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Attributes in the Frequency Domain (CAFD). Which is developed for load profile 

characterization and classification. III) The frequency domain load profile statistics and 

forecasting models. Two different models were introduced in this dissertation: the first 

one is the wavelet load forecast model and the other one is a stochastic model that 

incorporates local weather condition and frequency domain load profile statistics to 

perform medium term load profile forecast.  

7 different utilities load profile data were used in this research to demonstrate the 

viability of modeling load in the frequency domain. The data comes from various 

customer classes and geographical regions. The results have shown that the proposed 

framework is capable to model the load efficiently and accurately.  

  



  

 

Shiyin Zhong 

General Audience Abstract 

In todayôs highly competitive and deregulated electricity market, companies in 

the electricity power generation, transmission and distribution sectors can all benefit 

from collecting, analyzing and deep-understanding their customersô electricity 

consumption behavior. This strategic information is vital in forecasting and managing 

the future electricity demand. This information is also very important in utility 

companyôs long-term resource and capital planning. 

With the proliferation of Advanced Metering Infrastructure (AMI) in recent 

years, the amount of electric load profile data collected by utilities has grown 

exponentially. Such high-resolution datasets are difficult to model and analyze due to the 

large size, diverse usage patterns, and the embedded noisy or erroneous data points. In 

order to overcome these challenges and to make the load data useful in system analysis, 

this dissertation introduces a frequency domain load profile modeling framework. This 

framework can be used a complementary technology alongside of the conventional time 

domain load profile modeling techniques.  

There are three main components in this framework: I) the frequency domain 

load profile descriptor, which is a compact, modular and extendable representation of the 

original load profile. A methodology was introduced to demonstrate the construction of 
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the frequency domain load profile descriptor. II) The load profile Characteristic 

Attributes in the Frequency Domain (CAFD). Which is developed for categorizing the 

load profile data. III ) The frequency domain load profile statistics and forecasting 

models..  

7 different utilities load profile data were used in this research to demonstrate the 

viability of modeling load in the frequency domain. The data comes from various 

customer classes and geographical regions. The results have shown that the proposed 

framework is capable to model the load efficiently and accurately.  
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Chapter 1: Introduction 

1.1 Introduction to Load Profile Modeling in Frequency Domain 

With the proliferation of AMI in recent years, utilities have accumulated a large 

amount of high-resolution electricity consumption data. Deep-mining this data will help 

utilities to gain strategic advantages in areas such as load forecasting, demand-side 

management, and resource planning.  

Customer electricity usage patterns are very diverse and can be effected by many 

factors including geographical, demographical, and meteorological factors. For example, 

Figures 1-1 to 1-3 present daily load profiles for some sample commercial and residential 

customers from a large utility in the Midwest region of the United States.  

 

Figure 1-1: Average daily load profiles for commercial customers 

 

Figure 1-2: Average daily load profiles for residential customer: non-winter months 

 

 

 

 

Figure 1-3: Average daily load profiles for commercial customers 
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The commercial customer has a set of very consistent load patterns throughout the 

year. The load pattern exhibits a long and flat high-load period during typical business 

hours (9am to 5pm). On the other hand, the residential customer has a more diverse set of 

load patterns. During the winter time there are two relative short and distinctive high-load 

periods (morning and evening). During non-winter months the high-load morning period 

shifts to a later time of the day. In addition to studying the daily load profiles, utilities often 

use the annual load profiles in load research and modeling. In Figure 1-4, there are two 

very different normalized annual load profile plots: the one on the top is from a commercial 

customer, the bottom one is from a residential customer. The plots exhibit very different 
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Figure 1-4: Normalized annual load profiles for residential and commercial customers 
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Figure 1-3: Average daily load profiles for residential customer: winter months 

 

 

 

 

Figure 1-3: Average daily load profiles for residential customer: winter months 
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load patterns characteristics. For example, the residential customer load pattern has a strong 

correlation with both the hot and the cold weather days while the commercial customer 

load pattern is mainly affected by the hot weather. The residential customer has a double-

peak daily load pattern in January and single-peak daily load pattern in July. The 

commercial customer has a consistent single peak, load daily pattern throughout the year, 

where the total daily energy consumption varies with the season. 

The annual load profile of residential or commercial customers can be viewed as 

being composed of many different periodical components, such as the seasonal component 

with higher electricity usage in the summer and winter, weekly component with different 

weekend and weekday electricity usage, and daily component with a double peak pattern 

for residential customers and a single peak pattern for commercial customers. Because of 

these periodicities in electric load profiles, the frequency domain, or spectral analysis, is 

suitable for analyzing and modeling electric load data. Spectral analysis techniques have 

been applied in many different fields, such as understanding periodic patterns in 

economics, meteorology, geology, and astronomy.  Spectral analysis is also applied in 

visual and audio signal data processing. 

Using frequency domain characterization techniques, complex time-domain load 

profile data can be decomposed into a series of frequency domain components. These 

components can be used as a set of building blocks to model distinctive load pattern 

characteristics. These building blocks have the potential to serve as a load profile signature 

for each customer. Because of the modular and orthogonal natural of these components, 

statistics can be calculated for each component. The frequency domain statistics then can 

be used to construct electric load forecasting models.  
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1.2 Challenges in Load Profile Modeling in the Frequency Domain 

Load profile data is typically stored as time-series data that is indexed by the 

collection timestamp. The properties of this data set include:  

¶ High data dimension.  

¶ ñNoisyò because of meter reading errors and missing measurements 

¶ It contains various periodical data patterns 

¶ It is correlated with geographical, demographical, climatological and 

sociological data.  

The above properties pose some challenges for modeling load patterns in the time-domain.  

In the time domain it is difficult to systematically identify or quantify load pattern 

characteristics. In the time domain load profiles are typically modeled using a Typical Load 

Profile (TLP) within a time window (daily, monthly or annually), as shown in Figure 1-5 

[1]. Recent research [1] has proposed to describe time domain load profile characteristics 

with parameters such as  

 
Figure 1-5: TLP for a typical office building 
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¶ Base Load 

¶ Peak Load 

¶ Rise Time 

¶ Fall Time 

¶ High Load Duration. 

The above parameters are illustrated in Figure 1-6 [2]. These parameters define the 

temporal relationship between the load profile magnitude values and the time indices. For 

a high- dimensional dataset, such as an annual load profile consisting of 8760 load 

measurements, it is very complicated to use such an approach to modeling the load. 

Load estimation and load forecast models have been built for various types of 

customers [2-5] by extracting statistical properties from historical data. Some research 

refines such models by introducing other factors, such as weather conditions [6-7]. Various 

load models (regression [8], fuzzy approaches [9-11], and neural networks [12-13]) have 

 

Figure 1-6:  Time Domain Load Profile Description using 5 Parameters 
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been used for load forecasting and estimation. 

The performance of load models is dependent on a load profile classification 

process. This classification process should not be based on customer electric rate charges. 

Although customers are generally grouped by utilities into residential, commercial and 

industrial classes, and respective subclasses, there is no systematic framework that can be 

used to characterize usage patterns of different classes and subclasses with signatures that 

are both human-readable and machine-readable.  

1.3 Research Objectives 

This dissertation seeks to investigate and contribute to three major aspects of load 

research.  

First, a theoretical framework for load profile representation in the frequency 

domain is sought.  The predominant load profile representation today is in the time domain. 

Second, a way to hierarchically classify loads based on significant usage patterns 

is sought. The predominant way that loads are classified today is based upon customer 

electric rate classifications. 

Third, an efficient, scalable and parallel-processing approach to constructing 

frequency domain load models is sought. 

1.4 Literature Review 

A literature review of load research has been performed primarily in the following 

three areas 

¶ Electricity load pattern characterization 

¶ Electricity load pattern classification 
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¶ Electricity load estimation 

Whereas this dissertation is dependent on the aforementioned fields, the research 

seeks to find a new framework to systematically model, classify and estimate electric load 

profiles. The following subsections highlight differences in approaches between the 

existing literature and the approach taken by this research.  

1.4.1 Electricity Load Pattern Characterization 

With the advent of AMI systems, high-resolution electric usage data is now being 

collected at individual customer and/or equipment levels. In order to successfully utilize 

this high resolution load data [1], the utility must have a systematic and efficient way to 

describe the unique and significant patterns and/or properties contained in the load data.  

Conventional methods for analyzing load profile shape are detailed in reference [1] 

by Price. This reference discusses load profile characterization methods using various time-

domain parameters (illustrated in Figure 1-5 and 1-6). Espinoza [2] introduced a unified 

framework to model the stationary properties of daily customer profiles. Currently utilities 

do not have a standard method or terminology to characterize and model customer load 

profiles.  This is because the time domain load profile characterization methods are verbose 

and imprecise. They are not suitable for modeling the significant patterns contained in the 

load profiles.  

Because consistent and predicable schedules exist in the majority of residential, 

commercial, and industrial customers, there are many ñhidden periodical patternsò in load 

profiles. Preceval [14] and Stoica [15] both listed a set of spectral analysis applications 

which show that frequency domain analysis methods are good complementary to the 

traditional time domain methods. Carpneto [16] and Verdu [17] utilize the frequency 
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domain load pattern data to classify load profiles based on the values of the load profilesô 

frequency domain components.  

This dissertation seeks to formalize the methodology for characterizing and 

analyzing load profiles in the frequency domain using the Discrete Fourier Transform. The 

dissertation addresses two issues, data sampling rate and signal bandwidth, which are not 

adequately addressed in the literature [16-17], but are important for the validity of 

frequency domain load profile characterization.  

1.4.2 Electric Load Pattern classification 

In order to effectively manage and plan for the electric power system load demand, 

it is important for a utility to be able to correctly and efficiently classify and categorize 

customers based on their electric usage patterns.  

Conventionally load profile classification is performed in the time domain using 

various data mining techniques. Espinoza [2] introduces a time-domain, uniform 

framework for customer profile classification using the stationarity properties of the time-

series Periodic Auto-regression (PAR) model to identify typical daily customer profiles. 

The basic PAR model template consists of 1176 parameters. This template is further 

extended to include exogenous variables to account for temperature effects, as well as 

monthly and weekly seasonal variations. Using the PAR model, the Typical Daily Profile 

(TDP) model can be computed. The load profile classification is accomplished by applying 

the unsupervised K-mean clustering algorithm on the TDP model.  

In order to discover the unique customer load profile groups with significant load 

patterns, Ramos [18] applies four different data mining techniques - k-means, normalized 

N-Cut, Pairwise Constrained (PC k-means) and Metric Pairwise Constrained (MPC k-
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means) - to a set of normalized average TDP models (which represent a set of annual load 

profiles). Once all possible typical load profiles (TDP) are discovered by the unsupervised 

clustering algorithm, then a supervised approach, supported by cluster validity indices as 

well as expert opinions, consolidate the large number of TDP into a set of more meaningful 

groups.  

Kim [19] summarizes recent advances in Typical Load Profile generation for a 

customer class, which included the Self-Organizing Map (SOM), K-mean, Fuzzing C-

means, hierarchical, Follow the Leader, and Fuzzy relations. The goal of these 

classification methods is to produce suitable TLP.  

Additional literature [2, 4, 24-25] utilizes several variations of k-means, fuzzy-

statistic, neural network and support vector machines [1-2,18-23] to classify load profiles 

using customer load profiles within different time intervals, such as annual load profiles or 

daily load profiles. 

