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ABSTRACT 

 

Recent advancements in sensing technologies offer new opportunities for quality 

improvement and assurance in manufacturing and service systems. The sensor advances 

provide a vast amount of data, accommodating quality improvement decisions such as fault 

diagnosis (root cause analysis), and real-time process monitoring. These quality 

improvement decisions are typically made based on the predictive analysis of the sensor 

data, so called sensor-based predictive analytics. Sensor-based predictive analytics 

encompasses a variety of statistical, machine learning, and data mining techniques to 

identify patterns between the sensor data and historical facts. Given these patterns, 

predictions are made about the quality state of the process, and corrective actions are taken 

accordingly. 

Although the recent advances in sensing technologies have facilitated the quality 

improvement decisions, they typically result in high dimensional sensor data, making the 

use of sensor-based predictive analytics challenging due to their inherently intensive 

computation. This research begins in Chapter 1 by raising an interesting question, whether 

all these sensor data are required for making effective quality improvement decisions, and 

if not, is there any way to systematically reduce the number of sensors without affecting 

the performance of the predictive analytics? Chapter 2 attempts to address this question by 

reviewing the related research in the area of signal processing, namely, compressive 

sensing (CS), which is a novel sampling paradigm as opposed to the traditional sampling
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strategy following the Shannon Nyquist rate. By CS theory, a signal can be reconstructed from a 

reduced number of samples, hence, this motivates developing CS based approaches to facilitate 

predictive analytics using a reduced number of sensors. The proposed research methodology in 

this dissertation encompasses CS approaches developed to deliver the following two major 

contributions, (1) CS sensing to reduce the number of sensors while capturing the most relevant 

information, and (2) CS predictive analytics to conduct predictive analysis on the reduced number 

of sensor data.  

The proposed methodology has a generic framework which can be utilized for numerous real-

world applications. However, for the sake of brevity, the validity of the proposed methodology has 

been verified with real sensor data associated with multi-station assembly processes (Chapters 3 

and 4), additive manufacturing (Chapter 5), and wearable sensing systems (Chapter 6). Chapter 7 

summarizes the contribution of the research and expresses the potential future research directions 

with applications to big data analytics. 
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Chapter 1. Introduction 

Recent advancements in sensing technologies offer new opportunities for quality improvement, 

and assurance in manufacturing and service systems. The sensor advances provide a vast amount 

of data accommodating quality improvement decisions such as fault diagnosis (root cause 

analysis), and real-time process monitoring. For example, in the realm of quality monitoring and 

control, given the streaming sensor data, it is desired to determine whether the process is under 

normal state or not. The importance of quality decisions is vivid as they are directly connected to 

the costs induced by defects or scraps. Hence, there is a crucial need to make successful and 

effective quality decisions, in order to reduce the costs and improve the quality of the 

product/service.  

Depending on the nature of the process, the quality improvement decisions shall be made in two 

ways, namely, (1) offline decision making, and (2) real-time (online) decision making. For 

example, to do fault diagnosis in some industries, such as assembly processes, it might not be 

crucial to conduct decision making in a real-time manner [1]. This is because of the fact that 

detecting the process faults within an acceptable period of time is good enough for these industries, 

hence, offline decision making is satisfactory. However, in other industries, such as additive 

manufacturing where minute drifts in process conditions can drastically affect build quality, real-

time process monitoring and decision making is required [2].  

In general, the quality improvement decisions, whether in offline or online fashion, are made upon 

the predictive analysis of sensor data. The terminology used to describe this type of analysis is 

called sensor-based predictive analytics. Sensor-based predictive analytics encompasses a variety 

of statistical, machine learning, and data mining techniques trying to find patterns between the 
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sensor data and historical facts including (1) engineering knowledge, and (2) historical data. Given 

the patterns recognized using the above techniques, predictions are made about the quality state of 

the process, and corrective actions are taken accordingly. The relationship between the sensing, 

analytics, and processes is depicted in Figure 1-1. This figure illustrates a loop starting with 

processes, followed by sensing, then analytics, and back to the processes. From Figure 1-1, it can 

be observed that the sensors are utilized to collect process information and visualize them as sensor 

data, and then the predictive analytics is carried out on the sensor data to make quality 

improvement decisions about the process. This loop ensures the continuous quality improvement 

of the processes.  

 

Figure 1-1. Diagram of sensor-based predictive analytics 

Although the recent advances in sensing technologies have facilitated the quality improvement 

decisions, they typically result in high dimensional sensor data, making the use of sensor-based 

predictive analytics challenging due to their inherently intensive computation. The interesting 

question to ask is whether all these sensor data are required for making effective quality 

improvement decisions. In other words, is there any way to systematically reduce the high 
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dimensionality of data by selecting the sensors providing the most representative information from 

the process. In this way, not only is the high dimensionality of the data reduced, but also the 

performance of predictive analytics remains intact, or it even might be improved due to analyzing 

more informative data.  

However, the idea of reducing the number of sensors might contradict conventional thought, such 

that more sensors/data bring more opportunities to account for the complexity of the systems. Most 

complex engineering systems include a very large number of unknown process variables that may 

affect the quality state of the system, and unfortunately cannot be directly monitored or sensed. 

Using more sensors on some variables, which are in our control and can be measured directly, 

could possibly help gain the required information to estimate the unknown process variables. 

Consequently, the convention of using more sensors to address the complexity of the system has 

been founded upon this possibility. However, the validity of this convention was questioned and 

proven to be wrong in the past decade, due to the rise of compressive sensing (CS) theory in the 

field of signal processing [3]. 

CS is a novel sensing paradigm in signal processing to reconstruct signals from much smaller 

number of measurements. As opposed to the Shannon Nyquist rate, which requires the sampling 

rate to be at least twice of the bandwidth of the signal, CS proposes that a signal can be 

reconstructed from a much smaller number of measurements.  Regardless of how complex the 

signal is, as long as it can have a sparse representation, CS theory proves that it can be 

reconstructed from a much smaller number of measurements than the dimension of the signal [3]. 

Sparse representation for the signal indicates that by using some specific dictionaries the signal 

can be transformed and represented as a vector with a very small number of nonzero elements, 

while most of its elements are zero.  
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As opposed to the convention mentioned earlier, by using CS theory it would be possible to 

account for the complexity of the systems using a smaller number of sensors. Although there are 

a large number of unknown process variables due to the complexity of the system, many of them 

might not be relevant or effective to the quality improvement decisions, thus they contain a sparse 

representation. Hence, as motivated from CS theory, estimating the large number of unknown 

process variables using a limited number of sensors would be possible. In other words, CS theory 

enables us to utilize a smaller number of sensors, minimize the sensor cost, reduce the high 

dimensionality of the sensor data, yet carry out the predictive analytics such that quality 

improvement decisions are made effectively. 

This dissertation is mainly focused on CS theory, and proposes CS approaches for sensor-based 

predictive analytics in manufacturing and service systems. The contributions of the proposed 

methodology are twofold: (1) it introduces novel approaches to reduce the number of sensors while 

the most explanatory information are collected, and (2) it develops novel algorithms to estimate 

the unknown process variables while using a reduced number of sensors. In light of these 

contributions, sensor-based predictive analytics can be efficiently and effectively carried out. The 

CS based methodology proposed in this dissertation accommodates offline/online quality 

improvement decisions relating to a variety of real-world applications, ranging from 

manufacturing, such as multi-station assembly processes or additive manufacturing, to service 

systems, including body posture monitoring using wearable sensors.  

The rest of the dissertation is organized as follows: in Chapter 2 the related research background 

on CS theory is presented, followed by the proposed methodology. The proposed methodology 

has a generic framework which can be utilized for numerous real-world applications. However, 

for the sake of brevity, the validity of the proposed methodology has been verified with real sensor 
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data associated with multi-station assembly processes (Chapters 3 and 4), additive manufacturing 

(Chapter 5), and wearable sensing systems (Chapter 6). Chapter 7 summarizes the contribution of 

the research, and expresses the potential future research directions with applications to big data 

analytics. 
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Chapter 2. Compressive Sensing (CS) based Research 

Framework 

The proposed research methodology in this dissertation is founded on CS. Therefore, in this 

chapter the related research in CS is reviewed in Sec. 2.1, and subsequently Sec 2.2 provides the 

proposed research methodology based on CS for sensor-based predictive analytics. 

2.1 Related Research with Compressive Sensing (CS) 

CS is an interdisciplinary area of optimization, statistics, and signal processing which has recently 

received a large amount of attention due to its advantage in reducing the number of samples for 

signal reconstruction. CS theory proposes a novel sampling paradigm as opposed to the Shannon 

Nyquist rate, based on which a signal can be reconstructed from a smaller number of samples. This 

is certainly important as in many real-world applications it can be very expensive to provide a 

large number of samples. CS theory encompasses two tasks: (1) encoding (forward model), and 

(2) decoding (inverse model). The former task relates to providing a reduced number of samples 

from the unknown signal, while the latter task is about reconstructing the signal from those 

samples.   

CS encoding introduces the idea that a small number of samples would be enough only if the signal 

is naturally sparse or sparsable using an appropriate transformation. Indeed, the key idea that CS 

theory is based on is the sparsity assumption of the signal. Sparsity assumption indicates that either 

the signal itself or a transformation of the signal is sparse, which means that there are only a few 

elements containing most of the signal information. Let 𝐱 ∈ 𝑅𝑛 represent the signal where 𝑛 

represents the number of signal elements, and 𝚿 = [ 𝚿1 𝚿2 … 𝚿𝑛] ∈ 𝑅𝑛×𝑛 represent the 

transformation matrix at which the signal has a sparse representation, then 
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𝐱 = 𝚿𝐬 (1) 

where 𝐬𝑛×1 is the vector of coefficients that represents the sparse representation of the original 

signal 𝐱 at matrix 𝚿. The signal x can be represented as a sparse vector if most of the elements of 

𝐬 are zero. Vector 𝐬 is 𝑣-sparse if it only has 𝑣 nonzero elements (𝑣 is called the sparsity level). 

Many of the natural and engineered signals, at some certain basis 𝚿 (wavelet, Fourier, etc.), are 

sparse (note that if 𝐱 itself is sparse, then 𝚿 = 𝐈).  

The sparsity assumption is the foundation to reconstruct the signal from fewer samples. In other 

words, from the sparsity assumption in Eq. (1), there is no need to sample the entire signal; instead 

sampling those nonzero elements would be enough for signal reconstruction. However, it would 

be very difficult or even impossible to know which elements are nonzero beforehand. Thus, CS 

encoding proposes a novel sampling strategy, based on which it is possible to take a smaller 

number of samples from the signal, and yet ensure that they contain sufficient information to 

reconstruct the signal. CS encoding states that each sample should be represented as a linear 

combination of each elements of original signal  𝐱. Let 𝚽 = [ 𝚽1 𝚽2 … 𝚽𝑛] ∈ 𝑅𝑚×𝑛 be a 

sampling/sensing matrix with 𝑚 < 𝑛 representing the number of samples, then the compressive 

sensing samples can be represented as  

𝐲 = 𝚽𝐱 + 𝛆  (2) 

where 𝐲 ∈ 𝑅𝑚×1 denotes the samples/measurements, and 𝛆 ∈ 𝑅𝑚×1 represents the sensing noise. 

CS encoding explains the conditions and the procedures to provide CS samples 𝐲 from the original 

signal 𝐱, hence, it can be realized as a forward modeling approach.  

Substituting Eq. (1) into Eq. (2) yields to  

𝐲 = 𝐃𝐬 + 𝛆  (3) 

where 𝐃 = 𝚽𝚿 represents an effective dictionary. From Eq. (3), it can be realized that the 

measurements 𝐲 could be utilized to estimate the sparse representation vector 𝐬, as there are only 
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a few nonzero elements that should be estimated. Reducing the number of samples from 𝑛 to 𝑚, 

from the original signal 𝐱, might result in the loss of information, and consequently, accurate signal 

reconstruction becomes impossible. To avoid the loss of information, CS encoding enforces some 

conditions on sampling strategy. These conditions are mainly related to the properties of the 

sensing matrix 𝚽, or its variant effective dictionary 𝐃. One of these conditions is named restricted 

isometry property (RIP).  The RIP condition is met if the isometry constant 𝛿𝑣 ∈ (0,1) is such that 

the inequality of  

(1 − 𝛿𝑣) ≤
‖𝐃𝑇𝐬𝑇‖2

2

‖𝐬𝑇‖2
2 ≤ (1 + 𝛿𝑣)  (4) 

holds for all 𝑣-sparse vector 𝐬 (i.e. 𝐬𝑇), where T denotes any subset from {1, . . , 𝑛} with 

cardinality 𝑣. In other words, the RIP condition requires all the possible subsets of the columns of 

𝐃 with cardinality 𝑣 (i.e.|𝐃𝑇|) be as orthogonal as possible. Note that it cannot be exactly 

orthogonal as the number of rows 𝑚 is smaller than the number of columns 𝑛.   

It has also been shown that a random matrix 𝚽 (e.g., sampled from a Gaussian distribution) 

satisfies the RIP condition with high probability [4]. But for an arbitrary matrix 𝚽, it is NP-hard 

to compute the isometry constant 𝛿𝜐 [5]. This brings a computational issue in designing a proper 

sensing matrix 𝚽 in some real-world application once the random sampling is not practical.  

