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Olivia Kristine Conway

ABSTRACT

There are twenty standard amino acids that are the structural units of biomolecules and
biomaterials such as proteins and peptide amphiphiles (PAs)he focus of this studywasto
develop accurate transferable coarsgrained (CG) models of those amino ais. In CG models,
several atoms are represented together as a single pseudoOi I T O OAAAARS®6 xEEAE
modeling of processes like selassembly of biomolecules and biomaterials through reduction of
degrees of freedom and corresponding increasedmputational speed. A 2:1 to 4:1 mapping
scheme, in which a CG bead is comprised of two to four heavy atoms, respectively, and associated
hydrogens,has beenemployed to represent functional groups in the amino acidsThe amino acid
backbone atoms are mdeled as two beads while the side chains are modeled with one to three
beads, and each terminus is modeled as one bedkhe bonded parameters for the CG models were
obtained from bond, angle, and dihedral distributions from atatom molecular dynamics (MD
simulations of dipeptides. Non-bonded parameters were optimized using the particle swarm
optimization (PSO) method to reproduce experimental properties (heat of vaporization, surface
tension, and density) of analogues of the side chains, termini, anddi&one groups of the amino
acids. These CG models were used to study the saésembly pathways and mechanisms of the PA

c16-AHLsK3-CQH in the presence of explicit CG water.
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GENERAL AUDIENCE ABSTRACT

In this study, models of the amino acidsvere developed for computer simulations. In these
iTAAT Oh OEA AT ETT AAEAO AOA OADPOAOobidéAoethdrO A
rather than as a collection of atombonded together. The beadsvere created in such a wayhat
their characteristics reflect those of themolecules and atom groups thathey represent. This was
accomplished in part by selecting parameters for each bead that approximately reproduce
experimental properties (density, heat of vaporization, and surface tension) and stctures (bonds
and angles) of the molecules and atom groups of which they are representative. Amino acids can
link together to form short segmentsknown as peptides or longer chains that form proteins. The
bead models thatwere developed in this study @n be linked together in the same way. They can
also be linked with other beads that represent otheatom groups? carbon groups of a carbon
chain, for example. Certain types of molecules known as peptide amphiphil@As) are often
composed of amino acidand a carbon chain. The amino acid bead models were created especially
to study these molecules, so once the models were developed, they were used in computer
simulations to representPAs Many types oPAscan automatically assemble into structures thia
resemble fibers, and it is this behavior in particular that was studied. By using these models in
computer simulations, weare able tosee things that cannot be seen inlab with a microscope or

other lab tools. This may help with future efforts to atdy and design molecules such as PAs which

show promise for medical applications like drug delivery.
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1. Introduction

There are twenty common amino acids which are the fundamental structural units of
proteins and peptide® molecules that can have important biological functions such as catalyzing
biochemical reactions (enzymes), or serving asgnaling molecules, transport molecules, or
structural molecules, for example4 EA AEAI EAAI AEOAOOEOU 1T &£ OEA Al ET’
AT 1T AET AGETT xEOE AT AAEI EOU OT -plEitspand helidahtiists’iA OU OO0
helices) enables the multiplicity of structures and functions thais necessary for the wider
spectrum of forms and operations characteristic of biological systems. Amino acids can also be
chemically altered through synthetic additions for examplefor an even wider array of features.

A class of molecules based on amino acids that in recent years has been the subject of much
investigation is peptide amphiphiles (PAs). Combining the chemical diversity of the amino acids
with a hydrophobic group, such asan alkyl chain, PAs possess the capacity to selfsemble into
structures like micelles, sheets, and fibers The peptide portion providespotential for
biocompatibility and biodegradation, andalsobioactivity if created to possess sequence similarity
to proteins with biological significance. The amphiphilicity also erables the possibility of
encapsulating small hydrophobic drugs. For these reasons, studies involving PAs have
predominantly focused on biomedical applications (e.g. PAss drug delivery agents and
biomaterials for regenerative medicine and tissue engineering, among others}. Research such as
this is particularly relevant as the world seeks advanced medical therapies that are personalized
and specific, with the capability to be engineered for unique situations.

A variety of methodsare used to study PAs and their selassembly. There are
experimental, in vitro techniquessuch as microscopye.g. scanning electron microscopy (SEM)
transmission electron microscopy (TEM)and atomic force microscopy (AFM)Rnd spectroscopy

(e.g. nuclear magnetic resonance (NMR), transmission infied spectroscopy (IR)circular



dichroism (CD), dynamic light scattering,and UV-vis absorption).24 While these methodologies are
indispensable to the investigation and elcidation of PA seKassembly structures and
characteristics, they do not provide us with the ability to directly monitor the seHassembly process
on the nanosecond and microsecond timescales. They also do fudty show individual PAs in this
process aml their interactions with other molecules in their environment like solvent water
molecules. Such molecularlevel information would be, however, useful for the design of PASThe
computational methodology of molecular dynamics (MD) may help in this respéthrough
modeling, simulation, and visualization of nanometetevel phenomena.In order to conduct MD
simulations, appropriate models must first be developed or selected for the system that is to be
studied. While models for amino acids and their polyer structures, proteins, exist as well as
models for various other molecules such alsydrocarbons and water each model has advantages
and disadvantages. This thesis provides a discussion of some of the models already in existence
that may be used and havbeen used to study PAss well as their limitations, and it also
represents work done to design models that may be more appropriate to the study of PA self
assembly.

Background information on MD, MD modeling, and amino acids and peptides/proteins is
given in the next few sections, following which a overview of the literature, methodologies, study
results, and study conclusionsre provided. It is important to note that the development of the
amino acid/peptide model that is described in the followingpages of this manuscriprepresents
the foundations of such a model, and that frequently, model development is a continuous, ongoing

process. Suggestions for future work are also thus provided the Section 6



2. Background

2.1 Molecular Dynamics

MD isa methodology for modeling molecular systems based on numerically solving
.AxO1 160 ANOAGET T O T &£ 11 OEITT 8 Yyl -$h AAAE AOI i
Each particle is both acted upon by a potential energy function, also known afégce field and acts
on other patrticles through that force field. The force fielslused for biomolecule and polymer
simulations, asshown in equation 1,often include terms describing the bonded interaction® the
bonds, angles, dihedrals, and improper dihedrals (terms 1 through 4 in equationd)and the non
bonded interactions as modeled with a Lennard JondkJ) potential function (term 5, equation 1)
and a term describing eletrostatics (term 6, equation 1). Atoms (or particles) in MD are assigned
initial positions? often based on molecular geometry as elucidated by experimental analysis of the

molecular structure? and initial velocities. In accordance with equations -5, thenew forces acting

upon the particles are calculated and the positions and velocities are updated.
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As has been mentioned, MDffers the advantage of enabling the study of systems on much
smaller time and length scales than can feasibly be done using experimentalyitro techniques.
This makes it an especially useful technique for studying mechanisms of processes occurring on
nano scales such as peptide amphiphile sedssembly.
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2.2 Coarse-Grained Modeling

There are two general ways to model molecules for MD simulations: 1) @tom (AA)
modeling, whichrepresents molecules in atomlevel detail; and 2) coarsegrained (CG) modeling,
xEEAE 1T AAT O i1T1AAOI AO OEOI OCE OEA OADPOAOGAT OAOQET I
AOT 1 06 190 I0ARRR® 801 OEh OEA (Oier@bre @dallyndltiple ehiides AA 0O/
about which atoms to represent as a single bead. To coagein a benzene molecule, for instance,
one could choose to represent the entire molecule as one bead; or it could be modeled with two
beads, each containing thee of the six carbons in benzene, with these two beads connected by a
single bond; or a model of three beads could be created, each containing two carbons, such that the
benzene molecule would take the form of a triangle with each bead as a point and tlees the
ATTAO AAOxAAT OEA AARAAAOS 4AEAOA AOA All bl OOEAI A
illustrated in Figure 1. Mostcommonly in coarsegraining, each bead is represented as a sphere
with its center at one of the atoms or at the centerfanass of the atoms it representsThe number
I £/ EAAOU AOT 1 O jAscs AAOATTh 1TEOOI CAT h NdpWCAT q PA
(read: Nto 1), in which N is the number of heavy atoms per bead. The hydrogen atoms associated
with the heavy @oms are included in the bead Typically, a bead only represents molecules of a
similar type (e.g.four water molecules in ore CG water beapor atoms connected to each other
through bonds?¢ as in the benzene example. Modeling molecules this vwayy grouping atoms
into beads? resultsin a decrease in the number of degrees of freedom involved in simulating a
system containing those molecules. The advantage of that is a corresponding increase in the
computational speed for the system which enables @to run a simulation at greater time and

length scales than are possible witih\A simulations with each atommodeled individually. This

4



opens up the possibility of gaining insights into systems and processes that are too large (or long)
to be simulated wth an AA model or that are too small (or short) to be observed experimentally.

CG simulations can span volumes as large as 100 x 100 x 10C timat in atomistic detail contain
millions of particles, but contain many fewer with coarsegraining. Coarsegraining also makes it
possible to study processes that span microseconds to milliseconds in range. Additionally, they can
enable highthroughput studies of thousands of parallel simulations, and they may provide insights
into the physical nature of a proces by revealing which details matter and which do not in

comparison with AA simulations?

Figure 1. Examples of CG mapping schemes for benzene
When creating a CG model, care must be exercised to capture the essential propertigb@f
molecule(s) insofar as is possible, realistic, and relevant to what is being studied. Coagsaining
smooths out the energy landsca@ in comparison with AA model$,changes the geometry of the

molecule(s), axd may result in a variety of other differences depending on the methodology used.

2.3 Amino Acid, Peptide, and Protein Characteristics

Amino acids are comprised of three notable chemical groups, two of which are common to
all amino acids; these are aamine group and a carboxyl group connected through a carbon atom
called the alphacarbon (G) (shown in Figure2 in the amino acid Serine as an example). The
particular structure of the chemical groups bonded to the alph&arbon (if any) gives each amino
acid its unigue identity; this group is known as the sidechain. Only one amino acid, glycine, has no
side chain. The rest all exhibit unique groups bonded to the alpfarbon such that the alpha

carbon is chiral, and the standard form found in biologidssystems is the kconformation®

5



Because of the chemical nature of the amine and carboxyl groups, amino acids can exist in
charged and neutral states, and they exist as zwitterions at neutral pH. Amino acids can be
classified based on the properties of their side chains: hydrophobicityAdrophilicity, charge, and
polarity. The amino aciddysine, histidine, arginine, aspartic acid, andglutamic acid possess a

charge at neutral pHe A table of all twenty standard amino acidén their neutral forms is given in

the appendix (Table AL.1).
Alanine Serine Valine
o} i OH
| 'H
H2N | LN
2 Y o
N-terminus : i | = C-terminus
CH; /\

Figure 2: Peptide characteristics shown on an example tripeptide. Blue i peptide
backbone; Red i amino acid side chains. Alpha-carbon and Beta-carbon shown on
serine as an example.

Amino acids become linked together by the formation of the peptide bonda condenstion
reaction in which the nitrogen of the amine group of one amino acid bonds with the carbon of the
carboxyl group of another amino acic® Larger structures that result from this (e.g. proteins and
peptide amphiphiles) can be influenced by steric effects of side chains, secondary stures arising
from hydrogen bond formation between peptide backbone oxygen and nitrogen atoms, and side
Figure 3 shows.

When developing a CG MD amino admtotein model, as this work represents, these are
some ofthe characteristics that must be taken into considerationSection4 following the literature

review will describe the efforts made to capture the desired characteristics.
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3. Literature Review

3.1 Experimental PA Studies

There are many examples in the literature of experimental PA design with seltsembly
characteristics and useful applications A common selfassembled structure is a fiber as shown in
Figure 4. In one study, microparticles were synthesized that contairgthe drug doxorubicin inside
a shell ofPAsthat were functionalized to target the folate receptor.A 60-fold higher cytotoxicity
was reported of the microparticles against a particular type of breast cancer cells, MEMB-231,
compared with non-targeting particles and commercial doxorubicint® In another study,self-
assemblywas demonstratedof a PAnanofibrous system with an antisense oligonucleotide (a
potential therapeutic for several disorders) that exhibited enhancedellular uptake and activity as
compared with the oligonucleotide delivered without the peptide amphiphilet? The Stupp lab has
investigated PAs for neural regeneration. They incorporated the laminiderived IKVAV amino acid

sequence into PAs and showed rapid, selective fdifentiation of neural progenitor cells into

7



neurons when cultured within the IKVAV PA2 They then used the mterial to treat spinal cord
injury and demonstrated a reduction in cell death at the site of the injury as well as an increase in
oligodendroglia (cells that form the myelin sheath) and regeneration of heuror®$ More recently,
the Matson lab designed hydrogels of functionalized sedfssembling aromatic PAs for controlled
release of HS with potential biological applications'4 This is representative of the leading edge of
research in drug celivery: to create biocompatible delivery systems that enable localized drug
delivery and controlled release rates, and which undergo biodgadation in the process of or
shortly following? drug release. The P&ased hydrogels created by the Matson group ke
potential in all these areas.

PAs may also be used for photochemical/photophysical and electronic applications such as
light-harvesting complexes. For example, Matsui and MacCuspie were able to fabricate
metalloporphyrin nanotubes by coating PA nanotubs with the metalloporphyrin protoporphyrin
IX Zn(l).25 Fry, Stupp, and coworkers also experimented with peptide amphiphiles and
protoporphyrin IX Zn(Il). They synthesized seHassembled PA metalloporphyrin arrays that
showed strong exciton interactions influenced by the peptidés Garifullin, et al., reported the
encapsulation of a derivative of zinc phthalocyaninwithin self-assembled peptide amphiphile
nanofibers. The resulting complexes showed very fast intermolecular energy transfer,
demonstrating the potential of PAs for the fabrication of supramolecular organic electronic
devices!” Thus it can be seen that a substantial amount of research has sholRAsto be promising

candidates in the quest for improved and enhanced therapies and technologies.

