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Attributes in the Frequency Domain (CAFD). Which is developed for load profile
charaterization and classification. )IThe frequency domain load profile statistics and
forecasting models. Two dédfent models were introduced in this dissertation: the first
one is the wavelet load forecast model and the other one is a stochastic model that
incorporates local weather condition and frequency domain load profile statistics to
perform medium term loadgfile forecast.

7 different utilities load profile data were used in this research to demonstrate the
viability of modeling load in the frequency domain. The data comes from various
customer classes and geographical regions. The results have showre thadposed

framework is capable to model the load efficiently and accurately.



El ectricityi holhde d
Domai n

Shiyin Zhong

General AudiencAbstract

I n todayés highly competitive and deregul
the electricity powergeneration, transmission and distribution sectors can all benefit
from collecting, analyzing and deee nder st andi ng t heir custon
consumption behavioiThis strategic information is vital iforecasting and managing
the fuure electricity demand. This information is also very importantuiitity
c o mp alongtérm resource and capital planning.
With the proliferation of Advanced Metering Infrastructure (AMI) in recent
years, the amount oélectric load profile data colleed by utilities has grown
exponentially. Such highesolution datasets are difficult to model and analyze due to the
large size, diverse usage patterns, and the embedded noisy or erroneous data points. In
order to overcome these challenges and to makealedata useful in system analysis,
this dissertation introduces a frequency domain load profile modeling framework. This
framework can be usedcamplementary technology alongside of the conventional time
domain load profile modeling techniques.
There are three main components his tiramework: ) the frequency domain
load profile descriptor, which is a compact, modular and extendable representation of the

original load profile. A methodology was introduced to denranstthe construction of



the frequency domain load profile degtor. 1) The load profile Characteristic
Attributes in the Frequency Domain (CAFD). Which is developeddegorizing the
load profile data 1ll) The frequency domain load profile statistand forecasting
models..

7 different utilities load profile data were used in this research to demonstrate the
viability of modeling load in the frequency domain. The data comes from various
customer classes and geographical regions. The resultshewa that the proposed

framework is capable to model the load efficiently and accurately.
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Chapter 1ltntroduction

1.1 Introduction to Load Profile Modeling in Frequency Domain

With the proliferation of AMI in recent years, utilities have accumulated a large
amount of higkresolution electricity consumption data. Deaming this data will help

utilities to gain strategic advantages in areas such as load forecasting, ceand

management, and resource planning.

Customer electricity usage patterns are very diverse and can be effected by many
factors including geographical, demographical, and meteorological factors. For example,

Figures 11 to 13 present daily load profiles for some sample commercial and residential

customers frona large utility in the Midwest region of the United States
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Figure 1-1: Average daily load profiles for commercial customers

Figure 1-2: Average daily load profiles faiesidential customer: newinter months
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Figure 1-3: Average daily load profiles for residenti@istomer: winter months

The commercial customer has a set of very consistent load patterns throughout the
year. The load pattern exhibits a long dlad high-load period during typical business
hours (9am to 5pm). On the other hand, the residential customer has a more diverse set of
load patterns. During the winter time there are two relative short and distinctiveadh
periods (morning and evergh During norwinter months the higload morning period
shifts to a later time of the day addition to studying the daily load profiles, utilities often
use the annual load profiles in load research and modétiriggure 1-4, there are two
very different normalized annual load profile plots: the one on the top is from a commercial

customer, the bottom one is from a residential customer. The plots exhibit very different
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Figure 1-4: Normalized annual load profiles foeesidential and commercial customers
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load patterns characteristics. For example, the residential customer loadiEst@sirong
correlation with both the hot and the cold weather days while the commercial customer
load pattern is mainly affected by the hot weather. The residential customer has a double
peak daily load pattern in January and sifupek daily load pattea in July. The
commercial customer has a consistent single peak, load daily pattern throughout the year,
where the total daily energy consumption varies with the season.

The annual load profile of residential or commercial customers can be viewed as
beingcomposed of many different periodical components, such as the seasonal component
with higher electricity usage in the summer and winter, weekly component with different
weekend and weekday electricity usage, and daily component with a double peak pattern
for residential customers and a single peak pattern for commercial customers. Because of
theseperiodicities inelectric load profiles, the frequency domain, or spectral analysis, is
suitable for analyzing and modeling electric load data. Spectral antghisiques have
been applied in many different fields, such as understanding periodic patterns in
economics, meteorology, geology, and astronomy. Spectral analysis is also applied in
visual and audio signal data processing.

Using frequency domain charadization techniques, complex tirdemain load
profile data can be decomposed into a series of frequency domain components. These
components can be used as a set of building blocks to model distinctive load pattern
characteristics. These building blocksvédhe potential to serve as a load profile signature
for each customer. Because of the modular and orthogonal natural of these components,
statistics can be calculated for each component. The frequency domain statistics then can

be used to construct electload forecasting models.
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1.2 Challenges in Load Profile Modeling in the Frequency Domain

Load profile data is typically stored as tirseries data that is indexed by the

collection timestamp. The properties of this data set include:

High data dimension.

ANoi syo because of meter reading

It contains various periodical data patterns

It is correlated with geographical, demographical,

climatological

sociological data.

The above properties pose some challenges for modeling load patterns initiertiene.

errors

and

In the time domain it is difficult to systematically identify or quantify load pattern

characteristics. In the time domain load profiles are typically modeled using a Typical Load

Profile (TLP) within a time window (daily, mahnly or annually),as shown in igure 5

[1]. Recent researdii] has proposed to describe time domain load profile characteristics

with parameters such as
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i Base Load
1 Peak Load
I Rise Time
1 Fall Time

1 High Load Duration.

The above parametease illustrated in igure 16 [2]. Theseparameters define the
temporal relationship between the load profile magnitude values and the time indices. For
a high dimensional dataset, such as an annual load profile consisting of 8760 load

measurements, it is very complicated to use such an appgmauideling the load.
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Figure 1-6: Time Domain Load Profile Description using 5 Parameters

Load estimation and load forecast models have been built for various types of
customers [5] by extracting statistical properties from historical data. Some research
refines such models by introducing other factors, such as weatiditions [67]. Various

load models (regression [8], fuzzy approache&]P and neural networks [1E3]) have
-5-



been used for load forecasting and estimation.

The performance of load models is dependent on a load profile classification
process. This claffication process should not be based on customer electric rate charges.
Although customers are generally grouped by utilities into residential, commercial and
industrial classes, and respective subclasses, there is no systematic framework that can be
usal to characterize usage patterns of different classes and subclasses with signatures that

are both humamneadable and machiwreadable.

1.3 Research Objectives

This dissertation seeks to investigate and contribute to three major aspects of load
research.

First, a theoretical framework for load profile representation in the frequency
domain is sought. The predominant load profile representation today is in the time domain.

Second, a way to hierarchically classify loads based on significant usage patterns
is ought. The predominant way that loads are classified today is based upon customer
electric rate classifications.

Third, an efficient, scalable and paralfgbcessing approach to constructing

frequency domain load models is sought.

1.4 Literature Review

A literature review of load research has been performed primarily in the following
three areas

1 Electricity load pattern characterization

1 Electricity load pattern classification
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1 Electricity loadestimation

Whereas this dissertation is dependent on the aforementioned fields, the research
seeks to find a new framework to systematically model, classifgstndateslectric load
profiles. The following subsections highlight differences in approaches between the
existing literature and the approach taken by this research.

1.4.1 Electricity Load Pattern Characterization

With the advent of AMI systems, higlesolution electric usage data is how being
collected at individual customer and/or equipment levels. In ordeudoessfully utilize
this high resolution load data [1], the utility must have a systematic and efficient way to
describe the unique and significant patterns and/or properties contained in the load data.

Conventional methods for analyzing load profilehare detailed in reference [1]
by Price. This reference discusses load profile characterization methods using various time
domain parameters (illustrated in Figurésland 16). Espinoza [2] introduced a unified
framework to model the stationary propestof daily customer profiles. Currently utilities
do not have a standard method or terminology to characterize and model customer load
profiles. This is because the time domain load profile characterizatitwodseare verbose
and imprecise. They are natitable formodeling the significant patterns contained in the
load profiles.

Because consistent and predicable schedules exist in the majority of residential,
commercial, and i ndust hiddanlperiodica pattenms risn It ded e
prdfiles. Preceval [14] and Stoica [15] both listed a set of spectral analysis applications
which show that frequency domain analysis methods are good complementary to the

traditional time domain methods. Carpneto [16] and Verdu [17] utilize the frequency
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doomin | oad pattern data to classify |l oad
frequency domain components.

This dissertationseeks to formalize the methodology for characterizing and
analyzing load profiles in the frequency domain using tisem@te Fourier Transform. The
dissertation addresses two issues, data sampling rate and signal bandwidth, which are not
adequately addressed in the literature-1¥§ but are important for the validity of
frequency domain load profile characterization.

1.4.2 Electric Load Pattern classification

In order to effectively manage and plan for the electric power system load demand,
it is important for a utility to be able to correctly and efficiently classify and categorize
customers based on their electric usagtepa.

Conventionally load profile classification is performed in the time domain using
various data mining techniques. Espinoza [2] introduces a-don®in, uniform
framework for customer profile classification using the stationarity properties ofitee t
series Periodic Autoegression (PAR) model to identify typical daily customer profiles.
The basic PAR model template consists of 1176 parameters. This template is further
extended to include exogenous variables to account for temperature effeced| as w
monthly and weekly seasonal variations. Using the PAR model, the Typical Daily Profile
(TDP) model can be computed. The load profile classification is accomplished by applying
the unsupervised H#nean clustering algorithm on the TDP model.

In orderto discover the unique customer load profile groups with significant load
patterns, Ramos [18] applies four different data mining technigkiseans, normalized

N-Cut, Pairwise Constrained (PGnkeans) and Metric Pairwise Constrained (MRC k
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means) to aset of normalized average TDP models (which represent a set of annual load
profiles). Once all possible typical load profiles (TDP) are discovered by the unsupervised
clustering algorithm, then a supervised approach, supported by cluster validity aslices
well as expert opinions, consolidate the large number of TDP into a set of more meaningful
groups.

Kim [19] summarizes recent advances in Typical Load Profile generation for a
customer class, which included the SeHganizing Map (SOM), Kmean, Fuzzig C
means, hierarchical, Follow the Leader, and Fuzzy relations. The goal of these
classification methods is to produce suitable TLP.

Additional literature [2, 4, 2£5] utilizes several variations otrkeans, fuzzy
statistic, neural network and suppoector machines [2,1823] to classify load profiles
using customer load profiles within different time intervals, such as annual load profiles or
daily load profiles.