The second criterion to evaluate matrix 𝐃 is mutual coherence, which is more computationally 

tractable than the RIP criterion. Let 𝐆 = 𝐃̃𝑻𝐃̃ be the Gram matrix of 𝐃̃ computed from matrix 𝐃 

after normalizing each of its columns [6]. Then, mutual coherence 𝜇(𝐃) is defined as the largest 

absolute off-diagonal elements of matrix 𝐆, namely, 
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𝜇(𝐃) = max|𝑔𝑖𝑗| 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗  (5) 

where 𝑔𝑖𝑗 represents the 𝑖-th element of the 𝑗-th column of matrix 𝐆. Mutual coherence measures 

the highest correlation between columns of matrix 𝐃. From Eq. (5), clearly, mutual coherence 𝜇 

can be efficiently computed, as opposed to 𝛿𝜐 which is not computationally tractable. Essentially, 

a large 𝜇(𝐃) represents a vulnerability of sensing matrix 𝚽 for CS encoding as it results in a loss 

of information from the signal after reducing the number of samples. 

From effective dictionary 𝐃 = 𝚽𝚿, assuming that matrix Ψ is known beforehand (e.g. it is known 

that the signal is sparse using wavelet transformation), an optimization opportunity exists in 

designing a proper sensing matrix 𝚽 by optimizing the mutual coherence. Namely, an optimal 

matrix 𝚽 can be computed by minimizing mutual coherence 𝜇(𝐃). This is certainly useful in our 

proposed sensor-based predictive analytics, since following this optimization, not only can the 

number of sensors be reduced, but the loss of information is minimized, hence, the most 

representative information are collected.  

The next task is to reconstruct the signal from the reduced number of samples, which is referred 

to as CS decoding. This task is essentially related to solving Eq. (3), hence it can be represented 

as an inverse model as well. In other words, from the reduced number of measurements 𝐲, the 

latent variable of the system should be estimated. In the context of CS theory, CS decoding is about 

estimating the sparse representation vector 𝐬 in Eq. (3). Given the estimate of the sparse vector 𝐬, 

the original signal can be reconstructed by using an inverse transformation, namely,  𝐱̂ = 𝚿−𝟏𝐬. 

However estimating s in Eq. (3) is challenging due to its inherently ill-posed (𝑚 << 𝑛), hence, 

there are infinite possible solutions. The linear equations in Eq. (3) are referred as underdetermined 

system of linear equations, as the number of equations are smaller than of the unknown variables.  
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The sparsity assumption of a signal provides reasonable conditions to overcome the 

underdetermined nature of the sparse representation of signal, and thereby achieve a unique 

solution. This formulates the estimation task into a sparse estimation/representation problem as 

follows: 

min ‖𝐬‖0   s.t. ‖𝐲 − 𝐃𝐬‖𝟐
𝟐 < δ  (6) 

where ‖𝐬‖0 is the 𝑙0-norm of the vector 𝐬 which simply represents the number of non-zero elements 

of the vector, and δ is the noise level that controls the accuracy of the solution for the noisy case 

(i.e., it is assumed that that noise level is known). Unfortunately, solving Eq. (6) is NP-hard [7] as 

it needs a combinatorial search, i.e., to systematically search all possible subsets of 𝐬 with a 

minimum number of non-zeros. Accordingly, a number of sparse estimation algorithms are 

reported in literature, such as convex optimization algorithms [8-11], greedy algorithms [12-14], 

and Bayesian algorithms [15-17].  

Recent development in the field of sparse estimation reveals that if 𝐬 is sufficiently sparse, then 

the solution to Eq. (1) is equivalent to that from a relaxed convex problem attained from replacing 

 ‖𝐬‖0 with ‖𝐬‖1, where,  ‖∙‖1 = ∑|∙| is the 𝑙1-norm [18]. The sparse estimation problem on 

account of the relaxed convex optimization modification is,  

𝑚𝑖𝑛 ‖𝐬‖1     s. t.  ‖𝐲 − 𝐃𝐬‖𝟐
𝟐 ≤ 𝛿  (7) 

Convex optimization algorithms, such as Dantzig selector [8], basis pursuit de-noising (BPDN) 

[9], total variation (TV) regularization [10], and lasso [11] have been developed to solve the 

relaxed convex optimization problem of Eq. (7). A typical drawback of these algorithms is that, 

due to their global search, they are computationally intensive for large dimensional problems.   

To overcome the computational burden of the aforementioned approaches, so-called Greedy 

algorithms, such as thresholding algorithm [14], orthogonal matching pursuit (OMP) [14], stage-
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wise orthogonal matching pursuit (STOPM) [12], and least angle regression (LARS) [13] have 

been proposed. These Greedy algorithms are based on a heuristic search for the support set 𝑆 =

{𝑖 : 𝐬𝑖 ≠ 0, ∀𝑖 = 1,… , 𝑛}, which represents the location of nonzero elements in vector 𝐬 ; they are 

computationally fast due to their greedy nature. However, there is an inherent tradeoff, the sparse 

estimation performance of Greedy algorithms often sacrifices accuracy for speed, as they are 

susceptible to be trapped in a local minima.  

While the convex optimization algorithms and greedy algorithms mentioned above provide a point 

estimate for coefficient 𝐬, in contrast, Bayesian algorithms, such as relevance vector machine 

(RVM) [15, 16], and sparse Bayesian learning (SBL) [17] provide a posterior distribution on the 

coefficient 𝐬. The Bayesian algorithms have recently received more attention than other sparse 

estimation algorithms, due to their comparatively better (more accurate) sparse estimation 

performance. These algorithms assume a Gaussian likelihood function, and a conjugate prior 

promoting sparsity on the coefficient 𝐬. By applying the Bayesian rule, the posterior distribution 

of 𝐬 is estimated. The posterior mean of the estimated posterior distribution can be utilized as a 

point estimator for 𝐬. Despite the accurate sparse estimation performance of Bayesian algorithms, 

their estimation procedures typically require several matrix inversion operations, hence, they are 

still computationally slow for high dimensional problems. 

Given the existing sparse estimation algorithms reviewed above, the sensor-based predictive 

analytics is doable using a reduced number of samples. In other words, the complexity of the 

engineering systems can be effectively tackled by the sparse estimation algorithms even if the 

number of measurements are much smaller than the number of latent variables. This is because of 

the fact that only a few of these latent variables are active (sparsity assumption). In this dissertation, 
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the CS decoding is proposed as an underlying methodology to enable predictive analytics using a 

reduced number of sensor data.  

2.2 CS Approaches for Sensor-based Predictive Analytics 

 

The proposed methodology in this dissertation contains the integration of CS theory into sensor-

based predictive analytics. Following the CS theory, it would be possible to estimate the unknown 

variables of a system using a reduced number of sensors. As reviewed in Chapter 2, CS theory 

encompasses CS encoding, and CS decoding. The proposed methodology integrates these two 

tasks into sensor-based predicative analytics as follows:  

 The CS encoding is utilized as an optimization approach in reducing the number of sensors 

(high dimensionality of the sensor data), while it ensures that the measurements contain 

the sufficient information from the process. Hence the contribution of the proposed 

methodology is in the sensing aspect. 

 The CS decoding is utilized as the analytical approach to analyze the reduced sensor data, 

and accommodate effective decision making given complexity of the system. Hence, the 

contribution of the proposed methodology is in the predictive analytics.   

The proposed methodology is a combination of CS sensing and CS predictive analytics which 

directly result from incorporation of CS encoding and CS decoding, respectively. This modifies 

the diagram of sensor-based predictive analytics in Figure 1-1. Figure 2-1 illustrates the 

modification where the two entities of sensing and predictive analytics are replaced with CS 

sensing and CS predictive analytics, respectively. From Figure 2-1, it can be observed that the 

sufficient process information with a reduced number of dimension can be collected using the 

sensing matrix 𝚽 proposed in CS theory, which is referred as CS sensing in the dissertation.  The 

collected information represented as sensor data 𝐲 are utilized for conducting predicative analytics 
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based on the sparse estimation problem presented in Eq. (7), which is referred as CS predictive 

analytics in the dissertation. The outcome of CS predictive analytics is the estimate of sparse 

representation vector 𝐬, and consequently 𝐱̂ = 𝚿−𝟏𝐬 based on which quality improvement 

decisions are made accordingly.  

 

Figure 2-1 Compressive sensing for sensor-based predictive analytics 

Following the proposed methodology in Figure 2-1, a number of compressive sensing approaches 

are developed in the dissertation to accommodate sensor based predictive analytics. As motivated 

by CS encoding, optimization approaches are developed to design an optimal sensing matrix 𝚽 by 

considering the RIP condition, or mutual coherence. The optimization approaches are referred as 

sensor placement optimization, and sensor selection optimization in the dissertation. The sensor 

placement optimization approach indicates that given a reduced number of sensors, the sensors are 

optimally located in order to collect the most explanatory information from the process. The sensor 

selection optimization approach relates to the efforts to determine/select the sensors that provide 

the most relevant information of the process. Both of these optimization approached are directly 
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related to the CS sensing entity in the proposed sensor-based predictive analytics. CS predictive 

analytics contains the compressive sensing approaches utilized to accommodate predictive 

analytics using the data collected by CS sensing. Based on the outcome of the CS predictive 

analytics, quality improvement decisions are made, including fault diagnosis and real-time 

monitoring.  The CS approaches developed for CS predictive analytics contain the contributions 

to the existing sparse estimation algorithms in the literature, which are utilized for fault diagnosis 

decision making (offline). Moreover, a novel sparse estimation algorithm is developed in the 

dissertation that is subsequently utilized for real-time monitoring decision making (online).  

The developed CS approaches are generic and can be utilized in different applications such as 

manufacturing or service systems. However, in this dissertation, each of these approaches are 

introduced and verified in accordance with a specific application. For example, the proposed 

sensor placement and fault diagnosis approaches are verified for multi-station assembly processes, 

the real-time monitoring approach is validated through advanced manufacturing processes such as 

additive manufacturing, and the sensor selection optimization is studied for wearable sensor 

technology. An overall research work of this dissertation is presented in Figure 2-2.  

The left hand side of the Figure presents the manufacturing systems application including multi-

station assembly processes (please see Chapters 3 and 4) and additive manufacturing processes 

(please see Chapter 5), and the right hand side presents the service system applications such as 

wearable sensing systems (please see Chapter 6). In Chapter 7, as a part of the future research 

work, remote health monitoring using multiple sensor data is explained.  
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Figure 2-2. Overall research work and application 
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Chapter 3. Fault Diagnosis for Multi-station Assembly 

Processes 

Dimensional integrity has a significant impact on the quality of the final products in multi-station 

assembly processes. A large body of research work in fault diagnosis has been proposed to identify 

the root causes of the large dimensional variations on products.  These methods are based on a 

linear relationship between the dimensional measurements of the products and the possible process 

errors, and assume that the number of measurements is greater than that of process errors. 

However, in practice the number of measurements is often less than that of process errors due to 

economic considerations.  This brings a substantial challenge to the fault diagnosis in multi-station 

assembly processes since the problem becomes solving an underdetermined system. In order to 

tackle this challenge, in this chapter, a fault diagnosis methodology is proposed by integrating the 

state space model with the enhanced relevance vector machine (RVM) to identify the process faults 

through the sparse estimate of the variance change of the process errors. The results of case studies 

demonstrate that the proposed methodology can identify process faults successfully1. 

3.1 Introduction 

Dimensional quality is a measure of integrity between the actual dimension of the final product 

and its design nominal. Dimensional integrity has a significant impact on the quality of the final 

product in multi-station assembly processes because a major part of all quality-related problems 

belongs to the dimensional problems [19]. Multi-station assembly processes refer to systems that 

carry out operations on multiple work stations to assemble a final product [20]. Assembly 

                                                 
1 Bastani, K., Kong, Z. Huang, W. Huo X., and Zhou, Y., 2013, “Fault diagnosis using an enhanced 

relevance vector machine (RVM) for partially diagnosable multi-station assembly processes,” IEEE 

Transactions on Automation Science and Engineering, 10(1), 124-136. 
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processes for automotive body, aerospace, and home appliances are typical examples of multi-

station assembly processes.   

In multi-station assembly processes, dimensional quality control is both critical and challenging 

since there are a large number of process variables (key control characteristics, i.e., KCCs) which 

may cause dimensional quality issues of the final assembled products. Some examples of KCCs 

are fixture locators, locating features on parts, etc. Among the KCCs, the accuracy of the fixture 

locators that are used to hold the parts throughout the assembly process contributes significantly 

to the dimensional quality of the final product. A very promising way to maintain or improve the 

dimensional quality is to reduce the fixture faults (e.g., improper installation and maintenance) 

[19]. However, this is a challenging task due to the complexity of multi-station assembly processes. 

For example, the effect of an improper fixture installation in early stations of the assembly process 

can propagate along the process, making it difficult to identify. 

