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The method of multiple scales is used to derive a nonlinear Schr6dinger equation for the temporal 
and spatial modulation of the amplitudes and the phases of waves propagating in a hard-walled 
circular duct. This equation is used to show that monochromatic waves are stable and to determine 
the amplitude dependance of the cutoff frequencies. 
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INTRODUCTION 

In many physical problems involving sound transmis- 
sion in ducts, the sound-pressure levels involved are so 
high that the problem of propagation and attenuation 
cannot be treated using the usual linear acoustic anal- 

yses. At these high sound-pressure levels: the non- 
linear effects play an important role in the attenua•tion 
of the sound (see, for example, the survey articles of 
Blackstock t and Nayfeh et al.2). These nonlinear effects 
are of two types--the nonlinearity of the acoustic prop- 
erties of the lining material and the nonlinearity of the 
o'n• it'•plf Tn t'hi• nnn•-e v,,,• Pnn.•(d•, ß nnlv fho nnnlin- 

earity of the gas; that is, we consider waves propagating 
in hard-walled ducts. 

In analyzing waves propagating in a duct, one needs 
to distinguish between dispersive and nondispersive 
waves by investigating the linear problem. To this end, 
we consider linear, inviscid, irrotational waves prop- 
agating in a hard-walled duct with a uniform cross- 
sectional area S* and filled•with a fluid having a uniform 
pressure p• and a uniform density p•. We introduce a 
Cartesian coordinate system such that the x axis is 
along the axis of the duct. Moreover, we introduce 
dimensionless quantities by using a characteristic length 
R* of the cross section, the ambient speed of sound c•, 
and the ambient density p• as reference quantities. 
Thus, we let x•*=r*/R *, v=v*/c•, p=p*/p•, 
p,,..,2 0•0 , and t=t*c•'/R*, where starred and unstarred 
quantities denote dimensional and dimensionless quan- 
tities, respectively, r is the position vector, v' is the 
velocity vector, p is the gas density, p is the gas pres- 
sure, and t is the time. In terms of these dimension- 
less quantities, the dimensionless velocity potential 
• (r, t) is governed by 

v% :0, 

e•/en=O, at C, (2) 

where C is the equation of the duct wall and n is the 
normal to the wall. 

For a sinusoidally varying wave, we let 

dp(x, y, z, t) = +(y, z) exp[i(kx -wt)] . (3) 

Substituting Eq. 3 into Eqs. 1 and 2, we obtain 

• + •ss + •2• = 0 , (4) 

ai/Sn= O, at C, (5) 

where co and k satisfy the dispersion relationship 

0• • - k •= • . (6) 

The waves are called nondispersive if K =0 because all 
waves irrespective of their wavenumbers travel with 
the same phase speed co/k; otherwise, they are dis- 
persive. Thus, nondispersive waves correspond to 
ß = const from Eqs. 4 and 5; that is, they correspond to 
plane waves. Including the tube-wall effects (acoustic 
boundary layer) leads to almost plane waves (i.e., 
•-•f• 1•,,+ c,•,•11• ,,,A4.A ........ 1.1.. •4 ..... 4..• 3,4 o4• 

all linear waves travel with exactly or appro•mately 
the same phase speed, one cannot excite a single fre- 
quency wave (a monochromatic wave) without strongly 
exciting •1 its harmonics. In this case, the effect of 
the gas nonlinearity leads to a cum•ative •stortion of 
the wave owing to the increase of the phase speed with 
increasing amplitude. This distortion resets in a shift 
of ener• among the sever• harmonics and requires 
that the waveform be •yzed •rectly from the non- 
linear equations of motion. 

For dispersive waves, nth harmonic resonance exists 
whenever (co, k) and (nco,nk), where n is an integer, 
simultaneously satisfy the dispersion relationship, Eq. 
6. In this case, one cannot excite one of these waves 
without strongly exciting its resonant wave. For two- 
dimensional ducts, K = n7r if R* is taken to be the half- 
width of the duct. Thus, every wave is resonant with 
all its harmonics, and one cannot determine a uniform 
expansion by treating a monochromatic wave without 
considering its interaction with all its harmonics. For 
rectangular ducts, tc 2 = n27r2/b• +m27r2/b•, where 2b• and 
2b 2 are the dimensions of the cross section. Thus, any 
wave is resonant with all its harmonics (one needs sim- 
ply to set m = n). In this case also, one cannot deter- 
mine a uniform expansion by treating a monochromatic 
wave without considering its interaction with all its 
harmonics. In what follows, we exclude the case of 
harmonic resonance. Although our method of analysis 
is valid for all nondispersive waves without harmonic 
resonance, we treat the case of a circular cross sec- 
tion so that we would be able to give an explicit solution. 