This dissertation seeks a hierarchical classification method based on the frequency
doman characteristics of a load profile. The major difference between the frequency
domain approach investigated here and the traditionatdon@ain classification methods
is that the approach here depends on the new frequency domain load pattern cliaracteris
parameters.

1.4.3 Electric LoadEstimation

Load pattern characterization and classification focuses on how load profiles

behave based on prior load profile data. These impacekiadationwhich in turn impacts

utility financial, generation, transmissiodistribution and integrated resource planning.



Load forecasting is important to castservice allocation, rate design, demand response,
and energy efficiency [1].
Load forecast models can generdibydivided into two groups. The first group is
the tralitional time series and statistical methods. The major methods inchics [6
i Time series- ARMA, BoxiJenkins ARIMA, regression, and transfer
function (dynamic regression), expert systems; neural networks
1 Fuzzy logic

1 Support vector machine.

Almeshaiei [2] describes a timeeries method that uses load pattern
decomposition to model the load profiles as two main components: the noise component
and the smooth moving, average component. It utilizes theCBgi#nizing Map (SOM) to
identify segments in the dal profiles that have similar behavior. The method combines the
region similarity, contour and proposed related points to forecast the load profile.

Torkzadeh [25] proposes to method which combines the Principle Component
Analysis (PCA) and MultLinear Regression (MLR) to forecast medium term load
profiles. Espinoza [2] introduces Periodic Autoregressive (PAR) models to forecast the
substation aggretgd load profile. Chang [5] presents an updated version of the fuzzy load
model to forecast transformer load profiles.

The second grouping for load forecasting are the machine learning methods. For
example, Sevlian [26] describes three different loadcBs®ng models: Seasonal ARMA
models (SARMA), a Support Vector Regression (SVR) model, and a Feed Forward Neural
Network (FFNN) model. The author indicates the performance indices of these models

improve as the size of the load increases.
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The majority ofload modeling literature focuses on short term, from minutes to
several days, and long term, from a year to a decade, load estimation at the system or
substation level, where the load can range from several MW to several G28][Zthese
load models areamerally constructed using tirtmain load data. However, in the time
domain it is difficult to describe and quantify the diverse and complicated load pattern
characteristics that exist in AMI load data {23].

The aforementioned load forecast reseascbonducted in the tim@omain. Yao
[29] proposes a method that utilizes wavelet transformation to decompose the load profile
and use neur al net wor ks t o f oesema@dvavelege ac h
component values are synthesized badke domain load profiles.

This dissertation proposes to use frequency domain transformation techniques to
decompose the load profile into frequency domain components. Frequency domain
statistics can be computed for each significant frequency domain cemp&onditional
statistics will also be computed based on weather conditions. These frequency domain

statistics can then be utilized in loastimation

1.5 Dissertation Outline

Chapter Il presents the frequency domain load profile characterization approach
and the prerequisite conditions for its application. Analysis of daily load profiles using their
frequency components is discussed.

Chapter Il introduces the concept of frequency domain characteristic attributes. A
frequency domain load profile class#ition method is presented. New frequency domain

attributes are discussed and a general load profile classification procedure is presented.
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Chapter 3 presents a load profile classification test that evaluates the efficacy of the
frequency domain classifitan procedure.

Chapter IV introduces another frequency domain load profile modeling approach
the wavelet based AMI load profile model. Two different wavelet based load profile
models are introduced. System load analysis results based on the wavelkst anede
presented.

Chapter V introduces a medidi@m weathedependent stochastic load model
using the frequency domain statistics calculated from the AMI data set. The model
performance metrics comparison with other models have also been presented.

Chapter ¥ summarize the findings,contributionsand future research topics

-12-



Chapter 2t.oad Profile in Frequency
Domain

2.1 Methodology for Modeling Load Profiles in the Frequency Domain

Each daily load profile in Figur2-1 consists of 24 hourly load data poirit#t), each

of which is the monthly average for a

group

recorded at that hour.
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Figure 2-1: Average dailyjoad profiles forutility A commercial customers

In order to focus on the shape of the load profile, the hourly data is normalized by the
daily peakxpeakas in equation (2.1).
DO ® 0] e

The normalized daily load profile can be exgsed by equation (2.2).

W O @] 0 &£YO ¥

Where@ is the peak normalized hourly data indexed by n
et (1 hour) is the

-13-
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The timedomain load profile can be transfordhento the frequency domain by
using the Discrete Fourier Transform (DFT). The frequency domain representation is

shown by equation (2.3).
ANO) N Q YQ )

Where 8 is a member of the frequenspectum indexed by k
eef i s the frequency resolution.

Each member of the frequency spectrdim,can be expressed by equation (2.4).
A ®Q~ h Q nplkBh o c8

Where8 is a complex numbseéhat has magnitudé and phase ang]e .
Using the Inverse Discrete Fourier Transform (IDFT) shown by equation (2.5) and
equation (2.6) the timdomain profile@ 0, can be reconstructed by using some or all of

the frequency components

w O ®] 6 &Y0 Cd

\ \ p LA} "~ \ S e

W 0 C_T w Q h ¢ TmipltB It o CH

Using Eulerbés identity to coaamhdicandbe ex ponen

expressed as a sumfagquency components as shown in equation (2.7), which represents
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the normalized | oad profileds shape informat

the harmonics.
W O cbbcbbl?o‘obﬁcbbc&

Wheregd O A

is the DC component;
@ O _Ai &L [ is the 'harmonic with amplitudd  — and
phase angld ;@ O —AT &~ | s the pth harmonic with amplitude

A — and phase angle .

Each harmonic is associated with an amounerérgy consumed by activities
performed at the corresponding harmonic frequency. For different customer classes, each
harmonic can be interpreted with different physical meanings. For example, the
commer ci aYharmdnia cas be mtérprdted as eganting their singipeak usage
pattern from 8arbpm (normal business operation hours). For residential classe$the 2
har monic can be interpreted as representing
pattern, where the higher household activitrethe morning and evening leads to higher
electricity usage during those periods. The higher frequency harmonics may be correlated
with other periodical factors that will be considered in what follows.

The original load profile can be fully reconstruttey using the product of the
reconstructed normalized load profile and the peak of the profile as shown in equation
(2.8).

o ® o cay
Once the original load profile is transformed into the frequenayaiio, the profile can

be described by the following description system:
-15-



~ ~ ~

Y Q | h— | h— 8. h- &
Where “Yis the shape descriptor

kis the number of frequency components used in the shape descriptor
| represents the magnitude of the DC component

| represents the magnitude of #ik harmonic normalized by

— is the phase angle of tk#h harmonic.
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2.2 Prerequisites for Load Profile Data in thé=requency Domain

Before applying DFT to the timéomain hourly load data, two issues need to be
considered. The first issue is whether the hourly data is adequate for representing the load
profile. The second issue is whether the information representied hourly data is band
limited, which can lead to aliasing problems. These issues will now be considered.

2.2.1 Data Adequacy

For individual residential or small commercial customers, the majority of load is
consumed by various appliances and electronic devlwg operate in duty cycles. The
sampling rate commonly used by utilities (from 1 to 4 samples per hour) is too low to
capture the true essence of each individual
can be charact er i z ¢hdinstastanéonsaesgiof thee tomandthrs 6 due t
off processes. The hourly data (evennifiute data) is not frequent enough to represent
the load profile of individual residential or commercial custom@®s 31.

The diverse and neooincident usage of alwicity by a large group of customers
(even with the same classification) has a smoothing effect on the volatility of individual
load behavior. Consequently, hourly data can be frequent enough to represent the overall
load profile for a group of 100 or moindividual customers3fl]. The hourly data shown
in Figure 21 are obtained by taking the average of the hourly data from 119 commercial
customers. Before the DFT is applied to tisezies data, it is important to recognize this
relationship between gup size and sampling rate. If the DFT is to be applied to the load
profile of an individual customer, measurements should be taken every n3tjute fhis

paper, the load profile frequency domain characterization and analysis are performed only
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on theaggregated customer class load profiles from three utilities, which will be referred
to as utilities A, B & C.

2.2.2 Bandlimitedness

Using load data from three different utilities, it will be demonstrated for the load
data samples thahe aggregated customelass load profiles studied in this paper
practically bandimited by showing that 1)he Nyquist frequency componer# ()is
negligibly small with O degree phase angle. This means that the signal is practically band
limited even though theoreti¢glno signal can be both frequency and time limitex (
daily load profile is time limited to 24 hourly measureme[f8), and 2)The timedomain
profile can be reasonably well reconstructed by using only the frequency components
below the Nyquist frequey.

Table 2-1 (page 32)presents the magnitudes and the phase angles for utility A
commerci al customer s monthly | oad profiles
presents the peak | oad, the | oadring.dsingpor , and
the normalized magnitudes, the load factor is related ity aquation (2.10).

3 & O G ¢ 00 Q1 @R
DE MW é4tr—m—, —
DQWR WwQ ¢t

e 4

CP T

As shown in Table 4, the load factor is numerically very close to the DC
component 6 s nma ghecanse thecvalue @il is reegligibly small. The DC
component is expressed in equation 2.7 asmheof=|= and=|= normalized by the daily
sample size, 24|.= is the average value of the normalized load fgofhe shape descriptor

string in table | follows the format introduced in equation 2.9 and contains DC and the
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foll owing 4 harmonic componentso6 values. Th

include more harmonics as needed.
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Table2-1: Harmonics for the Average Daily Load Profile for the Commercial Customers in Utility A

Month Peak (KW) Load Factor Normalized Harmonic Magnitude apH
aoc aiH azH asH a4H asH asH arH asH aoH a10H aiiH
1 110.138 0.742 0.744 | 0.266| 0.084| 0.042| 0.024| 0.008| 0.030| 0.006| 0.002| 0.004 | 0.010| 0.006
2 109.982 0.754 0.756 | 0.262| 0.076| 0.050| 0.026| 0.012| 0.026| 0.006| 0.002| 0.000| 0.010| 0.006
3 109.923 0.755 0.758 | 0.264| 0.072| 0.048| 0.026| 0.008| 0.022| 0.006| 0.000| 0.004 | 0.006 | 0.006
4 106.289 0.740 0.743 | 0.268| 0.066| 0.056| 0.028| 0.010| 0.022| 0.004| 0.002| 0.002| 0.012| 0.006
5 98.743 0.762 0.764 | 0.232| 0.052| 0.042| 0.022| 0.006 | 0.024| 0.004| 0.004| 0.002| 0.008| 0.006
6 119.548 0.740 0.740 | 0.258| 0.064| 0.046| 0.024| 0.004 | 0.024| 0.004| 0.002| 0.004 | 0.008| 0.004
7 106.291 0.772 0.772 | 0.226| 0.066| 0.036| 0.022| 0.006| 0.022| 0.004| 0.002| 0.004| 0.008| 0.006
8 112.619 0.753 0.755 | 0.252| 0.058| 0.044| 0.024| 0.012| 0.016| 0.004| 0.002| 0.002| 0.008| 0.002
9 97.226 0.796 0.798 | 0.212| 0.038| 0.038| 0.010| 0.004| 0.014| 0.006| 0.006| 0.004| 0.006| 0.004
10 108.316 0.753 0.755 | 0.254| 0.054| 0.050| 0.018| 0.002| 0.020| 0.008| 0.004| 0.002| 0.006| 0.004
11 106.726 0.742 0.749 | 0.268| 0.084| 0.066| 0.020| 0.010| 0.032| 0.010| 0.006| 0.006| 0.010| 0.008
12 86.911 0.775 0.780 | 0.248| 0.092| 0.048| 0.014| 0.018| 0.020| 0.008| 0.006| 0.004 | 0.008| 0.006
. Harmonic Phase Angledon (Radian)