3.2 MD PA Studies

Considering the diversity of characteristics and form as well as the potential applications
that PAshave, research efforts have been made in the area of mechanisms of PAasdembly into
supramolecular structures such as fibers. In MD studies, bo&kA models (e.g. CHARMM, Amber 19

OPLS&0%) and CG moded (e.g. Martini2! PRME22 and SDR3) havebeen usedExperimental and MD

8



studies have both shown thafor most PA fibers, their assembly occurs first through the formation
of micelles followed by the merging of micelles téorm short cylindrical structures followed by
elongation into fibers through further merges?4:26 Early expelimental and MD studies indicated
OEAO EUAOT PET AEA ET OAOAAOET 1 O 1 £ -shdetdbetiveetid OAEI O
peptide portions of PAs are integral to the formation of fiberg? A CG MD study performed by
Velichko, Stupp, and Olvera de la Cruz showed that under conditions of pure hydrophobic
interactions without hydrogen bonding, micelles will form28 When the hydrophobic inteactions
were turned off and hydrogen bonding interactions were turned on, the PAs organized into one
AEIT AT OEsliebtd Fibers were only observed when both significant hydrophobic attraction and
EUAOT CAT AT 1 A E-bheet fardhalidhiw@edtplay. Edter studies, however, cast doubt
iT OEA EI BT OOAT AA -shedt folntatfon for ffibkrokn@ativg, €howiny Histead that

[ -sheet content can be negligible in PA fibers and that van der Waals foreeand in some cases
electrostatic interactions? may have a much more significant role in fiber formation, along with
hydrophobic interactions 242930 Research has also suggested that water ordering near the
comparatively hydrophilic peptide portion of a PA provides structure to the PAs and thereby
facilitates fiber formation? insights gleaned from combined AA and CG MD studies supported by
experimental validation4 Altogether, the particular stable form (e.g. micelle, fiber, tube) of different
PA seltassembled structures results from the particular strengths of and interplay between van der
Waals forces, hydrogen bonding, and electrostatic interactions among tohemical constituents of
the PAs and their surroundingst32 While insights thus have been gained through the use of MD,
the particular models implemented in the stugy of amino acid based molecules do have various
limitations. In order to understand some of the strengths and weaknesses of these models,
however, there must first be an understanding of MD and MD model development. Thus the next

few sections provide anoverview of these topicsas well as some details on amino acids and their



characteristics which must be considered when modeling thenand then will be described some of

the models that may be used for PAs.

3.3 Methods for Development of CG Amino Acid & Protein Models

Several methods have been used to develop amino acid/protein models. They generally fall
into two categories based on the mathematical formulas used to define the potentials: 1) physics
basedz in which the CG potential is described by boretl terms relating bond deformation and
angles, as well as nobonded terms describing LennardJones interactions (dispersion and
repulsion effects) and electrostatic interactions; and 2) knowledgdasedz an approach in which
the CG potentials are determiad by statistical analysis of known protein structures and defined by
statistical models. PhysicA AOAA | AOET AO AAT AA /£O CGENA OA TG0 AATEIOE A £
ATl x1 6 APDPOlI AAEAOS 4EA &I OT A0 EO TTA ET xEEAE !!
potentials are derived; while the latter is thermodynamicsbased, in which the CG potentials are
derived by reproducing (as closely as possible) key experimental data, especially thermodynamic
properties such as surface tension, free energy of solvation, &density 67

With respect to AAbased CG force field developmenthére are three primarytechniques
that have been employed: the inverse Monte Carlo (IMC) method, iterative Boltzmann inversion
(IBI), and force maching (FM), with the latter two being the most popular? With the IBI method,
the goal is to match the CG bead radial distribution function (RDF) with that of its AA counterpart
using a CG pair potential. As its name suggestdsiain iterative process that proceeds until there is
a convergence of the potential yielding the correct RDF. However, a particular RDF may be
reproduced by many different pair potentials such that the solution is not unique. Yet the IBI
method has beenvery popular because of its simplicity and quickness of convergenéelhe IMC
method also attempts to match the CG RDF with the AA RDF, and it too is an iterative process. It
differs from IBI in that it handlescorrelations between CG force field parameters in an explicit

way? such that their values are updated in an interdependent way, whereas in the IBI method the
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updates are independent and with each iteration a set of linear equations is solved to find a bette
approximation for the force field parametersé33 Force matching, on the other hand, attempts to
match CQairwise forces to AA forces calculated based on a set of reference conformations. A later
development used AA molecular dynamics (MD) trajectories as the reference. This process also
may be iterative$
The AAbased, physis-based approaches are more likely to capture some of the fine details
of the system while the topdown approach of using experimental thermodynamic data is more
likely to provide CG potentials that are transferable to other systems or stat&sA protein-structure
statistically-derived method can work well for computational biology projects because CG force
fields derived in this manner are simple and efficient. Yet their weakness is also in a lack of
transferability; as IngolfissonA 0 A1 8 AAOAOEAA EOh O7EEI A OEA & OAA
globular proteins will work well for a vast majority of single protein and peptide structures, the
interaction between independent domains, interactions between proteins and nucleic acidstc.
require derivation of a new component of knowledgeA A OAA £ OAA AEAEAI AO86
Another method of CG model development, as mentioned, is to optimize model parameters
to reproduce experimental, thermodynamic properties. Examples ahodels that utilize this
method include the Martini model, in which partitioning free energies of amino acid side chains
between water and oil (cyclohexane and butane) were used to develop ndmonded parameters?!
and the ShinodaDevaneKIlein (SDK) model which used experimental values of density and surface
tension for non-bonded amino acid/protein parameters of side chain analogue®. Both of these

models, along with some others, will be futier described in the following section.

3.4 Notable Protein Models

Amino acid CG models have predominantly been developed for examining the folding,
characteristics, and behavior of proteins in large systenfsBecause such systems consist of a large

number of particles, it is quite common to incorporate solvent effects into the model so that solvent
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molecules are not simulated thereby decreasing the total number of degrees of freedom and
significantly speeding upthe simulation. In those cases, the model is an implicit solvent model,
whereas a model that requires explicit representation of solvent molecules is called an explicit
solvent model. Agan be seen in Table 1, manyG protein models are implicit solvehmodels:
AWSEM (associative memory, water mediated, structure and energy modé|)Bereau & Deserngp;
CABS (ealpha, ebeta, sidechain)z¢; Hills, Lu, & Votl7; OPEP (optimized potential for efficient
protein structure prediction )38; PaLaCe#; PRIME (protein intermediate resolution model¥?; PRIMO
(protein intermediate model)40; Rosett&!; and UNRES (united residuéj models. Many of these
models place a greater emphasis on the protein backbone than on the side chains due to the
influence of the backbone on secondary structure characteristics and protein folding. Exceptions
are the Martini2t; PRIMO; and Hills, Lu, and Voth models, which allow a higher resolution for the
side chains than many of the other models. Of the explicit solvent models, the Martini model is
certainly more widely used than the EORPION modé, especially because the model has already
been well developed for other types of molecules suchas lipids*4 and DNA5? which is of use
when modeling proteins in biological systems.

The ShinodaDevaneKlein (SDK) modet3 is another CG force field that can be used
for protein and peptide simulations, yet only nonbonded parameters were developed for the
model and not bonded parameters (only generic bonded parametemwere used in the
parameterization of the model). Those who wish to use the SDK model thus may need to develop
their own bonded parameters as in referencéé. Regarding the norbonded interactions, the softer
LJ (96) potential form was used rather than the LJ (1:5) form shown in equation 1. Additionally,
the backbone was modeled in a somewhat crude way by simply using the Asparagine and
Glutamine side chain beads for the standard and Alanine backb®beads?®* However, there is also
an SDK CG water model that can be used in conjunction with the SDK protein model, in which

parameters were developed for a CG water bead comprised of three water molecuies.
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Table 1: Select CG Protein Models

Backbone Side Chain
Model Solvent Beads Beads Development

AWSEM implicit 2 (G, O) 1(C) mixed: knowledge-based and

physics-based
Bereau & Deserno implicit 3 1(G) knowledge-based
CABS implicit 3 1 knowledge-based
. o physics-based, force
Hills, Lu, & Voth implicit 1(C) up to 4 matching
- - physics-based,
Martini explicit 1 upto4 thermodynamics-based
L o mixed: physicsbased and
OPEP implicit 5 1 (proline: 3) knowledge-based
PalaCe imolicit 3 1-2 physics-based, iterative
P Boltzmann inversion
PRIME implicit 3 1 knowledge-based
PRIMO implicit 3 upto5 physics-based
Rosetta implicit all backbone 1-2 mixed: knowledge-based and
atoms physics-based
SCORPION explicit 1 1-2 physics based,force-
matching
UNRES implicit 2 1 physics-based

It has already been shown that water plays a critical role in the selissembly of PAg,and
for that reasonit seemsbest to employ explicit solvent in PA selassembly simulations. As noted
already, the majority of protein models developed have been developed with implicit solvent
parameters. SCORPION, an explicibbrent CG protein model, only models amino acid structures
with one backbone bead per amino acid residudal{e monomeric unit), and side chains are modeled

with at most two beads for a given amino acid. This is one of the lower resolution optionghereas
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amore intermediate resolution model of both the side chains and backbomaay be more effective
at closely captuiing the behavior and interactions of both during PA seldssembly. Additionally,
the SCORPION model utilizes an elastic network rather thaxplicit bonded terms for the bonded
interactions.#® The Martini model has a higher resolution for the side chas with up to four beads
for a given amino acid. However, the backbone is modeled with just one bead per residue, and
when using the Martini model, it is required that one specify the type of backbone beadvhether it
is in an alpha helix or beta sheet diree in solution, for example. Furthermore, the Martini CG water
model shows freezing behavior between 28@300 K which the developers corrected by introducing
antifreeze particles along with the water to reproduce liquid behavior in that temperature rang44
A set of CG water models that do not have this limitatidmas beenrecently developed in ourgroup
by Bejagam et a#3

While any of theprotein modelsdiscussed in the preceding paragraphsould be chosen for
studying PAs, it may be that none of them captures P#ater interactions accurately, considering
some of the limitations addressed If that is the case, then it is possible that thel-assembly
pathways demonstrated from the use of those modelsmay be wrong Yet a thorough knowledge of
the actual steps involved in the process of sefssembly would be advantageous for designing PAs
and controlling the selfassembly process. Therefe we considered the development of new CG
amino acid models a worthy endeavor models whose interaction parameters could be tuned with

respect to the aforementioned water model developed in ougroup.33

4. Model Development

4.1 Overview

In addition to utilizing the water models developed by Bejagam, et &l.in order to create
amino acid models for use with explicit solvent, we were interested in using other CG models that
members of our lab had recently developedZG models for hydrocarbon®848 and benzene3? These
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could be used for modeling hydrocarbon tails of PAs and parts of amino acids as wille
determined to create an intermediateresolution model of both the amino acid side chains and the
peptide backbone so as to more closely capture the behavior of both during PA sedsembly. The
peptide backbone would be parameterized such that it would not be necessary teta
predetermined secondary structure, unlike in the Martini modek! Additionally, a 12-6 LJ

functional form was chosen so as to harmonize with the water, hydrocarbon, and benzene models
since those were developed with the same LJ functional form.

Our mapping schemes would be 2:1 where possible, and only larger (e.g. 3:1 or 4:1) when
constrained by the atomic bonding pattern within the molecule or in the event of other constraints
necessary for ceating astable CG model.A 2:1 mapping scheme would allow for greater accuracy
as compared with beads containing larger numbers of heavy atoms per beadile simultaneously
offering an advantage in a decrease in the number of degrees of freedom whicbreases
computational speed as compared with AA models as previously describefihe maximum number
of heavy atoms represented in a given bead in the models developed is four (4:1 beads), as can be
seen in the mapping schemegiven in Table A.1 in the appendix. The overall ring structures of
Phenylalanine, Tyrosine Tryptophan, and Histidine were preserved. The centers of the beads are
located at the center of mass of the atoms they represernthe mapping schemes that were
developed also provide fortransferability across amino acids where possible, such that in some
cases the same bead type could be used in more than one amino acid (e.g. C2M in methionine,
glutamine, and glutamic acid).

We determined to develop a physichased model as opposed to lkenowledge-based model
since the latter is derived from statistical analysis of large amino acid assemblies in the form of
proteins and protein complexes, neither of which represents the target application for our model.
We also determined that the basenitial model would only possess neutral beads corresponding to

neutral (uncharged) amino acid side chains and termini. The terms that our model would need to
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account for are thus all of those given ierquation 1 with the exception of the fifth term
representing electrostatic interactions which is important for force fields (e.g. AA force fields) that
possess particles with full or partial chargesWe also chose a hybrid method for parameterizing
our model that utilizes AA distributions for developingthe CG bonded parameters and
experimental thermodynamic data for developing the norbonded parameters of the C@rce field.
This methodology was successfully used in our group to develop the hydrocarbon modéisThe
bonded parameters we could obtain by mapping distributions from AA molecular dynamics
simulation trajectories to CG distributions. The nofbonded parameters were determined in a
manner similar to that usedin the SDK model developmenin which the non-bonded parameters
or side chain beads were optimized to reproduce thermodynamic properties of amino acid side
chain analogues? Side chain analogues are molecules that closely approximate the structure of the
amino acid side chains. For example, the side chain analogue of neutral Lysine-tsutylamine as is
shown in Figure16 on page26. While the SDK model waseported to have performed well in
predicting the native structures of a set of proteins, bonded parameters were not specifically
developed for the model, and beads that represented the backbone were patterned off of the
Asparagine and Glutamineidgle chaing? as previously mentioned. Additionally, while the SDK
model was parameterized using only experimental values for density and surface tension, we
included a third optimization experimental value, heat of vaporization, when such information was
available for an andogue. Including heat of vaporization in the optimization process would help
ensure that the nonbonded parameters were really ideally optimized to reproduce the appropriate
thermodynamics of the chemical constituents of the amino acids.

