:





[image: ]








This image is the DB bootstrap that shows the backend application initializes and configures a FastAPI server to support the machine learning API for classifying crisis-related events. It begins by setting up logging for consistent output formatting and then creates all necessary database tables using SQLAlchemy. The application is configured with CORS middleware to allow cross-origin requests from our frontend, React. A key feature is the exposure of a directory named saved_models via a static file mount at the /saved_models route, enabling access to saved machine learning model files. Additionally, the backend defines a /register endpoint, allowing new users to sign up by submitting their details such as username, email, and password through a form, with admin and regular user privileges. This setup ensures the backend is ready to serve both dynamic API responses and static assets needed for the application.[image: ]

The code in the image defines the beginning of a background task:  _do_training which is used to handle the asynchronous training of the  machine learning classifier in our backend API. The function receives 
metadata for the training job such as the job ID, zip file containing data, filename, classifier type, and model name. It logs the start of the job and updates the job status in the database to "running". Next, it writes the zip data to a temporary file, extracts URLs from it, and logs the process. Then, it scrapes content from the URLs and verifies that the retrieved text data is not empty. If all texts are empty, a RuntimeError is raised. This modularized and logged approach ensures the training pipeline is traceable, debuggable, and fault-resitent, which builds the core for production-grade ML applications.[image: ]

This code block defines two FastAPI endpoints that together manage asynchronous model training jobs without blocking the API. The first endpoint, POST /models/train  reads an uploaded ZIP file along with form fields for classifier and model_name, creates a new training job record in the database with the status "pending" and timestamps and then finally uses FastAPI’s background tasks to schedule the _do_training(job.id, data, zip_file.filename, classifier.lower(), model_name) function. It replies right away with the new job_id and HTTP 202 Accepted so that clients can move on without waiting for training to finish. The second endpoint, GET /training_jobs/{job_id}, accepts a job_id path parameter, authenticates the caller as an active admin, retrieves the corresponding training job record, and returns its latest status, timestamps, and error information, if any. 
[image: ]


This section of the backend API handles operations related to user-specific collections. It provides three main endpoints. The @app.get("/collections") endpoint retrieves all collections associated with the currently authenticated user by querying the database for records with the user's ID. The @app.post("/collections") endpoint allows users to create new collections by submitting a form with a title and a model ID. The new collection is stored in the database with the current user's ID. Finally, the @app.post("/collections/{cid}/predict") endpoint enables predictions using a specific collection by uploading a file. However, it first verifies that the collection belongs to the current user before proceeding with prediction logic. Together, these endpoints support secure CRUD operations for organizing and applying models on user-uploaded data.










[image: ]















This terminal output showcases the backend activity of a FastAPI application as it interacts with the React frontend. The process begins with the successful startup of the uvicorn server, which watches for file changes to enable hot reloading. As actions are done on the frontend such as registering, logging in, or accessing their collection dashboard, the backend logs each HTTP request. Notably, a POST request to /register confirms that a new user is signing up, while a subsequent POST to /token indicates a login attempt. This is followed by GET and OPTIONS requests to /collections and /models which is in response to the user fetching available models and user-specific data to populate the UI. Additionally, a warning related to the bcrypt module suggests a version incompatibility but does not prevent the core functionality. This log exemplifies how backend routes are triggered in real-time by user actions in the interface, enabling full-stack traceability.








Below is the Frontend images and what we have created:
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The displayed frontend interface represents a user registration page designed using React that allows new users to create an account by entering a username, email, and password into the form. There's also a checkbox labeled "Register as Admin," which enables users to indicate if they are registering with administrative privileges. Upon clicking the “Sign Up” button, the form data is submitted to the backend for user creation. This component is connected to the FastAPI endpoint which processes the input, stores the new user in the database and optionally flags them as an admin based on the checkbox selection. The top-right corner provides navigation links to the Home and Login pages, contributing to a user-friendly registration flow.







[image: ]

The displayed frontend interface represents the “Your Collections” page of the application which is designed to let users create and manage crisis classification tasks. At the center is a form for creating a new collection which includes three inputs: a text field to enter the collection title, a dropdown to select a classification model and a file upload input to submit the data which should be a .zip file of URLs or text. Clicking the “Create and Classify” button sends this data to the backend where it is processed, triggering the classification pipeline. 