To the author's knowledge (see, Nayfeh et al.2), all 
linear and nonlinear analysis of strongly dispersive 
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waves in a duct deal with a monochromatic wave (a 
single frequency sound). Thus, none of the existing 
analysis can treat the case of the propagation of a sound 
consisting of a group of waves centered about a frequen• 
cy w. In particular, they cannot treat the simple prob- 
lem of the propagation of two waves of frequencies co 
and co + Aw produced by a piston; the initial condition in 
this case can be written as 

u =a• cos0•t +a• cos[(0• + a0•)t + 6] , (7) 

where u is the velocity of the piston, a• and a2 are the 
initial amplitudes of the two produced waves, and 8 is 
the phase difference. Expanding the second trigonomet- 
ric function in Eq. 7, we rewrite it as 

u =ao(t) cos[wt + eo(t)] , (8) 

where 

a•={al +a•. cos[(aco)t + •]}•' +al sin•[(aco)t + •], (9a) 
tanO={a•. sin[(Aco)t + •]}/{a• +a•. cos[(Aco)t + •]}. (9b) 

Thus, when Aco is small, the initial condition consists 
of a wave with a frequency co whose amplitude and phase 
vary slowly with time. The initial conditions corre- 
sponding to a piston executing a motion consisting of a 
small band of frequencies centered at co can also be 
expressed as in Eq. 8. As the wave propagates down 
the duct, the amplitude and the phase of the wave will 
also modulate with the axial distance. The purpose of 
the present paper is to derive partial differential equa- 
tions describing these modulations and to use these 
equations to determine the stability of monochromatic 
waves and the dependence of the cutoff frequency on the 
amplitude. 

I. PROBLEM FORMULATION 

We consider finite-amplitude waves propagating in a 
hard-walled cylindrical duct. The fluid is assumed to 
be inviscid, irrotational, and initially quiescent with a 
uniform pressure p•' and a uniform density p• so that 
its subsequent motion can be represented by a potential 
function. Boundary-layer effects are incorporated in 
Sec. Ill. 

We introduce a cylindrical coordinate system (r, 8, x) 
whose x axis coincides with the duct axis. We intro- 

duce dimensionless quantities as in the previous sec- 
tion and choose R* to be the radius of the duct. In 

terms of these dimensionless variables, the equations 
describing the conservation of mass and momentum are 

•P (•o) oT + v. (pv)= o, 

p +v.V =-VP . (11) 

The pressure is related to the density by the isentropic 
relationship 

p,/p•, = (p,/p•,)r 

or in dimensionless quantities by 

(12) 

where y is the gas specific heat ratio. Since the duct 
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walls are assumed to be rigid, the appropriate bound- 
ary condition is the vanishing of the normal velocity at 
the duct walls; that is, 

v=O at r= 1 , (13) 

where v is the radial component of velocity. 

Since the flow is assumed to be inviscid and irrota- 

tional, the velocity v is derivable from a potential func- 
tion •b (r, t) according to 

v=V(p . (14) 

Substituting for p and v from Eqs. 12 and 14 into Eq. 11, 
using the irrotationality of the gas, and integrating the 
resulting equation, we obtain 

p'-• = • + (• - •)[½• + (•/2)(v½)•]. (• 5) 

Eliminating p from E qs. 12 and 15 gives 

yp={1 +(1 - y)[qb, + (1/2)(Vq•)2]] r/(•'-1) ß (16) 
Differentiating Eq. 15 with respect to t, eliminating p 
by using Eqs. 10, 14, and 15, and arranging, we obtain 

½,t - v% = (• - •)[½, + (•/2)(v½)•]v% 

- •(v½ )• - 0/2)v½ ß v(v½)•. 07) 
In terms of the potential function qb, the boundary con- 
dition 13 becomes 

q•r= 0, at r = 1 . (18) 