Month Shape Descriptor (S) din d2H dan dan dsH deH d7 dsH don dion | dun
1 4 0.74_(0.27,3.1) (0.08, 1.5) (0.04, 1.0)_(0.02,4 3.070| 1.480| 0.960| 4.480| 3.030| 2.510| 2.020| 2.690| 3.670| 2.800| 2.550
2 4 0.76_(0.26, 3.1) (0.08, 1.5) (0.05, 1.0)_(0.03,4 3.100| 1.570| 1.020| 4.610| 3.580| 2.450| 2.360| 4.750| 4.270| 3.090| 2.260
3 4 0.76_(0.26, 3.1) (0.07,1.5) (0.05, 1.0)_(0.03,4 3.130| 1.540| 0.990| 4.460| 4.050| 2.470| 2.840| 2.600| 0.920| 3.050| 2.660
4 4 0.74_(0.27, 3.2)_(0.07,1.4)_(0.06, 1.0)_(0.03,4 3.150| 1.400| 1.040| 4.530| 3.840| 2.480| 2.390| 0.240| 4.630| 3.140| 2.390
5 4 0.76_(0.23, 3.1) (0.05, 1.2) (0.04, 1.0) (0.02, 4 3.120| 1.210| 0.990| 4.640| 3.660| 2.650| 2.150| 1.180| 4.460| 2.880| 2.490
6 4 0.74 (0.26, 3.1) (0.06, 1.3) (0.05, 0.9) (0.02, 4 3.100| 1.290| 0.910]| 4.430| 3.710| 2.570| 1.230| 0.790| 4.900| 3.020| 1.970
7 4 0.77_(0.23, 3.1)_(0.07,1.3) (0.04, 1.0) (0.02, 4 3.100| 1.200| 0.970| 4.370| 3.110| 2.570| 1.400| 0.370| 4.910| 3.120| 1.940
8 4 0.76_(0.25, 3.1) (0.06, 1.3) (0.04, 1.0) (0.02, 4 3.050| 1.290| 0.960| 4.310| 3.620| 2.280| 1.810| 1.150| 5.100| 2.940| 2.570
9 4 0.80_(0.21, 3.1) (0.04, 1.4) (0.04, 1.2) (0.01, 4 3.090| 1.410| 1.150| 4.160| 4.890| 2.300| 3.040| 1.930| 1.440| 3.550| 2.860
10 4 0.76_(0.25, 3.1)_(0.05, 1.4) (0.05, 1.2) (0.02,4 3.140| 1.430| 1.150| 4.270| 4.860| 2.390| 2.690| 1.420| 0.310| 3.130| 3.050
11 4 0.75 (0.27,3.1) (0.08, 1.6) (0.07, 1.2) (0.02,4 3.000| 1.590| 1.210| 3.990| 3.050| 2.490| 2.310| 2.600| 2.780| 3.210| 2.770
12 4 0.78 (0.25, 3.0)_(0.09, 1.7) (0.05, 1.3) (0.01,7 2.970| 1.700| 1.280| 3.860| 2.890| 2.630| 2.390| 3.080| 3.010| 3.260| 3.090
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With regard to the first point that if the load profilebandlimited, Table 21 has
shown that as the frequency increases, the magnitude of higher frequency component
decreases rapidly. The magnitude values decrease to a negligibly low value (<0odtl) bey
the 8" harmonic, which clearly shows the characteristic of a tianited dataset.

To validate the second point of the bdimlited issue, this thesis will introduce the
following four indices to evaluate how well the reconstructed load profilessemsethe

original time domain profile.

1) Peak Magnitude Error Index (PMEI) (in %)

This index is used to evaluate the difference between the value of the peak of the

original profile and the reconstructed profile as a percentage of the former

D000 5 p T CP p

Whered is the peak of the original load profig@ O

7] is the peak of the reconstructed load prafile O.

2) Maximum Magnitude Error (MME) (in %)

This index is used to evaluate the biggest percendidtgence between the

original and the reconstructed load profile.

\

SV ¢ B ¢ IR (VI ¢
VLUVLO | AGEIIQE 5o pmiim P

\ 1

3) Mean Absolute Percentage Error (MAPE) (in %)
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This index is used to evaluate the average difference between the origitte and

reconstructed load profile.

\ 1 \ 1

SRR ¢\ N IR (I
bovoi AATAE . p T P o

4) Peak Time Error (PTE) (in Hours)

This index is used to evaluate the time difference between the peaks of the

original and the reconstructed load profiles.
0 "YO 6 o) P T
WhereO  is the time at whickd  occurs
0 is the time at whicl®d occurs.

The following procedure is used to handle load profiles with more than one peak.

Y and”Y are two sets of hours at which the loads are within +5% of the absolute

peaks of the original and the reconstructed load profiles, respectively. The intersection of
these two sets is removed from each set. PTE is the elapretgment sum of differences
of the two sets minus their intersection (the length of this new set is n). For example, for

Figure 2-2, Y p fp o tp . For an intermediate reconstructed load profile,

% p 1p o ¢ x. The intersection ofsto sets are {11,16}, which are omitted from

the PTE calculation. PTE=]40|+|1517|=4. More harmonics are needed to reduce the
PTE below 4.
Here a reconstructed load profile is considered satisfactory if the PMEI, MME, and

MAPE are all less than 5% artetPTE is 2 hours or less.
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Figure 2-2: Original and reconstructed (by using 7 harmonics) average daily load profiles for the Comme
customers in Utility A for March (PMEI =0.27%, PTE = 0 hour, MME = 3.73% and MAPE=1.02%)

50

TheJanuary residential class load profile from utility A is used to demonstrate the
IDFT reconstruction process. Tabl€2resents the number of harmonics that are needed
to achieve different levels of performance indices. For Table load profile
reconstruction, 3 harmonics will be sufficient to satisfy the aforementioned performance

requirements.

Table2-2: Numter of Harmonics Needed fAchieve DifferenLevels & Performance Indices

Number of Harmonics Used| PMEI (%) | PTE (Hour) | MME (%) | MAPE (%)
1 15.27 4.00 17.56 8.08
2 8.43 2.00 13.14 6.84
3 1.70 0.00 4.35 1.42
4 0.60 0.00 3.83 1.11
5 0.65 0.00 4.28 1.09
6 1.55 0.00 2.94 0.90
7 0.94 0.00 2.09 0.72
8 0.78 0.00 1.80 0.70
9 0.45 0.00 0.88 0.50
10 0.34 0.00 0.90 0.49
11 0.65 0.00 0.67 0.38
12 0.15 0.00 0.20 0.17
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Figures 23 to 24 are three originals-reconstructed load profile overlay plots for
commercial and residential customer classes in utility A féeriht months. The profiles
reconstructed from the frequency domain representations are compact (ranging from 25%
to 50% reduction in terms of harmonics used compared with the original forms). These
plots illustrate that such compact representations gra&bta of representing the original

profile without sacrificing major pattern characteristics
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Figure 2-3: Original and reconstructed (by using 3 harmonics) average daily load profiles foesitential
customers in Utility A in January (PMEI = 1.70%, PTE = 0 hour, MME = 4.35% and MAPE = 1.42%)
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Figure 2-4: Original and reconstructed (by using 6 harmonics) average daily load profiles foesitential
customers in Utility A in July (PMEI =0.51%, PTE = 0 hour, MME = 4.65% and MAPE = 1.65%)
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Beside the examples from utility A, Tab®3 shows the number of harmonics
needed to reconstruct a load profile that satisfies the performance indices requirements for
uti ity B. From this tabl e, fréejuendyiddman B0o s
representations at most need 9 harmonics. These profile reconstruction examples,
combned with the data presented imbles2-1 to 2-3, show that the commercial and
residential customer class group load profiles in utilities A and B aré-lvaited, and

therefore the DFT can be applied to these datasets.

Table2-3: Number ¢ Harmonics Needed to Reconstruct the Load PrdfilDifferentTypes of Customers in

Utility B
Percentages of Reconstructed Load Profiles with PMEI, MME, MAPE all <
Number of 5% and PTE <= 2 hours
Harmonics Commercial Multiple Public Religious : . Mass
Used . . . Residential ;
Large | Small | Dwelling | Building Entity Transit
1 4.2% 0.0% 20.8% 29.2% 0.0% 0.0% 0.0%
2 45.8% | 12.5% | 100.0% | 95.8% 12.5% 8.3% 0.0%
3 95.8% | 29.2% | 100.0% | 100.0% 29.2% 16.7% 0.0%
4 100% | 50.0% | 100.0% | 100.0% 50.0% 33.3% 29.2%
5 100% | 70.8% | 100.0% | 100.0% 70.8% 75.0% 37.5%
6 100% | 79.2% | 100.0% | 100.0% 79.2% 87.5% 45.8%
7 1000 | 91.7% | 100.0% | 100.0% 91.7% 91.7% 91.8%
8 100% | 91.7% | 100.0% | 100.0% 91.7% 100.0% 95.0%
9 or more 100% 100% | 100.0% | 100.0% | 100.0% 100.0% 100.0%
Number of
3,871 | 10,267 64 286 448 14,8107 8
Customers
Potential
Storage 67.0% | 25.0% | 92.0% 75.0% 33.0% 33.0% 25.0%
Saving

-34-



2.2.3 Benefitsof Representing.oadwith Frequency Components

Figures2-3 to 2-4 show that using a subset of frequency components to reconstruct
the load profiles does not result significant loss of accuracy. Tab®2 and 2-3
demonstrate that applying similar analyses ta¢aéworld data from utility A and B also
shows that the higher frequency harmonics act as noise and have negligible effect on the
| oad pr of i éte reprdsenttise lopdopsosla viath a more compact frequency
domain representation using the shape descriptor definedjuation2.9, where this
approach is illustrated in table 1 by the shape descriptor collinenfrequency domain
load profile represeation can be more robust and more resistant to error/outliers than the

original timedomain data.