[image: ]
[bookmark: _i1uwssqztf0i]




[bookmark: _o0m1v2p1byto]
[bookmark: _ayywva1q1yg1]
[bookmark: _5ggvysiatavl]
[bookmark: _99cg48yv0hs6]
[bookmark: _6mhwnhy8g5b5]This is the admin side of the application where the admin trains new models. As shown in the screenshot, the admin is provided with a simple and user-friendly UI that includes input fields for the model name and a description, file upload for training data and a dropdown menu to select the model type (e.g., SVM). When the Train Model button is clicked, the frontend triggers a POST request to /models/train which stores the job in the database with a pending status and immediately enqueues it for background processing. The backend then logs the job ID, writes and unzips the zip data, scrapes the content and validates the input before starting the model training. 
[bookmark: _d165rhm848io]
[bookmark: _3ndf7al9az2f]














[bookmark: _4b38wt9rt8a2]
[bookmark: _j1if6ouvm2sy]
[bookmark: _j3575ae7eel6]
[bookmark: _k7wzt1m9g7sl]
[bookmark: _nxihjm44t381]
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[bookmark: _3a20y7ahg8e8]

[bookmark: _oo283jetcbb6]
[bookmark: _ja5zbp3u1tx2]
[bookmark: _lo978pfdim9l]Chapter 5
Testing and Evaluation

5.1 [bookmark: _rkp9vxumu5sm]Evaluation and Results

Since this is a One-Class Classification (OCC) task, traditional accuracy is not a meaningful evaluation metric. In OCC, the model is trained only on positive (inlier) samples (e.g., crisis-related articles), and its goal is to distinguish them from everything else without seeing negative examples during training.
To evaluate how well the model generalizes, we use k-fold cross-validation and the following metrics:
· Precision : 
This measures false positives, which is important in crisis detection. A low precision means the model is flagging a lot of irrelevant pages as inliers. For a reliable crisis classifier, we want to avoid misclassifying unrelated content (e.g., generic news, login pages, ads) as part of the crisis.
· Recall : 
This measures false negatives. In high-stakes domains like crisis detection, missing a relevant article could mean missing critical real-world signals (e.g., warning signs or updates). High recall ensures the model captures as many relevant documents as possible.


· F1-score:
The F1 score provides a balanced metric when both false positives and false negatives matter, which is the case in most OCC setups. Especially when the dataset is small or imbalanced, F1 gives a clearer picture of the model’s overall effectiveness.
5.2 [bookmark: _jndckxw4kubu]Integration Testing


After all individual backend and frontend components successfully passed unit tests, we proceeded with full-stack testing to ensure the entire app functioned as intended across boundaries. This phase showed real-world usage scenarios to test the end-to-end performance of the system. 

The integration tests start by uploading ZIP files containing a mix of crisis-related and non-crisis URLs through the UI. These uploads start a sequence of backend operations including URL extraction, scraping of webpage, preprocessing of the extracted text (e.g., normalization, stopword removal), and also, classification using one of the trained machine learning models. The classification results were then stored in the database and rendered on the frontend dashboard for user review.

We verified that: 
· The routing logic correctly passed data through each backend component (scraping, NLP preprocessing, model inference). 
· The background task queue handled concurrent uploads without conflict or data loss. Frontend components dynamically reflected updated classification results in the user’s collection view. 
· Job status transitions (e.g., from “pending” to “running” to “completed”) were accurately tracked and displayed.
[bookmark: _cl81kwk4pmer]
[bookmark: _22o8dxpbbq0y]
[bookmark: _988mlodym3hz]Chapter 6 User Manual
6.1 [bookmark: _r26z0944x83j]Usage Guide

This application enables users to classify web pages as crisis-related or not using trained machine learning models. The interface is clean and intuitive, divided between two types of users: Admins and Regular Users.
· Login and Registration:
· Users can register with a username, email, and password.
· Users can select to register as an Admin.
· Upon login, Admins are redirected to the Admin Dashboard and Users to the User Dashboard.
Screenshots:
[image: ]
[image: ]

· User Dashboard:
· Create and Classify a Collection:
· Upload a ZIP file containing URLs.
· Select a trained model from the dropdown. A description of the model appears below it.
· Click "Create and Classify" to initiate classification.
· A loading spinner and status message provide real-time feedback.
· View Collections:
· After classification, collections appear in a list.
· Clicking a collection shows all classified URLs.
· Links are clickable and open in a new tab.
· You can delete a collection using the delete icon/button.
· Model Visualizations can be toggled with the "View Model Visualizations" button. 
· Visuals include: TF-IDF Terms, Score Distribution, and Fold Cross-Validation Performance.
Screenshots:
[image: ]
[image: ]
[image: ]
· Admin Dashboard:
· Train a New Model:
· Fill in the model name and a short description.
· Upload a ZIP of training URLs.
· Select the classifier type: SVM or Deep One-Class.
· A spinner and status message indicate training progress.
· When complete, the model appears in the list below.
· View and Manage Trained Models:
· View plots for each model.
· Visualizations are collapsible to reduce clutter.
· Admins can delete a model to free up space or remove old models.