Following development of the bonded and norbonded paraneters, we would be able to
run CGPAsimulationsto test for self-assembly andthe appropriateness of the parametersand to

determine what subsequent stepshould betaken in the model parameterization. Tuning the
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interaction parameters with the water model also could be evaluated. Obtaining hydration free

energies for amino acid analogues was also used for that purpose.

4.2 Mapping Schemes and Analogues

Determining the mapping scheme is one of the first steps in CG model developmemtthis
section, the mapping schemes for the amino aciagll be shown. The choice of analogues used to
represent the amino acid side chains, backbone beads, and terminidoks will be discussed. Any
particularities for a given amino acid or analogue will also be conveyed. More details of the
mapping schemes argiven in Table A.1 (for the amino acids) and Table A.2 (for the analogueg

in the appendix.

4.2.1 Alanine

(a) (b)
O

H-.C

NH,

Figure 5: (a) Alanine with mapping scheme and (b) N-butylamine

Alanine is the amino acid with the smallest side chainjust a methyl group. This made it
necessary to model thalanine backbone differently than thestandard backbone associated with
most of the other amino acids with the side chain grouped in with thealpha carbon and nitrogen,
as shown in Figure5. To have modeled the side chain separately would have resulted in a bead so
lightweight that it would have been unstable at larger time stepghan are possible when
implementing a 2:1 or greater ratiomapping scheme. A lower mass leads to a greater vibrational
frequency in connection with any beads it is bonded to, and this correlates with a smaller time step

required for stability.4® N-butylamine waschosen for parameterizing the &nine beads because of
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its structural similarity, with both the backbone Alanine bead (AB) and the Nerminal alanine bead

(ANT) modeled with the same norbonded parameters.

4.2.2 Arginine
NH, o)
HN)\N OH
H NH,

Figure 6: Arginine with side chain mapping scheme

The structure of the aginine side chain is the most unique as compared with the other
amino acid side chains. The closest analogue to the nitrogenous end group is guanidine, for which
not a large quantity of expeimental thermodynamic data are available. The pKa of this end group
is 13.859 meaning it is almost never in neutral form, and almost always it is protonatedeVane, et
al., during the creation of the SDK model, used experimental data from guanidinium salt solutions to
parameterize the charged end group of i@inine.23 Yetsince the base model development described
in this thesis is only of neutral species, we modeled a n&al form of arginine as well. We used
three beads to describe the side chain, &own in Figure6. For the ouermost bead in the side
chain? which represents two nitrogenatoms and one cabon with associated hydrogeng we used
an AA model of the gginine side chain and ran simulations to calculate values for the density, heat
of vaporization, and surface tension at 298 K for optimizing the nechonded parameters. Because
the CHARMM AA force field does ninclude a model of a neutral eginine, we obtained partial
charges for the atomic model frontGaussiaf, anab initio quantum chemistry software package
that can be used for predicting many properties of molecules, including atomic chargeSome of
thesecharges were modified so as to harmonize better with the CHARMM values for the sitteain
atoms and assign no difference between hydrogens bonded to the same carbon atonstasvn in

Table A4.1 in the appendixwhich provides the atom names (as given in thEHARMM files), the
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Gaussian charges, the CHARMM charges, and the charges that were assigned. Regarding the other
beads in the CG model, the middle side chain bead was modeled with the same-honded

parameters as the N@nitrogen plus G) bead of the bakbone, and the inner side chain bead was
modeled with the same norbonded parameters as those of thewo-carbon C2M bead previously

developed by a member of thgroup from modeling hydrocarbons4?

4.2.3 Asparagine
(a) (b)

Q 0
O\
OH HZN’LLCH3
NH, NH,

Figure 7: (a) Asparagine with side chain mapping scheme, and (b) acetamide

Because of the structure of the sparagine side chain, it was necessary to model the entire
side chain as one bead ahown in Figure7(a) above. Experimental values of acetamide were used
for optimizing the non-bonded parameters. However, because the melting point of acetamide
occurs a 81 °C (354 K)52 all simulations were run at 358 K at which temperature the malculeis in
liquid form. This was for the calculations performed in the optimization of the nosbonded

parameters,as isdescribed in Sectiord.4.

4.2.4 Aspartic Acid
(a) (b)
O
O

HO
OH Ho’lLCH3
O NH,

Figure 8: (a) Aspartic acid with side chain mapping scheme and (b) acetic acid
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Like asparagine, the apartic acid side chain was modeled as oriead (Figure 8a)) because
of the bonding pattern between the side chain atomsAcetic acidexperimental values were used

for optimizing the non-bonded parameters.

4.2.5 Cysteine
(a) (b)
O

SH
HS OH HiC”

NH,
Figure 9: (a) Cysteine with side chain mapping scheme and (b) methanethiol
The analogue for the gsteine side chain is methanethiol (methyl mezaptan); its similarity
to the cysteine side chain isshown in Figure9 above. Its boiling point is6 °C (279 K}2 so all
simulations were run at 278 K. Thevalue for the heat of vaporization used was that at thediling
point, which is given in Sectior.5, & a close approximation to the value at 278 K since a value was
not found for the slightly lower temperature.

4.2 .6 Glutamic Acid
(a) (b)

O O 0O
HO OH HOJK/CH3
NH,

Figure 10: (a) Glutamic acid with side chain mapping scheme and (b) propionic acid
Two beads were used to model thelgtamic acid sidechain (Figure 10(a)). Non-bonded

parameters for the outer bead representing the carboxyl group of the side chain had already

been obtained by previous work done in thegroup (unpublished results) from optimization with
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respect to propionic acid experimental values. The inner bead was modeled with the same

parameters as the C2M bead obtained in previous work.

4.2.7 Glutamine
(a) (b)

NH, o) O
CH
o~ OH HZNJK/ p

NH,
Figure 11: (a) Glutamine with side chain mapping scheme and (b) propionamide
Propionamide was used as thanalogue for gutamine as it represents the side chain very
accurately as can beseen in Figure 1. Itsmelting point is 81 °C (354 K)52 so all simulations were
run at 356 K to target experimental thermodynamic propertiesof the liquid phase for optimizing
the CG force field parameters. The inner side chain bead was assigned the G as in the case

of the inner side chain bead oflutamic acid.

4.2.8 Glycine
(a) (b)

Figure 12: (a) Glycine with mapping scheme and (b) N-butylamine.

Glycine is the only amino acid that does not have a side chain. Itddxdminal C,-amine
group was modeledthe same as any other Nerminal group, and its backbone Gamine group was
modeled the same as the standard backbong-@mine group, the only difference in both cases being
an extra hydrogen as compared with the other Nerminal and backbone groups. Thetandard N-
terminal analogue is Nbutylamine which is shown inFigure 12 aboveto be a good analogue for the

glycine N-terminal bead. However, analysis of the AA @Bapped distributions would indicate
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whether the bonded parameters should be modeled theasne as for the other standard amino acids

or differently.

4.2.9 Histidine
(a) (b)
O
\
~ OH
HN
\=N NH, N/
(c) (d)
H
N CH,

Figure 13: (a) Histidine with side chain mapping scheme, and side chain analogues (b)
pyridine, (c) pyrrole, and (d) toluene.

The analogue of the Istidine side chain is 4methylimidazole. Because experimental
thermodynamic properties for the analogue are lacking in its liquid phase, we used pyridine,
pyrrole, and toluene for optimizing the parameters of the three tstidine side-chain beads. The
similarities of some of the constitients of these analogues to thhistidine side chain mapped
constituents can beseen in Figure B. The in values for the analogue and amino acid beads were
compared to check for similarity as a validation (ocontradiction) of the appropriateness of these

analogues for parameterizing the Istidine beads.
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4.2.10 Isoleucine

(a) (b)

H3C | H3C CH3

Figure 14: (a) Isoleucine with side chain mapping scheme and (b) 3,4-dimethylhexane.
Dashed line shows that 2,5-dimethylhexane is a symmetric analogue of the isoleucine side
chain.

Butane is a close analogue of thedleucine side chain, but it exists as a gas at room
temperature, and its condensation point is0.5°C52 Therefore, we chose 3, 4limethylhexane?
which is aliquid at room temperature52? for optimizing th e non-bonded parameters of the
isoleucine side chain. This is the same approach as that takernhe development of the SDK
model23 We gave the outermost side chain bead the same parameters as the C2E bead in the
hydrocarbon optimized previously by An, et. at7 Yet because of the slight difference between the
inner side chain bead and the outer side chain bead, abown in Figure 4, we decidedto model the

inner side chain bead as different from the outer side chain bead.

4.2.11 Leucine
(a) (b)
O ,

H:C
2 OH H3C / CH3
CH; NH, ; CHj

Figure 15: (a) Leucine with side chain mapping scheme and (b) 2,5-dimethylhexane.
Dashed line shows that 2,5-dimethylhexane is a symmetric analogue of the leucine side
chain.

The side chain ofeucine had to be modeled as one bead becausets bond pattern. As

with the isoleucine side chain, the most obvious analogue flucine? isobutane? is a gas at room
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temperature and has the low condensation point 0f11.7 °C52 So using the same approach as
DeVane, et ak3 we used 2,5dimethylhexane--which is liquid at room temperature52--for
optimizing the nonbonded parameters of theducine sidechain. Figure b showsthat the
symmetry of 2,5-dimethylhexane provides two identical beadshat are exact analogues of the

leucine side chain.

4.2.12 Lysine
(a) (b)

HoN HsC™ " "NH,

NH,
Figure 16: (a) Lysine with side chain mapping scheme and (b) N-butylamine
To model the neutral ¥/sine side chain, we used Nutylamine to obtain nhon-bonded
parameters for the outer side chain bead along with the C3M ndmonded parameters for the inner
side chain bea. As showrin Figure 16, N-butylamine is a nearexact match to the ysine side chain.

4.2.13 Methionine
(a) (b)

JE '
H4C OH H3C”S\/CH3

Figure 17: (a) Methionine with side chain mapping scheme and (b) ethyl methyl sulfide

Ethyl methyl sulfide is the analogue of the rathionine side chain, as can baseen in Figure
17. The C2M parameters were used for the inner side chain bead, leavindydhe outer side chain
bead? representing the sulfur atom and outermost carbn with associated hydrogens to be

optimized with respect to the experimental values of ethyl methyl sulfide.
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4.2.14 Phenylalanine
(a) (b)
@)

CHjy
OH

NH,

Figure 18: (a) Phenylalanine with side chain mapping scheme and (b) toluene

Toluene is the obvious analogue for penylalanine, as shown in Figure 8. As ourdab had
already obtained norrbonded parameters for a twaecarbon bead from modeling benzene (type
BZ) 33 those nonbonded parameters were used fothe two-carbon side chain beads. That left only
the three-carbon bead nonrbonded parameters to be optimized. As in such cases with the other
amino acid side chains, we verified this decision by comparing the RDFs of the toluene beads from
using the BZparameters with those of the AAnapped CG toluene RDFs and thégnylalanine side

chain RDFs.

4.2.15 Proline

OH
NH

Figure 19: Proline with mapping scheme

Proline has the peculiar feature of having a side chain that is connected back to the amino
acid nitrogen, as showrin Figure 19 above. It wasdecided that the threecarbon side chain bead
could be modeled as C3M for its nehonded parameters and that thenitrogen-C, bead could be
modeled using the same parameters as those developed for the lysine outer side chasadh.
Comparing RDFs of the CGgdine beads and the RDFs of the AA mapped proline beads shows that

this is not an unreasonable approximation.Pyrrolidine could be used to check or tune these
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parameters to potentially better fit the structure, but that did not seem likely to be necessary to
capture the essential attributes of the proline beads. The tendency mfoline to cause turns or
kinks in a peptide or protein sequence is a more defining attribute of the amino acid, and that is
more likely captured through the bond and angle distributions. The VaPro-Leu tripeptide was

used to obtain those distributions.

4.2.16 Serine
(a) (b)

HO OH HSC/ OH
NH,
Figure 20: (a) Serine with side chain mapping scheme and (b) methanol
As can be seein Figure 20 above, theobvious analogue for grine is methanol. Since
methanol is a liquid at room temperature and is wellcharacterized with respect to its
thermodynamic properties, there was no need to consider any other analogue option for obtaining

the non-bonded parameters for the %rine side chain bead.

4.2.17 Threonine
(a) (b)

OH O

N

H,C~ T~OH

H,C OH
NH,

Figure 21: (a) Threonine with side chain mapping scheme and (b) ethanol

Ethanol is the analogue we used for théhreonine side chain because of its similarity to the

threonine side chain as showrin Figure 21. Like methanolfor the serine side chain, ethanol is
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liquid at room temperature and well-characterized with respect to its thermodynamic properties

such that ro other analogue option was necessary.