To determine an approximate solution to Eq. 17 sub- 
ject to the boundary condition, Eq. 18, allowing for 
waves modulating with both space and time, we use the 
method of multiple scales (e.g., Chap. 6 of Ref. 5) and 
let 

q•(r, 0, x, t)= y• ½"rp.(r, O,Xo, X•,X2, To, T•, T2) +0(½4), 
"• (19) 

where ½ is a small but finite dimensionless parameter 
characterizing the amplitude of the wave and 

x.: •"x, •. = •"t . (20) 

Here, X o is a short scale characterizing the wavelength, 
X• and X 2 are long scales characterizing the amplitude 
and phase modulations with axial distance, To is a short 
scale characterizing the frequency of the wave, and T• 
and T 2 are long scales characterizing the temporal am- 
plitude and phase modulations. Using Eq. 20 and the 
chain rule, we express the temporal and axial deriva- 
tives as 

0 0 0 ½2 0 (21a) +'" , 

Ot - OTo +½ •-• + •-• + .... (2lb) 
Substituting Eqs. 10-21 into Eqs. 17 and 18 and equating 
coefficients of like powers of ½, we obtain: 

Order ½-- 

(22a) 
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o 2 I o I /)2 o2 

V• = •-• +• • +•--• •-• + •-•0 ' (22b) 
0•/•r=0, at r= 1; (23) 

•der •2_ 

•(•) = - 2 + 2 

+ (• -y)o• v•,•- •(Vo,•) • (24) OTo o ' 

•,•/•=o, at r= •; (25) 

• •-2 +2 •)= - 2 •to•t• •tl' Oto•t• OXoox• 

+ OX• OXoOX • + - 

+(• -•) v• +•(• -•)(v0•)•v•- •(v0•) 

0 •0• 0•_ 2 - 2 • 0x0 0xd • (v0•. 
1 - • v0•' v0(v0• , (26) 

0•=/0r=0, atr=l . (27) 

II. SOLUTION 

We t•e the solution of Eqs. 22 that is bonded at the 
•is in the form of a traveling wave packet centered at 
the frequency w •d the wavenumber k; th• is, we let 

•i=A(Xi,X=, Ti, T=)J•(•r)exp(i•)+cc , (28a) 

•=}X0- •To+mO , (28b) 

where J• is Bessel's function of order m, cc studs for 
the complex conjugate of the preceding terms, and w 
•d k satisfy the dispersion relationship 

w2-k2= •2 . (29) 

We note that Eqs. 28 describe a single frequency wave 
only when A is independent of either Xt •d X2 or Tt •d 
. .., , , . , 

T2. For nondispersive waves, one must include all the 
harmonics in Eq. 28a. Substituting Eqs. 28 into Eq. 
23, we have 

J'•(•)= 0 . (30) 

In what follows, we exclude the nondispersive case cor- 
responding to • = 0 (i.e., plane waves). Note that the 
function A is still unclerefrained at this level of approxi- 
mation; it is determined by invoking the so-called solv- 
ability condition in the second- and third-order prob- 
lems. 

Substituting for • from Eq. 28a into Eq. 24, we ob- 
tain 

œ(•.)= 2i •+k • J•(•r)exp(i•) 

+ /w•2j2•z(•)- 4iw• - J=+z(•)J=(•) 

- i w(•,w •' - •' + k •')J• (• z)]A •' exp(2 i• )+ cc . 
(31) 

Since the homogeneous second-order problem consisting 
of Eqs. 25 and 31 is the same as the first-order problem 
and since the latter has a nontrivial solution, the in- 
homogeneous second-order problem has a solution if, 
and only if, a solvability condition is satisfied. This 
condition is equivalent to the elimination of secular 
terms. To determine this solvability condition, we 
seek a particular solution of the form 

•.= •(z,X•,X•., Tx, T•.)exp(/•) . (32) 

Substituting this solution into Eqs. 31 and 25 and equat- 
ing the coefficients of exp(/•)on both sialess, we have 

0•--•+•-•+ •'- •-• •=2i •+k• J,(•r), (33) 
0•/Or=0, at •= 1 . (34) 

Determining the solvability condition of Eqs. 25 and 
31 is transformed into that of determining the solvability 
condition of Eqs. 33 and 34. To this end, we multiply 
Eq. 33 by r•*(r, Xt, Tt), where •* is specified later, 
integrate the resulting equation by parts from r = 0 to 
r = 1, and obtain 

(35) 

W e choose •* to be a solution of the so-called adjoint 
homogeneous problem; that is, 