In order to monitor the dimensional integrity of multi-station assembly processes, various data 

collection techniques such as coordinate measuring machines (CMMs) and optical CMMs have 

been used to provide the dimensional measurements on key product characteristics (KPCs) of the 

assembled product. Traditional quality control techniques such as statistical process control charts 

(SPC) [21] use these dimensional measurements to monitor the dimensional quality of the product, 

and detect the process change in the multi-station assembly processes. However, SPC itself does 

not provide diagnostic capability (fault diagnosis, sometimes referred to as root cause 

identification) due to the nature of SPC methods [22-24]. Targeting the limitation of SPC methods 

in multi-station assembly processes, there has been a dire need to develop fault diagnosis 

methodologies which aim to identify the root causes of the large variation on the key product 

characteristics of the assembled products.  
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Considerable efforts have been devoted to fault diagnosis based upon an integration of the 

dimensional measurements with the process/product information [1, 23, 25-30].  In this type of 

work, the effects of the process errors on the dimensional measurements is represented by a linear 

model as follows, 

𝐲 = 𝚪. 𝐮 + 𝛆  (8) 

where 𝐲 is a column vector (𝑚 × 1) that represents the dimensional measurement; 𝐮 is a column 

vector of 𝑛 process errors; 𝚪 is a fault pattern matrix (𝑚 × 𝑛) obtained from product and the 

process information; and 𝛆 denotes the noise (a combination of modeling uncertainty and 

measurement noise). A clarification for the terminologies used in this subchapter is as follows. 

Process errors (𝐮) are different from process faults. Process errors refer to the variation of all the 

KCCs. They always exist in the assembly process and their specification limits are determined in 

the design process. Process faults refer to the process errors whose variations exceed the design 

specifications. The process faults are in the form of the mean shifts and variance increase of KCCs. 

The fault diagnosis methods aim at estimating both of them. This subchapter focuses on variance 

estimation.  

In the reported work by Refs. [1, 23, 25-30], the linear model represented by Eq. (8) assumes to 

have a larger number of measurements than process errors, namely 𝑚 > 𝑛. However, due to 

economic considerations, the measurement equipment/sensors cannot be utilized excessively. 

Thus, in practice the number of process errors will be larger than the number of measurements 

(𝑚 < 𝑛). Then the methods developed in Refs. [1, 23, 25-30] may not work for this scenario. This 

brings a great challenge to fault diagnosis since Eq. (8) becomes an underdetermined system. 

When the number of equations is less than the number of unknown variables in Eq. (8), 

mathematically there are an infinitely large number of solutions for the underdetermined system. 



 

 

19 
 

By taking into consideration the dependency of equations in Eq. (8), even with m>n, if the rank of 

matrix 𝛤 <n, Eq. (8) is still an underdetermined system. In this subchapter, we call the multi-station 

assembly process with this property of underdetermined system as partially diagnosable due to the 

non-existence of a unique solution. Thus, accurate fault diagnosis becomes almost impossible for 

a partially diagnosable assembly process since there is no unique solution for an underdetermined 

system. 

In order to tackle the challenge above, a further step to enhance fault diagnosis for multi-station 

assembly processes shall be taken by considering the scenario of underdetermined systems. This 

viewpoint mathematically translates fault diagnosis into the search for sparse solution. Sparse 

solution of an underdetermined system in the form of Eq. (8) is the solution to vector 𝑢 that has 

few nonzeros among the possible entries in this vector [31]. Sparse solution is in compliance with 

actual multi-station assembly processes. It can be understood as the probability of having less 

process faults is higher than the probability of having more process faults, assuming the process 

faults are independent of each other [30]. Sparse estimation of the process errors that solves the 

underdetermined system for multi-station assembly processes serves as the key contribution of the 

proposed method in this subchapter. 

3.2 Related Research Background 

This subchapter proposes a fault diagnosis method that utilizes the sparse estimate of the 

underdetermined system for multi-station assembly processes. In the subsequent sections, the 

related research work in fault diagnosis methodologies and the sparse solution methods is briefly 

introduced. 
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3.2.1 Fault Diagnosis Methodologies in Multi-Station Assembly Processes 

Research work related to the fault diagnosis methodologies in multi-station assembly processes 

can be divided into two categories: the single-station case and the multi-station case. Some studies 

under the single-station case category are based upon the assumption of single fault [26, 30]. 

Multiple-fault diagnosis for a single-station case is reported in Ref. [1, 25, 27]. Ceglarek and Shi 

[26] proposed a single-fault diagnosis method for  rigid parts in the autobody assembly. Their 

model is based on fixture geometry and in-line measurements while using principle component 

analysis (PCA) with pattern recognition for fault mapping process. Rong, et al. [30] extended the 

work in Ref. [26] to the diagnosis of the single fault in sheet metal assemblies where the compliant 

characteristics of the parts are considered.  

Some methodologies were developed for multiple-fault diagnosis in single-station assembly 

processes. Apley and Shi [1] developed a diagnosis approach for fixture-related faults in panel 

assembly. Using geometric information of the panel and fixture, their model utilized a least 

squares-based algorithm to estimate the faults. Chang and Gossard [27] proposed a computational 

method for multiple-fault diagnosis in assemblies. By simulating the assembly process, they 

identified the relationship between measurements and the fixture errors, and created a least 

squares-based approach for fault diagnosis. To tackle the weakness of least squares methods that 

are sensitive to the pattern definition among the process faults, Camelio and Hu [25] presented a 

fault diagnosis method using designated component analysis (DCA). Essentially, DCA is a special 

case of least-squares method, but the fault patterns are approximated to be orthonormal.   

All the above reviewed multiple fault diagnosis methods for single-station assembly processes are 

all engineering-driven approaches that directly connect the engineering domain knowledge of the 

process errors with the multivariate measurements on KPC through a mathematical model. Apley 
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and Shi [32] present a data-driven fault diagnosis method which solely relies on the measurement 

data. They developed a methodology using factor analysis to estimate the fault pattern matrix from 

the multivariate measurement data. They assume that the fault pattern matrix has a ragged lower 

triangular form, and the noise is independent and homogeneous. 

Fault diagnosis for multi-station processes is another category of the related research work. In this 

category, both single fault and multiple-fault diagnoses are reported in Refs. [23, 28, 29, 33]. Ding, 

et al. [28] utilized  a novel state space approach for single fault diagnosis in multi-station assembly 

processes. Their model is based on the product/process design parameters and in-line 

measurements, and the fault diagnosis is carried out by means of a PCA-based pattern recognition 

approach.  

Multiple-fault diagnosis in a multi-station case seems to be more challenging than other cases. Liu, 

et al. [34] proposed an engineering-driven factor analysis to identify the multiple faults in multi-

station manufacturing processes. They use the engineering domain knowledge of the relationship 

between the process errors and the KPC to construct some qualitative indicator vectors. These 

indicator vectors are used as a guide for the factor analysis of the multivariate measurement data. 

They assume that the noise is independent and homogeneous.  

Zhou, et al. [23] applied a mixed linear model to represent the relationship between the 

measurements and the process faults. Maximum likelihood method was used for mean and 

variation estimation due to its known statistical properties such as consistency, asymptotic 

normality and efficiency. They also applied minimum norm quadratic unbiased estimation 

(MINQUE) as an approximation of the maximum likelihood method for the large sample size. 

Instead of point estimation, they provided a confidence interval for the estimation results (mean 

and variance). 
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Ding, et al. [33] developed a multiple-fault diagnosis method for singular manufacturing systems. 

Due to the singularity issues, the least squares method cannot be applied to estimate the random 

deviations of process faults. They reformulated the original variation propagation model as a 

covariance relation and applied the least squares method to estimate the variance components of 

the model. Kong, et al. [29] used a state space approach to develop the 3D variation propagation 

model in multi-station assembly processes. Orthogonal diagonalization was applied to project the 

covariance matrix of the measurement data onto each axis of the affine space; thus the variance of 

process errors can be estimated accordingly. 

Kong, et al.’s [29] diagnosis method is based on an  assumption that the number of measurements 

is greater than the number of process faults, and the fault pattern matrix has linearly independent 

columns (i.e., full column rank). Ding, et al. [33] developed a methodology relaxing these 

assumptions. However, they assumed that the noise term in the variation propagation model has 

an identical variance. Zhou, et al. [23] developed a more challenging fault diagnosis method 

compared to  Refs. [29, 33]. However, for estimating a large number of variance components, their 

maximum likelihood approach may lead to severe over-fitting.  

As reviewed above, there has been an abundance of fault diagnosis research work in the literature. 

However, a methodology that is capable of diagnosing the multiple faults in a multi-station 

assembly process under the scenario of underdetermined systems remains elusive, providing the 

motivation and main focus of this subchapter. 

3.2.2 Sparse Solution Methods 

To have a unique solution for underdetermined systems and avoid an infinite number of solutions, 

the sparse solution assumption is necessary [35]. Solving the sparse solution for an 

underdetermined system is essentially an optimization problem which aims to minimize the l0-
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norm of the coefficient vector. Here, l0-norm represents the number of nonzero elements of a 

vector. Thus, in this optimization problem, the minimum number of nonzero elements of the 

coefficient vector should be determined. Solving this optimization problem in general is NP-hard 

[36] and thus approximate solutions are necessary. Several algorithms are reported in the literature 

to achieve suboptimal solutions [15, 35, 37-49] which can be divided into two groups: 

deterministic optimization methods [35, 37-42, 44-46], and statistical-based optimization methods 

[15, 43, 47-49]. Greedy algorithms [39, 44, 45], basis pursuit [35, 38, 40], iterative reweighted 

least squares methods [42, 46], and iterative thresholding methods [37, 41] are some of the 

deterministic optimization methods reported in the literature. Some algorithms, such as relevance 

vector machine (RVM) [15, 43, 47] and maximum a posterior method [48, 49] are the statistical-

based optimization algorithms used to find the sparse solution.   

Deterministic algorithms [35, 37-42, 44-46] solve a suboptimal sparse solution to the optimization 

problem in a deterministic manner. These algorithms relax the optimization problem into a more 

computationally solvable optimization problem and apply some deterministic approaches such as 

linear programming, greedy methods, and least squares methods to solve the relaxed problem.  

However, some of these algorithms [35, 38-40, 44, 45]  can be applied only for noiseless 

underdetermined systems (i.e. 𝐲 = 𝚪. 𝐮).   

In the statistical-based methods [15, 43, 47-49], the sparse solution is considered an estimate of 

the coefficient vector and thus statistical estimation approaches are applied. They assume a 

probability density function (mostly zero mean Gaussian distribution) for the noise term and 

estimate the mean and variance of the coefficient vector.  The estimate of the mean of the 

coefficient vector can be determined by maximizing its posterior distribution [48, 49]. The 
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Bayesian approach, along with defining hyperprior on the coefficient vector, can also be applied 

to provide the full posterior on the coefficient vector [15, 47].     

The fault diagnosis problem for partially diagnosable multi-station assembly processes is 

essentially to solve an underdetermined system which is also contaminated with noise. The need 

to estimate the parameters (mean and variance) of the process errors for quality control is the key 

reason to choose the statistical based methods. Furthermore, among the statistical based methods, 

RVM [15] closely matches the objective of our fault diagnosis problem. It is an approach that 

presents a complete statistical solution for the sparse estimation through using probability density 

functions. The RVM also provides an online sparse estimate due to its Bayesian framework. The 

estimate of the noise variance is required in the fault diagnosis and can be effectively carried out 

by using the RVM method. This subchapter proposes a methodology integrating state space 

approach with an enhanced RVM to estimate the variance components of the underdetermined 

multi-station assembly process.  

3.2.3 Contribution and Overview  

The proposed fault diagnosis methodology for partially diagnosable multi-station assembly 

processes has two contributions over previous studies: (1) from a fault diagnosis point of view, the 

concept of sparse solution is applied to identify the root causes of a partially diagnosable system; 

the assumptions of homogenous noise in refs. [28, 29, 33] and even the assumption of independent 

noise in Ref. [23] are relaxed to enable a very general case where noise has a general covariance 

matrix; and (2) an enhanced RVM methodology is developed to tackle the challenge of solving an 

underdetermined system by relaxing the assumption of iid noise in the existing RVM. Thus, this 

enhanced RVM methodology is capable of handling fault diagnosis for partially diagnosable 

systems. Even if only partial process/product information is available, i.e., only partial columns of 
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the fault pattern matrix 𝚪 in Eq. (8) are known, the process faults can still be identified. These 

contributions fill the vacancy in the related research areas, and also provide very effective tools 

for the practitioners to identify the root causes of dimensional quality problems in large and 

complex manufacturing systems. The proposed fault diagnosis method involves three steps: (i) 

constructing the variation model of the multi-station assembly processes considering the general 

noise, (ii) converting the variation model from a matrix form into a vector form through a 

vectorization operator leading, (iii) determining the sparse estimate of the variance change of the 

process errors which are denoted as the coefficient vector in the Vectorized variance model in step 

(ii).   

This subchapter is organized as follows: In Sec. 3.3, the state space approach used to model the 

variation propagation is briefly reviewed. Sec. 3.4 proposes the fault diagnosis methodology using 

an enhanced RVM for underdetermined systems in multi-station assembly processes. In Sec. 3.5, 

case studies that demonstrate and validate the proposed methodology are presented. Finally, Sec. 

3.6 summarizes the subchapter and also provides the concluding remarks. 

3.3 Variation Propagation Model for Multi-Station Assembly Process 

The multi-station assembly process illustrated in Figure 3-1 [29] has m stations where variable i is 

the station index. State vector 𝑥𝑖 denotes the product quality information (e.g., part dimensional 

deviations) at station i; 𝑢𝑖 is the input variable representing the process errors such as fixture 

deviations; and the process noise and unmodeled errors are denoted by 𝐰𝑖. The measurements on 

KPCs are represented by 𝐲𝑖  and it must be noted that 𝑦𝑖 is not necessarily available in every station. 