4.2.18 Tryptophan
(a) (b)

OH

WLy =/

CHsy

Figure 22: (a) Tryptophan with side chain mapping scheme, and analogues (a) pyrrole
and (b) toluene

Tryptophan has the largest, bulkiest side chain. Initially we tried to use five beads and two
rings for mapping the side chain, but we were not able to make that mapping scheme functional.
When we attempted to run simulations with the five bead side chain, they were so unstable that
they crashed immediately. This instability appeared to result from some beads in the side chain
being counted in intramolecular interactions multiple times, which happened in part because of the
two ring structures (resulting in multiple paths along which a bead could interact with others) and
in part because only thanteractions between beads directly bonded to each other were excluded.
A four-bead ring was also ruled out as problematic, so the mapping scheme was instead finalized as
one ring made up of three beads with the masses asnilar as possible. As with Istidine, however,
the non-bonded parameters for these beads were optimized using more than one analogue
toluene and pyrrole in this case. The similarities of some of the constituents of theseadogues to

constituents in the tryptophan side chain are shan in Figure 22.
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4.2.19 Tyrosine
(a) (b)

OH

NH
HO 2
CHj

Figure 23: (a) Tyrosine with side chain mapping scheme and (b) m-cresol

The analogue chosen fonfrosine was mcresol becaise of its similarities to the yrosine
side chain and because of the availability of experimentiermodynamic data at an appropriate
temperature for parameterization. Because of the number of atoms in thigrosine side chain and
because of the way they are bonded to each other, a number of differemtions exist for the
mapping scheme. The particar mapping scheme we settled on, as shown in Figur&@),
preserves a ring structure for he CGyrosine. Initially we attempted to model the yrosine side
chain with four beads, adhering to a preference for a 2:1 mapping scheme (two heavy atoms per
bead). This mapping scheme proved unstable, however, so the final mapping scheme consists of
only three beads.Toluene was used as the analogue for the three carbon bead, the two carbon bead
was modeled with the same norbonded parameters as those of # benzene bead, B®,and the
parameters for the bead with the hydroxyl group were optimized using ntresol in combination
with the already-developed nonbonded parameters for the other side chain beads. Because the
structure of m-cresol differs slightly from that of the tyrosine side chain, however, the bonded
parameters for tyrosine were set based on the ABG mapped distribution of the yrosine dipeptide

rather than from the m-cresol analogue.
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4.2.20 Valine

(a) (b)
CH; O HsC_ | CHs
HsC OH
NH2 HSC 1: CH3

Figure 24: (a) Valine with side chain mapping scheme and (b) 2,3-dimethylbutane. Dashed
line shows that 2,3-dimethylbutane is a symmetric analogue of the valine side chain.

The analogueused for valine was 2,3dimethylbutane since it exists as #iquid at room
temperature and since the more obvious analogue, propane, exists in the gas phase at that
temperature 52 This is also the same procedure that DeVane, etadedin the development of the

SDK modeP? Figure 24 showsthat the symmetry of 2,3dimethylbutane provides two identical

beads hat are exact analogues of thealine side chain.

4.2.21 Backbone and Termini

(a) (b)
NH, y O 0
N H,C )-L
Rf\f W)LOH TN e
0 R, H
(c)

O

H3C\)J\/CH3

Figure 25: (a) A generic dipeptide showing the backbone mapping scheme, and analogues
(b) N-methylacetamide and (c) diethylketone.
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(a) (b)

Figure 26: (a) A generic dipeptide showing the mapping scheme for the N-terminus and the
C-terminus, and analogues (a) N-butylamine and (c) propionic acid.

In this model, there are two beads for modeling the standard peptide backbone and two
beads for modeling the termini, ashown in Figures B and 26. This is different from most protein
models which tend to use either one bead for the entire backbone repeanit (Nitrogen, alpha-
Carbon, and carbonyl together) or which describe the backbone in AA detail, as shown in Table 1.
Non-bonded parameters had already been determined by anothgroup member for abead with
the same structure as the @erminal bead when modeling propionic acid(unpublished results).

The Nterminal bead was given the same parameters as the outer lysine side chain bead. N
methylacetamide was chosen as the analogue for the®l bead (BNC), andliethylketone was
chosen as the analogeifor the backbone carbonyl (BCO). Simulations for-idethylacetamide were

run at 313 K since its melting point i28 °C (301 K)22

4.3 Bonded Parameters
After the mapping schemes were determined, the next step that was undertaken svthe
running of AA simulations to obtain bond, angle, and distributionfor the CG models by mapping
the AA molecule to its CG version using the AA simulation trajectorie€onsidering that we needed
to obtain parameters for bonds, angles, and dihedral angles related to the side chain beads, terminal

beads, and peptide backbone beads, we decided to run AA simulations of predominantly
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homogeneous dipeptides dipeptides that cortain two of the same amino acid, e.glanyl-alanine
andleucylleucine. This would result not only in bonds and angles unique to a given amino acid in a
peptide, but it would also produce backbone bonds and angles and their force constants for each
dipeptide simulation. Considering the uniqueness of the sidehainsof the different amino acids,
the backbone bondsangles and force constants resulting from theAA simulations were likely to
differ somewhat across dipeptidesimulations. Thus we determinedto use all of the dipeptide
simulations in addition to avaline tripeptide simulation to define what would seem to be optimal
bonded parameters for the backbone beads. Valine was chosen as the homogeneous tripeptide
amino acid due to the moderate bulkinses of the side chain and single bead modeling of the side
chain for ease of use. SDF (structure) files of the dipeptides were obtained frétubCheni? and
converted to PDB files using the molecular editig software Avogadro54 Because of the uniqueness
of proline and arginine, non-homogeneous dipeptides were used to model those amino acids.
Additionally, because we chse to bundle the side chain oflanine in with its terminal and
backbone beads, we used a homogeneous tripeptid#anyl-alanyl-alanine, in order to capture
those angles and dihedrals. We also used structures that contained the L forms of the amino acids.
For each dipeptide or tripeptide,PackmoFb® was used to generate a PDB file containing five
hundred dipeptide/tripeptide molecules. The box sizes varied because the sizes of the different
dipeptides/tripeptides varied. Molecular dynamics simulations were run with theCHARMME? force
field and the molecular dynamics softwardNAMD®6 (version 2.12), with the molecular visualization
program VMD57 The simulations were conducted at 298 K with a 1 fs time step for 5 ns, in the NPT
ensemble (constant moles, pressure, and temperature) using Langevin dynamics for temperature
control and the NoséHoover Langevin piston barostat for pressure control A configuration file is
given in theappendix, A26,as an example. The Langevin thermostat is a popular choice for MD
simulations. It produces the correct canonical distribution and controls temperature by removing

energy from the system with friction forces and by adding energy to the systemvith random
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forces®® The frictional and random forces are incorporated by adding them to the Newtonian
equations of motionsé asshown inequation6ET x EE AE ion cBeficiedtRy & theBOI&chyD
Q is the Boltzmann constant]T is temperature, mis mass, andR(t) is the univariate Gaussian
random process. The fluctuating (random) force is described by the last term @guation 6 while
the dissipative (frictional) force is described by the [ term. Pressure control with the Nosé
Hoover Langevin piston barostat used in NAMD generates the correct NPT ensemble distribution

when used in conjunction with the Langevin thernostat.ss

~
g

Q'Y
aé Ol U crd Yo (6)

NAMD implements the velocityVerlet integration method for advancing the positions and
velocities of each atom/bead in time, as shown iequations 7-10. The velocity-Verlet algorithm is
simple, it is symplectic (demonstrating longtime stability) and time-reversible, and it requires only
one force evaluation for each time step, making it suitable for biomolecular simulations which are

typically large and complexes
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Particle Mesh Ewald (PME) was used for electrostatic interactions. PME is a method that
divides the electrostatic interactions into a longrange contribution, which is calculated using a
Fourier transform; and a shortrange contribution, which is calculaed in real space. PME is both
highly accurate and reasonably fast, thus making it a standaothoice for MD simulations® For the

non-bonded interactions, a cutof of 12 A was used with 14 scaling. With respect to the cutoff, this
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means that in the LennardJones potential, calculations were performed only on atoms within 12 A
from each other rather than allowing the potential to very gradually drift towards zercat long
ranges. The 14 scaling means that within a molecule, notvonded interactions between atoms
located within two bonds from each other were ignored while the interactions between an atom
and another atom three bonds away from it were calculated witheduced effect. Interactions
between atoms farther apart from each other than three bonds in the same megule would have
full effect.

Following these AA simulations, the CG trajectory was created based on the AA simulation
trajectory. The way this works isby identifying which atoms in a molecule make up which bead
and then by obtaining the center of mass of those atoms which becomes the center of mass of the
bead. Using these centers of mass, one can then calculate the length of the vector between two
beads bonded to each other (i.e., the length of the bond between two beads bonded to each other),
the angle created by three beads bonded to each other, and the dihedral angle created by four beads
bonded to one another in series. All the lengths of a bd of a given type, all the angles of a given
type, and all the dihedrals of a given type are collected and binned into histogram distributions.
The resulting curves are used to obtain the equilibum bond lengths and angles and
approximations of the dihadral angles. These files also create a CG trajectory from the AA trajectory
and from the information given about the mapping of the AA molecule to a CG molecule. This CG
trajectory for each dipeptide/tripeptide simulation was loaded into VMD to obtain tre radial
distribution function (RDF) for each bead type with itself. The same procedure was carried out for
the side chain and backbone analogues to check for consistency or discrepancy between the amino

acid beads and the analogues used for obtaining apial non-bonded parameters.

4.4 Non-bonded Parameters
The positions of the RDF peaks were used as center values for a narrow range given for
optimization of the rmnvaluesx EEAE A OA OA1 A 6iAndLIgdientiddfierAne head® A1 OA O
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according to equationll. TheRDF is a measure of the probability of finding another particle (e.g.
atom, bead) within any given distance from the particle itself. For any substance, the likelihood of
finding a particle of its own kind within a distanceless than that of the diameter of the particle is
essentially zero because of the strong repulsive force that prohibits the overlapping of particles.
But for a closely packed structure like a liquid, there will be a high probability of finding another
particle at a distance approximately equal to the diameter of the particl&Chandler, 1987)8° This
high probability corresponds to the first peak of a graph of the RDF. In this way, the RDF can be
OOAA O1T 1T AOAET OEA K OAIlI OAO 1 Astadde At which thedoténdid OEAT O
between two particles is zero2 AT CAO &£l O of d&LA patenti@bele Qieda little wider

and were based on the polarities of the atoms represented by the beads; for example, a maximum
lower bound was typically-1.0 while a maximum upper bound was usually around0.3.

Hydrocarbon beads tend to have less negative epsilon values while beads containing one or more
nitrogen or oxygen atoms tends to havenore negative epsilon values.The optimization algorithm
can thenselect values from those ranges for testing in simulations, and the parameters were
optimized by comparing the heat of vaporization, surface tension, and density values of l6&
analogue simulations with the experimental values for those analogues. Paté Swarm

Optimization (PSO) was used for this purpose.

i < (11)

PSO is an algorithm that takes inspiration from the movements of a flock of birds or swarm
I £ ET1 OAAQOS 47 AACET xEOEh AieldpArémelergo lieAptidized j A OD
is randomly selected based on the supplied ranges for use in a test simulation. Many such particles
are generated for simultaneous test simulations. Each particle is analogous to a bird in a flock (or
insect in a swarm). In our caseye chose togenerate forty such particles for each iteration of the
PSO for broad coverage of the parameter space to facilitate quicker identification of optimal force
field parameters. Once the heat of vaporization, surface tensioand density were calalated for
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each simulation, they were compared with the experimental values and ranked based on the errors.
The best set is that which corresponds to the lowest error. For the subsequent iteration, the best
particle remains the same, and all other parties have their values adjusted slightly in the direction
I £/ OEA OAI OAO 1T £ OEA AAOO PAOOEAI A8 o a@A AT OA EO
updated when it changes so that the particle may be moved in that direction as well. The
maximum amount by which each value can change is given by the investigator. PSO is implemented
using equations(12) and (13) in which Vrepresents how quickly a given value changes (its
velocity), x represents the value itself, the subscriph stands for the current stepand n+1 stands for
the next step. The global best (the best set of values across all iterations) is represented fy,g
and mestis for the personal best set of a particlelThe value ofrand() is a random number between 0
and 1,wis an inertia factor, andcl and c2 are swarm and personal constants, respectively. The first
term in equation (12) is an inertial term that stabilizes the particle motion, and the constantsland
c2give the relative magnitude or pull in the diection of the global best and personal best,
respectively. The position of a paticle is updated based on the distance traveled over a discrete
time interval (3t = 1).33 The investigator can set the number of iterations to be completed. In the
case of this study, PSO was able to minimize the overall error within the first 40 or so iterations
when using 40 particles.