The shape descriptor has the flexibility not only to represent the daily load profile,
but also the yearly load profile of a customer class. It just neadgsdrporate the necessary
frequency components from the yearly | oad
using the procedure introduced earlier in this chapter. This approach has the advantage of
reducing the load profile data dimensions by onlyoiporating the major frequency
components with significant magnitude values, thereby realizing a substantial savings in
the size of the load data modebile2-3). It also has the flexibility to satisfy the need for

additional accuracy by including mone§uency components.

P

Each shape descriptor describes the signa

is suited for automated machine processing. For example, the hamistizigce between
aload profile® descri ptor str i nglevelofdifferences betweerd t o
different load profiles, and naturally can be adopted in load profile classification. Each

component in the descriptor can be independently analyzed, which can be implemented as
-35-
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sets of parallel processes for more efficieralgsis routines.

AA prerequisite t o doeevastihgponpodehiganadepthaccur at
understanding of the c¢har a38tTheprogosed mesthodof t he
intends to provide an alternative view of the characteristics ofifosetms of frequency
components. One possible use of this approach is to use the frequency components from
the past to forecast frequency components in the future, and then recombine them using
IDFT. The robustness of significant harmonics and the odthalgelationship between is

beneficial to constructing effective load models.
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2.3 Load Profile Statistics in Frequency Domain

The dataset used in this section comes from 3 utilities. It ranges from year 2002 to
year 2007, and contains almost 1.5 millaealy records (24 hourly measurements). The
work here does not attempt tocleister the sample customers. That is, the customer class
grouping used have been defined by their re

information departments.

Becaus®f theirsignificancein IDFT reconstruction process, as shown in previous
chapter, the analysis in this section focuses on the first 3 frequency components of the

normalized daily load profiles.

Tables2-4 and2-5 present the DC,Sand 29 harmonic statistics, which are used
to evaluate the certainty and consistency of
frequency c o raple sitaistids présentett in Babld B 26 and Figure b
are circular statistics3fd]. Normal statstics are not suitable for analyzing phase angle data
sets. For example, the average of 5° and 355° is not 180° since both angles point
approximately in the same direction, and the designation of the high and low values in

phase angle is arbitrary.
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Table 2-4: Statistics for the Magnitudes and Phase Angleb®first Three Frequency Componefusthe
Residential Cusmers of Utility B ad Utility C

Mean Coefficien(to/o)f Variation I§tar.1dt§1rd

. 0) eviation
Utility | Month Poak

(kW) | apc | asn | @ | chn | don | Peak| apc | an | an | OgaH Od2H

Jan 1.49 | 0.64|0.18| 0.16| 1.7|2.29| 15% | 7% | 19% | 17% | 0.21| 0.19

Feb 1.36 | 0.64| 0.16| 0.17| 1.63| 2.24| 16% | 6% | 15% | 13% | 0.19| 0.2

Mar 1.37 | 0.62|0.17| 0.17| 16| 2.23| 16% | 7% | 16% | 11% | 0.19| 0.18

Apr 1.28 | 0.64| 0.16| 0.16| 1.61| 1.99| 19% | 7% | 24% | 18% | 0.22| 0.25

May 1.2 | 0.64|0.17| 0.15| 1.71 21 18% | 9% | 22% | 15% | 0.27| 0.29

B Jun 1.61 | 0.67|0.21|0.11| 1.75| 1.93| 32% | 9% | 27% | 35% | 0.22| 0.39

Jul 1.99 | 0.7 | 0.21|0.07| 1.67| 1.88| 26% | 7% | 29% | 46% | 0.31| 0.63

Aug 204 | 0.71] 0.2 |0.07| 1.7|1.78| 28% | 8% | 31% | 44% | 0.28| 0.62

Sep 1.56 | 0.67| 0.19| 0.12| 1.71| 2.03| 21% | 9% | 25% | 30% | 0.25| 0.33

Oct 1.6 | 0.61|0.18]|0.16| 1.77| 2.2| 31% | 13% | 20% | 21% | 0.23| 0.26

Nov 1.58 | 0.62| 0.22| 0.16| 1.79| 2.23| 16% | 9% | 15% | 19% | 0.23| 0.26

Dec 1.78 | 0.61|0.21|0.17| 1.77| 2.24| 18% | 8% | 14% | 20% | 0.21| 0.24

Jan 41 | 0.77|0.07|0.14| 2.33| 2.66| 9% | 4% |58% | 19% | 0.61| 0.18

Feb 3.62 | 0.77] 0.07| 0.15| 2.19| 255| 11% | 3% | 47% | 12% | 0.49| 0.18

Mar 3.23 | 0.74| 0.06| 0.16| 2.79| 2.35| 13% | 5% | 60% | 13% | 1.03| 0.16

Apr 2.64 | 0.71] 0.11| 0.15| 2.11| 2.25| 13% | 6% | 62% | 14% | 0.74| 0.15

May 2.55 | 0.68| 0.15| 0.15| 1.91| 2.07| 15% | 6% | 36% | 12% | 0.19| 0.12

c Jun 3.04 | 0.72] 0.18| 0.14| 2.06| 1.93| 16% | 7% | 24% | 15% | 0.2 | 0.19

Jul 2.02 | 0.76] 0.21| 0.06| 2.14| 1.52| 9% | 5% | 15% | 31% | 0.14| 0.4

Aug 353 |0.74|022| 0.1 | 21| 19| 15% | 4% | 24% | 16% | 0.12| 0.17

Sep 265 | 0.7 |0.16| 0.14| 2.04| 2.08| 10% | 4% | 18% | 10% | 0.1 | 0.08

Oct 2.29 1 0.71]0.12|0.14| 1.91| 2.13| 5% | 4% |24% | 8 | 0.06| 0.1

Nov 25 | 071|013/ 0.16|1.72|251| 7% | 4% | 28% | 13% | 0.14| 0.13

Dec | 3.26 | 0.76| 0.11| 0.14| 1.65| 2.48| 12% | 6% | 35% | 18% | 0.3 | 0.16
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Table2-5: Statistics foithe Magnitudes and Phasf the First Three Frequency Componefusthe Large

Commercial Customers of Utility Bhe Utility C

Mean Coefficient of Variation Staf?dff“d
Utility | Month Deviation
Peak

(kW) apc | @iH | @ | Oy | by | Peak| apc | an | a@n | Od1H Cd2H

Jan 1482.5| 0.84| 0.16| 0.03| 2.84| 1.16| 13% | 6% | 32% | 41% | 0.14| 0.65

Feb 1452.17| 0.84| 0.16| 0.03| 2.87| 1.08| 10% | 5% | 29% | 34% | 0.14| 0.54

Mar 1450.2| 0.84| 0.17| 0.03| 2.86| 1.02| 9% | 5% | 24% | 40% | 0.09| 0.51

Apr 1488.27| 0.83| 0.17| 0.02| 2.81| 09| 13% | 4% | 21% | 41% | 0.08| 0.52

May 1579.53| 0.82| 0.19| 0.02| 2.79| 0.79| 12% | 5% | 23% | 41% | 0.11| 0.5

B Jun 1797.48| 0.81| 0.2|0.02| 2.82| 1.03| 10% | 4% | 16% | 39% 0.1] 0.61
Jul 1768.9| 0.83] 0.18| 0.02| 2.83| 1.32| 8% | 2% | 12% | 36% | 0.12| 0.59

Aug 1876.85| 0.82| 0.19| 0.02| 2.84| 1.27| 9% | 3% | 16% | 71% | 0.25| 0.55

Sep 171299/ 0.81| 0.2(0.02| 2.8|1.09| 11% | 4% | 19% | 36% | 0.11| 0.55

Oct 1507.95| 0.83| 0.18| 0.02| 2.83| 1.03| 10% | 4% | 19% | 41% 0.1] 0.49

Nov 1402.67| 0.85| 0.15( 0.02| 2.85| 1.31| 12% | 6% | 33% | 44% | 0.31| 0.75

Dec 1399.73| 0.86| 0.14| 0.03| 2.84| 1.41| 10% | 5% | 30% | 44% | 0.25| 0.54

Jan 568.01| 0.84| 0.18| 0.05| 2.73| 1.73| 9% | 4% 7% | 13% | 0.05| 0.08

Feb 501.73| 0.83] 0.18| 0.05| 2.8|1.61| 11% | 3% 6% | 16% | 0.04 | 0.13

Mar 547,71 0.82| 0.2|0.05|2.74| 1.62| 14% | 5% 5% | 14% | 0.04 | 0.11

Apr 522.53| 0.8]0.22| 0.05| 2.67| 1.65| 13% | 6% 8% | 22% | 0.05| 0.09

May 533.1| 0.79| 0.23| 0.04| 2.65| 1.56| 15% | 6% 7% | 17% | 0.08 | 0.39

C Jun 591.8| 0.79| 0.23| 0.04| 2.68| 1.67| 19% | 7% 6% | 17% | 0.07| 0.19
Jul 837.25| 0.8 0.23|0.04| 2.62| 1.76| 10% | 5% 7% | 20% | 0.09| 0.26

Aug 699.58| 0.79] 0.23| 0.04| 2.7|1.74| 16% | 4% 7% | 17% | 0.07 | 0.22

Sep 630.49| 0.78| 0.24| 0.04| 2.68| 1.56| 10% | 4% 7% | 14% | 0.07| 0.14

Oct 548.12| 0.8 0.22|0.05|2.71|161| 5% | 4% 6% | 15% | 0.05| 0.08

Nov 540.34| 0.81| 0.21| 0.05| 2.73| 1.71| 8% | 4% 9% | 15% | 0.06| 0.12

Dec 533.66| 0.84| 0.19| 0.05| 2.74| 1.67| 12% | 6% | 11% | 29% | 0.11| 0.28
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The followings are the major findings through the statistical analysis of the first 3

frequency components

2.3.1 Consistent Harmonic Patterns

The resi

d

ent i

al a n dfrequencygl@naic statrstics in €abla | cl

2-4 and 25 show that the relative contribution from the 3 frequency components to the

overall load profile displays a consistent pattern for the entire year for both utility B and

C. For example, the DC magnitude for both utility A and B residential cussasaround

0.7; the #and 29 harmonic magnitudes are around 0.2; and thentl 29 harmonic phase

angles are aroundradians

Such congtency is summarized in Table2using the mean and the range of the

frequency

as

componentsidl vay uB. r &9 irag eamdasma Il e ¢ u Ut

from 0.61 to 0.71 with mean equal to 0.66. The narrow ranges for the frequency component

values in table V indicates a high consistency.

Using the aforementioned descriptor system in equation 2.9Y (

Q. =

h—

8]

i ) .