The variable 𝒗𝒊 is used to represent the measurement noise.  
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Figure 3-1. Diagram of a mlti-station assembly process 

A generic 3-2-1 fixture scheme presented in Figure 3-2 is used in multi-station assembly processes 

to constrain the degrees of freedom of the rigid parts during the process. NC block locaters (C1, 

C2, C3), a four-way pin P1, and a two-way pin P2 provide the 3-2-1 fixture layout as presented in 

Figure 3-2. The deviations of the NC blocks in direction Y, P1 in directions of X and Z, and P2 in 

direction of Z denote the process/fixture error which consequently cause the deviation of the part 

to be assembled. The generic 3-2-1 fixture layout is incorporated to the state-space model to 

present the variation propagation throughout the assembly process.  

 

Figure 3-2.  A generic 3-2-1 fixture scheme 

State-space models were adopted to model variation propagation in sheet metal assembly and 

multi-station manufacturing processes by [50, 51] respectively. Huang, et al. proposed a 3-D 

variation propagation model using state-space modeling [52, 53].  However, their method can 

model a datum surface with a single feature. Liu, et al. [54] proposed a state-space modeling to 

model 3-D variation propagation in multi-station assembly processes which is capable of dealing 

with a datum surface composed of multiple features on different parts.  In this section, the overview 
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of the variation propagation model in multi-station assembly processes developed by [50] is 

presented. 

There are some assumptions in this linear state-space model. The components of 𝑢𝑖 are assumed 

independent of each other. Based on the principles of the 3-2-1 fixture scheme, it is reasonable to 

assume that the deviation of one of the fixture locator has no effect on that of the others; hence 

they are independent to each other. 𝑤𝑖 and 𝑣𝑖 are assumed to be zero mean and all  of their elements 

are  independent of each other. Also, it is assumed that the elements of  𝑢𝑖, 𝑤𝑖 and 𝑣𝑖  are all 

independent of each other, and the magnitude of 𝑤𝑖 is small compared to that of 𝑥𝑖 and 𝑢𝑖. 

Considering all these assumptions together, the state-space model is expressed as follows: 

 

𝐱𝑖 = 𝐀𝑖−1𝐱𝑖−1 + 𝐁𝑖𝐮𝑖 + 𝐰𝑖            𝑖 = 1, 2, … , 𝑝    (9.1) 

𝐲𝑖 = 𝐂𝑖𝐱𝑖 + 𝐯𝑖                                     𝑖 = 1, 2, … , 𝑝   (9.2) 

The part quality information (𝐱𝑖) at station i  is determined by three terms: (1) 𝐀𝑖−1𝐱𝑖−1 

representing the transformation of the product quality information from station i-1 o station i; (2)  

𝐁𝑖𝐮𝑖 representing the effects of the process errors at station i on the quality information, and (3) 

𝐰𝑖 representing process noise and unmodeled errors. Matrices 𝐀𝑖, 𝐁𝑖 and 𝐂𝑖 are the state matrix, 

input matrix and observation matrix, respectively. These matrices are constant and determined by 

the product/process design information.  

The state-space model in Eq. (9) using the recursive form of state variables 𝐱𝑖can be reformulated 

into a linear model representing the relationship between the process errors 𝐮𝑖 and end-of-line 

KPCs’ measurements 𝐲𝑝. The linear model is expressed as follows [50]: 
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𝐲𝑝 = ∑ 𝛄𝑖𝐮𝑖 + 𝜀
𝑝
𝑖=0   (10) 

where  𝛄𝑖 = 𝐂𝑝𝛟𝑝,𝑖𝐁𝑖, 𝛄0 = 𝐂𝑝𝛟𝑝,0, and 𝛟𝑝,𝑖 = 𝐀𝑝−1𝐀𝑝−2 …𝐀𝑖 for 𝑝 > 𝑖 and 𝛟𝑖,𝑖 = 𝐈. The 

combination of process noise and measurement noise is denoted by 

𝛆 = ∑ 𝐂𝑝
𝑝
𝑖=1 𝛟𝑝,𝑖𝐰𝑖 + 𝐯𝑖  (11) 

It should be noted that for i=0, 𝐮0 represents the initial condition of state space vector such as the 

fabrication imperfection of the parts before entering the assembly process. Eq. (10) can be written 

in a matrix notation as Eq. (8) which is rewritten below (for simplification, index p of 𝐲 is 

removed):  

𝐲 = 𝚪. 𝐮 + 𝛆  (12) 

where 𝐮 = [𝐮0 𝐮1
 …  𝐮𝑝]′ is an 𝑛 × 1 column vector representing n process errors (in this 

subchapter we consider fixture locator deviations); 𝚪 = [ 𝛄0 𝛄1 ⋯ 𝛄𝑝]  is an 𝑚 × 𝑛 matrix which 

denotes the fault pattern related to the process errors where m is the number of measurements. 

Indeed, this linear model effectively links the effect of process errors (KCCs) to the measurements 

on KPCs of the product.  

3.4 Fault Diagnosis Methodology for Multi-Station Assembly Processes 

3.4.1 Variation Model Formulation for Multi-station Assembly Processes 

As mentioned in Sec. 3.1, process faults are in the form of the mean shift and variance of the 

process errors u in Eq. (12). In this subchapter, u is assumed to be zero-mean; hence fault diagnosis 

can be formulated as a problem of variance estimation of process errors. The deviation model in 

Eq. (12) links the effects of process errors (KCCs) to the measurements on KPCs. The 

corresponding variance model is as follows: 
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𝐶𝑜𝑣(𝐲) = 𝚪𝐶𝑜𝑣(𝐮)𝚪′ + 𝐶𝑜𝑣(𝛆)  (13) 

where 𝐶𝑜𝑣(. ) is the covariance matrix of a random vector. Since it is assumed that all the elements 

of u are independent of each other, 𝐶𝑜𝑣(𝐮) is a diagonal matrix (i.e., co𝑣(𝐮) =

𝑑𝑖𝑎𝑔(𝜎1𝐸
2, 𝜎2𝐸

2, … , 𝜎𝑛𝐸
2) ) where n is the number of process errors and 𝜎𝑖𝐸

2 for 𝑖 = 1,… , 𝑛  is 

the variance of the i-th process error. In this subchapter, we present two different cases for the 

noise term. First, it is assumed that the noise terms are independent. Thus 𝐶𝑜𝑣(𝛆) =

𝑑𝑖𝑎𝑔(𝜎1
2, 𝜎2

2, … , 𝜎𝑚
2) where m is the number of measurements, and 𝜎𝑗

2 (𝑗 = 1,… ,𝑚) are 

different from each other. This consideration relaxes the assumption in Ref. [27] which treats all 

𝜎𝑗
2 as identical.  Secondly, we further relax the assumption of independent noise to enable a 

general covariance matrix. This treatment is more consistent to the state space model represented 

in Eq. (9). 

Process faults can also be interpreted as the large variance of the process errors or KCCs (i.e., 

beyond the design specification). The process is under normal conditions unless the variance of 

some process errors (such as fixture locators) exceeds their design specification limits. Thus, 

variance of a process error exceeding the specification limit is considered as a process fault, which 

is a root cause for the dimensional quality issue, such as the large variance captured by SPC control 

charts on the measurement of KPCs. The variation model in Eq. (13) can be reformulated in a way 

that represents both (1) the design specification limit on variance and (2) the change of variance:   

𝐶𝑜𝑣(y) = 𝛤. (
𝜎1𝑑

2 + ∆1

⋱
𝜎𝑛𝑑

2 + ∆𝑛

)𝛤′ + (
𝜎1

2

⋱
𝜎𝑚

2
)  

(14) 

where 𝜎𝑖𝑑
2 and ∆𝑖 denote the design specification variance of process error i and its variance 

change, respectively. It is reasonable to assume that  ∆𝑖≥ 0 since the variance of the process errors 

should not be less than their design specification limits.  Indeed, this formulation is the same as Eq. 
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(13), with 𝜎𝑖𝐸
2=𝜎𝑖𝑑

2 + ∆𝑖 (for 𝑖 = 1, . . , 𝑛). With Eq. (14), a process fault will happen if the 

corresponding ∆𝑖> 0 related to the process error i.  

In order to simplify the form of Eq. (14), we introduce a vectorization operator 𝑣(𝐾) for a 𝑘 × 𝑘 

symmetric matrix 𝐾, we have 

 

𝑣(𝐾) = [𝐾1,1, 𝐾2,2, … , 𝐾𝑘,𝑘, 𝐾1,2, … , 𝐾1,𝑘, 𝐾2,3, … , 𝐾𝑘−1,𝑘]
′ 

 

 

where 𝐾𝑖,𝑗 is the (𝑖, 𝑗)th entry of matrix K. The operator 𝑣(. ) first lists diagonal entries of the 

matrix K, following by rows in the upper triangle. Lower triangle entries are not listed since matrix 

K is symmetric. Utilizing 𝑣(. ), we denote 

𝐘 = 𝑣(𝐶𝑜𝑣(𝐲)), 

𝐆i = 𝑣(𝚪𝒊𝚪𝑖
′), i=1,...,n, 

where 𝚪𝑖 is the ith column of 𝚪 in Eq. (12), and 

𝚺j = 𝑣(𝚺𝑗), 𝑗 = 1,… ,𝑚, 

where 𝚺𝑗 is an 𝑚 × 𝑚 matrix whose (𝑖, 𝑖)th entry is one, and all other entries are zero. Thus, by 

using the vectorization operation, Eq. (14) in a matrix form can be represented as an equivalent 

vector form as follows: 

𝐘 = ∑ (𝜎𝑖𝑑
2 + ∆𝑖)𝐆i

n
i=1 + ∑ 𝜎𝑗

2𝚺j
𝑚
𝑗=1   (15) 

It can be seen that Eq. (15) is a linear system with 
𝑚×(𝑚+1)

2
 equations and (n+m) unknown 

variables, i.e., ∆𝑖 (i=1,…,n) and 𝜎𝑗
2 (j=1,…,m). Based on our assumption that if the number of 

independent equations, namely, the rank of the matrix of the first term at the right hand side of Eq. 

Diagonal entries Upper triangle entries 



 

 

31 
 

(15) is less than (n+m), then Eq. (15) is an underdetermined system where the sparse estimate of 

∆𝑖, as well as the estimate of variance components of noise term 𝜎𝑗
2s are intended. This 

formulation provides a complete utilization of the measurements on the KPCs since both variance 

and covariance across the KPCs are included in the modeling. It also alleviates the degree of ill-

posed system, since now we have 
𝑚×(𝑚+1)

2
 equations as opposed to Eq. (12) where there are m 

equations, i.e., 
𝑚×(𝑚−1)

2
 more equations are added. This advantage is due to the consideration of 

the covariance information on the measurement of KPCs. 

In this subchapter, a further relaxation is also applied for the noise term. The above formulation in 

Eq. (15) assumes that the noise term has independent but non-identical variance.  For the general 

case where the covariance matrix of the noise is not diagonal, the corresponding variation model 

is 

𝐶𝑜𝑣(𝑦) = 𝛤. (
𝜎1𝑑

2 + ∆1

⋱
𝜎𝑛𝑑

2 + ∆𝑛

)𝛤′ +  (
𝜎1

2 … . 𝜎1𝑚

⋱
𝜎𝑚1 … 𝜎𝑚

2

)   
(16) 

where 𝜎𝑗
2’s are the variance components of the noise, and 𝜎𝑖𝑗 denotes the covariance components 

between the noise terms. Using the vectorization operator 𝑣(. ), the same as the above derivation, 

the variation model in Eq. (16), can be simplified in a vector form as 

Y = ∑ (𝜎𝑖𝑑
2 + ∆𝑖)Gi

n
i=1 + ∑ 𝜎𝑖𝑗∑ij

𝑚
𝑖≤𝑗   (17) 

where ∑ij = 𝑣(𝛴𝑖𝑗), and 𝚺𝑖𝑗 is an 𝑚 × 𝑚 matrix whose (𝑖, 𝑗)th entry is one and the rest are zeros. 

In Eq. (17), the variance and covariance components of the noise are denoted by (𝜎𝑖𝑖, 𝑖 = 𝑗) and 

(𝜎𝑖𝑗 , 𝑖 < 𝑗), respectively.  As seen in Eq. (16), we have an underdetermined linear system where 

estimate of ∆𝑖s, as well as the estimate of variance and covariance components of noise terms 𝜎𝑖𝑗s 
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are intended. However, we have more ill-posed problems since more unknowns should be 

estimated, which come from the covariance components of the noise.  

As mentioned above, the sparse estimate of the ∆𝑖s, as well as the estimate of variance components 

of noise term 𝜎𝑖𝑗s is the core of the proposed fault diagnosis method for underdetermined system 

in multi-station assembly processes. In this subchapter, the sparse estimate is accomplished by 

means of an enhanced approach for the RVM [15]. In Sec. 3.4.2, the fault diagnosis method based 

on the enhanced RVM is presented in more details. 