This dissertation seeks a hierarchical classification method based on the frequency 

domain characteristics of a load profile. The major difference between the frequency 

domain approach investigated here and the traditional time-domain classification methods 

is that the approach here depends on the new frequency domain load pattern characteristic 

parameters. 

1.4.3 Electric Load Estimation 

Load pattern characterization and classification focuses on how load profiles 

behave based on prior load profile data. These impact load estimation which in turn impacts 

utility financial, generation, transmission, distribution and integrated resource planning.  
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Load forecasting is important to cost-of-service allocation, rate design, demand response, 

and energy efficiency [1].  

Load forecast models can generally be divided into two groups. The first group is 

the traditional time series and statistical methods. The major methods include [6-13] 

¶ Time series - ARMA, BoxïJenkins ARIMA, regression, and transfer 

function (dynamic regression), expert systems; neural networks 

¶ Fuzzy logic 

¶ Support vector machine.  

Almeshaiei [24] describes a time-series method that uses load pattern 

decomposition to model the load profiles as two main components: the noise component 

and the smooth moving, average component. It utilizes the Self-Organizing Map (SOM) to 

identify segments in the load profiles that have similar behavior. The method combines the 

region similarity, contour and proposed related points to forecast the load profile.  

Torkzadeh [25] proposes to method which combines the Principle Component 

Analysis (PCA) and Multi-Linear Regression (MLR) to forecast medium term load 

profiles. Espinoza [2] introduces Periodic Autoregressive (PAR) models to forecast the 

substation aggregated load profile. Chang [5] presents an updated version of the fuzzy load 

model to forecast transformer load profiles.  

The second grouping for load forecasting are the machine learning methods. For 

example, Sevlian [26] describes three different load forecasting models: Seasonal ARMA 

models (SARMA), a Support Vector Regression (SVR) model, and a Feed Forward Neural 

Network (FFNN) model. The author indicates the performance indices of these models 

improve as the size of the load increases.  
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The majority of load modeling literature focuses on short term, from minutes to 

several days, and long term, from a year to a decade, load estimation at the system or 

substation level, where the load can range from several MW to several GW [24-26]. These 

load models are generally constructed using time-domain load data. However, in the time-

domain it is difficult to describe and quantify the diverse and complicated load pattern 

characteristics that exist in AMI load data [27-28]. 

The aforementioned load forecast research is conducted in the time-domain. Yao 

[29] proposes a method that utilizes wavelet transformation to decompose the load profile 

and use neural networks to forecast each componentôs future value. The estimated wavelet 

component values are synthesized back to time domain load profiles. 

 This dissertation proposes to use frequency domain transformation techniques to 

decompose the load profile into frequency domain components. Frequency domain 

statistics can be computed for each significant frequency domain component. Conditional 

statistics will also be computed based on weather conditions. These frequency domain 

statistics can then be utilized in load estimation.  

1.5 Dissertation Outline 

Chapter II presents the frequency domain load profile characterization approach 

and the prerequisite conditions for its application. Analysis of daily load profiles using their 

frequency components is discussed.  

Chapter III introduces the concept of frequency domain characteristic attributes. A 

frequency domain load profile classification method is presented. New frequency domain 

attributes are discussed and a general load profile classification procedure is presented. 
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Chapter 3 presents a load profile classification test that evaluates the efficacy of the 

frequency domain classification procedure. 

Chapter IV introduces another frequency domain load profile modeling approach - 

the wavelet based AMI load profile model. Two different wavelet based load profile 

models are introduced. System load analysis results based on the wavelet models are 

presented.  

Chapter V introduces a medium-term weather-dependent stochastic load model 

using the frequency domain statistics calculated from the AMI data set. The model 

performance metrics comparison with other models have also been presented.    

Chapter VI summarizes the findings, contributions and future research topics. 
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Chapter 2: Load Profile in Frequency 

Domain 

2.1 Methodology for Modeling Load Profiles in the Frequency Domain 

Each daily load profile in Figure 2-1 consists of 24 hourly load data points xm(t), each 

of which is the monthly average for a group of commercial customersô load measurements 

recorded at that hour.  

In order to focus on the shape of the load profile, the hourly data is normalized by the 

daily peak xpeak as in equation (2.1). 

ὼ ὸ ὼ ὸ ὼ  ϳ                                                   ςȢρ 

The normalized daily load profile can be expressed by equation (2.2).  

ὼὸ ὼ‏ὸ ὲЎὸ                                             ςȢς 

Where Ø is the peak normalized hourly data indexed by n  

           æt (1 hour) is the sampling time interval 

 

Figure 2-1: Average daily load profiles for utility A commercial customers 

 

20

40

60

80

100

120

1 3 5 7 9 11 13 15 17 19 21 23

k
W

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec



 - 14 - 

The time-domain load profile can be transformed into the frequency domain by 

using the Discrete Fourier Transform (DFT). The frequency domain representation is 

shown by equation (2.3). 

ὢὪ ὢ‏Ὢ ὯЎὪ                                               ςȢσ 

Where  8 is a member of the frequency spectrum indexed by k 

             æf is the frequency resolution. 

Each member of the frequency spectrum, ὢ , can be expressed by equation (2.4). 

ὢ ὼὩ ȟ      Ὧ πȟρȟςȟȣȟςσ                       ςȢτ 

Where 8 is a complex number that has magnitude Á and phase angle ʃ. 

Using the Inverse Discrete Fourier Transform (IDFT) shown by equation (2.5) and 

equation (2.6) the time-domain profile, ὼ ὸ, can be reconstructed by using some or all of 

the frequency components . 

ὼ ὸ ὼ‏ὸ ὲЎὸ                                                 ςȢυ 

ὼ ὸ  
ρ

ςτ
ὢὩ ȟ      ὲ πȟρȟςȟȣȟςσ              ςȢφ 

Using Eulerôs identity to combine exponentials into cosine functions, ὼ ὸ can be 

expressed as a sum of frequency components as shown in equation (2.7), which represents 
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the normalized load profileôs shape information in term of magnitudes and phase angles of 

the harmonics. 

ὼ ὸ ὼ ὸ ὼ ὸ Ễ ὼ ὸ Ễ ὼ ὸ   ςȢχ 

Where Ø Ô Á    is the DC component; 

Ø Ô     ÃÏÓ
Ў
ʃ  is the 1st harmonic with amplitude Á  and  

phase angle ʃ ; Ø Ô  ÃÏÓ
Ў
ʃ   is the pth harmonic with amplitude 

Á      and phase angle ʃ . 

Each harmonic is associated with an amount of energy consumed by activities 

performed at the corresponding harmonic frequency. For different customer classes, each 

harmonic can be interpreted with different physical meanings. For example, the 

commercial classesô 1st harmonic can be interpreted as representing their single-peak usage 

pattern from 8am-5pm (normal business operation hours). For residential classes, the 2nd 

harmonic can be interpreted as representing a typical familyôs daily household activity 

pattern, where the higher household activities in the morning and evening leads to higher 

electricity usage during those periods. The higher frequency harmonics may be correlated 

with other periodical factors that will be considered in what follows.  

The original load profile can be fully reconstructed by using the product of the 

reconstructed normalized load profile and the peak of the profile as shown in equation 

(2.8). 

  ὼ ὸ  ὼ ὼ ὸ                                ςȢψ 

Once the original load profile is transformed into the frequency domain, the profile can 

be described by the following description system:  
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Ὓ Ὧ  ͅ‌ ȟ—  ͅ‌ ȟ— ȣͅ ‌ͅ ȟ—   ςȢω 

Where  Ὓ is the shape descriptor 

           k is the number of frequency components used in the shape descriptor 

           ‌  represents the magnitude of the DC component 

           ‌  represents the magnitude of the kth harmonic normalized by ὼ   

           —   is the phase angle of the kth harmonic.  
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2.2 Prerequisites for Load Profile Data in the Frequency Domain 

Before applying DFT to the time-domain hourly load data, two issues need to be 

considered. The first issue is whether the hourly data is adequate for representing the load 

profile. The second issue is whether the information represented in the hourly data is band 

limited, which can lead to aliasing problems. These issues will now be considered. 

2.2.1 Data Adequacy 

For individual residential or small commercial customers, the majority of load is 

consumed by various appliances and electronic devices that operate in duty cycles. The 

sampling rate commonly used by utilities (from 1 to 4 samples per hour) is too low to 

capture the true essence of each individual customerôs ñtrue load curveò, which typically 

can be characterized as ñneedle peaksò due to the instantaneousness of the turn-on and turn-

off processes. The hourly data (even 15-minute data) is not frequent enough to represent 

the load profile of individual residential or commercial customers [30, 31]. 

The diverse and non-coincident usage of electricity by a large group of customers 

(even with the same classification) has a smoothing effect on the volatility of individual 

load behavior. Consequently, hourly data can be frequent enough to represent the overall 

load profile for a group of 100 or more individual customers [31]. The hourly data shown 

in Figure 2-1 are obtained by taking the average of the hourly data from 119 commercial 

customers. Before the DFT is applied to time-series data, it is important to recognize this 

relationship between group size and sampling rate.  If the DFT is to be applied to the load 

profile of an individual customer, measurements should be taken every minute [31]. In this 

paper, the load profile frequency domain characterization and analysis are performed only 
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on the aggregated customer class load profiles from three utilities, which will be referred 

to as utilities A, B & C. 

2.2.2 Band-limitedness 

Using load data from three different utilities, it will be demonstrated for the load 

data samples that the aggregated customer class load profiles studied in this paper is 

practically band-limited by showing that 1) the Nyquist frequency component (╪  ) is 

negligibly small with 0 degree phase angle. This means that the signal is practically band-

limited even though theoretically no signal can be both frequency and time limited (the 

daily load profile is time limited to 24 hourly measurements) [32], and 2) The time-domain 

profile can be reasonably well reconstructed by using only the frequency components 

below the Nyquist frequency.   

Table 2-1 (page 32) presents the magnitudes and the phase angles for utility A 

commercial customerôs monthly load profiles (normalized by its peak load value). It also 

presents the peak load, the load factor, and the load profileôs shape descriptor string. Using 

the normalized magnitudes, the load factor is related to a0 by equation (2.10). 