(r ø•*• (• me) __0 •'r •* 0 (36) or or/+ - = ' 

0•*/or=0, atr=l . (37) 

A solution of Eqs. 36 and 37 that is bounded at the ori- 
gin is •*=J•(•r). Substituting for •,* into Eq. 35 and 
using Eqs. 34 and 37, we find that the solvability condi- 
tion is 

I 

0A 0A 

w•+k•:O . (38) 
With this solvability condition, the solution of the sec- 
ond-order problem is 

•.= [r•J•=(•r)+ r•.rJ=(•r)J=,z(•r)+ raJ,.=(2•r)]A"' 
x exp(2 i}) + ee , (39a) 

where 

rl:- iw[(t/2)m(y+ 1)w2•'•'+ t] , r•.: (t/2)i(y+ 1)wa• 4 , 

r•= - (•/2) r•=(•)[:=.•(•)+:'•+•(•)]/•:'•(2•) . (39b) 
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Note that the I'•- oo and hence •b•.-oo as K- 0 (i.e., 
plane waves); otherwise qb•. is bounded for all other 
This is the reason we excluded the nondispersive case 
because in that case one cannot take the first-order 

solution to consist of a small band of waves centered 

about the frequency co as in Eqs. 28. Equation 38 shows 
that the function A describing the amplitude and phase 
modulations of the wave is linear. Hence, we need to 
carry out the expansion to at least one more order to 
determine the nonlinear effects. 

Substituting for qb• and qb•. from Eqs. 28 and 39 into 
Eq. 26, we have 

œ(qb3)= 2i • +k • - • + •-•l m(Kr)exp(i•) 
-AS•.F(r) exp(i• )+ cc 
+ harmonics other than exp (+ i•) , (40) 

where F(r) is given in Appendix A. Since the homo- 
geneous third-order problem consisting of Eqs. 27 and 
40 has a nontrivial solution, the corresponding inhomo- 
geneous problem has a solution if, and only if, a solv- 
ability condition is satisfied. To determine this solv- 
ability condition, we seek a particular solution of the 
form 

qbs= •(r, X1, X•., T1, T2) exp(i•) . (41) 

Substituting this solution into Eqs. 27 and 40 and equat- 
ing the coefficients of exp(i•) on both sides, we obtain 

(42) 

O•//or= O, at r= 1 . (43) 
The solvability condition of Eqs. 42 and 43 can be ob- 
tained in a manner similar to that used to determine the 

solvability condition of Eqs. 33 and 34. Multiplying Eq. 
42 by rJm(Kr) , integrating by parts from r = 0 to r= 1, 
and using Eq. 43, we obtain the solvability condition in 
the form 

•.i •-y•+• -•T•+o-•:•,• , (44) 
where 

Eliminating asA/aX• from Eq. 44 by using Eq. 38 
gives 

2i •+• + •- •=AA . (46) 
To simplify Eq. 46, we differentiate the dispersion re- 
lationship 29 with respect to • and obtain 

•'= • , (4•) 

where • =dk/d• the inverse of the group velocity. 
ferentiating Eq. 47 with respect to • gives 

•"= 1- •'== 1- w=/k= . (48) 

J. Acoust. Soc. Am., Vol. 57, No. 4, April 1975 

Using Eqs. 47 and 48, letting Tn= ent and Xs= eS x, and 
arranging, we rewrite Eq. 46 as 

0A 0A 1 .... •)SA 1 ½sA • + k' + = i AS.• (49) •x •- ••W • F ' 

Changing the independent variables from x and t to 

•=t-/,'x, •=x, (50) 

we express Eq. 49 in the form 

o• +• i•" o-• -r =- • i• • ' 
which is a nonlinear Sehr6dinger equation. 0 Letting A 

1 

- •a exp(i•) with real a •d • in Eq. 51' and separating 
real and imaginary pa•s, we obtain 

A. The case of monochromatic waves 

For monochromatic waves (a single frequency wave), 
the amplitude and phase are independent of t so that A 
of Eqs. 28 is a function of X• and X•. only; that is, 
- a/•/a• = 0, and Eqs. 52 and 53 can be integrated to giv,•e 

2 A a• •/+/30 (54) a=ao and /•=- (1/8)ß -•- , 
where ao and/3 o are constants. Substituting for a and 
from Eqs. 54 into Eqs. 9.8 and 39• we rewrite Eq. 19 
in terms of the original variables as 

cp = •ao•(Kr) cos(•x - co t + m 0 +/30) 
+ (•/•.) •' aõ [r• a[(•r)+ r•. r ;•(•r) ;• • •(•r)+ r•a•.•(•.•r)] 