Screenshots:
[image: ][image: ]
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[bookmark: _76ffwxx0uaeu]
[bookmark: _nsyz72jhicul]Chapter 7 Developer Manual
7.1 [bookmark: _qgbmpl1wbve]Installation Instructions
All our code is maintained at the following GitHub Repository: https://github.com/Menasey/MultiMedia_Project/tree/main 
To run this code locally on your machine follow these steps:
· git clone https://github.com/Menasey/MultiMedia_Project.git 
· navigate to the directory MultiMedia_Project . To run the backend:
· Navigate to the directory “backend” 
· Run “pip install -r requirements.txt”
· To run the backend, run: “uvicorn main_api:app - - reload” 
· To run the frontend:
· Navigate to the directory frontend
· Run “npm install”
· Run “npm run dev”
· Vite will print a local URL Open that in your browser to access the React app.
· Logic Summary:
· Model Training (Admin): Admin uploads zip → URLs scraped → TFIDF features generated → Model trained → Saved with plots.
· Classification (User): User uploads zip → URLs scraped → Selected model used → Predictions saved to user collection.


[bookmark: _d4fat5w1fpge]Chapter 8 Future Enhancements
· Key-word & Entity Recognition
Add a light NER tool (e.g. spaCy's small English model) to tag individuals, locations, dates and to mark the top 3–5 "key sentences" on each page.
· Batch Scheduling
Add a simple "Run nightly" option so users can reference a CSV of seed URLs and have the system re-classify them automatically (e.g. via a cron job).
· Dockerized Deployment
Containerize front end and API with Docker Compose so they can be deployed on any server without a local install of Python, Node.js and SQLite.
· Basic URL Pre-Validation
Before scraping, check all URLs produce a 200 status and aren't on a short "blocked domains" list; skip or mark bad links at once.
· UI Refinements
Highlight extracted entities and key phrases in view result.
Include a "Download CSV" button in order to export URL, score and snippet for users.
· Better Collections
Permit users to include short description and tags within every collection and provide "Export as JSON/CSV" in order for them to share or backup their sets.
· Threshold Tuning Slider
Have a simple UI component that will enable users to modify the cutoff of anomaly‐scores (e.g., from 0.1 to 0.9) by model and see immediately what URLs would switch between "crisis" and "non-crisis" without re‐scraping.
· User Feedback Loop
Allow users to mark any URL as false positive or false negative from the results view. Store that feedback in the database so that you can then retrieve those examples for retraining the model or for manual curation.
· Lightweight Analytics Dashboard
Make a small "Stats" page showing:
A. Total URLs processed by collection
B. % marked as crisis
C. A simple bar chart of counts by day (e.g. last 7 days)
· Admin Logs Page
Expose a read-only "Logs" view for administrators that displays the most recent scraping/classification failures (timestamp, URL, error message) so you can debug recurring failures without needing to wade through files.
· Multi-Language Stopword Support
Provide support for selecting "English" or "Spanish" (or both) before preprocessing. Behind the scenes you'd replace in the correct stopword lists to more efficiently process bilingual pages.

[bookmark: _2m1ceholc7pp]Chapter 9
Timeline and Milestones

· March 26 – April 5: Finish API endpoints and user authentication.
· April 5 – April 12: Integration testing and UI refinement.
· April 12 – April 19: Test full data acquisition pipeline.
· April 19 – April 26: Optimize model accuracy and API performance.
· April 26 – May 1: End-to-end testing, final integration, and deployment[image: ]
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Top 30 Most Informative Terms (TF-IDF)
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logging.basicConfig(

format="%(asctime)s %(levelname)s %(name)s | %(message)s",

level=1logging.INFO,
datefmt="%Y-%m-%d %H:%M:%S",

)

logger = logging.getLogger(__name__)

# — App & DB bootstrap
models.Base.metadata.create_all(bind=engine)

app = FastAPI(title="Crisis Events Text Classification API")

app.add_middleware(
CORSMiddleware,
allow_origins=["%"],
allow_credentials=True,
allow_methods=["%"],
allow_headers=["%"],

# @ Expose saved_models folder

app.mount("/saved_models", StaticFiles(directory="saved_models"), name="saved_models")