©  0zo Gpri B0 0 § o @zl GE@ H @ (12)

6w o Y (13)

In addition to the PSO, an artificial neural network (ANN) was incorporated after the first
four iterations. The data from those iterations and all subsequent iterations were given to the
ANN which used the data to produce a parameter set for each follavg iteration that seemed
likely? based on the ANN computations to result in a reduced overall error. The ANN works in
OEA A 11T xETC I ATTAOS I OAO T £ ET DOO OAI OAO Al i D
of the output value® target valuesor predictions. Any layers between the input and output layers
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centers, playing a role like that of biological neurons. Layers are connected to each other, reiog
inputs from the nodes of the previous layer, and sending outputs to the next layer, except in the
cases of the input layer which has no inputs to itselp and the output layer, which does not send
output on to any further layers. The inputs to a nodera individually weighted (with weights that

can be tuned), and they are summed together and passed through an activation function to produce
the output of the node. The activation function acts like an on/off switch such that the output is

only passed orto the next layer if a certain hreshold value is reached? For this research study,
TensorFlowe! (a Python library created by Google developers) was utilized for implementation of

the ANN with the exponential linear unit(ELU) activation function; an input layer five hidden

layers, and an output layer; and dropout to help prevent overfitting. The number of input nodes
corresponded to the number of target properties for each system (e.g. targeting density, heat of
vaporization, and surface tension corresponds to three input nodes), and the number of nodes in
the output layer corresponded to the number of force field parameters to be fitted. Each hidden
layer contained fifty nodes. Incorporating the ANN into the PS® not absolutely necessary for
achieving good results, but it can lead to a satisfactorily minimal error sooner than PSO alone and is
not in any way detrimental33 In some casest wasevenable tolead to more accurate predictions if
the given ranges for the PSO did not encompass the best values, thus guiding the model

development. Figure 27 illustrateshow the ANN is incorporated into the optimization algorithm.
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Figure 27: Schematic showing PSO and ANN incorporation with MD simulations to develop
optimized force field parameters.

4.5 Calculation of Thermodynamic Properties

To obtain the density of a Bnulation, the number of molecules, the molecular weight of
each molecule, and the simulation box size must be known. The density was calculated according to
equation (14) below in which my m, andV have their usual meanings of density, mass, and volume,
respectively. N stands for the number of molecules in the systenMW is the molecular weight,Na is
I OT CAAOT 6 O L, 19, jlaid &rérthebdxAengths in the X, y, and z dimensions, respectively.

0 0w
a G (14)
W 000

The surfacetension was calculated using equatiod5 in which L. is the box length in the z
dimension, andP,;, P, andPyy are the pressure tensors in the z, x, and y dimensions, respectively.
The simulation is run at constant volume with the box length extended ithe z dimensionto the

extent that a region of vacuum is created above the liquid surface.

L S (15)
C
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The heat of vaporization ¢ (vap) Was calculated using equation (2). The volume of the
liquid phase,Viq, is negligible as empared with the volume of the gas phasé/;.s and with the
assumption that the gas is an ideal gas such that the kinetic energies of the molecule in the gas and
liquid phases are the same, equation {) becomes equation (B8). Cis a correction term thatis
usually small and neglected, giving equation @) which is used for calculating the heat of

vaporization from MD simulations in whichT is the temperature of he simulation2 Ris the ideal
gas constant. The potential energy of the gas g0 , is obtained by simulating one

molecule in a box at constant volume to imitate the lack of intermolecular interactions experienced

by a molecule in the gas phase as per the ideal gas law. The potential energy of the lighakp,
(0] , is obtained from the same simulation conducted to determine the density. Since the

potential energy is a combination of the intermolecular and intramolecular energies, the potential

energy of the gas phase can be set aaya for CG simulations in which anolecule is represented as

a single bead.
Yo "0 "0 (16)
YO 0O Y O Y now @ (17)
YO (o) "Y O "YOY'Y 6 (18)
YO 0 "Y O YOYY (19)

Five hundred molecules were used for the density and surface tension simulations. Each
simulation? for density, surface tension, and heat of vaporization was run for a total of 2 ns. Non
bonded interactions were calculated by excluding -R interactions and with a cutoff of 12v 8
Constant temperature was simulated using the Langevin tihenostat, and constant pressure
simulations were conducted with the NoséHoover Langevin piston barostait as described in the

previous section.
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4.5 Results and Discussion

Prior to moving forward with setting the non-bonded parameters for the backbone and
termini beads as the same across all dipeptides, a quick comp=on of the AA CG mapped RDFs of
the backbone and termini beads showed similarities as can Iseen in Figure28. This provided
verification that it would be suitable to treat the beads as the same regardless of which amino acid
they are associated with. e RDFs also indicat¢hat the environment of a bead which other
beads are attached to the molecule and are in the vicinity, as well as thsizes and crowding

effects? caninfluence the RDF.

15 1.5
L A a L
125} oA (@ 125} s0a
1 __ / \ t,;_-'\,_-f,_-.t 1 ,-_ W\c’";}
[ \,\‘/ N e
0.75| 0.75}F
0.5 — MetMet 05| — MetMet
i — GInGIn i — GInGIn
0.25 - / HisHis || 0-25 T HisHis
0 L 1 | | | 0 | |

g(r)

3.1 A
o~ ‘}‘\—‘J\—-_ =
& t/\—)MetMet
— GInGIn
HisHis

0-..I.I.I. 0|||I|I|I|
0 4 8 12 16 20 0 4 8 12 16 20

Distance (A)

Figure 28: AA RDFs of (a) NCT, (b) CO, (c) NC, and (d) COO1 beads from the homogeneous
methionine (MetMet), glutamine (GInGIn), and histidine (HisHis) dipeptides.

After the desired number of optimization cycles {00 at least with a maximum of 200,
depending on the dpeptide) the top typically 1-3 setswith the lowest errors were selected for
testing over ten nanoseconds. This allowed the selection of optimal ndionded parameters for
each bead type. It was also an important verification step because the top PSQuitedid not
necessarily correlate with the top result after 10ns simulations. While the density error remained
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essentially the same for the 2is optimization cycle and the 10ns simulation, the heat of
vaporization and surface tension errors in some casesgere different such that the error showed an
increase up to about €6 (e.g. from 2% error to 8% error). Additionally, we targeted a very low
density error? within 2% of the experimental value; a surface tension error within 5% of the
experimental value; ard a heat of vaporization error as low as possible while optimizing the density
and surface tension errors. The heat of vaporization error tends to be much higher, perhaps partly
because the energy landscape for a CG model is much smoother than that oAArmodel andthe
energy landscape in reality

Interestingly, the analogues methanol (foserine), ethanol (for threonine), and m-cresol
(for tyrosine) all showed the worst matches to their experimental heat of vaporization values by
far, with the errors for the CG modeldeing 52% for both methanol and ethanol and29% for m-
cresol. Since these three analogues all contain a hydroxyl grotgnd snce they are the only
analogues that contain a hydroxyl grougit seems likely that the peculiar hydrogen bonding
capacity of the hydroxyl group may be the cause of the extremely high heat of vaporization errors.
The analogues containing an amine groupadnot exhibit such poor matches to the experimental
heat of vaporization values despite their hydrogen bonding capacity, so in the cases of methanol,
ethanol, and mcresol, it appears to be the oxygen atom that makes the difference. However, the CG
water models previously developed by Bejagam, et @do not have such high errors with respect
to the heat of vaporization values. So perhaps thegelts shown here have not only to do with the
character of the hydroxyl group, but also the character of the molecules in that the carbon
containing segments are quite different in their properties from the hydroxyl group itself. Further
investigation would be useful in helping to elucidate and overcome this issue.

With respect to the RDFs which are impacted by the nonbonded parametersnot the
bonded parameter® the CG bead peaks are usually much sharper and higher than those of the AA

CGmapped peaks. fequently, if there is a shoulder or a more gradual slope in the AA RDF initial
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peak, the CG initial peak exists where the shoulder is, or in the middle of the slope, or between the
shoulder and the initial peak when comparing with the AA G@&apped dstrib ution. The RDFs for

the methionine terminal and backbone beads arehown in Figure29, comparing the AA CG mapped
distributions with the CG distributions. Methionine was chosen as the example for the backbone

and terminal beads because its AA RDFs atgetmost pronounced, as shown ifigure 28. The

results for the NCT(neutral N-terminal) , CQ(backbone carbonyl bead) and NQbackbone NC,)

beads seem to indicate that the analogues chosen for the backbone and terminal beads were
reasonable. The CG RDérfthe COOXneutral C-terminal) bead (Figure 29d)) is a rather poor

match to the AA RDF. However, because the COO1 bead represents a carboxyl functional group, and
the carboxyl functional group of propionic acid was used as the analogue, there is hosea to

suspect that propionic acid was not a sufficiently good analogue to represent thet€minal bead,
COOLl.Furthermore, the result shown is essentially the same when comparing the CG RDF of the
propionic acid bead with the AA C@napped RDF of the ppionic acid bead. This indicates that a
simple coarsegraining of the carboxyl group fails to capture the AA details of the carboxyl group.
Comparisons of the CG RDFs for each dipeptide side chain bead type with their AA mapped CG
counterparts show tha the analogue choices for those bead types were suitable as well; all such
AECOOAO AOA CEOAT ET OEA ADPDPAIT Amgdhe vRlsGal mattrdof OAAAA OB
the proline side chain, as discussed previously, it should bwted that the CG RFs of the poline
backbone (PNC) and side chain (PS) beads correspond well to their AAIG@&ped RDFs, as shown

in Figure A18.6 in the appendix
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Figure 29: Comparisons of AA coarse-grain mapped (AA) RDFs vs coarse-grained (CG) RDFs of
(a) NCT, (b) CO, (c) NC, and (d) COO1 from the methionine dipeptide.

Following the 10ns simulations to finalize the norbonded parameters, 10hs simulations
were conductedto further validate these parameters The trajectory from each simulation was
divided into segmerts from 50-60 ns, 6070 ns, 70-80 ns, 80-90 ns, and 90100 nsto obtain block
averagevalues for the density, surface tension, and heat of vaporizatipthese valuesare reported
in TablesA2.1-A2.3 in the appendixand shown in Figures30-32 below. Percemerrors were
calculated in accordance with equatior20.
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Figure 31: Comparisons of experimental and CG model heats of vaporization. BB stands for backbone.

Experimental data from refs
{ example } were not found.

63,65,68

. Experimental values for heat of vaporization for molecules in braces
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Figure 32: Bar graph comparisons of exgerimental and CG model surface tensions. BB stands for
backbone. Experimental data from refs 3 0689,

With the non-bonded parameters having been determined for the amino acid side chain and
backbone beads, those values were plugged back into the dipeptide parameter files to finalize the
bonded parameters and test the CG dipeptid@mulation densities agairst the AA dipeptide
simulation densities. The densityresults are given in Table3 with percent errors calculated in
accordance with equation20 above with the substitution of the AA value in place of experimental.
For the most part the density errorswere not large, but in the cas®f the dycine dipeptide the
error was 11.73%. As will be shown in some paragraphs that follow, this errerand that for any of
the dipeptides, by extension can vary dramatically based on the noonded parameters used and
the exclusion criteria provided in the configuration file for a simulation.The bond, angle, and
dihedral distributions, along with mapping schemes and RDFs, are included in the appendix, for

both analogues and peptides; the graphs represent the best outoes from optimization and
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selection of the nonbonded and bonded parameters given some of the constraints described in the

paragraphs below.

Table 3: Density comparisons, all atom (AA) vs coarse-grained (CG) models

Dipeptide/Tripeptide AA Density (g/cm 3) CG Density (g/cm3) Percent Error
Ala-Ala-Ala 1.170 1.169 0.16
His-His 1.331 1.250 6.11
Leu-Leu 1.011 0.991 2.00
Lys-Lys 1.120 1.067 4.73
Asn-Asn 1.358 1.290 4.99
Asp-Asp 1.371 1.335 2.66
Ala-Arg 1.207 1.194 1.05
CysCys 1.359 1.259 7.39
GIn-GIn 1.277 1.283 0.47
Glu-Glu 1.289 1.233 4.32
Gly-Gly 1.321 1.166 11.73
lle-lle 1.014 0.987 2.71
Met-Met 1.188 1.161 2.25
Phe-Phe 1.134 1.123 1.03
Val-Pro-Leu 1.062 1.021 3.91
SerSer 1.337 1.245 6.87
Thr-Thr 1.179 1.193 1.24
Trp-Trp 1.218 1.244 2.11
Tyr-Tyr 1.204 1.238 2.88
ValVal 1.039 0.977 5.98
average % error . . . . . . . 3.73

In this final parameterization for setting the bonded parameters, there were four primary
matters of importance that had to be taken into consideration and addressed. The first was that CG
distributions are much more uniform than AA distributions often ae. While an AA distribution

may have, for example, two peaks in a bond distribution, the CG distribution will have only one.

45



This is also true of the angle distributions. The dihedral distributions may have more than one peak
in the CG distribution, lut in some cases many different attempts to find a matching dihedral for the
CG model failed, and the only outcome that could be obtained was a dihedral that was shifted (as in
figure A10.5(e)) or a non-existent (flat) dihedral (as inFigure A9.5(e). Goa matches could be
obtained for many of the dihedrals, however, as shown in the dihedral figures in the appendix.

The second matter of note is that higher force constants require a smaller time step because
a stiffer force constant engenders a higher vibtional frequency which correlates with smalkr time
steps4® This meant that in cases such as the bonds and angles in ring structures (e.g. the side chain
of Histidine), while the allatom distribution might have required a very high force constanto
match it, the final force constant for each bond and angle given as the CG parameter was lower to
help ensure stability at a time step of 5 femtoseconds or greater. The lower the time step, the
longer it takes for the simulation to reach microsecondailength; therefore it is preferable to have
as high a time step as seems to be reasonable considering fa@ameterization. Figure33 shows,

as an example, the AA and CG distributions for a bond and an angle in the Histidine side chain.
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Figure 33: Comparisons of all-atom (AA) mapped and coarse-grained (CG) distributions in (a)
bond NCR2-NCR1 and (b) angle NCR2-CCR1-NCRL1 in the histidine side chain.