X cos [2(•x - co t + rn 0 +/30) ] + 0(e s) , (55) 
where 

•= • - (•/8) e•A• '• aõ . (56) 

This result can be obtained as a special case from the 
solution of Nayfeh and Tsai v by letting the resistivity of 
the acoustic material be infinite. Moreover, our solu- 
tion reduces when rn = 0 (i.e., symmetric modes) to 
that of Keller and Millman, ø which they obtained using 
the method of strained parameters. In the latter two 
analysis, the stability of monochromatic waves cannot 
be investigated. We note that the perturbation param- 
eter e occurs always as a multiplicative of a0, whose 
value does not affect the solution provided that one in- 
terprets ca0 as the initial amplitude of the wave. Hence, 
e is just a perturbation parameter. 

Equation 56 shows that the nonlinearity of the gas re- 
suits in a shift in the wavenumber from k to • = k- (1/ 
8) e•'Ak '• a s. The variation of (1/8) A K '• with K is shown 
in Figs. 1 and 2 for eight modes. Since A is positive, 
the nonlinearity shifts the wavenumber to lower values 
resulting in higher phase speeds. The wavenumber shift 
increases with increasing frequency and decreases with 
increasing azimuthal mode number. 

Equations 52 and 53 can be used to analyze the stabill- 
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ty of the aforementioned monochromatic solution. To 
do this, we let 

A •. 
a =a0+ax , •= - (1/8) e•'•aorl + •0+ •x , (57) 

where ax and Bx are small compared with the preceding 
terms. Substituting Eq. 57 into Eqs. 52 and 53 •d ne- 
glecting the nonlinear terms in a• and B•, we obtain 

a• - • k'aø a• = , 
a•l 1 1 a zal 1 z A 

ao a• z • e •aoa• . 
Since Eqs. 58 and 59 Iinear, we seek their solution in 
the form 

a•=a•exp[i(kn•)], •=•exp[i(fin-•e)] , (•0) 
where 5• •d B• are constants. Substituting this solu- 
tion into Eqs. 58 and 59 •d eliminating ff• and •, we 
obtain 

k "z - ½ZAag/kk (61) , 

which shows that, if A/k • < 0, • is always real for all 
values of o• so that the monochromatic waves given by 
Eqs. 55 and 56 are neutrally stable. On the other hand, 
if A/k" >0, /z z is negative for all & < ½ao(A/2kk#)X/z; con- 
sequently, disturbances grow exponentially with • and 
monochromatic waves are unstable. Since Figs. 1 and 2 
show that (1/8)Ak 'x is positive, monochromatic waves 
are stable only if k" < 0. However, Eqs. 29 and 48 show 
that k • =- trZ/k a < 0. Therefore, monochromatic waves 
are stable. 

B. Solution near cutoff frequencies 

Although Eqs. 55 and 56 are valid for a wide range 
of frequencies, they break down as k-. 0 (i.e., near the 

iO 7 

/ (z,o)-..• 

(3,0) ' 

I I$ 15 17 19 21 2:5 25 

FIG. 1. Variation of the nonlinear wavenumber shift with fre- 

quency in a hard-walled duct for four radial modes correspond- 
ing to the lowest azimuthal mode. 

10 7 

- I I I I I ! _ 

_ 

_ 

_ 

_ 

_ 

io 5 , (i,i) 

. 

FIG. 2. Variation of the nonlinear wavenumber shift with fre- 

quency in a hard-walled duct for the lowest four radial modes 
corresponding to the first azimuthal mode. 

linear cutoff frequencies)because the wavenumber shift 
approaches infinity. However, the basic equations (Eqs. 
38 and 44) for the modulation of the amplitude and the 
phase with axial distance and time are valid for all fre- 

quencies. In this section, we specialize these equations 
to frequencies near the cutoff values. To do this, we 
use Eq. 38 to express OA/OTx as-(k/m) OA/OXx, sub- 
stitute this result into Eq. 44, and obtain 

aA OA ( k•_•)a•'A Zioo•-• +Zik•+ 1- •:AA•'•.. (62) 
Letting T•.: e•'t and X.= e"x in Eq. 62, we rewrite it as 

aA •ik aA ( ks) a•A 2i•• + • + 1- --= eZAAZ• (63a) 

OA •, OA 1 O•A 1 • at + ax -•i•" =- A•'•A (6•) -- -- . 