ὒέὥὨ Ὂὥὧὸέὶ 
ὃὺὩὶὥὫὩ ὒέὥὨ

ὖὩὥὯ ὒέὥὨ

ὥ

ςτ
            ςȢρπ 

As shown in Table 2-1, the load factor is numerically very close to the DC 

componentôs magnitude value, ὥ , because the value of ὥ  is negligibly small. The DC 

component is expressed in equation 2.7 as the sum of  ╪  and ╪  normalized by the daily 

sample size, 24. ╪ is the average value of the normalized load profile. The shape descriptor 

string in table I follows the format introduced in equation 2.9 and contains DC and the 
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following 4 harmonic componentsô values. The descriptor string can be expanded to 

include more harmonics as needed. 
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Table 2-1: Harmonics for the Average Daily Load Profile for the Commercial Customers in Utility A 

Month Peak (kW) Load Factor 
Normalized Harmonic Magnitude apH 

aDC a1H a2H a3H a4H a5H a6H a7H a8H a9H a10H a11H 

1 110.138 0.742 0.744 0.266 0.084 0.042 0.024 0.008 0.030 0.006 0.002 0.004 0.010 0.006 

2 109.982 0.754 0.756 0.262 0.076 0.050 0.026 0.012 0.026 0.006 0.002 0.000 0.010 0.006 

3 109.923 0.755 0.758 0.264 0.072 0.048 0.026 0.008 0.022 0.006 0.000 0.004 0.006 0.006 

4 106.289 0.740 0.743 0.268 0.066 0.056 0.028 0.010 0.022 0.004 0.002 0.002 0.012 0.006 

5 98.743 0.762 0.764 0.232 0.052 0.042 0.022 0.006 0.024 0.004 0.004 0.002 0.008 0.006 

6 119.548 0.740 0.740 0.258 0.064 0.046 0.024 0.004 0.024 0.004 0.002 0.004 0.008 0.004 

7 106.291 0.772 0.772 0.226 0.066 0.036 0.022 0.006 0.022 0.004 0.002 0.004 0.008 0.006 

8 112.619 0.753 0.755 0.252 0.058 0.044 0.024 0.012 0.016 0.004 0.002 0.002 0.008 0.002 

9 97.226 0.796 0.798 0.212 0.038 0.038 0.010 0.004 0.014 0.006 0.006 0.004 0.006 0.004 

10 108.316 0.753 0.755 0.254 0.054 0.050 0.018 0.002 0.020 0.008 0.004 0.002 0.006 0.004 

11 106.726 0.742 0.749 0.268 0.084 0.066 0.020 0.010 0.032 0.010 0.006 0.006 0.010 0.008 

12 86.911 0.775 0.780 0.248 0.092 0.048 0.014 0.018 0.020 0.008 0.006 0.004 0.008 0.006 

Month Shape Descriptor ( S ) 
Harmonic Phase Angle ɗpH (Radian) 

ɗ1H ɗ2H ɗ3H ɗ4H ɗ5H ɗ6H ɗ7H ɗ8H ɗ9H ɗ10H ɗ11H 

1 4_0.74_(0.27, 3.1)_(0.08, 1.5)_(0.04, 1.0)_(0.02, 4.5) 3.070 1.480 0.960 4.480 3.030 2.510 2.020 2.690 3.670 2.800 2.550 

2 4_0.76_(0.26, 3.1)_(0.08, 1.5)_(0.05, 1.0)_(0.03, 4.6) 3.100 1.570 1.020 4.610 3.580 2.450 2.360 4.750 4.270 3.090 2.260 

3 4_0.76_(0.26, 3.1)_(0.07, 1.5)_(0.05, 1.0)_(0.03, 4.5) 3.130 1.540 0.990 4.460 4.050 2.470 2.840 2.600 0.920 3.050 2.660 

4 4_0.74_(0.27, 3.2)_(0.07, 1.4)_(0.06, 1.0)_(0.03, 4.5) 3.150 1.400 1.040 4.530 3.840 2.480 2.390 0.240 4.630 3.140 2.390 

5 4_0.76_(0.23, 3.1)_(0.05, 1.2)_(0.04, 1.0)_(0.02, 4.6) 3.120 1.210 0.990 4.640 3.660 2.650 2.150 1.180 4.460 2.880 2.490 

6 4_0.74_(0.26, 3.1)_(0.06, 1.3)_(0.05, 0.9)_(0.02, 4.4) 3.100 1.290 0.910 4.430 3.710 2.570 1.230 0.790 4.900 3.020 1.970 

7 4_0.77_(0.23, 3.1)_(0.07, 1.3)_(0.04, 1.0)_(0.02, 4.4) 3.100 1.200 0.970 4.370 3.110 2.570 1.400 0.370 4.910 3.120 1.940 

8 4_0.76_(0.25, 3.1)_(0.06, 1.3)_(0.04, 1.0)_(0.02, 4.3) 3.050 1.290 0.960 4.310 3.620 2.280 1.810 1.150 5.100 2.940 2.570 

9 4_0.80_(0.21, 3.1)_(0.04, 1.4)_(0.04, 1.2)_(0.01, 4.2) 3.090 1.410 1.150 4.160 4.890 2.300 3.040 1.930 1.440 3.550 2.860 

10 4_0.76_(0.25, 3.1)_(0.05, 1.4)_(0.05, 1.2)_(0.02, 4.3) 3.140 1.430 1.150 4.270 4.860 2.390 2.690 1.420 0.310 3.130 3.050 

11 4_0.75_(0.27, 3.1)_(0.08, 1.6)_(0.07, 1.2)_(0.02, 4.0) 3.000 1.590 1.210 3.990 3.050 2.490 2.310 2.600 2.780 3.210 2.770 

12 4_0.78_(0.25, 3.0)_(0.09, 1.7)_(0.05, 1.3)_(0.01, 3.9) 2.970 1.700 1.280 3.860 2.890 2.630 2.390 3.080 3.010 3.260 3.090 
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With regard to the first point that if the load profile is band-limited, Table 2-1 has 

shown that as the frequency increases, the magnitude of higher frequency component 

decreases rapidly. The magnitude values decrease to a negligibly low value (<0.01) beyond 

the 6th harmonic, which clearly shows the characteristic of a band-limited dataset. 

To validate the second point of the band-limited issue, this thesis will introduce the 

following four indices to evaluate how well the reconstructed load profiles represents the 

original time domain profile.  

1) Peak Magnitude Error Index (PMEI) (in %) 

This index is used to evaluate the difference between the value of the peak of the 

original profile and the reconstructed profile as a percentage of the former 

ὖὓὉὍ 
ὼ ὼ  

ὼ
ρππ Ϸ       ςȢρρ 

Where Ø  is the peak of the original load profile Ø Ô  

Ø  is the peak of the reconstructed load profile Ø Ô. 

2) Maximum Magnitude Error (MME) (in %) 

This index is used to evaluate the biggest percentage difference between the 

original and the reconstructed load profile. 

ὓὓὉ ÍÁØÉÍÕÍ ÏÆ 
ὼ ὸ ὼ ὸ 

ὼ ὸ 
ρππ Ϸ   ςȢρς 

3) Mean Absolute Percentage Error (MAPE) (in %) 
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This index is used to evaluate the average difference between the original and the 

reconstructed load profile. 

ὓὃὖὉÍÅÁÎ ÏÆ
ὼ ὸ ὼ ὸ 

ὼ ὸ 
ρππ Ϸ          ςȢρσ 

4) Peak Time Error (PTE) (in Hours) 

This index is used to evaluate the time difference between the peaks of the 

original and the reconstructed load profiles.  

ὖὝὉ ὸ ὸ                                                   ςȢρτ 

Where Ô  is the time at which Ø  occurs 

 Ô  is the time at which Ø  occurs.  

The following procedure is used to handle load profiles with more than one peak.  

Ὕ  and Ὕ  are two sets of hours at which the loads are within ±5% of the absolute 

peaks  of the original and the reconstructed load profiles, respectively. The intersection of 

these two sets is removed from each set. PTE is the element-by-element sum of differences 

of the two sets minus their intersection (the length of this new set is n). For example, for 

Figure 2-2, Ὕȟ ρρȟρςȟρυȟρφ.  For an intermediate reconstructed load profile, 

Ὕȟ ρπȟρρȟρφȟρχ. The intersection of two sets are {11,16}, which are omitted from 

the PTE calculation.  PTE=|12-10|+|15-17|=4. More harmonics are needed to reduce the 

PTE below 4. 

Here a reconstructed load profile is considered satisfactory if the PMEI, MME, and 

MAPE are all less than 5% and the PTE is 2 hours or less. 
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The January residential class load profile from utility A is used to demonstrate the 

IDFT reconstruction process. Table 2-2 presents the number of harmonics that are needed 

to achieve different levels of performance indices. For Table 2-1 load profile 

reconstruction, 3 harmonics will be sufficient to satisfy the aforementioned performance 

requirements. 

Table 2-2: Number of Harmonics Needed to Achieve Different Levels of Performance Indices 

Number of Harmonics Used PMEI (%)  PTE (Hour) MME (%)  MAPE (%)  

1 15.27 4.00 17.56 8.08 

2 8.43 2.00 13.14 6.84 

3 1.70 0.00 4.35 1.42 

4 0.60 0.00 3.83 1.11 

5 0.65 0.00 4.28 1.09 

6 1.55 0.00 2.94 0.90 

7 0.94 0.00 2.09 0.72 

8 0.78 0.00 1.80 0.70 

9 0.45 0.00 0.88 0.50 

10 0.34 0.00 0.90 0.49 

11 0.65 0.00 0.67 0.38 

12 0.15 0.00 0.20 0.17 

 

 
Figure 2-2: Original and reconstructed (by using 7 harmonics) average daily load profiles for the Commercial 

customers in Utility A for March (PMEI = -0.27%, PTE = 0 hour, MME = 3.73% and MAPE=1.02%) 
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Figures 2-3 to 2-4 are three original-vs.-reconstructed load profile overlay plots for 

commercial and residential customer classes in utility A for different months. The profiles 

reconstructed from the frequency domain representations are compact (ranging from 25% 

to 50% reduction in terms of harmonics used compared with the original forms). These 

plots illustrate that such compact representations are capable of representing the original 

profile without sacrificing major pattern characteristics.  

 
Figure 2-3: Original and reconstructed (by using 3 harmonics) average daily load profiles for the residential 

customers in Utility A in January (PMEI = 1.70%, PTE = 0 hour, MME = 4.35% and MAPE = 1.42%) 
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Figure 2-4: Original and reconstructed (by using 6 harmonics) average daily load profiles for the residential 

customers in Utility A in July (PMEI = -0.51%, PTE = 0 hour, MME = 4.65% and MAPE = 1.65%) 
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Beside the examples from utility A, Table 2-3 shows the number of harmonics 

needed to reconstruct a load profile that satisfies the performance indices requirements for 

utility B. From this table, Utility Bôs customer class load profile frequency domain 

representations at most need 9 harmonics. These profile reconstruction examples, 

combined with the data presented in Tables 2-1 to 2-3, show that the commercial and 

residential customer class group load profiles in utilities A and B are band-limited, and 

therefore the DFT can be applied to these datasets.  

Table 2-3: Number of Harmonics Needed to Reconstruct the Load Profile for Different Types of Customers in 

Utility B 

Number of 

Harmonics 

Used 

Percentages of Reconstructed Load Profiles with PMEI, MME, MAPE all < 

5% and PTE <= 2 hours 

Commercial Multiple 

Dwelling 

Public 

Building  

Religious 

Entity  
Residential 

Mass 

Transit  Large Small 

1 4.2% 0.0% 20.8% 29.2% 0.0% 0.0% 0.0% 

2 45.8% 12.5% 100.0% 95.8% 12.5% 8.3% 0.0% 

3 95.8% 29.2% 100.0% 100.0% 29.2% 16.7% 0.0% 

4 100% 50.0% 100.0% 100.0% 50.0% 33.3% 29.2% 

5 100% 70.8% 100.0% 100.0% 70.8% 75.0% 37.5% 

6 100% 79.2% 100.0% 100.0% 79.2% 87.5% 45.8% 

7 100% 91.7% 100.0% 100.0% 91.7% 91.7% 91.8% 

8 100% 91.7% 100.0% 100.0% 91.7% 100.0% 95.0% 

9 or more 100% 100% 100.0% 100.0% 100.0% 100.0% 100.0% 

Number of 

Customers 
3,871 10,267 64 286 448 14,8107 8 

Potential 

Storage 

Saving 

67.0% 25.0% 92.0% 75.0% 33.0% 33.0% 25.0% 
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2.2.3 Benefits of Representing Load with Frequency Components 

Figures 2-3 to 2-4 show that using a subset of frequency components to reconstruct 

the load profiles does not result in significant loss of accuracy. Table 2-2 and 2-3 

demonstrate that applying similar analyses to the real-world data from utility A and B also 

shows that the higher frequency harmonics act as noise and have negligible effect on the 

load profile. Itôs possible to represent the load profile with a more compact frequency 

domain representation using the shape descriptor defined in equation 2.9, where this 

approach is illustrated in table 1 by the shape descriptor column. The frequency domain 

load profile representation can be more robust and more resistant to error/outliers than the 

original time-domain data.  