A third matter of importance was to parameterize the bonded interactions in such a way as
to harmonize them across the backbones of the different dipeptides. As was mentioned previously,

there are certain backbone bonds and angles such as-8IC0 and CONGCOO1 that were in most of
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the dipeptide simulations, and we decided to consider all the dipeptide distributions and attempt to
harmonize them to obtain the most reasonable parameters. As it turned out, this was not
challenging to do since the common bondand angles were largely consistent across dipeptides as

can beseen inFigures 34,35, and 36 below.
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column), and threonine (third column) dipeptides.
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Figure 35: Comparison of backbone angle distributions for the angles NCT-CO-NC (top row) and
CO-NC-COO1 (bottom row) from the cysteine (first column), phenylalanine (second column), and
threonine (third column) dipeptides.

0.03 0.03

= — CG
» 0.03F |— AA
: -
8 0.02 0.02
- 0.02
—
e 0.01 0.01
[+
o
o
} =
o 0 0

180 -90 O 90 180 -180 -90 O 90 180 -180 -90 O 90 180

Cysteine Phenylalanine Threonine
Dihedral (°)

Figure 36: Comparison of backbone NCT-CO-NC-COO1 distribution from the cysteine (left),

phenylalanine (center), and threonine (right) dipeptides.

The fourth issue of note is that some shifting dbonds and angles and some narrowing of
angle distributions were noticed in the CG distributions as compared with the AA distributions.
Upon investigation, it became apparent that the primary cause of this was from ndsonded
interactions of beads within amolecule that were within two or three bonds of each other, since we

EAA T17T1 U AgAl OAAA ET OAOAAOQOEI T O AAOxAAT-¢c AARAAOORLK OA
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configuration file). When excluding interactions between beads that were within two borglof each

| OEAO | GADER OGEA pOEEEOET C AT A 1 AOOI xETC 1 AOCAI U Al
AROxAAT OEA #' AT A 11 AEOOOEAOQOOEI T 0806 £EE@EAAO Al
configuration file. Figures37, 38, and 3%how exampges of this fromthe leucine dipeptide; the

bonded and norrbonded parameters used were the same for both CG models, but they do not

represent the final parameters chosen for the CG model. Problematically @O A OA @il AR p

OA @Al OA A ofeh leddAtd greater instability in simulations and thus requires a smaller time

step. Since, then, we were still able to maintaigood overlap in many cases ascan be seen intie

figures in the appendie andonly very little overlap in some, we decidedo continue the

DAOAI AOGAOEUAOQEId6 xAEH AMBAIAAARA DI ETO -1 £ AOGOAIT BC
assembly using our CG models to obtain some indication of the amino acid bead and water bead

interactions and how they might need to be adjustedLater model development focusing on

Ei DOl OET ¢ OOAAEI EOQUo &T 1T OEAA &AIGHA AR ZDIDA AR AR TpOAOAI
improvements in the model while enabling useful speed of simulations. Because theatbm

distributions have already been olbained, it would also be quite simple to generate the appropriate

DAOAI AGAOO &A1 O OEA AAODAA OA & AdbHéded Phidipeters

would not need to be changed except fdn two cases: 1)}the CG bead representing the peptide

backbone carbonyl, as that was parameterized based orBabead mapping of diethylkeone, and 2)

the C2E2 bead forgoleucine as that was parameterized based on the folsead mapping scheme

shown in Figure 14(b). Some of the distributions(e.g. bond and anglelistributions within ring

structures such as that of the phenylalanine side chain) are not likely to differ based on the

exclusion criteria.
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Figure 39: Comparisons of dihedral distributions, from the leucine dipeptide, between all-atom
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To test these hypotheses, the nehonded parameters for the diethylketonebeads were
I DOEI EUAA O1 AAdd OEIAT @A@ME 10 -bewidsl farametddsdi tieUA A 1 7 1
carbonyl bead were therplugged intoglycine, histidine, alanine, and éucine CG dipeptide
OEi Ol ACEITO O 1 pPOEIi EUA OEA Ai1T AAA DPAOAIGAOAOO A& O
constraint. The densities of those simulations with optimized bonded and nebonded parameters
were then compared with the AA simulationdensities of those dipeptides.The optimized non
bonded parameter values for the CO bead are given in Table®able 5 shows the results of the CO
AAAA DAOAI AGAOEUADE T jl ARRIOEOGEA DA IADAA 1 Q-c0APEOOI OATA
10 ns simulation; if the simulation were extended to 100ns, the results ought to be similar Table 6
AT T PAOAO OEA AAT OEOU OAOG] a0 OO A® GO0 ! #'® ARG O&EMA OA O
dipeptides GlyGly, HisHis, AlaAla, and LeulLekbigure 40 compares the RIBs of the AA C@&apped,
#' OAGANhOAAT A #:000ADROEDENAA #/ AAAAILG))andtBel OEUT EAC
leucine dipeptide (Figure40(b)). Figures41 and42 provide examples of optimized bond and angle
distributions, respectively, ofthe AOAET A AEDADOEAA Al OcOEAT AABAO 1T £ #
OADAI-ORA AET AT I DA OE Oimbpped Higributiédh& Ahede Histributions were
improved in most cases.The poorness of the match in Figure 41(c) for CG3 may be partly due to
keepingthe force constants low to enhance the stability. If the stability for CG3lwere able to be

improved (this possibility will be discussed in Sectiorb regarding future work), then possibly the

force constant for that bond could be increased, leading toleetter match.

Table 4: Optimized CO bead non-bonded parameters for
CG nexcl3wdeBE Bnd CG -Aexc®ade 1

CG 13 CG 12
I min/2 2.0967 2.4361
epsilon -0.9472 -0.6690
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Table 5: Comparisons of density, heat of vaporization, and surface tension results and errors for

optimized CG 1wiot lhp affreaxeltied B)aadi opt ( @Gzed Cowith Aexclu
arameterization (CG 1-2) diethylketone simulations with the experimental values (Exp.)
results % errors
EXxp. CG 13 CG 12 CG 13 CG 12
density 0.8089 0.7908 0.7843 2.24 3.04
Hvap 9.2065 8.8903 8.4050 3.43 8.71
Surface tension 24.74 25.89 26.57 4.66 7.38
Table6: Density results for select dipeptide a3nd (&G plept i d
vs CG fie20l (@®6THe CO bead as paramet er3ewas suangd CfGo M ea
the CG 1-3 results.
results % errors
Peptide AA CG 13 CG 12 CG 13 CG 12
AlaAlaAla 1.17043 1.35137 1.1685 15.46 0.16
GlyGly 1.32142 1.32188 1.16645 0.03 11.73
HisHis 1.33100 1.38957 1.2497 4.40 6.11
LeulLeu 1.01118 1.08326 0.990916 7.13 2.00
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better outcomes. The most likely candidatesclude dimethylformamide and potentially N-

methylacetamide. Dimethylformamide has the advantage of a carbonyl bonded to an amide group,
which is similar to the situation in a peptide backbone, although the amide of dimethylformamide is

bonded to two cabons and no hydrogens rather than one carbon and one hydrogen as is the case in

a peptide backbone; thus there is no potential for hydrogen bonding in dimethylformamide. -N

methylacetamide may be a possibility if the methyl group bonded to the carbonyl werto be

modeled as a separate bead. However, the simulations would require a much smaller time step (e.g.
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1 or 2fs) because of the smallness of the methyl bead. The advantage to usingéthylacetamide,
however, is that the backbone NC and backbone C€alds could be parameterized simultaneously,
and the parameterization would include the effects of those beads in proximity to each other that is

essentially the same as what occurs in a peptide backbone.

5. PA SeltAssembly Studies

5.1 Initial Self-Assembly Studies

As a first step in testing the amino acid models, we determined to attempt to simulate the
self-assembly of a peptide amphiphile (PA). The PA chosen for this study was -¢18L:K;-CQH
shown in Figure43; the CG model ofthe PAis shown in Figure 44 This is the PA that was simulated
and synthesized in the studyby Deshmukh, et al4 examining the role of water in PAself-assembly.
A combination of the Martini and CHARMM (with TIP3P water model) force fields were used for
that study; the initial 150 ns of the simulation were with the CHARMM AA model which was
mapped to the CG Martinim8 A1 &l 0 OEA /& 1117 A& OEA ATAOR A 1GE AO B
system was backmapped to the CHARMM model for final 150 nsto show atomiclevel details.
4EA OEI OIl ACGETT ETAI OAAA omnmn Oatlbar48d 840 A TOEPALEEIA OAA A
AOOAT AT AA ET O1T T EAAITTAO ET 1AO0OO OEAT p t @ x(EEAE A
with some ongoing fiber breakage and formation. The simulated micelles were comprised of
approximately 50 PAs, andtheEi O1 AOAA EEAAOO xAOA ADPDPOI @EIi AGAT U

results served as a guide in our amino acid model development.
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Figure 43: Structure of c16-AHL3;K;-CO,H

In order to keep the required simulation time to a minimum while still erabling the

bl OOEAEI EOU 1T &£ 0! EEAAO & Oi AGETI T h xA AEIT OA Ol

with 16,000 of thel-site CG waters3 These numbers are consistent with those used iother PA
self-assembly studieg470 Periodicity of the MD simulations enabled the possibility of fiber

formation from PAs on ore side of the box interacting with the periodic images of PAs on the other
side of the box. Simulations were conducted with NAMD and a pressure setpoint of 1 bar and a
temperature setpoint of 340 K using the Noséloover Langevin piston barostat and the Liagevin
thermostat for pressure and temperature control. Intramolecular interactions were excluded for
AAAAOG AT T AAA O AAABS8T OEAQc) OAARODKEE A0 OOAA
AT A A PAEOI EOO AEOOAT AidimidedEor A000sEps arl thén@dndu@ddi T O

for a total of 15 ps with a 5 fs timestep.
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Figure 44: CG structure of c16-AHL3;K;-CO,H showing bead types

To begin with, we ran a PA simulation using the LorentBerthelot (LB) combining rules for

all the beads excepting the C3E and C2E beads which were given the interaction parameters with
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water that had previously been developed for them8 Ascan be seen in Figure 44, the hydrocarbon
tail was thus tuned with respect to water while the peptide portion prmarily was not. The LB
combining rules relate to the LJ functional form as shown iequation 21 in which ris the depth of
the potential well, A is the distance at which the potential between particles is zero, ands the
distance between particles. Th Lorentz rule is given inequation 22, and the Berthelot rule is given
in equation 23. After running the simulation for a few microseconds, however, it became apparent
that defined, individual fibers were not forming. Within just a few nanoseconds, theAs clumped
together into micelle-like groups as shown in the 5 ns snapshot for the 100% simulation in Figure
46, in which the percentage reflects that the LB combining rules were not scaled for this simulation
Thosemicelle-like groups quickly bundledtogether to form windowpane structures which

persisted throughout the 15 ps simulation shown in Figure 4. Continuallythroughout the
simulation, the assemlies broke apart (lost contiguity especially with respect to the hydrocarbon
interiors) and regrouped. The 15 us snapshot for the 100% simulatioshows the PA assemblies in

the middle of regrouping.

y (21)

" (22)

. T (23)

Because the 100% simulation was not behaving with the kind of character that
experimental and MD studies indicate is typical for PA fiber selissemblies, as described in Section
3.2, we decided to run two more simulations: one in which the epsilon interdion values were
scaled to 85% of the combining rule values, and another in which the epsilon interaction values
were scaled to 115% of the combining rule values. In neither case was the sigma interaction value

scaled. This was because it is the epsilealue that controls the depth of the LJ potential well and
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describes the strength of attraction between two beadsln the case of the 115% simulation, the PAs
showed clumping into micellelike groups with the hydrocarbon tails bundling together. However,
after more than a microsecond in simulation time, the PA peptide segments remained rather diffuse
and showed no tendency to form fibers, as showin Figure 45. Thus the strength of attraction of

the peptide segment for the water beads was too strong. dtso is unlikely that fibers would have
formed, given the close proximity of the PAs to each other; if the peptide segments had preferred
associating together rather than remaining somewhat diffuse in the water, the microsecond of
simulation time provided ample opportunities to show such behavior. The 85% simulation, on the
other hand, did show fiber formation. In this case, however, the fibers materialized immediately
with no real micelle stage. Figure 46 shows that at just 5 nthe PAs of the 85% simlation were
already in a rough fiber formation. By the time 300 ns had been simulated, there were already neat
fibers. These fibers remained stable throughout the remainder of the simulation. The measured

diameter was approximately 58 Aat 15 ps

115% - 1.2 ps
Figure 45: Simulation results after 1.2 ys with amino acid bead epsilon interaction values with
water scaled to 115% of the combining rule values.

Because of the behavior exhibited with both the 100% and 85% simulations, we decided to

run another simulation in which the epsilon interaction values were scaled to 90% of the
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combining rule values, and another in which the epsilon interaction values wergcaled to 95% of
the combining rule values. The 90% simulation results were very similar to the results of the 85%
simulation, with no real micelle formation and essentially immediate fiber formation. The fiber
diameter was measured at approximately 5& at 15 ps in this case as wellThe 95% simulation
behaved very similarly to the 100% simulation.

The formation of fibers with an increase in hydrophobicity makes sense considering that
past research has shown the importance of hydrophobicity in fiber fonation.27.28 However, the
immediacy of formation and lack of a micelle stage suggest that the model may require further
refinement, possibly by tuning the interaction parameters of different amino acid beads with each
other. To help determine whether the scaled ep#in values were on the right track for the
individual beads, hydration free energies were calculated for the beads, side chain groupings, or

analogues, as described in the following paragraphs, for comparison with experimental values.