Utility

B

resi

dent i

frequency components typical pattern can be represented using the mean of the magnitude

and the phase angles listed in table Vas: S=2_0.7 (0.2, 2) (0.1, 2), while its commercial

Table2-6: Harmonic Pattern for Different Customer Classes

Residential Commercial
Utility B Utility C Utility B | Utility C
anc 0.66+0.05| 0.73+0.05 | 0.84+0.03| 0.81+0.03
aiH 0.19+0.03| 0.14+0.08 | 0.17+0.03| 0.21+0.03
dinH 1.70+0.10| 2.22+0.57 | 2.83+0.04| 2.71+0.09
azH 0.12+0.05| 0.11+0.05 | 0.03+0.01| 0.05+0.01
dzn 2.04+0.26| 2.09+0.57 | 1.10+0.31| 1.66+0.10
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class can be represented as: 5 6.8 (0.2, 3) (0.03, 1).

Commerci al customersod6 frequency componend:

range than their residential customer counterparts, which makes their load profile patterns

more consistent than residential customer profiles.

2.3.2 High Degree of Certainty

The coefficient of variation COV, is used to evaluate how well the frequency
domain approach can extract useful informationadaiata polluted by noise. COV can be

expressed as equation (2.15):
0@ i 0G: AVERPO @HEp TP  CRU

Customer load profile data collected by meters will be unavoidably tainted by
various noise/errors. In the tingomain, it is difficult to separate such noise/error
influences on the COV, which is high across all time points for two different Utility B

customer class dailpad profiles shown in Figure2

In the frequencyloman, it has been shown in Table42and 25 that the majority
of the DC component COVs are less than 10% for both types of customer in two utilities.
COVs for the 1st and 2nd harmonics are larger, but since the magnitudes of these
components are smaller than DC, the impact of these increased levelsedainty is
correspondingly smaller. The COVs for the first 3 frequency component magnitudes are
smaller than that of the tirdomain data, indicating a higher degree of certainty of the

information.

The frequency domain statistics spread the stlsuncertainty across different
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frequency components. The frequency components with significant magnitude values tend
to have a lower COV, combined with the fact that the load profiles can be represented with
the small set of frequency components witingicant magnitude values. Due to this, it is

easier to extract load profile characteristics information from such statistic datasets
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Figure 2-5: Plots of coefficient of variation for the averagdlgdoad profiles for two classes of customers of Utility
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2.3.3 Similar Patterns for Historical Data at Different Utilities

In Figure 26 the first column shows the muitear (0507 for utility A and 0205
for utility B) magnitudes and phase comparisbarts for the large commercial class load
profilesdé first three frequency components.
type of historical data for the residential classes from the same utilities during the same
time period. Each individual curve e pr esent s 12 mont hly frequ
magnitude/phase angle values.

The charts in Figure-8 show that 1) From year to year the harmonics tend to have
a very similar overall trend in terms of both magnitudes and phase angles, and therefore
the predctability for such frequency components is high. 2) Thexist certain seasonal
patterns in the harmonic components$ For ex
harmonics magnitude has a higher value than tHéh@&monic magnitude during the
summer(June to September); otherwise, these two harmonic magnitudes are much alike
during the other seasons.

During the summer s e a"amoniclphase amglssiacce nt i a |
smaller than the SLtharmonic phase angles. Th& harmonic phase angkends to be
consistent throughout the year, whiRHarmonic phase angle tends to rise up during the
winter (December to March). The consistency of theh2ar moni c6s phase ang]l
correlate with the consistency of the typical household activégidential customer
consistently has a higher usage during the morning and evening hours).

These observations indicate the potential to use the historical load profile frequency

domain characterization stati squencyslomaim f or e c .
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representation, and to reconstruct its time domain load profile using the forecasted

frequencwomponents.
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2.4 Summary

This chapter has accomplished the following: First, it has formalized the
methodology for characterizing and analyzing load profiles in the frequency domain using
the DFT. It has shown that the customer claad lorofile data satisfies two important but
often overlooked prerequisite conditions for such applications: 1) the hourly sampling rate
is adequate to represent the aggregated customer class group load profile; 2) the group load
profile is bandimited. Usng real customer load data from three different utilities, it has
been demonstrated that the time domain load profile data can be transformed to the
frequency domain as a set of independent frequency components.

Second, this chapter has demonstrated tthate di f f er en't cust omer
profiles can be represented with a small set of frequency components (the highest
magnitude set) without sacrificing major load profile characteristics. Section Il showed that
the customer class load profiles from Bitiés can be accurately reconstructed using only
frequency components while satisfying the requirements specified.

Third, this chapter proposed that load profiles can be described using the shape
descriptor presented in section Il. The descriptor ispamin(includes only a small subset
of all frequency components) and flexible (can incorporate more or less components as
needed). Each component in the string can be independently analyzed. This shape
descriptor string is well suited for automated macipireeessing and analysis.

And last, this chapter presents several findings from analyzing the frequency
domain statistics from monthly customer class load profiles for three utilities, which
include: 1) consistent frequency component patterns in botrerggidand commercial

customer classes for different years. Such evidential predictability of frequency
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components of group load profile can potentially be used in load forecasting in the
frequency domain; 2) low uncertainty among frequency componentsigitmagnitude;
3) similar customer classes from different utilities possesses similar annual frequency
domain component patterns.

In this chapter the load profile data for different customer classes do not represent
any typical load profile (TLP). Althugh the proposed approach can be applied to
characterize and analyze TLPs after they have been developed, further research is needed

to determine how the proposed approach can be applied in the development of TLPs.
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Chapter 3Hierarchical Classification of
Load Pofiles Based on Their
Characteristic Attributes in Frequency
Domain

Utilities generally group their customers into residential, commercial and industrial
classes, and respective subclasses. There is no systematic framework that is used by
utilities to aubmatically characterize different classes and subclasses based on their load
profile pattern characteristics. The work presented in this chapter attempts to formulate the
theoretical framework for customer classification based on their frequency domain
chaacteristic attributes.

The goal of load profile classification is to find a model for predicting values of
customer class variables from predictor variables. Conventionally, the predictor variables
in load profile classifications are based onthe loadl prd e6s ti me domain re
This is often done using a Typical Load Profile (TLP) within a time window (daily,
mont hl yé). Recent research suggests describi
domain parameters, such as Base Load, Peak Bisel Time, Fallime, and HighLoad
Duration [1.

After establishing the time domain predictor variables, various models, such as
linear discriminant analysis, nearest neighbor classificatieme#ns, fuzzstatistic,
neural network and support vectoaohines 1-2,1823], are used to classify load profiles.

In Figure 1-4, there are two normalized annual hourly load profile samples
(residential and commercial) and two magnified portions of the residential profile (one in

-47-



Feb, one in July). It is diffidtto use aforementioned classification methods to classify

such large, complex, load behavior, which requires a large number of predictor variables

to model.

In order to classify load profiles based on their annual load profile pattern

characteristics, ahi er ar c hi

c al classificati

on

met hod

Characteristi@ttributes in thé=requencyDomain (CAFD), is investigated here. Using the

annual load data as the starting point, the proposed method can identify theb@sé&d

signatures for different classes and subclasses of load profiles bythssisigps outlined

in Figure 31.

While the work presented in this chapter is built upon the work discussed in chapter

2 [10], the two chapters are significantly different. The work in chapter 2 shewstiefits

of using frequency domain descriptors to characterize and analyze load profiles. However,

I Time Domain Load Profile

II. Major Frequency Domain
Componenis

III. Adnbutein Frequency
Domain (AFTY)

\ 4

o5 = Eﬂ'm.lﬂ'm.ﬁ:ﬂ'l.
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IV. Characteristic Attribute
m Freqyuency Domain
(CAFIY)

V. CAFD-based Spnature
For Load Profile Class

CAFD, =855 > 4.048
C.{FDJ =|!2-14HI."|:'I:I']_H <2 8

v
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CAFD, A CAFD,

Figure 3-1: CAFD-Based Classification Method
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different customer classes can be characterized by frequency domain descriptors that have

the same members, but some or all of the members exist in diffeoportions. The work
presented in this chapter demonstrates how
descriptors, and how to use these CAFDs to formulate a hierarchy of load profiles that can

be used as a systematic framework for customer l@ssitication. As illustrated shortly,

some of the CAFDs are derived from the descriptors, but are not descriptors. As signatures

for customer classes and subclasses, the CAFDs are obtained by using a data mining
method called CART (Classificatioand Regression Tree) 35]. The input predictor

variables are obtained from the analyses of the frequency domain descriptors.

While the work presented in chapter 2 is based on daily load data, the work
presented in this chapter is based on annual load profileshvigimore difficult to
characterize. The work presented in chaptezasents Step | to Step Il in Figurd 3
while the work presented in this chapter covers from Step Il to Step V. The results
presented in chapter 2 do not demonstrate any hierarshiacture, but the work presented
in this chapter demonstrates hierarchy in both the method (Section 111.2) and the results
(Section 111.3).

The proposed classification framework could serve as the foundation of a standard
and universal load classifitan system. This hierarchical classification method using the
concepts of CAFD and CART. And such method can classify all the load profiles to its
respective place in the CAFBased classification hierarchy. The research result will
demonstrate that theAFD-based signatures can be used as the definition for different load

profile classes and subclasses that correspond well withfeellad profiles.
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3.1 Hierarchical Classification Tree

The classification tool used in this work is based on the CART codeeptoped
by Breiman, et al36]. There are many applications for CART in a lot of different fields.
For example, some researchers used it to classify the housing prices using
environmental/social factors (Boston Housing d&@)[ In the medical fieldresearchers
use it to classify whether a disease has progressed based on various3éctors [

For classification, CART constructs a categorical predication model from a finite
number of unordered input variables. CART approximates the parameter space by a
piecewise constant function. CART will first split the entire data set using a predictor
variable condition that produces the smallest impurity score. This recursive partitioning
process (the next split only hwepmnilerleafi n t he
nodes contain the minimum number of samples or are all homogeneous.

Each patrtition step must be performed in a hierarchical order and must apply locally
within the boundary of a previous partitioned space, as a recursive greedy algbotiid)
so that the partitioned spaces are disjointed, with no overlap. The order of condition in the
hierarchical classification rules indicate their significant ranking in the classification
process: the condition used in the root, node 1, has the most sighifiopact on
classifying the data.

The final number of leaf nodes (classes) can be controlled by experimenting with
different values of the complexity parameter (CP, a tuning parameter: 0 means full model
and B means no spl i t) astirdporgymequitdimerd foreacihsple, h h as
this setting will produce a tree with the largest number of leaf nodes with homogenous

characteristic attributes. By experimenting with a larger CP value (less restriction on the
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purity of each split), the classiftion tree can be pruned back to have fewer, less
homogenous leaf nodes/classes. The statistical padkege[38] was used in this work
to construct the classification tree and extract the classification rules for the annual load

profiles.