The shape descriptor has the flexibility not only to represent the daily load profile, 

but also the yearly load profile of a customer class. It just needs to incorporate the necessary 

frequency components from the yearly load profileôs frequency domain representation 

using the procedure introduced earlier in this chapter. This approach has the advantage of 

reducing the load profile data dimensions by only incorporating the major frequency 

components with significant magnitude values, thereby realizing a substantial savings in 

the size of the load data model (Table 2-3). It also has the flexibility to satisfy the need for 

additional accuracy by including more frequency components.  

Each shape descriptor describes the signature of a customer classôs load profile and 

is suited for automated machine processing. For example, the hamming-distance between 

a load profilesô descriptor strings can be used to quantify the level of differences between 

different load profiles, and naturally can be adopted in load profile classification. Each 

component in the descriptor can be independently analyzed, which can be implemented as 
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sets of parallel processes for more efficient analysis routines. 

ñA prerequisite to developing an accurate load-forecasting model is an in-depth 

understanding of the characteristics of the load to be modeledò [33]. The proposed method 

intends to provide an alternative view of the characteristics of load in terms of frequency 

components. One possible use of this approach is to use the frequency components from 

the past to forecast frequency components in the future, and then recombine them using 

IDFT. The robustness of significant harmonics and the orthogonal relationship between is 

beneficial to constructing effective load models.  
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2.3 Load Profile Statistics in Frequency Domain 

The dataset used in this section comes from 3 utilities. It ranges from year 2002 to 

year 2007, and contains almost 1.5 million daily records (24 hourly measurements). The 

work here does not attempt to re-cluster the sample customers. That is, the customer class 

grouping used have been defined by their respective utilitiesô load research / customer 

information departments. 

Because of their significance in IDFT reconstruction process, as shown in previous 

chapter, the analysis in this section focuses on the first 3 frequency components of the 

normalized daily load profiles.  

Tables 2-4 and 2-5 present the DC, 1st and 2nd harmonic statistics, which are used 

to evaluate the certainty and consistency of each componentôs magnitude and phase. The 

frequency componentsô phase angle statistics presented in Table 2-4 to 2-6 and Figure 2-6 

are circular statistics [34]. Normal statistics are not suitable for analyzing phase angle data 

sets.  For example, the average of 5° and 355° is not 180° since both angles point 

approximately in the same direction, and the designation of the high and low values in 

phase angle is arbitrary. 
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Table 2-4: Statistics for the Magnitudes and Phase Angles of the First Three Frequency Components for the 

Residential Customers of Utility B and Utility C 

Utility  Month 

Mean 
Coefficient of Variation 

(%)  

Standard 

Deviation 

Peak 

(kW)  aDC a1H a2H ɗ1H ɗ2H Peak aDC a1H a2H ůɗ1H ůɗ2H 

B 

Jan 1.49 0.64 0.18 0.16 1.7 2.29 15% 7% 19% 17% 0.21 0.19 

Feb 1.36 0.64 0.16 0.17 1.63 2.24 16% 6% 15% 13% 0.19 0.2 

Mar  1.37 0.62 0.17 0.17 1.6 2.23 16% 7% 16% 11% 0.19 0.18 

Apr  1.28 0.64 0.16 0.16 1.61 1.99 19% 7% 24% 18% 0.22 0.25 

May 1.2 0.64 0.17 0.15 1.71 2 18% 9% 22% 15% 0.27 0.29 

Jun 1.61 0.67 0.21 0.11 1.75 1.93 32% 9% 27% 35% 0.22 0.39 

Jul 1.99 0.7 0.21 0.07 1.67 1.88 26% 7% 29% 46% 0.31 0.63 

Aug 2.04 0.71 0.2 0.07 1.7 1.78 28% 8% 31% 44% 0.28 0.62 

Sep 1.56 0.67 0.19 0.12 1.71 2.03 21% 9% 25% 30% 0.25 0.33 

Oct 1.6 0.61 0.18 0.16 1.77 2.2 31% 13% 20% 21% 0.23 0.26 

Nov 1.58 0.62 0.22 0.16 1.79 2.23 16% 9% 15% 19% 0.23 0.26 

Dec 1.78 0.61 0.21 0.17 1.77 2.24 18% 8% 14% 20% 0.21 0.24 

C 

Jan 4.1 0.77 0.07 0.14 2.33 2.66 9% 4% 58% 19% 0.61 0.18 

Feb 3.62 0.77 0.07 0.15 2.19 2.55 11% 3% 47% 12% 0.49 0.18 

Mar  3.23 0.74 0.06 0.16 2.79 2.35 13% 5% 60% 13% 1.03 0.16 

Apr  2.64 0.71 0.11 0.15 2.11 2.25 13% 6% 62% 14% 0.74 0.15 

May 2.55 0.68 0.15 0.15 1.91 2.07 15% 6% 36% 12% 0.19 0.12 

Jun 3.04 0.72 0.18 0.14 2.06 1.93 16% 7% 24% 15% 0.2 0.19 

Jul 2.02 0.76 0.21 0.06 2.14 1.52 9% 5% 15% 31% 0.14 0.4 

Aug 3.53 0.74 0.22 0.1 2.1 1.9 15% 4% 24% 16% 0.12 0.17 

Sep 2.65 0.7 0.16 0.14 2.04 2.08 10% 4% 18% 10% 0.1 0.08 

Oct 2.29 0.71 0.12 0.14 1.91 2.13 5% 4% 24% 8% 0.06 0.1 

Nov 2.5 0.71 0.13 0.16 1.72 2.51 7% 4% 28% 13% 0.14 0.13 

Dec 3.26 0.76 0.11 0.14 1.65 2.48 12% 6% 35% 18% 0.3 0.16 
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Table 2-5: Statistics for the Magnitudes and Phase of the First Three Frequency Components for the Large 

Commercial Customers of Utility B and Utility C 

Utility  Month 

Mean Coefficient of Variation 
Standard 

Deviation 

Peak 

(kW)  aDC a1H a2H ɗ1H ɗ2H Peak aDC a1H a2H ůɗ1H ůɗ2H 

B 

Jan 1482.5 0.84 0.16 0.03 2.84 1.16 13% 6% 32% 41% 0.14 0.65 

Feb 1452.17 0.84 0.16 0.03 2.87 1.08 10% 5% 29% 34% 0.14 0.54 

Mar  1450.2 0.84 0.17 0.03 2.86 1.02 9% 5% 24% 40% 0.09 0.51 

Apr  1488.27 0.83 0.17 0.02 2.81 0.9 13% 4% 21% 41% 0.08 0.52 

May 1579.53 0.82 0.19 0.02 2.79 0.79 12% 5% 23% 41% 0.11 0.5 

Jun 1797.48 0.81 0.2 0.02 2.82 1.03 10% 4% 16% 39% 0.1 0.61 

Jul 1768.9 0.83 0.18 0.02 2.83 1.32 8% 2% 12% 36% 0.12 0.59 

Aug 1876.85 0.82 0.19 0.02 2.84 1.27 9% 3% 16% 71% 0.25 0.55 

Sep 1712.99 0.81 0.2 0.02 2.8 1.09 11% 4% 19% 36% 0.11 0.55 

Oct 1507.95 0.83 0.18 0.02 2.83 1.03 10% 4% 19% 41% 0.1 0.49 

Nov 1402.67 0.85 0.15 0.02 2.85 1.31 12% 6% 33% 44% 0.31 0.75 

Dec 1399.73 0.86 0.14 0.03 2.84 1.41 10% 5% 30% 44% 0.25 0.54 

C 

Jan 568.01 0.84 0.18 0.05 2.73 1.73 9% 4% 7% 13% 0.05 0.08 

Feb 501.73 0.83 0.18 0.05 2.8 1.61 11% 3% 6% 16% 0.04 0.13 

Mar  547.7 0.82 0.2 0.05 2.74 1.62 14% 5% 5% 14% 0.04 0.11 

Apr  522.53 0.8 0.22 0.05 2.67 1.65 13% 6% 8% 22% 0.05 0.09 

May 533.1 0.79 0.23 0.04 2.65 1.56 15% 6% 7% 17% 0.08 0.39 

Jun 591.8 0.79 0.23 0.04 2.68 1.67 19% 7% 6% 17% 0.07 0.19 

Jul 837.25 0.8 0.23 0.04 2.62 1.76 10% 5% 7% 20% 0.09 0.26 

Aug 699.58 0.79 0.23 0.04 2.7 1.74 16% 4% 7% 17% 0.07 0.22 

Sep 630.49 0.78 0.24 0.04 2.68 1.56 10% 4% 7% 14% 0.07 0.14 

Oct 548.12 0.8 0.22 0.05 2.71 1.61 5% 4% 6% 15% 0.05 0.08 

Nov 540.34 0.81 0.21 0.05 2.73 1.71 8% 4% 9% 15% 0.06 0.12 

Dec 533.66 0.84 0.19 0.05 2.74 1.67 12% 6% 11% 29% 0.11 0.28 
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The followings are the major findings through the statistical analysis of the first 3 

frequency components 

2.3.1 Consistent Harmonic Patterns 

The residential and large commercial classesô frequency domain statistics in Table 

2-4 and 2-5 show that the relative contribution from the 3 frequency components to the 

overall load profile displays a consistent pattern for the entire year for both utility B and 

C. For example, the DC magnitude for both utility A and B residential customers is around 

0.7; the 1st and 2nd harmonic magnitudes are around 0.2; and the 1st and 2nd harmonic phase 

angles are around 2 radians. 

Such consistency is summarized in Table 2-6 using the mean and the range of the 

frequency componentsô value. For example, Utility B residential customerôs 
DCa  ranges 

from 0.61 to 0.71 with mean equal to 0.66. The narrow ranges for the frequency component 

values in table V indicates a high consistency.  

Using the aforementioned descriptor system in equation 2.9 (Ὓ

ᾯ‌  ͅ‌ ȟ—  ͅ‌ ȟ— ȣͅ ‌ͅ ȟ—    ). Utility B residential classesô first 3 

frequency components typical pattern can be represented using the mean of the magnitude 

and the phase angles listed in table V as: S = 2_0.7_(0.2, 2)_(0.1, 2), while its commercial 

Table 2-6: Harmonic Pattern for Different Customer Classes 

 Residential Commercial 

Utility B  Utility C  Utility B  Utility C  

aDC 0.66±0.05 0.73±0.05 0.84±0.03 0.81±0.03 

a1H 0.19±0.03 0.14±0.08 0.17±0.03 0.21±0.03 

ɗ1H 1.70±0.10 2.22±0.57 2.83±0.04 2.71±0.09 

a2H 0.12±0.05 0.11±0.05 0.03±0.01 0.05±0.01 

ɗ2H 2.04±0.26 2.09±0.57 1.10±0.31 1.66±0.10 

 



 - 41 - 

class can be represented as: S = 2_0.8_(0.2, 3)_(0.03, 1).  