5.2 Hydration Free En ergies

In order to provide insight into the realistic strength or weakness of the interactions
between water and the amino acid beads utilized in the ct8HLsKz-CQH PA, the potential of mean
force (PMF) was calculated for wateisolute systems in which thesolute was representative of a
bead or an analogue in the PA. In NAMD, it is relatively easy to calculate the PMF of a system using
the adaptive biasing force (ABF) method. To use this method to determine the Gibbs hydration free
energy ofamolecule,a¢ AOAEA v AT @ 1T £ ¢cnnn #' xAOAOO xAO EE
solute molecule was placed approximatelg 1 outside the box in one dimension. The ABF will act
along the reaction oordinate which, in our case, waslefined as the projection in tke zdirection of
the distance between the center of mass of the water box and that of the solute molecule. The free
energy along this coordinate can be considered as a potential that can be calculated from the

average force acting along that coordinate, ith the average force being the negative gradient of the

potential (asin equation 3). Thus integratingthe average force yields the potential. The
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instantaneous force that acts along the reaction coordinate is actually the sum of the average
force? which only depends on the value of the coordinate and a random force that has a zero
average and which can be approximated as diffusive. The running time average of the
instantaneous force is calculated during a simulation which provides an estimate of the deative
of the free energy at each point on the path that the solute molecule travels. At the same time that
the average force is recorded, an equal and opposite external biasing forcthe ABP is applied so
as to cancel that average force. This biasingrée will stabilize at values close to zero when the
average force is at an equilibrium value. At that point, there is an approximately flat potential of
mean force which enables the solute molecule to easily move along and explore the coordinate
when otherwise free energy barriers would have prohibited such exploration as the solute
molecule would have gotten trapped in some states for lengths of time that could certainly exceed
the duration of the simulation7t

In NAMD, the ABF method is implemented using the lsars package’273 Two windows
xAOA OOAAd A xET AT x T &£ ¢¢ v O 1tnm v AT A ATT OEAO
Two windows were chosen in this maner to allow for sufficient exploration of the reaction
coordinate for 50ns simulations. For window 2, the initial configuration file was taken from the
window 1 configuration shortly after the simulation had begun and at a point at which the solute
molecule had moved into the interface between the water and vacuum. The 50ns simulation for
each window was used to obtain the PMFs. CG amino acid side chain structures and analogues
were used: Nbutylamine for alanine, Nbutylamine for lysine, 4methylimidazole for histidine,
isobutane for leucine, formaldehyde for the backbone carbonyl, and-Methylacetamide for the
backbone NC bead. Thksite CG water model was used for the water. The combining rules were
used for the amino acid bead and water bead tieraction parameters, except for the C2 and C3
hydrocarbon beads for which the alreadydeveloped interaction parameterg8 were used.

Simulations were run at 298 K and 1 bar for comparison with experimental values at the same
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conditions. The results areshown in Figure 47 and Table 7. The differences the N-butylamine
results occur because of the diérent mapping schemes. These free ergy calculations are a
ballpark approximation to help indicate whether the amino acid bead interaction parameters with
water are approximately correct, orin which direction they should move (higher for greater
attraction to water, or lower for less attraction to water). The results indicate that the attraction of
the amino acid beads for wateis too strong for theleucine side chain bead, pretty decent for the CO
bead (represented by formaldehyde), and not strong esugh for the remainder. Considering these
results in light of the PA simulation results, it seems likely that while the individual beads may
experience stronger attractions to water than the combining rules provide for, there are also
stronger interactions between different amino acid beads to each other than the combining rules
provide. In order to achieve the hydrophobicity necessary for PA sedfissembly, it may thus be

necessary to consider the strength of the attractions between different amino aciskads.

Table 7: Experimental and CG MD values of hydration free
energies,Y'O , forselectmolecules

Molecule Yo e YO
(kcal/mol) (kcal/mol)

N-butylamine (Ala) -9.52 -3.0
N-butylamine (Lys) -9.52 -0.4
4-methylimidazole (His) -10.27 -7.0
isobutane (Leu) 2.28 -1.0
formaldehyde (CO) -2.77 -15
N-methylacetamide (NC) -10.07 -5.0

aY'O values from refs747s,
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Figure 47: Free energy results for side chain and backbone CG structures and analogues

5.3 Final Self-Assembly Study

Because of the results from the hydration freenergy studies, one more PA simulation was
conducted.&T O OEEO OEI O1 A O miFigure 46\ dllithEadiAdiaciddall irerAchidm 6
parameters were scaled up to 115% of the combining rule values except for the CGiRtidine
bead which was neiher scaled up nor down, the backbone carbonyl (CO) bead which was scaled up
to 105% of thecombining rule value, and theducine side chain bead (C41) which was scaled down
to 70% of the combining rule value in order to better approximate the epsilon inteaction
parameter of a hydrocarbon bead with water. The epsilon value of CCR1 was not scaled since it
represents two sg hybridized carbons and no nitrogen or carbon atoms, and the CO bead was only
scaled up slightly since the hydration free energy resultappeared to indicate that the combining
rule was approximately correct for the carbonyl.

This simulation in which scaling was varied has the advantage of showing micelle
formation, but as seen in the 15 ps snapshat Figure 46, the PAsemained as micdles and never
formed fibers. Again, gven the proximity of the PA micelles to each other, #eems unlikely that
continuing the simulation for a longer period of time would have resulted in fiber formation.
Additionally, research published using the Maini model to simulate the c16 AHL:K;-CQH PA

showed fiber formation within the first few microseconds# althoughit is possible that such a time
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Figure 46: Snapshots from simulations of PAs (blue) in water (not shown). Darker blue - hydrocarbon
tails; lighter blue - peptide segments. Percentages reflect percent of combining rule epsilon values while
the Avariedo simulation possessed primarily 115% of <col

scaled to 70% and 105% and a third bead type left with its combining rule value.
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frame is not realistic. Considering that the 115% simulation shows clumping only of the

EUAOT AAOATT OAEIT O xEEIT A OEA OOAOEAAG6 OEI O1 AGETT O
clear that it is important to consider the individual chemistry of eab bead based on the atoms and

functional group(s) the bead represents. This is especially clear considering the hydration free

energy study results and when considering that the hydrocarboteucine side chain bead (C41)

certainly would interact with water differently than the beads which possess atoms with the

capability of forming hydrogen bonds.

6. Conclusions & Future Work

At the beginning of the project of which this manuscript provides a record, it was desired to
1) develop mapping schemes for the amp acids and peptide backbone with intermediate
resolution (a preference for 2:1 and 3:1 beads), 2) optimize nehonded parameters for the beads
based onexperimental thermodynamic values of analogues, 3) define appropriate bonded
parameters for the aminoacids and peptides based on alitom dipeptide simulation bond, angle,
and dihedral distributions, and 4) use the norbonded and bonded parameters thus developed for
c16-AHLsK3-CQH PA simulation studies with the gal of witnessing fiber formation as a wayo test
the model and provide an indication of the direction needed for future model developmenihe
mapping scheme was defined without too much trouble; only in two casefryptophan and
tyrosine) were we required to modify the mapping scheme for viallity. The optimized nonbonded
parameters that were developed provided, for the most part, good agreement with experimental
results. Parameterization of methanol, ethanol, A OAOT 1 h AT A AEAOEUIKBAOI T A | »
partially fell short in this regard and may require more work and different tactics to attempt to
improve. The bonded parameters developed resulted in CG bond, angle, and dihedral distributions
that are shown throughout the Appendix. In some cases the matches were excellent, mostly they

were reasonable, and in some caseisere was little overlap between the CG and AA @@Gapped
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distributions. The reason for incidents of poor overlap, as discussed, was identified primarily as a
result of the 1-2 exclusion criteria provided in the CG conduration file. This could easily be
remedied, but with the catch that the result would be an overall much less stable model with the
implication that it may not be feasible in some cases to conduct simulationsunless, of course,
some other fix was found ér stabilizing the model. With respect to the PA simulations, the results
showed that use of the LB combining rules fails to capture the behavior expected based on
experimental and MD research. When the overall hydrophobicity was increased, fibers formeabt
scaling down the interactions between the amino acid beads and water seemed, for the most part,
the wrong direction to take based on the hydration free energies the beads exhibited in comparison
with experimental values. Most likely, an overall inaase in the hydrophobicity combined with
sensitivity to the particular chemistry each bead represents would be required for more physically
realistic models. This may be better accomplished by increasing the strength of attraction of some
of the amino acd beads types for each other than by decreasing the strength of attraction of some
of the amino acid bead types for the water beadl'he hydration free energies may be useful in
direction the scaling of the interaction parameters of the amino acid beads thithe water bead.
Obtaining guidance for tuning the interaction parameters of the amino acid beads with each other
will be discussed below.

While this work represents great progress made in creating a model for amino acids and
peptides, there are a numbeof challenges and limitations that this base model faces and which
could be targeted for improvement As previously notedhat various pointsin this manuscript, these
challenges and limitations include 1) lack o€harges to represent charged amino acid®) the
amino acid bead interactions have not been finrtuned, and currently they rely on theLB combining
rules, which may be inadequate in some case®) simulations can be run at a 3s time step, but they
are somewhat unstable and will frequently crashafter only a few million steps;4) no explicit

modeling of hydrogen bonding and no attempts to parameterize for secondary structure
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conformations; and 5) our model shows that the bond and angle distributions do not always match
the AA bond and anglalistributions very well, with shifting and narrowing being observed in many
cases. Potential solutions to these challenges and limitations will be addressed individually in the
paragraphs below.

(1) The amino acids exist as zwitterions at netmal pH, with a positive charge on the N
terminus and a negative charge on the-@rminus. There are also various pKa values for many of
the amino acid side chains, such adigtidine and glutamic acid. While in laboratory experiments a
buffer is sometimes added to neutralize an amino acid sequence, the reality in many cases is going
to be that most or all of the amino acids that are capable of possessing a charge are going to possess
a charge in the experimental conditions. For this reason, it is impomafor a protein force field to
contain parameters for the amino acids in these charged states, as is the case with the AA force field
CHARMM and the CG Martini and SDK force fields, for example. The charges in the SDK model were
developed by parameterizéion against guanidium salt solutions at various concentrations, and the
model does not distinguishlysine from arginine or aspartic acid from ¢utamic acid’? The Martini
model appears to have used AA simulations of the charged residues for parameterizing the charged
beads. | suggest that for the model described this manuscript, AA simulations of charged
residues or analogues using the CHARMM force field be used to parameterize the beads that
represent any atoms that could exist in a charged state.

(2) Tuning the interaction parameters of the amino acid beads Wi each other could be
challenging. In the Martini model, amino acid beads were classified into four main types (polar,
nonpolar, apolar, and charged) with sukclassifications based on hydrogen bonding capabilities or
degree of polarity. Amino acid beadeere assigned a classification based on water/oil partitioning
coefficients of analogues of the side chains. The beads were then assigned interaction parameters
with other types in accordance with the interaction matrix given in the original Martini

publication.2t Something similar could be undertaken for the models developed in this manuscript.
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(3) As long as the model contains beads that contains only two heavy atoms (a 2:1 magpi
scheme), that in and of itself will partially restrict the ability of the model to run smoothly without
crashing at larger time steps, since the mass of a bead with a 2:1 mapping scheme is typically lower
which influencesthe stability .42 Without artificially inflating the mass of a bead, an option that
could potentially result in improved stability would be to fix to a given length the bonds of ring
structures (as in the side chains ofiistidine, phenylalanine,tyrosine, andtryptophan). These londs
tend to have very small ranges over Wich they vibrate, as shownin Figure 33, insteadof using a
somewhat high force constant for those bonds, replacing the harmonic bonds and angles of the ring
with a set of constraints could be a potential workaround. This is what was done in the Martin
model44 Additionally, a careful analysis of the angles and dihedrals could reveal situations in which
heavy fluctuations are likely to happen (when three of the four beads in a dihedral have a very wide
angle,close to 180 degrees). In that case, the options of removing any dihedrals deemed
unnecessary or using special forms of dihedrals could be evaluated amdglemented.”8
(4) Tuning the amino acid bead interaction parmeters with each other would be a way to
capture the potential of hydrogen bond formation between particular amino acid beads. This may
be especially important br the backbone CO and NC beads since it is the ability of the carbonyl
oxygen to hydrogen bonl with the hydrogen of the backbone nitrogen that leads to secondary
structures likef EAT EAAO AT A 1 OEAAOOS
(5) The shifts and narrowing of bond and angle distributions was shown to result from
OOET ¢ OABAIXEAEA Ap OEA A EICQLOE ABICED T @A A AOcdol AGGET ¢ OA
OAGAl OAKA s®AAI7TAEAEd A OEA 1 AOGOGAO Ox1 OAT A O1 1 AAA OI
A OF Al 1T AO OEI A OOADP OEAH O xEGTAIA®IDA UEA CAIGACRO@IAIA @I
OAGAscHAMER 6 ELA AT U T £ OEA bPi OAhL énddiesdd h @Fabove® £ O OOA

are effective.
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Another possibility for future work is to conduct CG MD simulations for some of the
analogues at different temperatures to test how well they reproducexperimental values (density,
heat of vaporization, and surface tension) at the same temperatures. Depending on how well the
models were able to reproduce the experimental values, fearameterization could be considered
to try to obtain a better fit across a temperature range if desired. Another option would be to define
particular parameters for particular temperatures for overall accuracy for a wide range of
conditions.