3.2 Load Profile Characteristic Attributes in the Frequency Domain

653 annual hourly load profile data (recorded at different years for different types
of customers) were col 13248 tireoderforcaptaretbeload i | i t i e
profile periodical pattercharacteristics, all annual hourly load profiles used in this paper
need to be placed in a fixed time window, which is defined by the day of the week
(consistent and periodical) for 51 consecutive weeks. The first time point in-theekl
window is set tdl2 am of the 1st Monday of the year. The last time point is set to 11 pm
of the 51st Sunday of the year.
After the DFT transformation of the tirdomain load profiles (stage I), the major
frequency domain components are identified to form the Frequenmaind_oad Profile

Descriptor [10] §at stage 1), which is introduced in chapter I..
S={ap.. (3, 9) »( v@ )8 @I

wheredy, and &, represent the magnitudes of DC and the kth harmonic

respectively
dkH is the phase angle of the kth harmonics

Among the many characteristic attributes in the annual hourly load profiles, the
daily, weekly and seasonal periodical pattern attributes are the primary focus of the

classification process used hegeich load prfile characteristics are naturally related to
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some of the modular and orthogonal frequenayaio components illustrated iralble3-

1. The characteristics and their related frequency components normally have the similar
period.The DC component represetite average of the whole profile, which is similar to

load factor in valueZ7]. Even though the DC component does not relate to any periodical
pattern in the time domain, its value does impact every harmonic magnitude value because
it normally has the largest magnitude value among all load profile harmonics.

Table3-1: Common Load profile patterns

Harmonic Index | Period (Hours) Pattern Type
DC Constant
357 24 Daily Pattern
714 12 Twice-a-Day Pattern
51 168 Weekly Pattern
1 8568 Annual Pattern
2 4284 Twice-a-Year Pattern
3 2856 Thrice-a-Year Pattern

Not all major frequency components $can serve as predictor variables in a
classification tree becausachS me mber only represent one
load profile. Individually, each member will not be able to represent some complex load
profile characteristic attributes of interest. For example, the periodical load drop between
weekdays and weekds, will require combination of a number of frequency components
in Sto model.

The shortcomings of S lead to the development of a hierarchical load profile
classification method. The major stedgtus method are presented in Figuré.Based
on prelimnary analysis results, the following major harmonics are proposed to be used as

theAttributes in thé=requencyDomain, AFD,
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AFD. s ={apc. @ 1 28 24 3 &> G & B 1@
asy Gopi s Amo M) (3.2

The 15 harmonics of the AFD are not capable of modeling some of the complex
characteristics of load piites, such as daily double peaks and/or differences in weekday
and weekend patterns. To incorporate such complex characteristics, two new attributes to
be incorporated into the AFD are now introducElde first proposedttributeis designed
to distingush commercial and residential load profiles which have the following
characteristics.

1) Residential doublpeak daily pattern vs. commercial singleak daily pattern.
2) The residential daily load pattern is more consistent, while the commercial load

profile has a load drop/rise pattern between weekdays and weekends.

In order to captures the essence of these two characteristics. The following new attribute

is used to sugpment the load profile characteristic modeling in the AFD

AFDg = a4, / Ay, (3.3)

For residential load profiles with significant dowpleak daily patterns (large
Ur14r) and no weekdaweekend pattern (smalkin), its AFD1s will have a higher value
than i ts ¢ omme ARDis bebause the commeercipl acustorbes has a large

difference between the weekdasgekend patterns and no doulkly pattern.
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This attributas presented as a bgtot in Figure 32. For commercial load profiles,
AFDs6 has a very small and consistent distribution. For residential load pAfil2s has
a significantly higher value and a wider variation. There is a significant separation between
the residential and the commercial classes for thED1s values. It will be beneficial to

includeAFD16 to construct the classification tree.

10.0
a_l-l.ﬁr
7.5 af— 1LH
5.0
2.5 = ' ‘
|
0.0
I
Commercial Resid ential
Figure3-2: &, /a'S:lH Box Plot

The second RD is proposed to model the common laldp pattern that occurs
between weekdays and weekends in commercial load profiles. This characteristic is related
to the magnitude of the weekly harmonic component; , and the magnitude of the daily
harmonic corponent, Uss7n The following attribute AFD17 is used to model this

characteristic:

AFD, =&y, /&y (3.4)
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For example, the large commercial load profiles normally have a consistent daily
pattern and not much load drop between the weekday and weekend load, which leads to
the AFD17 value being close to 1. For commercial load profiles that have a higher weekday
load level than the weekend load level (higkyn and lowUsi1), their AFDy7 value will be
larger than 1. In Figure-3 there is a clear separation between the large comahard
ot her ¢ o mmeAFD: distributeoh, wisck iadscétes that this attribute is a good
classification input parameter to classify large commercial and other types of commercial

load profiles.

10.0

|
0.0
|
General Large
Com m ercial Comm ercial

Figure 3-3: 8357H/a5’H Box Plot

These 17 AFDs can be used to describe the afor@medt load profile
characteristics. Traditional statistical methods are poorly suited for comparing such large
numbers of variables in a classification proce&.[On the other handhe proposed
classification method constructs a hierarchical classibisareeto identify load classes

with homogenous characteristics. Each class signature can be defined by a set of CAFDs.
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For example, e residential load profile inidure 1-4 can be defined by the two CAFDs
instage IVof Figured . The | oGAHD-bpsedsignature i3 presented in stage

V. This type of signature is easy to process by both human and matfiine |
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3.3 Classification Procedure

After processing the annual load profile data intewekek load profiles, the
following procedures were implemented to construct the hierarchical classification trees in
the frequency domain:

1) Transform the 54veek, normalized hourly load profile data inits
frequency domain representati@am8568point DFT.

2) Identify the periodic patterns in the load profile and their related harmonics
and frequency domain attributes.

3) Construct a classification tree using identified frequency domain attributes
as prediabr variables. Experiment with different CP values to-funge the number of final
terminal leaves (classes) of the tree.

4) Summarize classification rules of the leaf node on the classification tree as
CAFD, which will serve as the definition of load prefitlasses for classification.

5) Each terminal leave can be further divided into a set of subclasses using
steps 14, depending on the expectation of the classification (such as the different targeted
characteristic attributes). This will construct a midtiel hierarchical classification tree
for classifying different load profile classes and their respective subclasses.

Figure 34 is the twelevel hierarchical classification tree constructed with AFD
as the predictor input variables. The level 1 portbtree is used to classify commercial
and residential types of load profiles. The level 2 portion is used to further classify the

commercial load profiles (CAT 1.1) into several more homogenousisisises.
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Figure 3-4: Hierarchical Classification Tree
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3.4 Hierarchical Frequency Domain Load Profile Classification

There is no established way to label load profile classes based on their characteristic
attributes. In thisthesis,the load préle classes are labeled hierarchically by roman
numerals and numerical indexes. Roman numerals are used to represent the partitioned root
level data spaces. The dot notation is used to signify the hierarchical relationship, where
each dot indicates one meodata space partitioning operation and adds one more CAFD.

In Figure 34 the number at each node represents the number of load profiles that
satisfy the conditional path from the root. The left branch of each internal node represents
the TRUE path fromevaluating if each load profile at current node satisfies the CAFD
(displayed on the top of each internal node), while the right branch represents the FALSE
path.

The level 1 portion of the classification tree has at most 3 load profile classes
(terminalleaves) when CP=0.0. Tingart software produces a table that lists the CP value
for each possible branch pruning, which suggests that if CP is relaxed to 0.05, the CAT I.1,
CAT 1.2 in the box can be pruned back into one category as CAT |. After evaltiaing
purity level at each split for all 16 input variables, the classification tree at level 1 has
identified 2 CAFDs, (g,,, <4.048)and(a,,,,/a,, <2.822)), that can be used to specify the
boundary conditions for the 3 parameter spaces with the highest purity score.

Figure 3-5 illustrates how the 698ad profile data space is partitioned by these two
CAFDs at level 1 of the classification tree. The firstifaning operation occurs along the
G =4.04greference line (thick dashed line}AaFD(g,.,, 2 4.048)is the most important
CAFD in this partition process because it is the first CAFD chosen by the CART and carves

out the largest datspace with high purity. The CART then chooses ARDsed to
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Figure 3-5: Partition of the feasible space createddpy. and ar1an/asin

describe the doublpeak pattern) to partition CAT | data space alongdhg/a,,, =2.822

reference |ine t. I't divides CAT 1 6s data s
commer ci al | oad profil eds dausathescpnanereial ( CAT |
type of | oad p ismdrecbnsistent. Residerdial Ipaal profies have more

variations in term of their pattern characteristics, which leads to a broader data space.
The level 2of the classification tree in Figure3will further divide the load
profiles in CAT 1.1 into several subclasses. The subclasses will all inherit CAT | as prefix
to indicate that | evel 2 |l oad profiles are f
This portion of the classificatiotree has 7 classes listed imle3-3 (page 67when the
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CP=0.0. When usingpart suggested next pruning value CP=0.02, CAT 1.1.1.1.1, CAT
1.1.1.1.2.1 and CAT 1.1.1.1.2.2 will be pruned back into CAT 1.1.1.1 as node 4 at the level
2 of the classification tee

This classification tree has identified 6 CAFDs based on four predictor variables:

2 /8y » 8,0y andDC. Each variable represents a load characteristic attribute. The
a. /8, Can be used to describe the weekday weekend loadnship. The,,, can be
used to describe the weekly pattern. Thes related to the seasonal pattern and DC is

related to the load factor of the load profile.
At level 2 of the classification tre€AFD, (a,, / a,, 2 0.890) is the most important
condition used by the tree to partition the CAT I.1 data space. The load profiles in node 2
have smaller CAFL values than the load profiles in node 3, Comparing with load profiles
in node 3, the load proék in node 2 have more dominant daily pattern than the weekend
load-drop pattern.
Figure3-6 presents the CARDase sigatures for all the classes ilgbre3-4. The
CAFD-based signature is a joined set of the CAFDs along the path from the root to each
class (leaf) nodeThe=symbol represents théonjunction (AND operationand thex
symbol represents the Negation (NOT operatiénd.r ex ampl e, the CAT |

can be defined ascaAFQ@caFp . The CAT [1.1.1 can be defide as
CAFD @CAFD, @CAFD @AFQb ecause itoO0s a subset of CAT |I.
CAFD-based signhaturearp @CAFD,.