3.4.2 Fault Diagnosis for Underdetermined Systems using Enhanced RVM  

RVM is a probabilistic Bayesian learning framework that achieves sparse solutions for linear 

regression models. It is based on the normal distribution assumption of the coefficient vector in 

the linear regression model. In multi-station assembly processes, the process errors are assumed to 

have a normal distribution. That is the most common distribution considered for the process errors 

in the literature and the practice. Thus the RVM methodology which assumes the normal 

distribution and the corresponding conjugate prior over the coefficient vector is in compliance with 

both literature and practice in multi-station assembly processes. However, the probabilistic 

Bayesian learning approaches reported in Refs. [15, 47] provide the estimate of the noise term’s 

variance which is assumed to be identically independently distributed (iid). In our proposed 

method, this assumption is relaxed, i.e.,  𝜎𝑗
2 (i.e.,  𝜎𝑗𝑗) in Eq. (17) do not have to be identical. This 

is more consistent with the actual scenario since different sensors may have different precisions 

and thus the resulting measurement noises are different. In this subchapter, the noise terms (𝜎𝑖𝑗 in 

Eqs. (16) and (17)) are still assumed to be independent of each other. This is reasonable since 𝜎𝑖𝑗 

in Eqs. (16) and (17) represents the variance/covariance of noise in Eq. (12). Along this line, there 

is a need to enhance the RVM method to estimate the covariance matrix of the noise which is 
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independent, but non-identical. The proposed enhanced RVM method has three steps through 

which the variance change (∆is) and noise term’s variance components  σij in Eqs. (16) and (17) 

are iteratively estimated. Figure 3-3 illustrates the flowchart of the enhanced RVM method. The 

details of these steps are presented in the subsequent sections. 

 

 

 

 

 

Figure 3-3. Procedure of the enhanced RVM method 

3.4.2.1 Bayesian Estimate of Variance Change of Process Errors 

The linear regression model in Eq. (15), where noise terms are assumed to be independent, can be 

simplified into 

  𝐘 − ∑ (𝜎𝑖𝑑
2)𝐆i

n
i=1 = ∑ (∆𝑖)𝐆i

n
i=1 + ∑ 𝜎𝑗

2𝚺j
𝑚
𝑗=1   (18) 

In the equation above, for further simplification, we denote the left hand side term, which contain 

all the known terms with  

    𝐭 =  𝐘 − 𝛷 • [𝜎1𝑑
2, 𝜎2𝑑

2, ⋯ , 𝜎𝑛𝑑
2]′  (19) 

where  𝛷 = [𝐆1, 𝐆𝟐, ⋯ , 𝐆n] is an  
𝑚×(𝑚+1)

2
× 𝑛  matrix. Column vector 𝐭 has the dimension 

of  
𝑚×(𝑚+1)

2
  that is obtained from the difference between the actual measurements Y and the 

KCCs’ variance defined by the design specifications (i.e. 𝜎𝑖𝑑
2′𝑠). Now, Eq. (19) can be simplified 

into the linear regression model presented below: 

Step 1: Bayesian estimate of variance change of 

process errors (Sec. 3.4.2.1) 

Step 2: Estimate of variance components of noise 

and hyper parameters (Sec. 3.4.2.2) 

Step 3: Iterative estimate of the parameters via 

steps 1 and 2 (Sec. 3.4.2.3) 
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𝐭 = 𝚽𝐰 + 𝝃  (20) 

where  𝐰 = [∆1, ∆2, ⋯ , ∆𝑛]′ represents the variance change of each process error; 𝝃 = 

[𝜎1
2, 𝜎2

2, ⋯ , 𝜎𝑚
2, 0,⋯ ,0]′ is a column vector with dimension of  

𝑚×(𝑚+1)

2
 and it can be seen that 

the “0” entries are due to the assumption of independent noise term in Eq. (20) ; and as before 

𝚽 = [𝐆1, 𝐆𝟐, ⋯ , 𝐆n] is an  
𝑚×(𝑚+1)

2
× 𝑛  design matrix in this new linear regression formulation. 

The coefficient vector (𝐰) in Eq. (20) are the change of variance of all process errors, which will 

be estimated to determine if there are any process faults.  

For the case of more general noise (𝛆 in Eq. (12)) whose independency assumption is relaxed, the 

linear regression model represented in Eq. (17) can be written the same as Eq. (20) with the only 

difference as follows:  

    𝝃 = [𝜎1
2, 𝜎2

2, ⋯ , 𝜎𝑚
2, 𝜎12, 𝜎13 ⋯ ,𝜎(𝑚−1)𝑚]

′
  (21) 

As mentioned before, the components in Eq. (21) can be reasonably assumed to be independent 

because they represent the variance/covariance (not the deviation) of noise in Eq. (12). 

In the Bayesian framework, each component of 𝛏 is treated as a random variable. They are assumed 

to be zero-mean and having Gaussian distribution. Here, we actually relax the assumption of noise 

variance being iid in RVM [15]. Thus, ∑𝜎2, the covariance matrix of 𝛏 has a diagonal form.  The 

likelihood function for 𝐭 has a form of multivariate Gaussian distribution:  

𝑝(𝐭|𝐰,∑𝜎2) = 

(2𝜋)−
𝑚

2 |∑𝜎2|−
1

2exp (−1/2(𝐭 − 𝚽𝐰)𝑇∑𝜎2
−1(𝐭 − 𝚽𝐰))  

(22) 

where |. | represents the determinant of a matrix. Estimation of the model’s parameters including 

𝐰 and noise covariance (∑𝜎2) in Eq. (22) is the focus of our interest. In the Bayesian analysis, the 

parameters are considered as random variables that are fully quantified by probability density 
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functions, unlike the frequentist analysis where the parameters are constant values. In our enhanced 

RVM that follows the Bayesian framework, the full posterior over 𝐰 should be identified. Thus, 

the main task is to estimate the posterior mean and covariance of 𝑤 along with the covariance 

matrix (∑𝜎2) of noise. By choosing a proper conjugate prior on 𝑤 which is in favor of sparsity 

properties of the model, and using Bayes rule, posterior mean and covariance of 𝐰 can be 

estimated. A multivariate zero-mean Gaussian prior distribution over w is as below [15]: 

𝑝(𝐰|𝛂) = ∏ 𝑁𝑛
𝑖=1 (𝐰𝑖|0, 𝛂𝐢

−1)  (23) 

where 𝛂 is a vector of 𝑛 independent hyperparameters that are inverse variances (also referred to 

as precision) of 𝐰, each of which is used to control the strength of the prior over its corresponding 

elements of w. RVM  uses 𝛂 as the variable parameters, and infers their values from the actual 

measurement data. Therefore, there is a need to define additional hyperprior over the values of 𝛂 

and the remaining parameters on the model which are related to the noise covariance matrix (∑𝜎2). 

To promote sparsity, a non-informative prior (in this subchapter, a uniform hyperprior is 

considered), is used as the hyperprior, which implies that there is no information about the 

parameters before the inference process. Gamma distribution with its parameters fixed to zero is 

chosen to make the uniform hyperprior. For the normal distribution of the process errors, the 

variance is modeled with hyperparameters 𝛂𝑖′𝑠 which are assumed to have a non-informative 

(uniform) prior. This assumption makes our proposed method more generic. Basically, we let the 

data speak for itself during the Bayesian updating process without restricting the prior to follow 

any specific informative distribution. This data driven nature enables a more effective way in 

handling the complex variability in measurement data. The normality assumption of the process 

errors and choosing the non-informative prior over the hyperparameters makes our proposed 

methodology consistent with industrial practice and also more flexible to handle data variability.   
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The posterior distribution over w given the covariance matrix (∑𝜎2) of noise 𝛏, hyperparameters 

𝛂, and 𝐭 can be computed analytically due to the conjugate prior over 𝐰. The likelihood function 

𝑝(𝐭|𝐰,∑𝜎2) in Eq. (22) (23)and the prior distributions 𝑝(𝐰|𝛂) in Eq. (23) are both multivariate 

Gaussian. Hence, using Bayes rule, the posterior distribution of 𝐰 is derived as follows: 

𝑝(𝐰|𝐭, 𝛂, ∑𝜎2) =
𝑝(𝐭|𝐰,∑𝜎2)𝑝(𝐰|𝛂)

𝑝(𝐭|𝛂,∑𝜎2)
= (2𝜋)−𝑛/2|∑|−1/2exp(−

1

2
(𝐰 −

𝜇)𝑇∑−1(𝐰 − 𝜇))  
(24) 

where the posterior covariance 𝚺 and mean 𝝁 of 𝑤 are as follows, 

𝜮 = (𝚽𝐓Σ𝜎2
−1 𝚽 + 𝐀)−1  (25) 

𝝁 = 𝚺𝚽𝑇Σ𝜎2
−1𝐭  (26) 

where 𝐀 is defined as 𝐷𝑖𝑎𝑔(𝛂1, 𝛂2, … , 𝛂𝑛), 𝜮 and μ are functions of hyperparameters α, and the 

covariance matrix Σ𝜎2  of noise, which still remain unknown at this stage. Thus, estimating these 

unknown parameters will be necessary, and the procedure is presented in Sec. 3.4.2.2  

3.4.2.2 Estimate of Hyperparameters and Variance Components of Noise 

Since Σ𝜎2  is a diagonal matrix, only its diagonal elements, i.e. 𝜷 = [𝜎1
2, 𝜎2

2, … , 𝜎𝑚
2], need to be 

estimated. These parameters can be estimated from the measurement data, i.e., 𝐭 in Eq. (20) and 

by maximizing marginal likelihood of 𝐭 (evidence maximization) [15]. For mathematical 

simplicity, we maximized the log of marginal likelihood function of 𝐭. It can be carried out by 

taking the derivative of this function with respect to α and 𝜷, and then setting the partial derivatives 

as zero to identify optimal α and 𝜷 by achieving maximal marginal likelihood of 𝐭. The marginal 

likelihood of 𝐭 is a zero mean Gaussian distribution as below: 

𝑝(𝐭 |𝛂, Σ𝜎2) = ∫𝑝(𝐭 |𝐰, Σ𝜎2)𝑝(𝐰|𝛂)𝑑𝐰 (27) 
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= (2𝜋)−
𝑚
2 |Σ𝜎2 + 𝚽𝐀−1𝚽𝑇|−

1
2 

∙ exp [−
1

2
𝐭 𝑇(Σ𝜎2 + 𝚽𝐀−1𝚽𝑇)−1𝐭   

and its logarithm can be expressed as: 

𝐿(α, Σ𝜎2) = ln 𝑝(𝐭 |𝛼, Σ𝜎2) = −
1

2
(𝑚𝑙𝑛2𝜋 + ln|𝐶| + 𝐭 𝑇𝐶−1𝐭)  (28) 

where 𝐶 = ∑𝜎2 + 𝚽𝐀−1𝚽𝑇  is the covariance matrix for 𝐭. By exploiting the determinant identity 

det(𝐗 + 𝐃𝐄) = 𝑑𝑒𝑡(𝐗)det (𝐈 + 𝐁𝐗−𝟏𝐄) (where X, D and E are arbitrary matrices) and some basic 

algebra, it can be shown that [27]: 

ln|𝐂| =  𝑙𝑛|𝚺−1| − 𝑙𝑛|Σ𝜎2
−1| − 𝑙𝑛|𝐀|  (29) 

Also, using Woodbury inversion identity which is  (𝐌 + 𝐔𝐃𝐕)−1 = 𝐌−1 − 𝐌−1𝐔(𝐃−1 +

𝐕𝐌−1𝐔)−1𝐕𝑴−1 [55] for 𝐂−1, we formulate the term 𝐭𝑇𝐂−1𝐭  as below: 

𝐭 𝑇𝐂−1𝐭 = (𝐭 − 𝚽𝝁)𝑇Σ𝜎2
−1(𝐭 − 𝚽𝝁) + 𝝁𝑇𝐀𝝁  (30) 

Substituting Eqs. (29) and (30) into Eq. (28), we have 

𝐿(𝛂,∑𝜎2) = −
1

2
𝑚𝑙𝑛2𝜋 −

1

2
𝑙𝑛|𝚺−1| +

1

2
𝑙𝑛|Σ𝜎2

−1| +
1

2
𝑙𝑛|𝐀|−

1

2
(𝐭 −

𝚽𝝁)𝑇Σ𝜎2
−1(𝐭 − 𝚽𝝁) −

1

2
𝝁𝑇𝐀𝝁  

(31) 

The derivative of 𝐿(𝛂, Σ𝜎2) with respect to 𝛂  and Σ𝜎2is derived and then is set to zero. The details 

of the derivation is presented in the Appendix I. The estimate of each element of 𝛂 and the noise 

variance is presented as follows: 
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𝛂𝑛𝑒𝑤 𝑖 =
1−𝛂𝑖∑𝑖𝑖

𝝁𝑖
2

  (32) 

        𝜎 𝑗
2 =

(𝐭 𝑗 − 𝚽𝑗𝝁)2 

1 − 𝑇𝑟(𝚺𝚽𝑇𝐽𝑗  𝚽)
 (33) 

where ∑𝑖𝑖 is the i-th diagonal element of the covariance matrix 𝚺 (Eq. (25) ) of the posterior weight 

w,  𝐽𝑗 is an 𝑚 × 𝑚 matrix that all its elements are zero except the j-th diagonal element which is 

one, 𝐭𝑗 is the j-th element of column vector 𝐭,  and 𝚽𝑗  is the j-th row of 𝚽 matrix 

From Eqs. (32) and (33), it can be seen that although 𝜶 and 𝜎 𝑗
2 can be estimated, they depend on 

𝝁 and 𝚺, in Eqs. (25) and (26), which, however, depend on 𝛂 and 𝜎 𝑗
2. Thus, an iterative method 

will be presented in the next section to iteratively estimate all these variables. 