Commercial customersô frequency component values generally have a narrower 

range than their residential customer counterparts, which makes their load profile patterns 

more consistent than residential customer profiles.   

2.3.2 High Degree of Certainty 

The coefficient of variation COV, is used to evaluate how well the frequency 

domain approach can extract useful information out of data polluted by noise. COV can be 

expressed as equation (2.15): 

ὅὕὠ ίὸὥὲὨὥὶὨ ὨὩὺὭὥὸὭέὲάὩὥὲϳ ρππϷ             ςȢρυ 

Customer load profile data collected by meters will be unavoidably tainted by 

various noise/errors.  In the time domain, it is difficult to separate such noise/error 

influences on the COV, which is high across all time points for two different Utility B 

customer class daily load profiles shown in Figure 2-5.  

In the frequency domain, it has been shown in Table 2-4 and 2-5 that the majority 

of the DC component COVs are less than 10% for both types of customer in two utilities. 

COVs for the 1st and 2nd harmonics are larger, but since the magnitudes of these 

components are smaller than DC, the impact of these increased levels of uncertainty is 

correspondingly smaller. The COVs for the first 3 frequency component magnitudes are 

smaller than that of the time-domain data, indicating a higher degree of certainty of the 

information.  

The frequency domain statistics spread the statistical uncertainty across different 
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frequency components. The frequency components with significant magnitude values tend 

to have a lower COV, combined with the fact that the load profiles can be represented with 

the small set of frequency components with significant magnitude values. Due to this, it is 

easier to extract load profile characteristics information from such statistic datasets. 

 

 

 

 

Figure 2-5: Plots of coefficient of variation for the average daily load profiles for two classes of customers of Utility B 
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2.3.3 Similar Patterns for Historical Data at Different Utilities 

In Figure 2-6 the first column shows the multi-year (05-07 for utility A and 02-05 

for utility B) magnitudes and phase comparison charts for the large commercial class load 

profilesô first three frequency components. The second and third columns show the same 

type of historical data for the residential classes from the same utilities during the same 

time period. Each individual curve represents 12 monthly frequency componentsô 

magnitude/phase angle values. 

The charts in Figure 2-6 show that 1) From year to year the harmonics tend to have 

a very similar overall trend in terms of both magnitudes and phase angles, and therefore 

the predictability for such frequency components is high. 2) There exist certain seasonal 

patterns in the harmonic components. For example, the residential customer classôs 1st 

harmonics magnitude has a higher value than the 2nd harmonic magnitude during the 

summer (June to September); otherwise, these two harmonic magnitudes are much alike 

during the other seasons.  

During the summer season the residential classôs 2nd harmonic phase angles are 

smaller than the 1st harmonic phase angles. The 2nd harmonic phase angle tends to be 

consistent throughout the year, while 1st harmonic phase angle tends to rise up during the 

winter (December to March). The consistency of the 2nd harmonicôs phase angle seems to 

correlate with the consistency of the typical household activity (residential customer 

consistently has a higher usage during the morning and evening hours). 

These observations indicate the potential to use the historical load profile frequency 

domain characterization statistics to forecast the future load profileôs frequency domain 
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representation, and to reconstruct its time domain load profile using the forecasted 

frequency components.  

 

 

 

 

Figure 2-6: Utility A, B residential & large commercial customer class multi-year monthly harmonics comparison 
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2.4 Summary 

This chapter has accomplished the following: First, it has formalized the 

methodology for characterizing and analyzing load profiles in the frequency domain using 

the DFT. It has shown that the customer class load profile data satisfies two important but 

often overlooked prerequisite conditions for such applications: 1) the hourly sampling rate 

is adequate to represent the aggregated customer class group load profile; 2) the group load 

profile is band-limited. Using real customer load data from three different utilities, it has 

been demonstrated that the time domain load profile data can be transformed to the 

frequency domain as a set of independent frequency components.  

Second, this chapter has demonstrated that the different customer classesô load 

profiles can be represented with a small set of frequency components (the highest 

magnitude set) without sacrificing major load profile characteristics. Section II showed that 

the customer class load profiles from 3 utilities can be accurately reconstructed using only 

frequency components while satisfying the requirements specified.  

Third, this chapter proposed that load profiles can be described using the shape 

descriptor presented in section II. The descriptor is compact (includes only a small subset 

of all frequency components) and flexible (can incorporate more or less components as 

needed). Each component in the string can be independently analyzed. This shape 

descriptor string is well suited for automated machine processing and analysis.  

And last, this chapter presents several findings from analyzing the frequency 

domain statistics from monthly customer class load profiles for three utilities, which 

include: 1) consistent frequency component patterns in both residential and commercial 

customer classes for different years. Such evidential predictability of frequency 
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components of group load profile can potentially be used in load forecasting in the 

frequency domain; 2) low uncertainty among frequency components with high magnitude; 

3) similar customer classes from different utilities possesses similar annual frequency 

domain component patterns.  

In this chapter the load profile data for different customer classes do not represent 

any typical load profile (TLP).  Although the proposed approach can be applied to 

characterize and analyze TLPs after they have been developed, further research is needed 

to determine how the proposed approach can be applied in the development of TLPs. 
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Chapter 3: Hierarchical Classification of 

Load Profiles Based on Their 

Characteristic Attributes in Frequency 

Domain 

Utilities generally group their customers into residential, commercial and industrial 

classes, and respective subclasses.  There is no systematic framework that is used by 

utilities to automatically characterize different classes and subclasses based on their load 

profile pattern characteristics. The work presented in this chapter attempts to formulate the 

theoretical framework for customer classification based on their frequency domain 

characteristic attributes. 

The goal of load profile classification is to find a model for predicting values of 

customer class variables from predictor variables. Conventionally, the predictor variables 

in load profile classifications are based on the load profileôs time domain representation. 

This is often done using a Typical Load Profile (TLP) within a time window (daily, 

monthlyé). Recent research suggests describing the load profile characteristics using time 

domain parameters, such as Base Load, Peak Load, Rise Time, Fall Time, and High-Load 

Duration [1]. 

After establishing the time domain predictor variables, various models, such as 

linear discriminant analysis, nearest neighbor classification, k-means, fuzzy-statistic, 

neural network and support vector machines [1-2,18-23], are used to classify load profiles.  

In Figure 1-4, there are two normalized annual hourly load profile samples 

(residential and commercial) and two magnified portions of the residential profile (one in 
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Feb, one in July). It is difficult to use aforementioned classification methods to classify 

such large, complex, load behavior, which requires a large number of predictor variables 

to model. 

In order to classify load profiles based on their annual load profile pattern 

characteristics, a hierarchical classification method based on the load profilesô 

Characteristic Attributes in the Frequency Domain (CAFD), is investigated here. Using the 

annual load data as the starting point, the proposed method can identify the CAFD-based 

signatures for different classes and subclasses of load profiles by using the steps outlined 

in Figure 3-1. 

While the work presented in this chapter is built upon the work discussed in chapter 

2 [10], the two chapters are significantly different. The work in chapter 2 shows the benefits 

of using frequency domain descriptors to characterize and analyze load profiles. However, 

 

Figure 3-1: CAFD-Based Classification Method 
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different customer classes can be characterized by frequency domain descriptors that have 

the same members, but some or all of the members exist in different proportions. The work 

presented in this chapter demonstrates how to extract a load profileôs CAFDs from the 

descriptors, and how to use these CAFDs to formulate a hierarchy of load profiles that can 

be used as a systematic framework for customer load classification. As illustrated shortly, 

some of the CAFDs are derived from the descriptors, but are not descriptors. As signatures 

for customer classes and subclasses, the CAFDs are obtained by using a data mining 

method called CART (Classification and Regression Tree) [35]. The input predictor 

variables are obtained from the analyses of the frequency domain descriptors.  

While the work presented in chapter 2 is based on daily load data, the work 

presented in this chapter is based on annual load profiles, which is more difficult to 

characterize.  The work presented in chapter 2 represents Step I to Step II in Figure 3-1, 

while the work presented in this chapter covers from Step II to Step V.  The results 

presented in chapter 2 do not demonstrate any hierarchical structure, but the work presented 

in this chapter demonstrates hierarchy in both the method (Section III.2) and the results 

(Section III.3).  

The proposed classification framework could serve as the foundation of a standard 

and universal load classification system. This hierarchical classification method using the 

concepts of CAFD and CART. And such method can classify all the load profiles to its 

respective place in the CAFD-based classification hierarchy. The research result will 

demonstrate that the CAFD-based signatures can be used as the definition for different load 

profile classes and subclasses that correspond well with real-life load profiles. 
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3.1 Hierarchical Classification Tree  

The classification tool used in this work is based on the CART concept developed 

by Breiman, et al [36]. There are many applications for CART in a lot of different fields. 

For example, some researchers used it to classify the housing prices using 

environmental/social factors (Boston Housing data [37]). In the medical field, researchers 

use it to classify whether a disease has progressed based on various factors [38]. 

For classification, CART constructs a categorical predication model from a finite 

number of unordered input variables. CART approximates the parameter space by a 

piecewise constant function. CART will first split the entire data set using a predictor 

variable condition that produces the smallest impurity score. This recursive partitioning 

process (the next split only happens in the parentôs data space) will continue until the leaf 

nodes contain the minimum number of samples or are all homogeneous.  

Each partition step must be performed in a hierarchical order and must apply locally 

within the boundary of a previous partitioned space, as a recursive greedy algorithm should, 

so that the partitioned spaces are disjointed, with no overlap. The order of condition in the 

hierarchical classification rules indicate their significant ranking in the classification 

process: the condition used in the root, node 1, has the most significant impact on 

classifying the data. 

The final number of leaf nodes (classes) can be controlled by experimenting with 

different values of the complexity parameter (CP, a tuning parameter: 0 means full model 

and Ð means no split). When CP=0, which has the least impurity requirement for each split, 

this setting will produce a tree with the largest number of leaf nodes with homogenous 

characteristic attributes. By experimenting with a larger CP value (less restriction on the 
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purity of each split), the classification tree can be pruned back to have fewer, less 

homogenous leaf nodes/classes. The statistical package, rpart [38] was used in this work 

to construct the classification tree and extract the classification rules for the annual load 

profiles. 

3.2 Load Profile Characteristic Attributes in the Frequency Domain 

653 annual hourly load profile data (recorded at different years for different types 

of customers) were collected from 5 utilitiesô websites [39-43]. In order to capture the load 

profile periodical pattern characteristics, all annual hourly load profiles used in this paper 

need to be placed in a fixed time window, which is defined by the day of the week 

(consistent and periodical) for 51 consecutive weeks. The first time point in the 51-week 

window is set to 12 am of the 1st Monday of the year. The last time point is set to 11 pm 

of the 51st Sunday of the year. 

After the DFT transformation of the time-domain load profiles (stage I), the major 

frequency domain components are identified to form the Frequency Domain Load Profile 

Descriptor [10] (S at stage II), which is introduced in chapter I..  