This notation is significant because it not only defines the load profile using general

guantitated parameters but also defines the relationship between different load classes.
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CAFD
CAFD1: s54Qf4 . 04 8 CAFDs: 1n<31381
CAFD2:  714nU0dih<2.822 CAFDs: 3s7aUdbO1 . 6 9 4
CAFD3: 3570400 . 8 90 CAFD7: 3s7ilds Qi1 . 59 1
CAFD4: 51<0.097 CAFDg: DC<0.657
Load Class CAFD-based Signature
CATI CAFD:
CAT 1.1 CAFD:’ CARD
CAT I.1.1 CAFD:’ CARDCARD
CATI.1.1.1 CAFD:’ CAEDCARDCARD
CAT I.1.1.1.1 CAFD:’ CAEDCARDCARDCAERD
CAT1.1.1.1.2 CAFD:’ CARDCARDCARDACAFD
CATI1.1.1.1.2.1 CAFD:’ CAEDCARDCARDACAFDCARD
CAT1.1.1.1.2.2 CAFD:’ CAEDCAREDCARDACAFDACAED
CAT1.1.1.2 CAFD:;’ CAEDCARDaAaCAFD
CAT1.1.1.2.1 CAFD:’ CAR'DCARDaCAFDCAFRD
CAT 1.1.1.2.2 CAFD:;’ CARDCARDACAFDMCAFD
CAT 1.1.2 CAFD:’ CARDaCA¥D
CAT1.1.2.1 CAFD; CAEDACAFDCARD
CAT1.1.2.2 CAFD:’ CAERDACAFDACAFD
CAT 1.2 CAFD: ACAFD
CAT Il ~CAFD1
Figure 3-6: CAFD-Based Signatures
From CAT 1 .1.1.16s definition, it c
inherits the CAT | 16s characterist

that set it aparfrom the other classes in CAT I.1.

an be

c attri

One potential application for this signature is to encode it as XML (Extensible

Markup Language, an open standard that has been widely adapted for data exchange in

many industries45]) document. It will provide a stalard and efficient way for different

systems/utilities to exchange the load profile class definitions. For eeamplt h e

CAT

definition in Figure 31 can be formatteas the XML document shown in Figur& 3The
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<?xml version="1.0"?>
<LoadClass>
<Name>CATI.1</Name>
<AFDSet>
<AFD Name="CAFD1" Definition="Phasel102"/>
<AFD Name="CAFD2" Definition="Mag714H/Mag51H"/>
</AFDSet>
<ClassDefinition>
<CAFD AFDName="CAFD1" Operator=">=" Value=4.048>
<CAFD AFDName="CAFD2" Operator="<" Value=2 .822/>
</CAFD>
</ClassDefinition>
</LoadClass>
</xml>

Figure 3-7: XML document for CAFfbased Signature

nested formation of CAFD nodes (insid€lassDefinition> node) naturally reflects the
hierarchical structure of CARDased signature. This type of signature can form a key to
index each loadlass, therefore making it possible to build a load profile database with

searchable keys based on CABB&sed signatures.
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3.5 Comparison between Frequency Bwain Hierarchical Load Profile
Classification and Utilitiesd Currel

The CAFDbased load profile classes are compared with the conventitiitgl u
load profile classes in TableZBand 32. Classes in Table-B are from level 1 of the
classifiation tree and elsses in Table-3 are from level 2.
Table3-2shows that the CAT | .16s | oad profi
commercial type of load classes defined by 5 different utilities (highlighted by green). The
CAT I .2 and CA Tarehllnmagpedtoresidentialitypef of Ida@ mofiles by 5
utilities (highlighted by yellow).
There are seval important observations from Table23
Chapter 1: Much commonalityexistsbetween different utilities classification: CAT 1.1
have commercial load profiles from 5 different utilities.
Chapter 2: Thereis more variation among residential classes from different utilities.
Some load profiles from same load class by utilities are assigrnibddifferent
CAFD-based signatures: such as RESLOWR from ERCOT is assigned to CAT .2
and CAT Il
Chapter3:CAT | . 26s | oad profiles are defined as
shares the same CAEWith CAT 1.1, whose members are all commercial classes.
It indicates certain residential classesbd
ot her utilitiesd commerci al class | oad p
residential load pattern (double peak) modeled by CAFRlentified and the load

prdfiles are assigned to the right class.

-64-



Table3-2: Comparison of CAFEbased classes and Utility Commercial & Residential Load Classes

CP Value
0.05 0 Utility Load Class Utility
Load Class
Al PGE
Al10 PGE
A6 PGE
BUSHILF ERCOT
BUSIDRRQ ERCOT
BUSLOLF ERCOT
CAT 1.1 BUSMEDLF ERCOT
BUSNODEM ERCOT
GLP PSEG
CAT I
LPL PSEG
GS1 SCE
GS-2 SCE
SC2DEM NG
SC2ND NG
RESLOWR ERCOT
CAT 1.2 RHS PSEG
RLM PSEG
SCi1C NG
DOM-S/M SCE
El PGE
E7 PGE
RESHIWR ERCOT
CAT Il RESLOWR ERCOT
RHS PSEG
RLM PSEG
RS PSEG
SCi1C NG
SC1STD NG
Commercial Residential
The conventional utility classif

cat i

frequency domain pattern characteristics. As shown in the comparison between CAFD

based cl asses and the utilidt

i esd cl

asses

profiles with similar pattern characteristics into different classes. They may also assign the

load profiles with different pattern characteristics into one class.

- 65-

(0]

n



Comparing with the more pronounced characteristic attributes variation between
the commercialiad the residential load profiles at level 1 of the classification tree, the load
pattern differences among commercial load profiles are subtle as it requires more CAFDs
to define the boundaries for these more closely resembled load profiles.

4 CAFDs aresed in | evel 2 of the <classificati
parameter spaces. The first CAFENFD, (a,,,/ a,, 2 0.89)divides the CAT 1.1 load profiles
into the following two groups:

Group 1: The CAT I.1.1 and CAT 1.1.2 all haverp,. The CAFDO6s high
indicates the CAT I.1:2 load profiles have more consistent weekly pattern, less variation
between weekday and weekend load.

Group 2: The CAT 1 .1.2.1 and CAChAm) . 1.2. 20
which indicates a larger difference between their weekend and weekday usage. The load
profiles in CAT 1.1.2.2 BUSIDRRQ: large commercial by ERCOT definitioB5]) are
less dynamic than CAT 1.1.2.1 because of their higher DC valuesAn, which also
indicates that the CAT 1.1.2.2 | oad profil e:
CAT 1.1.2.1 load profiles (resembling more the traditional large commercial load profile
pattern)

There are percentages asated with each load class imfle3-3. It represents the
percentage of the wutility | oad -bdsalslasé. s ampl e
Table 33 shows that the largest suobtegory CAT 1.1.1.1.1 is defined as
CAFD,@CAFD, @cAFQWhichcansi st s of | oad profiles from 4
commer ci al | oad profiles satisfy this rule 1

also show relatively high matching rate (the lowest is 71%).

-66-



Table3-3: Comparison of CAFEbased Classes and Utility Commercial Load Classes

CP Value . .
Utility Load Class Utility
0.02 0.00
Al 100% PGE
A10 100% PGE
A6 100% PGE
BUSHILF 100% ERCOT
BUSLOLF 100% ERCOT
CATIL11.11 BUSMEDLF 100% ERCOT
BUSNODEM  92% ERCOT
CATIL11.1
GLP 100% PSEG
GS1 100% SEC
GS2 100% SEC
SC2DEM 71% NG
SC2DEM 29% NG
CAT 1.1.1.1.2.1
SC2ND 71% NG
CATI1.1.1.1.2.2 LPL 25% PSEG
CATI.1.1.2.1 SC2ND 29% NG
CATI.1.1.2.2 LPL 75% PSEG
CATI1.1.2.1 BUSNODEM 8% ERCOT
CAT1.1.2.2 BUSIDRRQ 100% ERCOT
Commercial Large Commercial

BUSHILF (average monthly load factor > 0.6), BUSMEDLF (average monthly
load factor between 0.4 and 0.6) and BUSLOLF (average monthly load factor < 0.4) load
profiles from ERCOT are classified as CATI.1.1.1. Their load factor value is very similar
to the DC component in frequency domain which normally has the largest magnitude value.
DC6és | arge magnitude value doesndét mean DC
CART evaluates all AFD inputgrameters equally and identifies Alzland AFy are
more effective than DC in partitioning the
highest purity. These 3 ERCOT classes are similarity in term of these AFDs and therefore
are assigned to the saiass.

The CAT I.1.1.1.2.1 is defined a&sAFD, @CAFD, @ €AFR  @AFRWHICh has same

first 2 CAFDs as CAT I.1.1.1. The CAT I.1.1.1.2.2 has same first 3 CAFDs in its definition
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as CAT 1.1.1.1.2.1, with a differemtCAFD, term. CAFD,' sphase angle value is related to

the position of annual peak in time domain.

The CAT 1.1.1.2.2 is another category that consists of load profiles from a utility
(PSEG) classified large commercial class. These two sets of loagpiudith are labeled
as large commercial types by their utilities while CAFD classification puts them in different
categories.This example shows the ambiguity of the current practice of load profile
classification: the large commercial load profiles fromfdf er ent uti |l i ti es
share the same characteristic attributes.

In Table 33, 12 LPL load profiles are divided into CAT 1.1.1.1.2.2 (3 LPL load
profiles with 25% probability) and CAT 1.1.2.1 (9 LPL load profiles with 75% probability).
Both categories share the highest ranked hierarchical CAFD conditibimeir differences
start at the node 2 wiBicondition, which is the phase angle of'Starmonic that is related
to the weekly pattern timing.

The lack of a universal load profile clags#tion methods can lead to inconsistent
load class definition across different utilitifSsh e exampl es show t hat
weekly pattern may vary from year to year. It should not be assumed that the load profiles

from a sampling group will hav@ame characteristics year after year. It also shows that the

do

LP

LPL from PSEG doesnot have the consistency

their CAFDs.
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3.6 Load Profile Classification

A load profile classificatiotest has been developed basedthenproposed
approach. This test extracts 7 sets of AErom 7 new annual load profileg§ (not
from the original 5 wutilitiesd 653 fedkoad prof
into the decision tree inigfure 3-7 to be classified using CAFBignatures.