3.4.2.3 Iterative Estimate of the Parameters 

In Sec. 3.4.2.1 and 3.4.2.2, it can be seen that the estimate of α and 𝑩 are the functions of posterior 

mean 𝝁 and covariance matrix 𝚺 of w, and vice versa. Thus, Σ and 𝜇 Eqs. (25) and (26)) can be 

estimated by updating them iteratively through estimate of 𝛼𝑛𝑒𝑤 𝑖 and 𝜎𝑛𝑒𝑤 𝑗
2  (Eqs. (32) and (33)) 

until a convergence criteria is satisfied (e.g. the difference between two consecutive iterations is 

less than a predefined threshold). The enhanced RVM method after a certain number of iterations 

will converge to the sparse solution for the linear regression model presented in Eq. (20). The 

iterative approach presented in this section continues until the convergence criteria is achieved. 

Indeed, convergence of the iterative algorithm depends upon whether the optimal value for the 

cost function, i.e. log of the marginal likelihood presented in Eq. (28) is reached. The cost function 

is a multivariate Gaussian distribution which for sure has a maximum. Thus, taking the first 

derivation of the cost function with respect to α and the noise covariance and setting them to zero 

guarantee that the cost function increases at each step and moves toward the maximum. Hence, the 
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iterative approach guarantees the convergence to the optimal value of the cost function. The 

convergence can be reached through setting a proper threshold that the difference of the all values 

of 𝛂 corresponding to the last two consecutive iterations is very small. However, there is no 

particular rule to set the set the threshold as the stopping criteria in the enhanced RVM method. 

Apparently when the difference of the two consecutive iterations of the algorithm is small enough 

we can terminate. Here, as we are looking for the local maxima of Eq. (28), thus, when the relative 

difference between all the values of 𝛂 i of two consecutive iterations is fairly small, we may 

terminate the iterative process. It means that there is no further relevant coefficient vector can be 

determined since the change in the values of 𝛂 i’s is negligible and we have reached the local 

maxima. Thus, we set the threshold as if the maximum relative difference of the two consecutive 

iterations of 𝛂 i‘s is less than  0.1% (0.001), i.e.  max 
|𝛂 k−𝛂 k−1|

𝛂 k−1
≤ 10−3. 

In practice, it can be seen that many of  𝛂 𝑖 are driven to very large values causing the variances to 

become zero. Thus, if the posterior probability 𝑝(𝐰𝑖|𝐭, 𝛂, Σ𝜎2) of the corresponding 𝐰𝑖, becomes 

highly peaked at zero, it means that the corresponding 𝐰𝑖 can be effectively pruned out and the 

sparsity over 𝐰 is realized. Thus, utilizing enhanced RVM, the sparse estimate of 𝐰 is achieved 

whose non-zero values related to their corresponding process errors are the process faults (i.e. 𝝁). 

Also the estimate of the variance components of the noise term is provided with 𝜎𝑛𝑒𝑤 𝑗
2 for  𝑗 =

1, … , 𝑚.   

3.5 Case Studies 

An assembly model from a real auto body assembly process is utilized to validate the proposed 

methodology. As shown in Figure 3-4, the assembled product is a floor pan which is under the 

driver and the passenger in a car. It has four sub-parts, namely, left floor pan, right floor pan, left 

bracket, and right bracket. They are assembled in three stations as illustrated in Figure 3-5. 
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Measurements will be taken at the end of the assembly line. The 4 points M1-M4 as shown in Fig. 

4 are measured in X, Y, and Z directions, respectively. Thus, there are a total of 12 measurements 

(KPCs). The process errors (KCCs) in this case are fixture errors and part mating feature errors 

(also playing a role as fixture for the part to be assembled). In this assembly process, there are a 

total of 33 process errors. Therefore, the fault pattern matrix Γ in Eq. (8) has dimension of 12 by 

33. These 33 KCCs are assumed to have normal distributions. The design specifications of their 

variability are given in terms of tolerance range which is defined as 6 times of the standard 

deviation of the process error (6-sigma), such as fixture locator variations. 

Figure 3-4. The 4-part floor pan assembly model 

 

 

 

 

 

Figure 3-5. Floor-pan assembly in three assembly stations 

 

For KCC1 to KCC30, tolerance ranges are given as 0.5 mm, and KCC31 to KCC33 as 1 mm. By 

running the Monte Carlo simulation using 3DCSTM software, the assembly process can be 

accurately simulated. 3DCS has been the leading variation analysis software in this field. The 
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capabilities of 3DCS have been tested and validated by many industrial applications and for this 

reason we chose 3DCS as yardstick for validating the results from the proposed method in this 

subchapter.  

We simulated the assembly process with the intended process faults which are manipulated in the 

way that the tolerance ranges of KCC8 to KCC13 are set as 1 mm (beyond their design 

specification, i.e., 0.5 mm). The number of samples for the simulation is set at 400. After the 

simulation, the reading of the coordinates of the 12 KPCs of these 400 samples is collected, and 

they will provide the measurement information Y. Based on the methodology developed in this 

subchapter, the following two sections demonstrate the fault diagnosis to identity the process faults 

(KCC8 to KCC13) for two scenarios, namely, with complete fault pattern matrix Γ (Sec. 3.5.1), 

and partial matrix Γ (Sec. 3.5.2), respectively. 

3.5.1 Fault Diagnosis with a Completely Available Fault Pattern Matrix Γ 

In this section, we assume that all the process and product information is given. Therefore, the 

complete fault pattern matrix Γ of the assembly model can be computed and given for fault 

diagnosis. For this assembly model, matrix Γ in Eq. (8) has a dimension of 12 by 33, corresponding 

to 12 KPCs and 33 KCCs. By applying the methods presented in our prior research [52, 53, 56], 

the state space model is built up to represent error propagation in multi-station assembly. The 

resulting matrix Γ can be obtained. The measurements on the 12 KPCs will provide 

12*(12+1)/2=78 variances/covariances; Thus, matrix 𝚽 in Eq. (20) is of the dimension of 78 by 

33. Since the rank of 𝚽 is 25, which is less than 33 (number of KCCs), essentially the problem is 

still an undetermined system.  

Sect. 3.5.2 develops the argument that the posterior mean of w that represents the change of the 

variance of the process errors is iteratively estimated. This iterative estimation continues until the 
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stopping criteria is satisfied during which most of  𝛂i  are driven to very large values,  indicating 

very small variance of the estimated quantity (change of variance). The initial value for all the 𝛂is 

is set to  
1

n2 = 9.1827 × 10−4, where n=33 (number of KCCs) for this case study. For  σj
2 in Eq. 

(26), we set the initial value to be the variance of vector 𝐭. By applying the method presented in 

Sec. 3.4.2.3, Eqs. (25) and (26) can be iteratively solved with Eqs. (32) and (33). For the purpose 

of fault diagnosis, we are interested in the mean value 𝐰 (Eq. (25)), as well as the variance (inverse 

of α value (Eq. (32)).  

Table 3-1. The iterative computation for alpha values 

 

Table 3-2. The iterative computation for mean value of KCCs 

 
 Iteration 1 Iteration 5  Iteration 9  Iteration 13  Iteration 17  Iteration 20  Iteration 21 

KCC 1 9.182E-04 2.35E+04 2.35E+04 2.35E+04 2.35E+04 2.35E+04 2.35E+04 

KCC 2 9.182E-04 2.23E+05 2.23E+05 2.23E+05 2.23E+05 2.23E+05 2.23E+05 

…… 

KCC 8 9.182E-04 2.32E+03 2.33E+03 2.33E+03 2.31E+03 2.33E+03 2.33E+03 

KCC 9 9.182E-04 8.56E+02 8.58E+02 8.58E+02 8.73E+02 8.58E+02 8.58E+02 

KCC 10 9.182E-04 1.65E+03 2.29E+03 2.30E+03 2.31E+03 2.30E+03 2.30E+03 

KCC 11 9.182E-04 4.45E+03 3.78E+03 3.78E+03 3.86E+03 3.78E+03 3.78E+03 

KCC 12 9.182E-04 8.57E+02 8.56E+02 8.56E+02 8.54E+02 8.56E+02 8.56E+02 

KCC 13 9.182E-04 8.57E+02 8.56E+02 8.56E+02 8.54E+02 8.56E+02 8.56E+02 

…… 

KCC 32 9.182E-04 4.14E+05 4.14E+05 4.14E+05 4.14E+05 4.14E+05 4.14E+05 

KCC 33 9.182E-04 1.12E+05 1.12E+05 1.12E+05 1.12E+05 1.12E+05 1.12E+05 

 
Iteration 1 Iteration 5 Iteration 9 Iteration 13 Iteration 17 Iteration 20 Iteration 21 

KCC1 3.75E-05 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

KCC2 7.24E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

…… 

KCC8 1.45E-03 2.07E-02 2.07E-02 2.07E-02 2.08E-02 2.07E-02 2.07E-02 

KCC9 3.03E-04 3.22E-02 3.01E-02 2.80E-02 2.67E-02 2.62E-02 2.62E-02 

KCC10 4.81E-04 2.39E-02 2.09E-02 2.09E-02 2.08E-02 2.09E-02 2.09E-02 

KCC11 1.65E-04 1.32E-02 1.73E-02 1.83E-02 1.81E-02 1.83E-02 1.83E-02 

KCC12 8.87E-04 2.41E-02 2.21E-02 2.21E-02 2.19E-02 2.19E-02 2.19E-02 

KCC13 8.87E-04 2.41E-02 2.32E-02 2.22E-02 2.19E-02 2.19E-02 2.19E-02 

…… 

KCC32 2.02E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 

KCC33 7.77E-04 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 



 

 

43 
 

The iterative results are shown in Table 3-1 and Table 3-2. From Table 3-1, it can be seen that the 

difference of α value between iterations 20 and 21 is much smaller than the predefined value. Thus, 

the iteration is terminated. As presented in Table 3-2, the computation for the mean value of w is 

also terminated at iteration 21. In Table 3-1, the α values are quite large for the KCCs 1-7 and 

KCCs 14-33, indicating they all have very small variances. In Table 3-2 the above KCCs have 

mean value of zeros. Thus, the values of these KCCs are concentrated about zero with very small 

variance. Then they can be reasonably considered as zeros because there is no change of variance 

or process faults. For KCCs 8-13, their values are not very big, indicating that the variances are 

relatively large. The corresponding mean values are nonzero, which can be considered as nonzero 

changes of variance of the corresponding KCCs, namely, process faults. Table 3-3 shows the 

identified nonzero change of variance for KCCs 8-13. From the small relative errors between the 

estimated tolerance range and actual tolerance range of these KCCs, the effectiveness of our 

process method can be clearly demonstrated. For the practitioner, the comparison between the 

estimated tolerance ranges to the corresponding design specifications can be used to determine if 

there are any process faults. For more rigorous statistical analysis, since α value is the inverse 

variance of the variance change ( ∆𝑖), a statistical analysis for the confidence of determining 

process faults ( ∆𝑖> 0 in a statistical sense) can be performed, as shown in Table 3-3, of which the 

corresponding confidences are listed in the last column. 
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Table 3-3. Case study 1: identified process faults and the estimate of their variance change and 6-sigma value 

(unit in mm) 

*Relative errors = 
|(R−R̂)|

R
 

3.5.2 Fault Diagnosis with a Partially Given Fault Pattern Matrix Γ 

In this section, we will demonstrate a case study where if only partial fault pattern matrix Γ in Eq. 

(8) is available, our proposed methodology can still estimate the variance change of the 

corresponding KCCs, and identify process faults due to our enhanced RVM’s ability to handle 

inhomogeneous noise. If only partial matrix Γ is known, then Eq. (8) can be written as 𝐲 =

[𝚪𝑘𝑛𝑜𝑤𝑛 𝚪𝑢𝑛𝑘𝑛𝑜𝑤𝑛]. 𝐮 + 𝛆. Thus, by combining process variation contributed from the unknown 

gamma matrix, we can have the form of 𝐲 = [𝛤𝑘𝑛𝑜𝑤𝑛]. 𝐮𝑘𝑛𝑜𝑤𝑛  + 𝛆𝑛𝑒𝑤 where 𝛆𝑛𝑒𝑤 =

𝚪𝑢𝑛𝑘𝑛𝑜𝑤𝑛. 𝐮𝑢𝑛𝑘𝑛𝑜𝑤𝑛 + 𝛆 can be considered the new noise term, including the un-model process 

errors.  