( ) ( )1 1
 {   ,  , , ,  } (3. ), 1

DC H H kH kH
S a a q a q= »  

where dca and kHa  represent the magnitudes of DC and the kth harmonic 

respectively 

 ɗkH is the phase angle of the kth harmonics 

Among the many characteristic attributes in the annual hourly load profiles, the 

daily, weekly and seasonal periodical pattern attributes are the primary focus of the 

classification process used here. Such load profile characteristics are naturally related to 
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some of the modular and orthogonal frequency domain components illustrated in Table 3-

1. The characteristics and their related frequency components normally have the similar 

period. The DC component represents the average of the whole profile, which is similar to 

load factor in value [27]. Even though the DC component does not relate to any periodical 

pattern in the time domain, its value does impact every harmonic magnitude value because 

it normally has the largest magnitude value among all load profile harmonics.  

Not all major frequency components in S can serve as predictor variables in a 

classification tree because each Sô member only represent one periodical component in the 

load profile. Individually, each member will not be able to represent some complex load 

profile characteristic attributes of interest. For example, the periodical load drop between 

weekdays and weekends, will require combination of a number of frequency components 

in S to model.  

The shortcomings of S lead to the development of a hierarchical load profile 

classification method. The major steps of this method are presented in Figure 3-1. Based 

on preliminary analysis results, the following major harmonics are proposed to be used as 

the Attributes in the Frequency Domain, AFD, 

Table 3-1: Common Load profile patterns 

Harmonic Index Period (Hours) Pattern Type 

DC   Constant 

357 24 Daily Pattern 

714 12 Twice-a-Day Pattern 

51 168 Weekly Pattern 

1 8568 Annual Pattern 

2 4284 Twice-a-Year Pattern 

3 2856 Thrice-a-Year Pattern 
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The 15 harmonics of the AFD are not capable of modeling some of the complex 

characteristics of load profiles, such as daily double peaks and/or differences in weekday 

and weekend patterns.  To incorporate such complex characteristics, two new attributes to 

be incorporated into the AFD are now introduced. The first proposed attribute is designed 

to distinguish commercial and residential load profiles which have the following 

characteristics. 

1) Residential double-peak daily pattern vs. commercial single-peak daily pattern. 

2) The residential daily load pattern is more consistent, while the commercial load 

profile has a load drop/rise pattern between weekdays and weekends.  

In order to captures the essence of these two characteristics. The following new attribute 

is used to supplement the load profile characteristic modeling in the AFD  

16 714 51 (3.3)H HAFD a a=  

For residential load profiles with significant double-peak daily patterns (large 

Ŭ714H) and no weekday-weekend pattern (small Ŭ51H), its AFD16 will have a higher value 

than its commercial counterpartôs AFD16 because the commercial customer has a large 

difference between the weekday-weekend patterns and no double-daily pattern.  
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This attribute is presented as a box-plot in Figure 3-2. For commercial load profiles, 

AFD16 has a very small and consistent distribution. For residential load profile, AFD16 has 

a significantly higher value and a wider variation. There is a significant separation between 

the residential and the commercial classes for their AFD16 values. It will be beneficial to 

include AFD16 to construct the classification tree.  

The second AFD is proposed to model the common load-drop pattern that occurs 

between weekdays and weekends in commercial load profiles. This characteristic is related 

to the magnitude of the weekly harmonic component, Ŭ51H , and the magnitude of the daily 

harmonic component, Ŭ357H. The following attribute AFD17 is used to model this 

characteristic: 

17 357 51 (3.4)H HAFD a a=  

 

Figure 3-2: 
714 51H H

a a  Box Plot 
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For example, the large commercial load profiles normally have a consistent daily 

pattern and not much load drop between the weekday and weekend load, which leads to 

the AFD17 value being close to 1. For commercial load profiles that have a higher weekday 

load level than the weekend load level (high Ŭ357H and low Ŭ51H), their AFD17 value will be 

larger than 1. In Figure 3-3 there is a clear separation between the large commercial and 

other commercial classesô AFD17 distribution, which indicates that this attribute is a good 

classification input parameter to classify large commercial and other types of commercial 

load profiles.  

These 17 AFDs can be used to describe the aforementioned load profile 

characteristics. Traditional statistical methods are poorly suited for comparing such large 

numbers of variables in a classification process [35]. On the other hand, the proposed 

classification method constructs a hierarchical classification tree to identify load classes 

with homogenous characteristics. Each class signature can be defined by a set of CAFDs. 

 

Figure 3-3: 357 51H H
a a

 Box Plot 
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For example, the residential load profile in Figure 1-4 can be defined by the two CAFDs 

in stage IV of Figure 3-1. The load profileôs CAFD-based signature is presented in stage 

V.  This type of signature is easy to process by both human and machine [44].  



 - 57 - 

3.3 Classification Procedure 

After processing the annual load profile data into 51-week load profiles, the 

following procedures were implemented to construct the hierarchical classification trees in 

the frequency domain:  

1) Transform the 51-week, normalized hourly load profile data into its 

frequency domain representation, an 8568-point DFT. 

2) Identify the periodic patterns in the load profile and their related harmonics 

and frequency domain attributes. 

3) Construct a classification tree using identified frequency domain attributes 

as predictor variables. Experiment with different CP values to fine-tune the number of final 

terminal leaves (classes) of the tree.  

4) Summarize classification rules of the leaf node on the classification tree as 

CAFD, which will serve as the definition of load profile classes for classification. 

5) Each terminal leave can be further divided into a set of subclasses using 

steps 1-4, depending on the expectation of the classification (such as the different targeted 

characteristic attributes). This will construct a multi-level hierarchical classification tree 

for classifying different load profile classes and their respective subclasses. 

Figure 3-4 is the two-level hierarchical classification tree constructed with AFD1-17 

as the predictor input variables. The level 1 portion of tree is used to classify commercial 

and residential types of load profiles. The level 2 portion is used to further classify the 

commercial load profiles (CAT I.1) into several more homogenous sub-classes. 
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Figure 3-4: Hierarchical Classification Tree 
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3.4 Hierarchical Frequency Domain Load Profile Classification  

There is no established way to label load profile classes based on their characteristic 

attributes. In this thesis, the load profile classes are labeled hierarchically by roman 

numerals and numerical indexes. Roman numerals are used to represent the partitioned root 

level data spaces. The dot notation is used to signify the hierarchical relationship, where 

each dot indicates one more data space partitioning operation and adds one more CAFD.  

In Figure 3-4 the number at each node represents the number of load profiles that 

satisfy the conditional path from the root. The left branch of each internal node represents 

the TRUE path from evaluating if each load profile at current node satisfies the CAFD 

(displayed on the top of each internal node), while the right branch represents the FALSE 

path.  

The level 1 portion of the classification tree has at most 3 load profile classes 

(terminal leaves) when CP=0.0. The rpart software produces a table that lists the CP value 

for each possible branch pruning, which suggests that if CP is relaxed to 0.05, the CAT I.1, 

CAT I.2 in the box can be pruned back into one category as CAT I. After evaluating the 

purity level at each split for all 16 input variables, the classification tree at level 1 has 

identified 2 CAFDs, (
102( 4.048)Hq < and

714 51( 2.822)H Ha a < ), that can be used to specify the 

boundary conditions for the 3 parameter spaces with the highest purity score.  

Figure 3-5 illustrates how the 653 load profile data space is partitioned by these two 

CAFDs at level 1 of the classification tree. The first partitioning operation occurs along the 

102 4.048Hq = reference line (thick dashed line). 
1 102( 4.048)HCAFD q ² is the most important 

CAFD in this partition process because it is the first CAFD chosen by the CART and carves 

out the largest data space with high purity. The CART then chooses AFD16 (used to 
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describe the double-peak pattern) to partition CAT I data space along the 
714 51 2.822H Ha a =

reference line t. It divides CAT Iôs data space into CAT I.2 and CAT I.1 data spaces. The 

commercial load profileôs data space (CAT I) is quite compact because the commercial 

type of load profilesô load patterns is more consistent. Residential load profiles have more 

variations in term of their pattern characteristics, which leads to a broader data space.  

The level 2 of the classification tree in Figure 3-4 will further divide the load 

profiles in CAT I.1 into several subclasses. The subclasses will all inherit CAT I as prefix 

to indicate that level 2 load profiles are finer partitioned space inside CAT I.1ôs data space. 

This portion of the classification tree has 7 classes listed in Table 3-3 (page 67) when the 

 
Figure 3-5: Partition of the feasible space created by q102 and a714H /a51H 
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CP=0.0. When using rpart suggested next pruning value CP=0.02, CAT I.1.1.1.1, CAT 

I.1.1.1.2.1 and CAT I.1.1.1.2.2 will be pruned back into CAT I.1.1.1 as node 4 at the level 

2 of the classification tree. 

This classification tree has identified 6 CAFDs based on four predictor variables:

357 51 51 1, ,  and H H H Ha a a DCq . Each variable represents a load characteristic attribute. The 

357 51H Ha a can be used to describe the weekday weekend load relationship. The
51Ha can be 

used to describe the weekly pattern. The 
1Hq  is related to the seasonal pattern and DC is 

related to the load factor of the load profile.  

At level 2 of the classification tree, 
17 357 51( 0.890)H HCAFD a a ²  is the most important 

condition used by the tree to partition the CAT I.1 data space. The load profiles in node 2 

have smaller CAFD17 values than the load profiles in node 3, Comparing with load profiles 

in node 3, the load profiles in node 2 have more dominant daily pattern than the weekend-

load-drop pattern. 

Figure 3-6 presents the CAFD-base signatures for all the classes in Figure 3-4. The 

CAFD-based signature is a joined set of the CAFDs along the path from the root to each 

class (leaf) node. TheØsymbol represents the Conjunction (AND operation) and the×

symbol represents the Negation (NOT operation). For example, the CAT I.1ôs signature 

can be defined as
1 2CAFD CAFDØ . The CAT I.1.1.1 can be defined as 

1 2 3 4CAFD CAFD CAFD CAFDØ Ø Ø because itôs a subset of CAT I.1 and naturally inherits its 

CAFD-based signature:
1 2CAFD CAFDØ .  

This notation is significant because it not only defines the load profile using general 

quantitated parameters but also defines the relationship between different load classes. 
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From CAT I.1.1.1ôs definition, it can be interpreted that this load profile class not only 

inherits the CAT I.1ôs characteristic attributes but also contains two additional attributes 

that set it apart from the other classes in CAT I.1.  