As shown in Table -8, every profile successfully finds its respective place in the
CAFD-based classificatiohierarchy by matching their AFBomponent values to each
classés CAFD signature. The RES | oad profile
6 GS load profiles are part of the CAT I.1 commercial class hierarchy: the GS1 profile is
classified as a&T 1.1.2.1. The GS2 to GS3 profiles share similar CAFD signature and are

classified as CAT 1.1.1.2.1. The GS4 profile is classified as CAT 1.1.2.2 large commercial

subclass.
Table3-4: Load Profile Classification Test
Load Class AEP ERCOT NG PSEG PGE SCE
.1.2.1 GS1 BUSNODEM
1.1.1.2.1 GS20 SC2ND
1.1.1.2.1 GS2U SC2ND
1.1.1.2.1 GS30 SC2ND
1.1.1.2.1 GS3U SC2ND
1.1.2.2 GS4 BUSIDRRQ
RESHIWR RHS, RS E1l
I e RESLOWWR SCIC RLM E7 DIk
Residential Commercial Large Commercial

The efficacy of the proposed approach has been established by the success of this
test. This is significant improvement over current practices that provide mostly qualitative

labeling.
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3.7 Summary

This chapter has accomplished the following: First, the concept of CAFD for load
profile is introducedThe CAFDused in classification procesan elegantly describe the
|l oad profileds characteristics. It has the
different entities since now a load profile can be described in a standard, modular, coherent
and portable format that is independentfroméa ut i | it yés | oad cl ass t
Using the hierarchical classification tree with CAFDs can efficiently and
effectively classify the long and complex annual load profiles from different utilities. The
hierarchical classification tree is presentedhovs that this classification method is very

efficient and effective. As shown in Figure43and Table 2, two CAFD (g,,, <4.048)
anda,,,,/a,, <2.822) can separate commercial from resideriball profiles. In Figure-3
4 and Table 3, it shows that two CAFDg.,,,,/a,, 2 0.89) and DC >0.65; Can separate

large commercial from other commercial load profiles.

Second, the proposed approach introduces an innovative way to classify load
profiles. This approach is universal applicable to all utists 6 | o adecaugeritof i | e s
utilizes a set of universal components (AFDs) that are directly derived from the profile
data. New incoming annual load profile can be successfully classified into one of the
identified load classes by matching its AFD compohe val ues to the | oad
signatures.

Third, using the proposed approach, each load class can be characterized by a
CAFD-based signature. Taken together, the quantitative information contained in these
signatures could deepen the understandifhgload profiles and may lead to the
development of new approaches in demsiggé management and demand response.
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Fourth, the CAFEbased signature can be easily interpreted to show the differences
or the similarities i n tetamandiffere tlasd. lecambe c har ac
coded as a setfescribing XML document that is both human and machine readable. Such
load profile XML document can be easily exchanged through internet and efficiently
processed using standard software tools.

Fifth, this chapter has shown that the current utility classification is not precise, and
is limited to a small number of characteristic attributes of the load profile patterns in time
domain. On the other hand, the hierarchical CAFD classification process emsefyr
target the characteristic attributes that each user wants to focus on. The number of
characteristic attributes is scalable and can incorporate a large number of CAFDs
depending on the goal of the classification.

At last, this classification methasl a systematic and efficient way to classify load
profiles. It has high adaptability potential because the CAFD classification rule is easy for
human and machine to interpret and well suited for automation. With additional research,
this method has the temtial to be used to construct a universal comprehensive €CAFD

based load profile database that can be used to study load profiles from all sources.
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Chapter 4Wavelet based Load Model for
AMI Data

After introducing the framework of frequency domain load modeling and
classification, this part of the thesis will focus on estimating and forecasting the daily and
annual load profiles.

As more and more AMI data comes-lame, utilities are accumulatinlgemendous
amounts of load profile dat®ower flow analysis, as well as many other power system
analysis applications, can benefit from the load data collected from Advanced Metering
Infrastructure (AMI). Planning, forecasting, automated customer typdifidation and
classification, reatime analysis, and even rd@he control can benefit from AMI load
data or information derived from AMI load data.

Some previous efforts in using customer load measurements in power system
analysis have used load rasgh statistics to generate 8760 hourly statistical load models
for classes of customeré7. The AMI implementation gives a utility the ability to collect
load data from each customer every 15 to 60 minutes. Thus, each customer can have 8,760
to 35,040 ime-stamped load measurements annually. For a small circuit with 100
customers, an annual AMI load data table in a database can contain from 876,000 hourly
load data rows to 3,540,000 rows.

The sheer size of the AMI load data makes the direct AMI datgratien
somewhat impractical for large scale system analysis. For example, using double precision

numbers a utility with 1 million customers would require 1,000,000 x 8 bytes x 8,760

hours/year a 65G bytes of RAM tmemsry.ore the
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There is a need for load models that have the following characteristics: 1) the load
model can be used in the field without network connections, 2) the load model needs to be
compact so that it will fit into laptops commonly used in the field, 3nthe load model
needs to be efficient and-memory because of time constrains of some analysis, where
guerying the AMI data warehouse constantly is impractical.

Currently there is lack of efficient, and compact AMI hourly load models that can
be integated with adargescalesystem model in computer memory and used in analysis
such as a power flow timgeries analysis. The work here focuses on developing such load
models using wavelet technology.

The first load model considered in the work here is the wavelet load model, which
uses the Discrete Wavelet Transformation (DWT) [49] to transform the original load
profile from the time domain to the wavelet domain. With the wavelet noadel,each
indivi d u al customerds AMI data is compressed,
individual customer.

The second load model considered here is the classified wavelet load model. With
the classified wavelet model a single load model is used for many @rsttmat exhibit
similar load behavior. With wavelet based load models, the determination of which class a
given customer should be assigned to, based on having similar time varying behavior, can

be automated.

Conventionally, load profile classificaton sased on the | oad prc

domain representatidg] or frequency domain descriptors [27Time domain parameters
used to describe load profile characteristics include Base Load, Peak Load, Rise Time, Fall

Time, and HighLoad Duration. After a sedf variables is established to describe load
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profiles, various models, such as linear discriminant analysis, nearest neighbor

classification, kmeans, fuzzystatistics, neural networks, and support vector machines are

used to classify load profiled$-23, 35].

A major challenge in classifying load profiles is that AMI load data for an

individual customer may contain extreme data changes, such as the load dteppig

due to a missed reading in the AMI system. Sometimes these extreme changes are errors,

but not always. Figuré-1 illustrates representative AMI hourly load samples for a

commercial customer. The aforementioned classification methods, wheneshglstall

variable sets are employed, have trouble in accurately capturing the pattern characteristics

of Figure4-1.

Sample Load Profile
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Figure4-1: Sample AMI Load Profile Data
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In order to better visualize load profile pattern characteristics, a 2 dimensional, or

2D, wavelet load profile representation is inwodd. It will be illustrated that the
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the 2D DWT transformation can be used iruasupervised clustering process to identify
load classes. The classified wavelet load models are derived from the load classes identified

by the 2D DWT based clustering algorithm.
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4.1 Discrete Wavelet Transformation

The development of wavelet transformate b egan wi th Al fr ®d Haa
early 20" century f8]. The wavelet related research accelerated aftegrtvendbreaking
works from Ingrid Daubechied ] and Stéphane Mallat §}in the 1980s. There are many
applications of wavelets, includirtigital signal processing and image processhtl [

In the DWT process, a tirdomain discrete signa(n can be decomposed into a

set of Approximation Coefficientsy, , (equation 4.1) and Detail Coefficients,,
(equation 4.2) with a predetermined discrete scaling fungtipm) (equation 4.3) and
wavelet function, ; , (n)(equation 4.4). Thes(y can be reconstructed using is, and

D;, In the inverse DWT (IDWT) process (equation 4.5).

Ak =M G S0/ () (4.1)
Dji =M™ & S(y (0 (4.2)
J k=22 j(@n k) (4.3)
Y k=22 y(@n k) (4.4)

S(N=MZ A/ (D +A 80k k(D (45)
k j=0 k

wheren=0,1,..,.M -land M 2
decomposing levgl= 1,J.,- j3 =0
coefficient indek = 0,1,..., 271

Ji io Kk () is thaliscrete scale function

¥ jx () isthe discrete waelet function
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4.1.1 Multi-Resolution DWT

Mallat introduced an efficient muitesolution DWT/Inverse DWT (IDWT)

algorithm in 1989 49 which make DWT/IDWT implementation practical by taking

advantage of the family of orthogonal, compact support wavelets introduced by

Daubechies48].

Ma |

Filters (QMF) (y,.h,,h;h ) to decompose or reconstruct a discrete signal. The coefficients

for the filters are preletermined. The simplest Daubechies (DB) wavelet filters, DB1

(Haar wavelet), is used in the AMI load data DWT here. The DB1 scale and wavelet

atos pyramid DWT/ I

discrete fiter coefficientsare specified in Table-4.

Table4-1: DB1 QMF Coefficients

DWT

g y =g YN2.I2
g h =@/V3, Y2
L  =g/N2.3V2
? y =8/N2 142

al gorithm

In the work that follows § 1§ will represent the AMI data set for a single customer.

Figure4-2 illustrates a 3evel DWT process. The discrete sigrsalj convolutes with the

A,

A,

Sn]

i
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|
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i

Figure 4-2: Multi-resolution DWT

-77-

used



Levc_el 3 _ Level 2 Level 1

ir

o D, \
0 fJ/8 fid f/2 f, Frequency
N/8 N/4 N/2 N Length

Figure 4-2: Multi-resolution DWT Frequency Band
low bandpass filtern, (covers 0 tof,/2frequency band as in Figure3} which generates

n number of values. Half of this set of numbers is redundant because it represents only the

lower half of the frequency information & . Therefore, it can be dowsampled by 2 to

get the Approximatiol€oefficientsa, . The dowrsampling (decimation) process involves
removing every other coefficient from thgapproximation coefficients.

S 1 also convolutes with the high bapdss filtern, (coversf,/2to f,frequency
band) and is then dowsampled by 2 to calculate the Detail Coefficiemits The
approximation coefficients, are then passed to the next level to repeat the same
transformation process to generate jtiEe level A and p; as specified in equations 4.6

and 4.7.

D=8 hikl A2 n -k  (46)

N
Auli=4 hik A2 n-k (47
k=0
N is the length of Finite Impulse RessenFilterh, h,

Figure 4-4 illustrates a devel IDWT processvhich reverses the DWT process to

reconstruct thes j using A, andp;, .
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Figure 4-3: Multi-Resolution IDWT

During the IDWT processhe coefficientsa, andp, at level j, are ugsampled by 2
with zero (expansion) and the-spmpled coefficients convolute with the mirror discrete
filter hy and  respectively. The two convolution products are added together to generat
coefficients  at levelj-1 as in equation 4.8. These steps are repeated untd(th)es

fully reconstructed.

This DWT/IDWT algorithm described by equations (4.8) is efficient and has a
linearcomputational complexity that needs operations to decompose a discrete load
profile (n number of measuramts) into the wavelet domain.

The flow chat in FHgure 4-5 illustrate the process of multi resolution wavelet
decompositin. The Table 4-2 presents a stdpy-step numerical example for a-Béur
daily | oad pr o fFiguree4b presénts the symtHesiz&IWoad profiles at

different resolutions. The left column contains the synthesized load profiles using
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