In this case study, we assume that in the fault pattern matrix Γ, columns 2, 9, 25, 27, and 31 are 

unknown due to some limited process/product information. By using Eq. (16), the assumption of 

independent noise has been relaxed. Thus, with our proposed method, the fault diagnosis can still 

be carried out with partially known matrix Γ. From Table 3-4, it can be seen that even with a 

partially known fault pattern matrix Γ, our proposed method can still identify the process faults 

with very small relative error between the estimated tolerance ranges and actually tolerance ranges 

of KCCs 8-13, and a reasonably high confidence of identified process faults. Compared with the 

Identified 

process 

faults 

Tolerance 

range (6-

sigma)  of 

design spec  

Estimate of 

variance 

change ( ∆𝑖) 

Estimated 

variance of 

 ∆𝑖 (1/α) 

Estimated 

tolerance range 

(6-sigma) value 

(𝑅̂) 

Actual 

tolerance range 

(6-sigma) value 

(𝑅) 

Relative* 

errors 

(%) 

Confidence of 

the process 

faults ( ∆𝑖> 0) 

8 0.500 0.021 4.29E-04 0.998 1.000 0.239 84% 

9 0.500 0.026 1.17E-03 1.093 1.000 -9.303 78% 

10 0.500 0.021 4.35E-04 1.001 1.000 -0.048 84% 

11 0.500 0.018 2.65E-04 0.953 1.000 4.734 87% 

12 0.500 0.022 1.17E-03 1.019 1.000 -1.907 74% 

13 0.500 0.022 1.17E-03 1.019 1.000 -1.903 74% 
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case study presented in Sec. 3.5.1, the identified process faults do not include KCC9. This is 

because the column 9 in matrix Γ corresponding to KCC9 is unknown in this case; thus it is 

impossible to estimate it. This case study demonstrated the effectiveness of our method even with 

partially available process/product information. 

Table 3-4. Case study 2: Identified process faults and the estimate of their variance change and 6-sigma 

 

 

3.6 Concluding Remarks 

The purpose of fault diagnosis for multi-station assembly process is to effectively identify the root 

causes of large dimensional variations on the product, a critical component to ensure the overall 

quality of assembled products. Although much research has been explored in this direction, little 

research has focused on the partially diagnosable system. This is caused by lack of measurement 

as opposed to the number of process errors in the assembly process, and essentially is an 

underdetermined system and thus has no unique solution but with infinite ones. In this subchapter, 

a fault diagnosis methodology for multi-station assembly processes was developed to tackle the 

above challenge. The proposed methodology considers the process faults as change (increase) of 

variance of process errors (KCCs). An enhanced RVM methodology was established by relaxing 

the assumption of iid noise in the existing RVM method. Thus, it can solve the underdetermined 

system with sparse solution, which is consistent to the engineering interpretation. Moreover, due 

Identified 

process 

faults 

Tolerance range 

(6-sigma)  of 

design spec  

Estimate of 

variance 

change ( ∆𝑖) 

Estimated 

variance of 

 ∆𝑖 (1/α) 

Estimated 

tolerance range 

(6-sigma) value 

Actual tolerance 

range (6-sigma) 

value 

Relative 

errors 

(%) 

Confidence of the 

process faults 

8 0.500 0.0229 0.00052 1.037 1.000 3.653 84% 

10 0.500 0.0243 0.00059 1.061 1.000 6.057 84% 

11 0.500 0.0229 0.00052 1.037 1.000 3.653 84% 

12 
0.500 

0.0199 0.00083 0.983 
1.000 

-

1.694 93% 

13 
0.500 

0.0204 0.00089 0.992 
1.000 

-

0.783 93% 
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to our new development, the enhanced RVM is capable of handling cases where only partial 

process/product information is available, i.e., only partial columns of the fault pattern matrix are 

known. Using this methodology the process faults can still be identified effectively.  

The provided case studies demonstrate the effectiveness of the proposed methodology. The cases 

of complete fault pattern matrix (case 1 in Sec. 3.5.1) as well as partially available fault pattern 

matrix (case 2 in Sec.3.5.2) are investigated. For both cases, satisfactory results are achieved. The 

relative errors between estimated tolerance ranges using the proposed method and the actual 

tolerance ranges are between 0.239% and 9.303% for case 1; and for case 2, the relative errors are 

between 0.783% and 6.057%. The confidence levels for determining the process faults are also 

reasonable, between 74% and 87% for case 1, and between 84% and 93% for case 2. These results 

demonstrate the effectiveness of our proposed methodology, which not only fills the gap in the 

research domain, but also provides effective tools for the practitioner of quality improvement in 

large and complex manufacturing systems.   

Associated with the proposed RVM methodology for fault diagnosis, there is a very critical issue 

that should be investigated, namely, how to characterize the type of sensor system that will make 

the proposed RVM method work. This is called diagnosability study, a method to investigate the 

sensor placement, including determination of number of sensors as well as their location, by which 

the process faults can be uniquely identified based on the measurements provided by the optimal 

sensor layout. Zhou et al. [24] defined a diagnosability matrix which is determined by state matrix, 

input matrix and observation matrix, namely, matrices 𝐀i, 𝐁𝐢 and 𝐂i in Eq.(9.1). They proved that 

the diagnosis problem of process faults with variance change is fully diagnosable if the 

diagnosability matrix is full rank. Since observation matrix 𝐂i is determined by sensor placement, 

we can optimize the diagnosability matrix, namely, to maximize its rank, by changing the number 
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and location of sensors. Hence, the desired level of diagnosability can be achieved through optimal 

sensor placement, and full diagnosability can be achieved if the diagnosability matrix is of full 

rank. The work reported by Liu, et al. [57] is along this line. 

The diagnosability study for underdetermined systems considered in this subchapter is even more 

challenging since a full rank of the diagnosability matrix is impossible for this case. It still deals 

with the optimal sensor placement, but the objective is to make a unique sparse solution achievable. 

This type of diagnosability is different from the one in Zhou, et al. [24] in which the diagnosability 

is independent of the fault diagnosis methods used. The diagnosability for underdetermined 

systems is indeed dependent upon the specific fault diagnosis method utilized since different 

diagnosis methods may have different levels of capabilities to identify the unique sparse solution. 

In the future, we are going to research optimal sensor placement for underdetermined systems by 

using the enhanced RVM method proposed in this subchapter. With this study, we are able to 

characterize what kind of system (necessary number of sensors as well as the sensor location) is 

diagnosable by using the enhanced RVM method. 
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Chapter 4. Sensor Placement Optimization for Multi-

station Assembly Processes 

Developments in sensing technologies have created opportunities to diagnose the process faults in 

multi-station assembly processes by analyzing the measurement data. Sufficient diagnosability for 

process faults has been always a challenging issue since the sensors cannot be used excessively. 

Therefore, there have been a number of methods reported in the literature to optimize the 

diagnosability of the diagnostic method with given sensor costs for identification of process faults 

incurred in multi-station assembly processes. However, most of these methods assume that the 

number of sensors is more than that of the process errors. Unfortunately, this assumption may not 

hold in many real industrial applications. Thus, the diagnostic methods have to solve 

underdetermined linear equations.  In order to address this issue, we propose an optimal sensor 

placement method by devising a new diagnosability criterion based on the compressive sensing 

theory which is able to handle underdetermined linear equations. Our method seeks optimal sensor 

placement by minimizing the average mutual coherence to maximize the diagnosability. The 

proposed method is demonstrated and validated through case studies from actual industrial 

applications2.  

4.1 Introduction and Related Work 

Multi-station assembly processes involve a large number of operations in multiple workstations to 

assemble a final product. Some typical examples of products from multi-station assembly 

processes include automotive body assembly, aerospace industry, home appliance assembly, etc. 

                                                 
2 Bastani, K., Kong, Z. Huang, W., and Zhou, Y., 2015, “Compressive sensing based optimal sensor 

placement for multi-station assembly processes,” IIE Transactions (in press). DOI: 

10.1080/0740817X.2015.1096431. 
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The dimensional quality of the final product in multi-station assembly processes is affected by 

process errors, which are also called key control characteristics (KCCs). One example of KCCs is 

fixture locators that play a critical role in dimensional quality of the assembled product. Fixture 

locators are used to hold and position the parts during assemblies. Hence, dimensional variation 

of fixture locators directly causes quality issues of the final products.  

To achieve satisfactory dimensional quality of the final product, it is necessary to identify the root 

causes of large dimensional discrepancies of key product characteristics (KPCs). Fault diagnosis 

is such a task to ensure a final product with satisfactory dimensional quality standards. There is a 

large body of literature discussing fault diagnosis for multi-station assembly processes [32, 58-

61]. Most of these methods assumed a linear model that links the dimensional deviations of the 

KCCs to the measurements on KPCs, as follows,  

𝐲 = 𝚪 ∙ 𝐮 + 𝛆 (34) 

where y is an 𝑚 × 1 vector that represents the dimensional deviation of KPCs (taken by 

measurements); u is an  𝑛 × 1 vector that represents the deviations of the process errors (KCCs); 

𝚪 is a fault pattern matrix (𝑚 × 𝑛) obtained from product and process information; 𝛆 denotes the 

noise (a combination of modeling uncertainty and measurement noise); and 𝑚 and 𝑛 are the 

numbers of measurements and process errors, respectively.  

A clarification for the terminologies is as follows. Process errors (𝐮) refer to the variation of all 

KCCs. They always exist in the assembly process and their specification limits are determined in 

design process. Process errors are different from process faults. Process faults refer to the process 

errors whose variations exceed the design specifications. Process faults are typically manifested 

through the mean shifts and change of the variance. Most of the fault diagnosis methods deal with 

the variance estimate of the process errors. This is because identifying and eliminating the process 
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faults caused by large variance of KCCs is more challenging than mean shift issues. Therefore, in 

this subchapter, the fault diagnosis refers to the variance estimate of the process errors. 

As shown in Eq. (34), to effectively diagnose the process faults, measurements on KPCs, i.e., y, 

must be taken along the assembly operations. Coordinate measuring machines (CMM) and optical 

coordinate measuring machines (OCMM) are the typical sensing systems that have been used to 

provide the dimensional measurements on KPCs in multi-station assembly processes. The proper 

design of the sensing system is vital for effective measurements of fault diagnosis. The 

diagnosability for the process faults and the incurred costs for sensors are the main issues in 

designing an effective sensing system.  

Most of the existing research in this direction [57, 62-67] basically considers full diagnosability of 

a sensing system. A fully diagnosable system is defined as a system that the measurements on the 

KPCs provide enough information for diagnosis of all process faults. Namely, the variance of all 

process errors can be uniquely estimated through analysis of the measurements on KPCs [24]. As 

reported in Ref. [24, 68], a diagnosability matrix is defined based on matrix 𝚪 (Eq. (34)) and the 

system has full diagnosability if the diagnosability matrix is of full rank since the associated linear 

equations have a unique solution. Based on the defined diagnosability criteria, some research work 

[57, 62, 63, 67] developed optimal sensor placement methods to achieve full diagnosability with 

given sensors.  

By taking into consideration of industry practice in which the number of measurements is often 

less than that of process errors, Zhou et al. [13] extended the diagnosability study in Ref. [68] by 

studying partially diagnosable systems, which is caused by column rank deficiency of matrix 𝚪 in 

Eq. (34). Their method identified the process errors that are uniquely diagnosable, as well as the 

minimal diagnosable sets. The minimal diagnosable set is an interesting concept, which was 
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defined as a group of process errors that are not individually uniquely diagnosable, but their linear 

combination can be uniquely estimated. By definition, within a minimal diagnosable set, each 

process error is linearly dependent with others. Due to the rank deficiency induced by this linear 

dependency, it is impossible to uniquely identify individual process errors in a minimal 

diagnosable set.  

In general, rank deficiency of matrix 𝚪 makes Eq. (34) (or its variant model which is later on 

utilized for variance change fault diagnosis in this subchapter) become underdetermined linear 

equations, for which there are infinitely large number of solutions [69]. However, this issue can 

be tackled by sparsity assumption of process faults. The sparsity assumption is in compliance with 

multi-station assembly processes since the number of process faults is usually few. This can be 

justified as the probability of having less process faults is higher than that of having more process 

faults, assuming the process faults are independent of each other. Following the results of 

Compressive Sensing theory [70, 71], if certain properties of matrix 𝚪 (e.g., formed by the minimal 

diagnosable set) are satisfied, unique estimate of the process faults can be achieved with a high 

probability. Therefore, we propose a compressive sensing based diagnosability criterion to tackle 

the challenges in diagnosability for underdetermined linear systems. Subsequently, an optimal 

sensor placement method is developed in this subchapter based upon the proposed diagnosability 

criterion to improve the diagnosability of multi-station assembly processes.  

The rest of the Chapter is organized as follows. Sec. 4.2 introduces overall procedure of the 

proposed method and highlights the contributions. In Sec. 4.3, the variation propagation model for 

multi-station assembly processes, along with the vectorization of the variance model, is presented. 

Sec. 4.4 proposes the diagnosability of multi-station assembly processes with underdetermined 

systems, based upon which our optimal sensor placement method is proposed. In Sec. 4.5, case 
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studies from industrial application are provided to demonstrate the effectiveness of the proposed 

method. Finally, Sec. 4.6 summarizes the major findings in this study. 

4.2 The Proposed Research Methodology and Contributions 

Figure 4-1 shows the procedure of our proposed method for optimal sensor placement for multi-

station assembly processes. The contributions of the proposed sensor placement method include:  

Figure 4-1. Procedure of the proposed sensor placement method 

(1) we decompose the fault pattern matrix 𝚪 in Eq. (34) into two parts, corresponding to sensor 

placement and process/product information, respectively. This decomposition enables us to apply 

compressive sensing theory to study the diagnosability, and (2) we devise a new diagnosability 

criterion as well as an optimal sensor placement for multi-station assembly processes with 

underdetermined systems, which has not been well addressed in existing literature. 