One potential application for this signature is to encode it as XML (Extensible 

Markup Language, an open standard that has been widely adapted for data exchange in 

many industries [45]) document. It will provide a standard and efficient way for different 

systems/utilities to exchange the load profile class definitions. For example, the CAT I.1ôs 

definition in Figure 3-1 can be formatted as the XML document shown in Figure 3-7. The 

CAFD 

CAFD1 :  ɗ51HÓ4.048 CAFD5 :  ɗ1H<3.381 

CAFD2 :  Ŭ714H/Ŭ51H<2.822 CAFD6 :  Ŭ357H/Ŭ51HÓ1.694 

CAFD3 :  Ŭ357H/Ŭ51HÓ0.890 CAFD7 :  Ŭ357H/Ŭ51HÓ1.591 

CAFD4 :  Ŭ51H<0.097 CAFD8 :  DC<0.657 

 

Load Class CAFD-based Signature 

CAT I  CAFD1 

CAT I.1  CAFD1᾿CAFD2 

CAT I.1.1 CAFD1᾿CAFD2᾿CAFD3 

CAT I.1.1.1 CAFD1᾿CAFD2᾿CAFD3᾿CAFD4 

CAT I.1.1.1.1 CAFD1᾿CAFD2᾿CAFD3᾿CAFD4 ᾿CAFD5 

CAT I.1.1.1.2 CAFD1᾿CAFD2᾿CAFD3᾿CAFD4 ᾿âCAFD5 

CAT I.1.1.1.2.1 CAFD1᾿CAFD2᾿CAFD3᾿CAFD4 ᾿âCAFD5 ᾿CAFD6 

CAT I.1.1.1.2.2 CAFD1᾿CAFD2᾿CAFD3᾿CAFD4 ᾿âCAFD5 ᾿âCAFD6 

CAT I.1.1.2 CAFD1᾿CAFD2᾿CAFD3᾿âCAFD4 

CAT I.1.1.2.1 CAFD1᾿CAFD2᾿CAFD3᾿âCAFD4 ᾿CAFD7 

CAT I.1.1.2.2 CAFD1᾿CAFD2᾿CAFD3᾿âCAFD4 ᾿âCAFD7 

CAT I.1.2 CAFD1᾿CAFD2᾿âCAFD3 

CAT I.1.2.1 CAFD1᾿CAFD2᾿âCAFD3 ᾿CAFD8 

CAT I.1.2.2 CAFD1᾿CAFD2᾿âCAFD3 ᾿âCAFD8 

CAT I.2  CAFD1᾿âCAFD2 

CAT II  ¬CAFD1 

Figure 3-6: CAFD-Based Signatures 
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nested formation of CAFD nodes (inside <ClassDefinition> node) naturally reflects the 

hierarchical structure of CAFD-based signature. This type of signature can form a key to 

index each load class, therefore making it possible to build a load profile database with 

searchable keys based on CAFD-based signatures. 

  

<?xml version="1.0"?>  

<LoadClass>  

  <Name>CATI.1</Name> 

  <AFDSet> 

<AFD Name="CAFD1" Definition="Phase102"/>  

<AFD Name="CAFD2" Definition="Mag714H/Mag51H"/>  

  </AFDSet> 

  <ClassDefinition>  

    <CAFD AFDName="CAFD1" Operator=">=" Value=4.048>  

      <CAFD AFDName="CAFD2" Operator="<" Value=2 .822/>  

    </CAFD> 

  </ClassDefinition>  

</LoadClass>  

</xml>   

Figure 3-7: XML document for CAFD-based Signature 
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3.5 Comparison between Frequency Domain Hierarchical Load Profile 

Classification and Utilitiesô Current Practices  

The CAFD-based load profile classes are compared with the conventional utility 

load profile classes in Table 3-2 and 3-2. Classes in Table 3-1 are from level 1 of the 

classification tree and classes in Table 3-2 are from level 2.  

Table 3-2 shows that the CAT I.1ôs load profiles can all be mapped to the 

commercial type of load classes defined by 5 different utilities (highlighted by green). The 

CAT I.2 and CAT IIôs load profiles are all mapped to residential type of load profiles by 5 

utilities (highlighted by yellow).  

There are several important observations from Table 3-2:  

Chapter 1: Much commonality exists between different utilities classification: CAT I.1 

have commercial load profiles from 5 different utilities.  

Chapter 2: There is more variation among residential classes from different utilities. 

Some load profiles from same load class by utilities are assigned with different 

CAFD-based signatures: such as RESLOWR from ERCOT is assigned to CAT I.2 

and CAT II. 

Chapter 3: CAT I.2ôs load profiles are defined as residential by utilities, even though it 

shares the same CAFD1 with CAT I.1, whose members are all commercial classes. 

It indicates certain residential classesô load profiles share some similar patterns with 

other utilitiesô commercial class load profiles. In the end, the most pronounced 

residential load pattern (double peak) modeled by CAFD2 is identified and the load 

profiles are assigned to the right class.  

Com
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The conventional utility classification methods don not utilize the load profilesô 

frequency domain pattern characteristics. As shown in the comparison between CAFD-

based classes and the utilitiesô classes, the conventional method can assign many load 

profiles with similar pattern characteristics into different classes. They may also assign the 

load profiles with different pattern characteristics into one class.  

Table 3-2: Comparison of CAFD-based classes and Utility Commercial & Residential Load Classes 

CP Value 

Utility Load Class Utility  0.05 0 

Load Class 

CAT I  

CAT I.1 

A1             PGE 

A10            PGE 

A6             PGE 

BUSHILF  ERCOT 

BUSIDRRQ ERCOT 

BUSLOLF ERCOT 

BUSMEDLF ERCOT 

BUSNODEM ERCOT 

GLP            PSEG 

LPL            PSEG 

GS-1           SCE 

GS-2           SCE 

SC2DEM         NG 

SC2ND NG 

CAT I.2  

RESLOWR ERCOT 

RHS            PSEG 

RLM            PSEG 

SC1C NG 

CAT II  

DOM-S/M        SCE 

E1             PGE 

E7             PGE 

RESHIWR ERCOT 

RESLOWR ERCOT 

RHS            PSEG 

RLM            PSEG 

RS             PSEG 

SC1C           NG 

SC1STD         NG 

Commercial Residential 
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Comparing with the more pronounced characteristic attributes variation between 

the commercial and the residential load profiles at level 1 of the classification tree, the load 

pattern differences among commercial load profiles are subtle as it requires more CAFDs 

to define the boundaries for these more closely resembled load profiles.  

4 CAFDs are used in level 2 of the classification tree to define the categoriesô 

parameter spaces. The first CAFD, 
357 513 ( 0.89)

H H
CAFD a a ² divides the CAT I.1 load profiles 

into the following two groups:  

Group 1: The CAT I.1.1 and CAT I.1.2 all have
3CAFD. The CAFDôs high value 

indicates the CAT I.1.1-2 load profiles have more consistent weekly pattern, less variation 

between weekday and weekend load.  

Group 2: The CAT I.1.2.1 and CAT I.1.2.2ôs load profiles share a common
3CAFD× , 

which indicates a larger difference between their weekend and weekday usage. The load 

profiles in CAT I.1.2.2 (BUSIDRRQ: large commercial by ERCOT definition [35]) are 

less dynamic than CAT I.1.2.1 because of their higher DC values in 
8CAFD , which also 

indicates that the CAT I.1.2.2 load profilesô overall patterns are more consistent than the 

CAT I.1.2.1 load profiles (resembling more the traditional large commercial load profile 

pattern). 

There are percentages associated with each load class in Table 3-3. It represents the 

percentage of the utility load classô samples belonging to the mapped CAFD-based class. 

Table 3-3 shows that the largest sub-category CAT I.1.1.1.1 is defined as 

3 4 5CAFD CAFD CAFDØ Ø which consists of load profiles from 4 utilities: 2 utilitiesô general 

commercial load profiles satisfy this rule 100%. The other 2 utilitiesô general commercial 

also show relatively high matching rate (the lowest is 71%).  
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BUSHILF (average monthly load factor > 0.6), BUSMEDLF (average monthly 

load factor between 0.4 and 0.6) and BUSLOLF (average monthly load factor < 0.4) load 

profiles from ERCOT are classified as CAT I.1.1.1.1. Their load factor value is very similar 

to the DC component in frequency domain which normally has the largest magnitude value. 

DCôs large magnitude value doesnôt mean DC by default is the most important predictor. 

CART evaluates all AFD input parameters equally and identifies AFD17 and AFD8 are 

more effective than DC in partitioning the CAT I.1ôs data space into disjoint spaces with 

highest purity. These 3 ERCOT classes are similarity in term of these AFDs and therefore 

are assigned to the same class.  

The CAT I.1.1.1.2.1 is defined as 
3 4 5 6CAFD CAFD CAFD CAFDØ Ø× Ø which has same 

first 2 CAFDs as CAT I.1.1.1. The CAT I.1.1.1.2.2 has same first 3 CAFDs in its definition 

Table 3-3: Comparison of CAFD-based Classes and Utility Commercial Load Classes 

CP Value 
Utility Load Class Utility  

0.02 0.00 

CAT I.1.1.1  

CAT I.1.1.1.1 

A1                     100% PGE 

A10                   100% PGE 

A6                     100% PGE 

BUSHILF         100% ERCOT 

BUSLOLF        100% ERCOT 

BUSMEDLF    100% ERCOT 

BUSNODEM     92% ERCOT 

GLP                  100% PSEG 

GS-1                 100% SEC 

GS-2                 100% SEC 

SC2DEM           71% NG 

CAT I.1.1.1.2.1 
SC2DEM           29% NG 

SC2ND               71% NG 

CAT I.1.1.1.2.2 LPL                    25% PSEG 

CAT I.1.1.2.1 SC2ND               29% NG 

CAT I.1.1.2.2 LPL                    75% PSEG 

CAT I.1.2.1 BUSNODEM       8% ERCOT 

CAT I.1.2.2 BUSIDRRQ     100% ERCOT 

Commercial Large Commercial 
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as CAT I.1.1.1.2.1, with a different 
6CAFD×  term. 

6 'CAFD sphase angle value is related to 

the position of annual peak in time domain. 

The CAT I.1.1.2.2 is another category that consists of load profiles from a utility 

(PSEG) classified large commercial class. These two sets of load profiles both are labeled 

as large commercial types by their utilities while CAFD classification puts them in different 

categories. This example shows the ambiguity of the current practice of load profile 

classification: the large commercial load profiles from different utilities donôt necessarily 

share the same characteristic attributes.  

In Table 3-3, 12 LPL load profiles are divided into CAT I.1.1.1.2.2 (3 LPL load 

profiles with 25% probability) and CAT I.1.2.1 (9 LPL load profiles with 75% probability). 

Both categories share the highest ranked hierarchical CAFD condition A. Their differences 

start at the node 2 with B condition, which is the phase angle of 51st harmonic that is related 

to the weekly pattern timing.  

The lack of a universal load profile classification methods can lead to inconsistent 

load class definition across different utilities. The examples show that LPL load profilesô 

weekly pattern may vary from year to year. It should not be assumed that the load profiles 

from a sampling group will have same characteristics year after year. It also shows that the 

LPL from PSEG doesnôt have the consistency of BUSIDRRQ from ERCOT in term of 

their CAFDs. 
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3.6 Load Profile Classification 

A load profile classification test has been developed based on the proposed 

approach. This test extracts 7 sets of AFD1-17 from 7 new annual load profiles [46] (not 

from the original 5 utilitiesô 653 load profiles). These load profileôs AFD sets are then fed 

into the decision tree in Figure 3-7 to be classified using CAFD signatures. 

As shown in Table 3-4, every profile successfully finds its respective place in the 

CAFD-based classification hierarchy by matching their AFD component values to each 

classôs CAFD signature. The RES load profile is classified as CAT II residential class. All 

6 GS load profiles are part of the CAT I.1 commercial class hierarchy: the GS1 profile is 

classified as a CAT I.1.2.1. The GS2 to GS3 profiles share similar CAFD signature and are 

classified as CAT I.1.1.2.1. The GS4 profile is classified as CAT I.1.2.2 large commercial 

subclass.  

The efficacy of the proposed approach has been established by the success of this 

test. This is significant improvement over current practices that provide mostly qualitative 

labeling. 