With such efforts directed towards improving the amino acid models, the work desdyed in
this manuscript has the potential to result in CG models ideal for studying PA sasembly that, in
combination with the hydrocarbon*” and water33 models previously developedby the group, may
lead to more physically accurate simulations tha other protein models currently available.

Already, this work has shown great promise in this respect. And because of the potential for PAs to

be useful in especially biomedical applications, such efforts may be quite rewarding.
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Appendix A: Mapping Schemes

Table A.1: Amino Acid Mapping Schemes

Name Structure Bead Name | Bead Type
@)
1) ANT 1) NCC1
HsC
Alanine \#LOH - -
NH, (AB within (NCC2 within
1 backbone) | backbone)
NH, O
)\ 1) RS1 1) RS1
Arginine HN-" °N OH 2) RS2 2) RS2
H 1 NH, 3) RS3 3) RS3
2
@)
_ O
Asparagine OH 1) NS 1) CON2
1 NH, NH,
O
. . HO
Aspartic Acid NOH 1) DS 1) CO02
1 (0] NH,
O
Cysteine HS/\)LOH 1)CS 1) SC
1 NH,
0 0
. : 1) ES2 1) COO1
Glutamic Acid HOWOH 2) ES1 2) C2M
1 2 NH;
NH, o)
. 1) QSs2 1) CON1
Glutamine OWOH 2) Qs1 2) C2M
L2 N
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Table A.1, continued: Amino Acid Mapping Schemes

0 1) GNT 1) GNT
: |
Glycine % OH (GNC within | (GNC within
1 backbone) | backbone)
1 0
2 1) HS1 1) CCR1
Histidine HN S OH 2) HS2 2) NCR1
\=N  NH, 3) HS3 3) NCR2
3
2
1 CH; O
Isoleucine H-.C D1S2 1) C2E
3 OH 2) 1S1 2) C2E2
NH,
0
Leucine H3C\(\)LOH 1) LS 1) C41
0
. H,N 1) KS2 1) NC2
Lysine \/\/\)LOH 2) KS1 2) C3M
1 2 NH2
0
o _S 1) MS2 1) CS
Methionine H;C \/\)J\OH 2) MS1 2) C2M
1 2 NHy
2 1 O
1) FS1 1) TL2F
Phenylalanine OH 2) FS21 2) BZF1
NH, 3) FS22 3) BZF2
3
0
. 1 1) PS 1) PS
Proline OH 2) PN 2) PNC
NH 2




Table A.1, continued: Amino Acid Mapping Schemes

0
Serine HO/\)LOH 1) Ss 1) COH1
1 NH,
1 on o
Threonine 1) TS 1) CCOH
H3CMOH ) )
NH,
3 Ly
1) ws1 1) TL2W
Tryptophan OH 2) WS2 2) PL1
) [ NH, 3) WS3 3) TOL4
2 H
1 @)
1) Ys1 1) TL2Y
Tyrosine 3 R 2) ¥S2 2)BZY
NH
o ) 3) YS3 3) COH3
2
1 CH; O
Valine 1) Vs 1) C3E2
H3C)\(MOH
NH,
2
NH, y O
N 1) BCO 1) Co
Backbone R(Hr \H—LOH 2) BNC 2) NC
O R,
1
1 2
NH O]
Termini J\Z/E i 2 CoC
R oH 2) CT 2) COO1
O R,
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Table A.2: Analogue Mapping Schemes

Amino Acid Name Structure Bead Type
. i . N 1) NCC1
alanine n-butylamine H,C NH, 2) C2E
2 1
@)
asparagine acetamide HZNJLCH:;, 1) CON2
1
i
aspartic acid acetic acid 1) CO02
P HO™ “CH, )
1
cysteine methanethiol H.C /SH 1) SC
3
1
! Q 1) COO1
glutamic acid propionic acid HOJK/CHB 2) C2E
2
1 O
: . : 1) CON1
lutamine ropionamide )J\/
9 prop H,N CHj 2) C2M
2
glycine butylamine H3C/\/\NH2 g gg’l\zﬂ
2 1
2
. . 2 o 1) NCR2
histidine pyridine 2) BZ
=
N 1
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Table A.2, continued: Analogue Mapping Schemes

E 1
histidi 1) NCR1
istidine pyrrole i\ /7 2) PL3
2
CH;
3 1) CCR1
histidine toluene 1 2)BzZ
3) TOL3
2
2
isoleucine | 3,4-dimethylhexane L H3C\)Y\CH3 g gggz
CH
2 &)
CH3 1
leucine 2,5-dimethylhexane HBCWCHB 1) C41
1 CHj
. . AN 1 1) NC2
lysine butylamine ) H3;C NH, %) C3E
1
- , _S CH 1)CS
methionine | ethyl methyl sulfide H3C ~— f; 2) C2M
2 CHs
1) TL2F
phenylalanine toluene 2) BZ(BZF1
1 and BZF2)
2
serine methanol H C/OH 1) COH1
SR |
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Table A.2, continued: Analogue Mapping Schemes

PN

threonine ethanol H5;C OH 1 1) CCOH
R
1) PL1
tryptophan pyrrole 2) PL2
\ /7,
1 CHj
tryptophan toluene g $8|[‘21
2
1 OH
1) COH3
tyrosine m-cresol 3 2) Bzy
3) TL2Y
2 CHj;
1 H;C CH,
valine 2,3-dimethylbutane >—< 1) C3E2
H,C CH; 1
O
2 1) NC
backbone methylacetamide ch\ 2) CCO
N CHs
1 H
i . 1) CC
backbone diethylketone HBC\)J\/CH?) 2) CO
1 1
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Table A.2, continued: Analogue Mapping Schemes

1
N-terminus butylamine H3C/\/\NH2 3 (N;gg
2
1 0 2
, I . 1) COO1
Cterminus propionic acid CH 2) C2E
HOJJ\/ 3 )
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Appendix B: CG Analogue Parameter Development Results

Table B.1: Comparison of experimental and CG model densities

AMino Experimgntal Model Standard
: Analogue Density Average % Error .
Acid (g/cm 3)a (g/cm 3) Deviation
Ala N-butylamine 0.741 0.728 1.78 7.93E05
Asn acetamide 0.999 1.002 0.27 9.01E05
Asp acetic acid 1.043 1.042 0.11 1.20E04
Cys methanethiol 0.892 0.887 0.56 5.70E05
GIn propionamide 0.96 0.964 0.43 3.36E05
His pyridine 0.979 0.967 1.20 5.64E05
His pyrrole 0.965 0.944 2.22 7.97E05
His toluene 0.865 0.856 1.07 5.94E05
lle 3,4-dimethylhexane 0.716 0.703 1.81 4.02E-05
Leu 2,5-dimethylhexane 0.694 0.687 0.96 4 49E-05
Lys N-butylamine 0.741 0.731 1.40 3.10E-05
Met ethyl methyl sulfide 0.832 0.834 0.28 4.74E05
Phe toluene 0.865 0.862 0.40 3.36E05
Ser methanol 0.787 0.786 0.07 1.27E04
Thr ethanol 0.787 0.789 0.25 1.30E04
Trp pyrrole 0.965 0.957 0.83 3.86E05
Trp toluene 0.865 0.864 0.14 8.75E-05
Tyr m-cresol 1.03 1.036 0.53 5.59E05
Val 2,3-dimethylbutane 0.658 0.652 0.85 4 17E05
Backbone | N-methylacetamide 0.9405 0.94152 0.11 5.73E05
Backbone diethylketone 0.8089 0.7843 3.04 6.50E-05
aExperimental data from refs63z67
Table B.2: Comparison of experimental and CG model heats of vaporization
: Experimental Model
Aprrllir:jo Analogue i Hvap Average % Error S;%?st?gg
(kcal/mol) a | (kcal/mol)
Ala N-butylamine 8.537 7.398 13.34 2.98E03
Asn acetamide NA -- -- --
Asp acetic acid 5.583 5.481 1.83 7.60E04
Cys methanethiol 5.872 5.544 5.59 4.75E04
GIn propionamide NA -- -- --
His pyridine 9.61 8.72 9.28 4.58E03
His pyrrole 10.78 8.89 17.55 2.95E03
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Table B.2, continued: Comparison of experimental and CG model heats of vaporization

His toluene 9.0846 8.5631 5.74 5.84E03
lle 3,4-dimethylhexane 9.314 9.570 2.75 6.41E03
Leu 2,5-dimethylhexane 9.046 8.398 7.16 2.41E03
Lys N-butylamine 8.537 7.092 16.93 3.33E03
Met ethyl methyl sulfide 7.6123 7.0342 7.59 1.46E03
Phe toluene 9.0846 8.4578 6.90 4.59E03
Ser methanol 8.946 4.312 51.80 4.68E04
Thr ethanol 10.115 4.900 51.56 9.41E04
Trp pyrrole 10.78 9.31 13.60 1.95E03
Trp toluene 9.0846 7.9952 11.99 1.77E03
Tyr m-cresol 14.749 10.417 29.37 3.13E03
Val 2,3-dimethylbutane 6.96 6.47 7.05 2.04E03
Backbone | N-methylacetamide NA -- -- --
Backbone diethylketone 9.2065 8.4050 8.71 4.73E03
aExperimental data from refs63.65.68
Table B.3: Comparison of experimental and CG model surface tensions
Experimental
Ami_no Analogue Surfa_lce A'\\fgrc:;ge % Error Sta’?d?rd
Acid Tension Deviation
(MN/m) = (mN/m)
Ala N-butylamine 23.44 23.787 1.48 0.159
Asn acetamide 38.96 38.963 0.01 0.157
Asp acetic acid 27.1 28.172 3.96 0.223
Cys methanethiol 31 31.510 1.65 0.133
GIn propionamide 31.31 31.259 0.16 0.150
His pyridine 36.72 37.502 2.13 0.223
His pyrrole 36.32 38.040 4.74 0.143
His toluene 27.93 28.043 0.40 0.064
lle 3,4-dimethylhexane 21.21 22.578 6.45 0.104
Leu 2,5-dimethylhexane 19.28 20.420 5.91 0.220
Lys N-butylamine 23.44 23.720 1.20 0.092
Met ethyl methyl sulfide 24.42 25.651 5.04 0.114
Phe toluene 27.93 29.197 454 0.177
Ser methanol 22.07 22.655 2.65 0.121
Thr ethanol 21.97 22.833 3.93 0.037
Trp pyrrole 36.32 35.902 1.15 0.147
Trp toluene 27.93 28.335 1.45 0.062
Tyr m-cresol 35.76 37.381 453 0.226
Val 2,3-dimethylbutane 16.87 17.073 1.20 0.113
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Table B.3, continued: Comparison of experimental and CG model surface tensions

Backbone | N-methylacetamide 32.53 32.933 1.24 0.160

Backbone diethylketone 24.74 26.565 7.38 0.160

aExperimental data from refs63z66.68,69
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Appendix C: Peptides and Analogues, Distributions and RDFs

C1 Alanine
Ala-Ala-Ala Tripeptide
18
33
11 H w
o O 17HC1|6‘|19 3 320
8
o L L R
HG\(I_:l/W\}\Zl/H\ZCO/”\(I_:l/ X0
7 4 H 15 24 31
|1 13 || |26
HNH O 27HCH29
2 3 21 H
28

Figure C1.1: All-atom Alanine tripeptide with atom numbering
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Figure C1.3: Distributions of the bonds (a) NCC1-CO, (b) CO-NCC2, and (c) NCC2-COO1
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Figure C1.4: Distributions of angles (a) NCC1-CO-NCC2, (b) CO-NCC2-CO, (c) NCC2-CO-NCC2, and
(d) CO-NCC2-CO01
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Figure C1.5: Distributions of dihedrals (a) NCC1-CO-NCC2-CO (b) CO-NCC2-CO-NCC2, and (c) NCC2-
CO-NCC2-C001
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Figure C1.6: RDFs of (a) NCC1 and (b) NCC2

Analogue: N-butylamine
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Figure C1.7: All-atom N-butylamine with atom numbering

@ 9

Figure C1.8: CG model of N-butylamine showing bead types
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Figure C1.9: Distribution of bond NCC1-C2E
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Figure C1.10: RDFs of (a) NCC1 and (b) C2E
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C2 Arginine

Table C2.1: Arginine side chain atom charges.

Hydrogens HB3 and HH22 are not in the neutral side

chainNAsi gni fies fANot Availabledo in consequenc
Atom names are CHARMM atom names.

Charges
Q;onTe CHARMM | Gaussian | Assigned
CB -0.18 -0.518 -0.380
HB1 0.09 0.137 0.137
HB2 0.09 0.139 0.137
HB3 NA 0.136 NA
CG -0.18 -0.091 -0.091
HG1 0.09 0.143 0.130
HG2 0.09 0.116 0.130
CD 0.20 -0.317 -0.317
HD1 0.09 0.162 0.151
HD2 0.09 0.140 0.151
NE -0.70 -0.177 -0.177
HE 0.44 0.221 0.221
Cz 0.64 0.099 0.099
NH1 -0.80 -0.445 -0.445
HH11 0.46 0.186 0.186
HH22 0.46 NA NA
NH2 -0.80 -0.380 -0.380
HH21 0.46 0.228 0.224
HH22 0.46 0.220 0.224
Total 1 -0.001 0
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Ala-Arg Dipeptide

1 2 34
NH, 9)
Sio N A
7 14 _C._35
BH,C” 4 ~C7 12 NOH 35 B8
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24
25'T'H26
270
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Figure C2.1: All-atom Alanyl-Arginine dipeptide with atom numbering

Figure C2.2: CG model of Alanyl-Arginine dipeptide showing bead types
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