@app.post("/register")

def register(

username: str
email: str = Form(...),
password: str
is_admin: bool = Form(False),

db: Session

= Form(...),
= Form(...),

Depends (get_db),
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#

# BACKGROUND TRAINING TASK

def _do_training(
job_id: int,
zip_bytes: bytes,
filename: str,
classifier: str,
model_name: str,

db = SessionLocal()

try:

logger.info(f"[JOB {job_id}] Starting training job for {classifier}")
job = db.query(TrainingJob).get(job_id)

job.status = "running"

db.commit()

tmp_zip = f"tmp_{filename}"
with open(tmp_zip, "wb") as fh:
fh.write(zip_bytes)
logger.info(f"[JOB {job_id}] Zip file written to {tmp_zip}")

urls = extract_urls(tmp_zip)
logger.info(f"[JOB {job_id}] Extracted {len(urls)} URLs from zip")
os.remove(tmp_zip)

texts: List[str] = scrape_urls(urls)
logger.info(f"[JOB {job_id}] Scraped {len(texts)} texts")

if not any(t.strip() for t in texts):
raise RuntimeError("All scraped texts are empty")
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#
# TRAINING-JOB STATUS

@app-post("/models/train", status_code=status.HTTP_202_ACCEPTED)
async def enqueue_training(

background_tasks: BackgroundTasks,

zip_file: UploadFile = File(...),

classifier: str = Form("iforest"),

model_name: str = Form(...),

current_admin=Depends(get_current_active_admin),

db: Session = Depends(get_db),

data = await zip_file.read()

job = TrainingJob(
status="pending",
created_at=datetime.ttenew(),
updated_at=datetime.utenew(),

)

db.add(job)

db.commit()

db.refresh(job)

background_tasks.add_task(
_do_training, job.id, data, zip_file.filename,
classifier.lower(), model_name

)

return {"job_id": job.id}

@app.get("/training_jobs/{job_id}")

def get_job_status(
job_id: int,
current=Depends(get_current_active_admin),
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#
# COLLECTIONS

@app.get("/collections")
def list_collections(
current=Depends(get_current_active_user),
db: Session = Depends(get_db),
):
return db.query(Collection).filter_by(user_id=current.id).all()

@app.post("/collections")

def create_collection(
title: str = Form(...),
model_id: int = Form(...),
current=Depends(get_current_active_user),
db: Session = Depends(get_db),

coll = Collection(title=title, user_id=current.id, model_id=model_id)
db.add(coll)

db. commit()

db.refresh(coll)

return coll

@app.post("/collections/{cid}/predict")

async def predict_collection(
cid: int,
file: UploadFile = File(...),
current=Depends (get_current_active_user),
db: Session = Depends(get_db),

coll = db.query(Collection).filter_by(id=cid, user_id=current.id).first()
if not coll:
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prabhathj@Prabhaths-MacBook-Pro MultiMedia_Project % uvicorn backend.main:app --reload b Pyth... (0 @

INFO: Will watch for changes in these directories: ['/Users/prabhathj/capstone/One_class_crisis/MultiMedia_Project'] node front...
INFO: Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)

INFO: Started reloader process [60789] using WatchFiles

INFO: Started server process [60791]

INFO: Waiting for application startup.

INFO: Application startup complete.

INFO: 127.0.0.1:62598 - "GET / HTTP/1.1" 404 Not Found

2025-05-06 17:44:35 WARNING passlib.handlers.bcrypt | (trapped) error reading bcrypt version
Traceback (most recent call last):
File "/Library/Frameworks/Python.framework/Versions/3.12/1ib/python3.12/site-packages/passlib/handlers/bcrypt.py", line 620, in _
load_backend_mixin
version = _bcrypt.__about__.__version__

AttributeError: module 'bcrypt' has no attribute '__about__'

INFO: 127.0.0.1:63498 - "POST /register HTTP/1.1" 200 0K

INFO: 127.0.0.1:63498 — "POST /token HTTP/1.1" 200 OK

INFO: 127.0.0.1:63498 — "OPTIONS /collections HTTP/1.1" 200 0K
INFO: 127.0.0.1:63500 — "OPTIONS /models HTTP/1.1" 200 OK
INFO: 127.0.0.1:63501 - "OPTIONS /collections HTTP/1.1" 200 0K
INFO: 127.0.0.1:63502 — "OPTIONS /models HTTP/1.1" 200 OK
INFO: 127.0.0.1:63498 - "GET /collections HTTP/1.1" 200 OK
INFO: 127.0.0.1:63500 — "GET /models HTTP/1.1" 200 OK

INFO: 127.0.0.1:63498 - "GET /collections HTTP/1.1" 200 0K
INFO: 127.0.0.1:63502 — "GET /models HTTP/1.1" 200 OK
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