Table 3-4: Load Profile Classification Test 

Load Class AEP ERCOT NG PSEG PGE SCE 

I.1.2.1 GS1 BUSNODEM     

I.1.1.2.1 GS2O  SC2ND    

I.1.1.2.1 GS2U  SC2ND    

I.1.1.2.1 GS3O  SC2ND    

I.1.1.2.1 GS3U  SC2ND    

I.1.2.2 GS4 BUSIDRRQ     

II  RES 
RESHIWR 

RESLOWWR 
SC1C 

RHS, RS 

RLM  

E1 

E7 
DOM 

Residential Commercial Large Commercial 
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3.7 Summary 

This chapter has accomplished the following: First, the concept of CAFD for load 

profile is introduced. The CAFD used in classification process can elegantly describe the 

load profileôs characteristics. It has the potential to improve knowledge sharing among 

different entities since now a load profile can be described in a standard, modular, coherent 

and portable format that is independent from each utilityôs load class terminologies. 

Using the hierarchical classification tree with CAFDs can efficiently and 

effectively classify the long and complex annual load profiles from different utilities. The 

hierarchical classification tree is presented to show that this classification method is very 

efficient and effective. As shown in Figure 3-4 and Table 3-2, two CAFD 
102( 4.048)Hq <

and
714 51( 2.822)H Ha a <  can separate commercial from residential load profiles. In Figure 3-

4 and Table 3-3, it shows that two CAFDs
357 51( 0.89) and ( 0.657)H Ha a DC² >  can separate 

large commercial from other commercial load profiles.  

Second, the proposed approach introduces an innovative way to classify load 

profiles. This approach is universal applicable to all utilitiesô load profiles because it 

utilizes a set of universal components (AFDs) that are directly derived from the profile 

data. New incoming annual load profile can be successfully classified into one of the 

identified load classes by matching its AFD component values to the load classesô CAFD 

signatures.  

Third, using the proposed approach, each load class can be characterized by a 

CAFD-based signature. Taken together, the quantitative information contained in these 

signatures could deepen the understanding of load profiles and may lead to the 

development of new approaches in demand-side management and demand response. 
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Fourth, the CAFD-based signature can be easily interpreted to show the differences 

or the similarities in load profilesô characteristic attributes among different class. It can be 

coded as a self-describing XML document that is both human and machine readable. Such 

load profile XML document can be easily exchanged through internet and efficiently 

processed using standard software tools.   

Fifth, this chapter has shown that the current utility classification is not precise, and 

is limited to a small number of characteristic attributes of the load profile patterns in time 

domain. On the other hand, the hierarchical CAFD classification process can precisely 

target the characteristic attributes that each user wants to focus on. The number of 

characteristic attributes is scalable and can incorporate a large number of CAFDs 

depending on the goal of the classification. 

At last, this classification method is a systematic and efficient way to classify load 

profiles. It has high adaptability potential because the CAFD classification rule is easy for 

human and machine to interpret and well suited for automation. With additional research, 

this method has the potential to be used to construct a universal comprehensive CAFD-

based load profile database that can be used to study load profiles from all sources. 
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Chapter 4: Wavelet based Load Model for 

AMI Data 

After introducing the framework of frequency domain load modeling and 

classification, this part of the thesis will focus on estimating and forecasting the daily and 

annual load profiles.  

As more and more AMI data comes on-line, utilities are accumulating tremendous 

amounts of load profile data. Power flow analysis, as well as many other power system 

analysis applications, can benefit from the load data collected from Advanced Metering 

Infrastructure (AMI). Planning, forecasting, automated customer type identification and 

classification, real-time analysis, and even real-time control can benefit from AMI load 

data or information derived from AMI load data.  

Some previous efforts in using customer load measurements in power system 

analysis have used load research statistics to generate 8760 hourly statistical load models 

for classes of customers [47]. The AMI implementation gives a utility the ability to collect 

load data from each customer every 15 to 60 minutes. Thus, each customer can have 8,760 

to 35,040 time-stamped load measurements annually. For a small circuit with 100 

customers, an annual AMI load data table in a database can contain from 876,000 hourly 

load data rows to 3,540,000 rows. 

The sheer size of the AMI load data makes the direct AMI data integration 

somewhat impractical for large scale system analysis. For example, using double precision 

numbers a utility with 1 million customers would require 1,000,000 × 8 bytes × 8,760 

hours/year å 65G bytes of RAM to store the annual hourly AMI load data in memory.  
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There is a need for load models that have the following characteristics: 1) the load 

model can be used in the field without network connections, 2) the load model needs to be 

compact so that it will fit into laptops commonly used in the field, and 3) the load model 

needs to be efficient and in-memory because of time constrains of some analysis, where 

querying the AMI data warehouse constantly is impractical. 

Currently there is lack of efficient, and compact AMI hourly load models that can 

be integrated with a large-scale system model in computer memory and used in analysis 

such as a power flow time-series analysis. The work here focuses on developing such load 

models using wavelet technology.  

The first load model considered in the work here is the wavelet load model, which 

uses the Discrete Wavelet Transformation (DWT) [49] to transform the original load 

profile from the time domain to the wavelet domain. With the wavelet load model, each 

individual customerôs AMI data is compressed, and load models are maintained for each 

individual customer.  

The second load model considered here is the classified wavelet load model. With 

the classified wavelet model a single load model is used for many customers that exhibit 

similar load behavior. With wavelet based load models, the determination of which class a 

given customer should be assigned to, based on having similar time varying behavior, can 

be automated. 

Conventionally, load profile classification is based on the load profileôs time 

domain representation [2] or frequency domain descriptors [27].  Time domain parameters 

used to describe load profile characteristics include Base Load, Peak Load, Rise Time, Fall 

Time, and High-Load Duration. After a set of variables is established to describe load 
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profiles, various models, such as linear discriminant analysis, nearest neighbor 

classification, k-means, fuzzy-statistics, neural networks, and support vector machines are 

used to classify load profiles [18-23, 35]. 

A major challenge in classifying load profiles is that AMI load data for an 

individual customer may contain extreme data changes, such as the load stepping to zero 

due to a missed reading in the AMI system.  Sometimes these extreme changes are errors, 

but not always. Figure 4-1 illustrates representative AMI hourly load samples for a 

commercial customer. The aforementioned classification methods, where relatively small 

variable sets are employed, have trouble in accurately capturing the pattern characteristics 

of Figure 4-1. 

In order to better visualize load profile pattern characteristics, a 2 dimensional, or 

2D, wavelet load profile representation is introduced. It will be illustrated that the 

significant load patterns in an individual customerôs AMI load data can be modeled by the 

wavelet components from the load profileôs lower 2D DWT transformation. Furthermore, 

 
Figure 4-1: Sample AMI Load Profile Data  
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the 2D DWT transformation can be used in an unsupervised clustering process to identify 

load classes. The classified wavelet load models are derived from the load classes identified 

by the 2D DWT based clustering algorithm. 
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4.1 Discrete Wavelet Transformation 

The development of wavelet transformations began with Alfr®d Haarôs work in the 

early 20th century [48]. The wavelet related research accelerated after the ground-breaking 

works from Ingrid Daubechies [48] and Stéphane Mallat [49] in the 1980s. There are many 

applications of wavelets, including digital signal processing and image processing [50]. 

In the DWT process, a time-domain discrete signal ( )S n  can be decomposed into a 

set of Approximation Coefficients 
0
,j kA (equation 4.1) and Detail Coefficients 

,j kD  

(equation 4.2) with a predetermined discrete scaling function 
, (n)j kj (equation 4.3) and 

wavelet function 
, (n)j ky (equation 4.4). The ( )S n  can be reconstructed using its 

0
,j kA  and 

,j kD  in the inverse DWT (IDWT) process (equation 4.5).   

1
2

0 0

1
2

1
2

0 0

, ,

, ,

2
,

2
,

, , , ,

0

( ) ( ) (4.1)

( ) ( ) (4.2)

(n) 2 (2 )        (4.3)

(n) 2 (2 )                                         (4.4)

( ) ( ) ( ) (4

j
j k j k

n

j
j k j k

n

j j
j k

j j
j k

j
j k j k j k j k

k j k

A M S n n

D M S n n

n k

n k

S n M A n D n

j

y

j j

y y

j y

-

-

¤
-

=

=

=

= -

= -

= +

ä

ä

ä ää

0

0

1

,

,

.5)

0,1,..., 1 2

          decomposing level  1,..., 1, 0

          coefficient index 

discrete scale function

the discrete wa

0,1,...,2  

         ( ) is the 

     v    ( ) is 

J

j

j k

j k

where n M and M

j J j

k

n

n

j

y

-

= - =

= - =

=

elet function 

 

 

 

 



 - 77 - 

4.1.1 Multi-Resolution DWT 

Mallat introduced an efficient multi-resolution DWT/Inverse DWT (IDWT) 

algorithm in 1989 [49] which make DWT/IDWT implementation practical by taking 

advantage of the family of orthogonal, compact support wavelets introduced by 

Daubechies [48]. 

Mallatôs pyramid DWT/IDWT algorithm used a set of discrete Quadrature Mirror 

Filters (QMF) ( , , ,h h h hy y j j) to decompose or reconstruct a discrete signal. The coefficients 

for the filters are pre-determined. The simplest Daubechies (DB) wavelet filters, DB1 

(Haar wavelet), is used in the AMI load data DWT here. The DB1 scale and wavelet 

discrete filter coefficients are specified in Table 4-1.  

 

In the work that follows, [ ]S n will represent the AMI data set for a single customer. 

Figure 4-2 illustrates a 3-level DWT process. The discrete signal [ ]S n convolutes with the 

Table 4-1: DB1 QMF Coefficients 
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Figure 4-2: Multi-resolution DWT  
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low band-pass filter hj (covers 0 to 2nf frequency band as in Figure 4-3) which generates 

n number of values. Half of this set of numbers is redundant because it represents only the 

lower half of the frequency information in[ ]S n . Therefore, it can be down-sampled by 2 to 

get the Approximation Coefficients
jA . The down-sampling (decimation) process involves 

removing every other coefficient from the
jA approximation coefficients.  

[ ]S n also convolutes with the high band-pass filter hy  (covers 2n nf to f frequency 

band) and is then down-sampled by 2 to calculate the Detail Coefficients
jD . The 

approximation coefficients 
jA  are then passed to the next level to repeat the same 

transformation process to generate the j+1  level 
jA and 

jD  as specified in equations 4.6 

and 4.7.   

1
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Figure 4-4 illustrates a 3-level IDWT process which reverses the DWT process to 

reconstruct the [ ]S n using 
jA and

jD . 
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Figure 4-2: Multi-resolution DWT Frequency Band 
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During the IDWT process, the coefficients 
jA and

jD at level j, are up-sampled by 2 

with zero (expansion) and the up-sampled coefficients convolute with the mirror discrete 

filter hjand respectively. The two convolution products are added together to generate 

coefficients  at level j-1 as in equation 4.8. These steps are repeated until the S(n) is 

fully reconstructed. 

 

This DWT/IDWT algorithm described by equations (4.6-4.8) is efficient and has a 

linear computational complexity  that needs n operations to decompose a discrete load 

profile (n number of measurements) into the wavelet domain.  

The flow chart in Figure 4-5 illustrate the process of multi resolution wavelet 

decomposition. The Table 4-2 presents a step-by-step numerical example for a 24-hour 

daily load profileôs 3 level DWT. Figure 4-6 presents the synthesized load profiles at 

different resolutions. The left column contains the synthesized load profiles using 

 
Figure 4-3: Multi-Resolution IDWT 
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