For monochromatic waves, OA/O t= 0 and Eq. 63a be- 
comes 

dA ( kZ• dZA z• , 
which is v•id for all frequencies away from zero. 

Equation 64 has solutions of the form 

A = (1/2)a exp(i•) , (65) 

where a is constant and 

d/g { lea x/a} -x ß (66) 

Away from the cutoff frequencies, k is away from zero 
and the radical in Eq. 66 can be expanded for small e, 
yielding 

dx - - • eZAk a (67) 
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in agreement with the monochromatic solution obtained 
above. On the other hand, when k-0 (i.e., near the 
cutoff frequencies), Eq. 66 tends to 

d•3 2 1 2 
dx - - k + - • e2A a . (68) 

Substituting for A from Eq. 65 into Eqs. 28 and 39, 
using Eq. 68 and letting T O = t and X, = ½"x, we obtain 
Eq. 55; however, k of Eq. 56 is modified to 

(k • 1 2] 1/2 - . (60) 
Therefore, the cutoff frequencies are solutions of 

k 2 - (1/4)½2Aa 2= 0 . (70) 

Since k•'=w•'-• 2 according to Eq. 29, the cutoff fre- 
quencies are 

w=K+(1/8)½2a2A(K)+... , (71) 

where A(K) stands for the value of A when w = •. These 
cutoff frequencies reduce when m = 0 to those obtained 
by Keller. s 

Using Eq. 638, one can carry out a stability analysis 
and show that this modified solution is stable. 

III. BOUNDARY-LAYER EFFECTS 

Although viscous effects can be neglected everywhere 
in the body of the fluid for strongly dispersive waves 
owing to the absence of shock waves (in contrast with 
plane, or almost plane, waves which distort over dis- 
tances that depend on the initial amplitude and frequency 
of the wave to form shock waves), they cannot be ne- 
glected near the duct walls (i.e., the acoustic boundary 
layer). For example, for waves in circular ducts, the 
usual linear theory yields 2 

q•(r, O, x, t)=•t,Jnœr) exp[i(•x-wt +nO)] + cc, 
where 

(72) 

(73) 

and • is the solution of 

•J/(•) = -iBewJ,(•) . (74) 

Here, Be is the effective admittance at the wall; it is 
given by tø 

•)•=(1/2)6(1-i)w'•'[7• +.2+(l•-1)w2/V•i• ] , (75) 

where Pr is the Prandtl number and 6 = •/•--•e with the 
Reynolds number Re being based on the undisturbed 
speed of sound. 

For small •, Eq. 74 has the approximate solution 

• = • - i[tew[(n •' - K•) 'z , (76) 

where d•(•)= 0. Substituting for • into Eq. 73 and solv- 
ing for k gives 

where 

a = (1/2)5(• •- _ k•.)k-•(n 2 + k• _w2) -• 

+ + 6' - ] ß 

Therefore, Eq. 72 can be rewritten in the form 

qb(r, O, x, t)= A,(x)J,(Kr) exp[i(kx -cot + nO)] + cc , (?O) 
where 

dA,/dx= - (1 - i)aA, . (80) 

Since c• is small, we can account for the effects of the 
acoustic boundary layer by modifying Eq. 49 in such a 
way that the resulting equation reduces to Eq. 80 for 
linear monochromatic waves; that is, 

+ + = - AX. 
Letting 8A/at = 82A/at 2 = 0 and neglecting the nonlinear 
term in Eq. 81, one arrives at Eq. 80. 
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APPENDIX A 

[1• m(5m -3) F(r) = g2J=(gr)d•'(gr) (y - 1)w • + r2 - 

+ -- J•(gr)J=.x (Kr) - 2iw gd•(gr) - r, grJ•.• (sr) - 2rxgJ=(Kr)J=.x (sr).+ •- raJ•.=(2gr) - 2ragJ•.=.• (2•r 

[{ 2m•' •.]{ rnI2r---• 1 • x] - 7-1)w•'+ -•T+ 2k Ja•(gr) + }'+(7-1)o•'+2/o•r +2iwJ=(gr)[F•.yJ=(Kr)J=+•(a•r)+FaJ•.=(2a•r)] . 
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