4.3 Variation Propagation Model in Multi-Station Assembly Processes 

In this section, we first introduce the variation propagation model in multi-station assembly 

processes using state-space modeling (Sec. 4.3.1). Then we derive a vectorized variance model 

(Sec. 4.3.2) which is used for the diagnosability analysis in Sec. 4.4. 

Diagnosability analysis of under-determined systems 

based on compressive sensing (Sec. 4.4.1) 

Formulate the variation propagation in multi-station 

assembly processes (Sec. 4.3.1) 

 

Vectorize the variance model with product/process and 

sensor location decomposition (Sec. 4.3.2) 

Sensor placement optimization method based on 

optimizing the diagnosability criterion (Sec. 4.4.2) 
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4.3.1 State-space Modeling for Variation Propagation in Multi-Station Assembly Processes 

There have been a large body of research work in the literature that utilizes the state-space models 

to formulate the variation propagation in multi-station assembly processes [72-75]. A brief 

introduction of the variation propagation model in multi-station assembly processes is presented 

here. For details, please refer to Ref. [75]. The multi-station assembly process illustrated in Figure 

4-2 [59] has M stations where variable i is the station index. State vector 𝐱𝑖 denotes the product 

quality information (e.g., part dimensional deviations) at station i; 𝐮𝑖 ∈ 𝑅𝑛𝑖 is the input variable 

representing the process errors at station i (such as fixture deviations) with cardinality |𝐮𝑖| = 𝑛𝑖 , 

and 𝐰𝑖 represents the process noise and unmodeled errors. The measurements on KPCs at station 

i are represented by 𝐲𝑖 ∈ 𝑅𝑚𝑖 with cardinality |𝐲𝑖| = 𝑚𝑖 (it is not necessarily available in every 

station for which 𝑚𝑖 = 0). The random vector 𝐯𝑖 is used to model the measurement noise. Note 

that 𝑛𝑖 and 𝑚𝑖 denote the number of process errors and measurements at station i, respectively. 

 
Figure 4-2.  Diagram of a multi-station assembly process [3] 

The components of 𝐮𝑖 are assumed independent of each other. 𝐰𝑖 and 𝐯𝑖 are assumed to be zero 

mean and all of their elements are independent of each other. Also, it is assumed that the elements 

of  𝐮𝑖, 𝐰𝑖 and 𝐯𝑖  are all independent of each other, and the magnitude of 𝐰𝑖 is small compared to 

that of 𝐱𝑖 and 𝐮𝑖. Considering all these assumptions together, the state-space model is expressed 

as follows: 
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𝐱𝑖 = 𝐀𝑖−1𝐱𝑖−1 + 𝐁𝑖𝐮𝑖 + 𝐰𝑖    𝑖 = 1, 2, … ,𝑀  (35) 

𝐲𝑖 = 𝐂𝑖𝐱𝑖 + 𝐯𝑖                            𝑖 = 1, 2, … ,𝑀 (36) 

where 𝐱0 represents the initial condition of state-space vector such as the fabrication 

imperfection of the parts before entering the assembly process (assumed to be known). 

The interpretation of matrices 𝐀𝑖, 𝐁𝑖 and 𝐂𝑖 is summarized in Table 4-1. For details of the 

formulation of these matrices, please refer to Ref. [75]. 

Table 4-1. Interpretation of the matrices in Eqs. (35) and (36) 

Matrix type Interpretation 

State matrix (𝐀𝑖) Change of fixture locating 

layout between stations i and  

i-1 

Input matrix (𝐁𝑖) Fixture locator positions at 

station i 
Observation matrix 

(𝐂𝑖) 

Sensor placement at station i 

 

Based on Eqs. (35) and (36), the linear model of Eq. (34) is achieved, and rewritten as Eq. (37) for 

convenience,  

𝐲 = 𝚪 ∙ 𝐮 + 𝛆  (37) 

where 𝐲 = [𝐲1
𝑇 𝐲2

𝑇 …  𝐲𝑀
𝑇]𝑇 is an 𝑚 × 1 vector which denotes the 𝑚 = ∑ 𝑚𝑖

𝑀
𝑖=1  measurements 

from station 1 through station M, 𝐮 = [𝐮1
𝑇 𝐮2

𝑇 …  𝐮𝑀
𝑇]𝑇 is an 𝑛 × 1 column vector representing 

𝑛 = ∑ 𝑛𝑖
𝑀
𝑖=1  process errors (in this subchapter we consider fixture locator deviations and the part 

mating feature deviation); 𝚪 is the fault pattern matrix with dimension 𝑚 × 𝑛 as follows,  

𝚪 = [

𝐂1𝐁1 0 … 0
𝐂2𝛟2,1𝐁1 𝐂2𝐁2 … 0

⋮ ⋮ ⋱ ⋮
𝐂𝑀𝛟𝑀,1𝐁1 𝐂𝑀𝛟𝑀,2𝐵2 … 𝐂𝑀𝐁𝑀

] 

(38) 

where 𝛟𝑗,𝑖 = 𝐀𝑗−1𝐀𝑗−2 …𝐴𝑖 for 𝑗 > 𝑖 and 𝛟𝑖,𝑖 = 𝐼 (we refer readers to Ref. [14] for more details 

on derivation of matrix 𝚪), and 𝜺 is an 𝑚 × 1 vector representing the noise term which is a 
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combination of the process noise (𝐰𝑖) and the measurement noise (𝐯𝑖) along all the stations in the 

assembly process. The linear model in Eq. (37) is called the deviation model and presents the 

effects of the deviation of the KCCs on the deviation of the measurements on KPCs.   

Based on Eq. (37), the corresponding variance model is  

𝑐𝑜𝑣(𝐲) = 𝚪 ∙ 𝑐𝑜𝑣(𝐮) ∙ 𝚪T + 𝑐𝑜𝑣(𝛆) (39.a) 

where 𝑐𝑜𝑣(∙) is the covariance matrix of a random vector. Since all the elements of  𝐮 are assumed 

to be independent of each other, 𝑐𝑜𝑣(𝐮) is a diagonal matrix. As 𝐮 is a vector that contains all the 

KCCs from station 1 through station 𝑀, we can represent the covariance matrix of 𝐮 as 

𝑐𝑜𝑣(𝐮) = 𝐷𝑖𝑎𝑔[𝑐𝑜𝑣(𝐮1), 𝑐𝑜𝑣(𝐮2),… 𝑐𝑜𝑣(𝐮𝑀)] (39.b) 

where 𝑐𝑜𝑣(𝐮𝑖)= 𝑑𝑖𝑎𝑔(𝜎1𝑖
2, 𝜎2𝑖

2, … , 𝜎𝑛𝑖𝑖
2), 𝜎𝑗𝑖

2 is variance of the j-th KCC at station i, and 𝑛𝑖 is 

the number of KCC’s at station i.  

4.3.2 Vectorization of the Variance Model in Multi-Station Assembly Processes 

In this section, we derive the vectorized variance model for Eq. (39.a). This can be carried out with 

vectorization operator 𝑉𝑒𝑐(.) that transforms a matrix into a vector. If we have an 𝑝 × 𝑞 matrix 

𝐙 = [𝐳1 𝐳2 ⋯ 𝐳𝑞] where 𝐳𝑖 ∈ 𝑅𝑝  represents the i-th column of the matrix, 𝑉𝑒𝑐(Z) is given as 

below, 

𝑉𝑒𝑐(𝐙) = [𝐳1
𝑇 , 𝐳2

𝑇 , … , 𝐳𝑞
𝑇]𝑇 (40) 

which is an 𝑝𝑞 × 1 vector. Using 𝑉𝑒𝑐(.) on a 𝑞 × 𝑞 symmetric matrix (e.g. 𝐙 is a covariance 

matrix) yields a vector with dimension 
𝑞(𝑞+1)

2
 because the redundant elements in the symmetric 

matrix can be eliminated.  

Vectorization of the variance model provides a linear model where the vectorized 𝑐𝑜𝑣(𝐮) in Eq. 

(39.a) denotes the unknown variables (variance of process errors to be estimated), the vectorized 
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𝑐𝑜𝑣(𝐲) in Eq. (39.a) is the known variables (from measurements), and the resulting design matrix 

is a function of fault pattern matrix 𝚪. We next present Proposition 1 to decompose the design 

matrix into two parts, i.e., (1) product/process and (2) sensor location information. This 

formulation enables us to optimize diagnosability of the diagnostic method by using compressive 

sensing principles [15].  

Proposition 1: Vectorized variance model of Eq. (6.a) can be formulated as a linear model 

𝐭 = 𝚲𝛀𝐛 + 𝝃 (41) 

where vector 𝐭 is from sensor measurements; matrix 𝚲 (the measurement matrix) is only 

determined by sensor placement, i.e., observation matrix 𝐂𝑖; matrix 𝛀 is only determined by the 

product and process information, i.e., matrices 𝐀𝑖 and 𝐁𝑖; vector 𝐛 denotes the variance change of 

the process errors; and vector 𝝃 represents the variance and covariance elements of the noise term 

𝜺. See Table 4-1 for interpretation of matrices 𝐀𝑖, 𝐁𝑖, and 𝐂𝑖. 

Proof: Proof is provided in Appendix II. 

Recall that the process faults are interpreted as the process errors which have large variance (i.e., 

beyond their design specification). Thus, vector 𝐛 in Eq. (41) includes two parts, i.e., (1) the design 

specification limit on variance of the process errors, and (2) the change of variance, namely, 

𝐛 = 𝜹 + 𝝈  (42) 

 where 𝝈 = [𝜎1𝑑
2 𝜎2𝑑

2 … 𝜎𝑛𝑑
2] is the design specifications of the n process errors in terms of 

variance, and 𝜹 = [𝜹1 𝜹2 … 𝜹𝑛] denotes the variance change of the n process errors.  Now, the 

vectorized variance model in Eq. (41) can be formulated as  

𝐭 = 𝚲𝛀(𝜹 + 𝝈) + 𝝃  (43) 

Since quality of the product usually deteriorates over the time, it is reasonable to assume 𝜹𝑖 ≥ 0 

(∀𝑖 = 1,… , 𝑛). For example, a process fault occurs if the corresponding element in 𝜹 is greater 
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than 0. Since the design specification of process errors 𝝈 is known in the design process, this term 

can be moved into the left hand side of Eq. (43) and let 𝐟 = 𝐭 − 𝚲𝛀𝝈, thus Eq. (43) can be rewritten 

as 

𝐟 = 𝚲𝛀𝜹 + 𝝃  (44) 

where f contains all the known terms regarding the measurements and the process design 

specifications. Matrices 𝚲 and 𝛀 are also known beforehand in the design process. Vectors 𝜹 and 𝝃 

are the unknown variables in the vectorized variance model that should be estimated. Let   

𝐃 = 𝚲𝛀  (45) 

be named the design matrix, using Eqs. (44) and (45), the estimation process is to estimate 𝜹 (the 

variance change of the corresponding process faults) and 𝝃 (noise of the system) based on the 

following linear model, 

 𝐟 = 𝐃𝜹 + 𝝃  (46) 

This estimation is the key for fault diagnosis of multi-station assembly processes as it determines 

which process errors having larger variance (i.e. process faults).  

4.4 Diagnosability Study and Optimal Sensor Placement Method using Compressive 

Sensing 

In this section, the diagnosability study of multi-station assembly processes with underdetermined 

systems is performed based on the compressive sensing theory. Sec. 4.4.1 presents the 

diagnosability analysis of multi-station assembly processes with underdetermined systems. Sec. 

4.4.2 proposes the optimal sensor placement method to optimize the diagnosability criterion. As 

illustrated in Figure 4-1, these two sections correspond to the third and fourth steps in the overall 

procedure of the proposed method.  
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4.4.1 Compressive Sensing based Diagnosability Study 

According to Eq. (46), a diagnosable system is defined as the case that the vector 𝜹 can be uniquely 

estimated. In an actual manufacturing environment, the number of sensors is usually less than that 

of the process errors; hence, Eq. (46) becomes a set of underdetermined linear equations as the 

number of equations is less than the unknown variables. Underdetermined linear equations result 

in non-existence of a unique solution for 𝜹 in Eq. (46) and thus make the system non-diagnosable.  

To handle the above challenge, we adopt the sparse solution which is the solution that has the 

minimum number of non-zero elements of 𝜹 in Eq. (46). Seeking sparse solution in the fault 

diagnosis approach is in compliance with multi-station assembly as justified in Sec. 4.1, namely, 

the probability of having less process faults is higher than that of having more process faults, 

assuming the process faults are independent of each other. Compressive sensing [70, 71] enables 

to achieve sparse solutions for underdetermined linear equations in an effective way. Thus, in this 

study, we study the sparse solution for Eq. (46) using compressive sensing theory (Sec. 4.4.1.1), 

and then conduct the diagnosability analysis for multi-station assembly processes (Sec. 4.4.1.2). 

4.4.1.1 Sparse Solution using Compressive Sensing 

Compressive sensing is a novel sensing approach as opposed to the traditional sampling method 

that follows the Shannon-Nyquist rate in signal processing. Under the compressive sensing 

paradigm, the signal can be reconstructed from a smaller number of samples than the Shannon-

Nyquist rate [71]. Compressive sensing relies on a fundamental principal, namely, sparsity. Let 

𝐱𝑛×1 be a signal, and 𝚿 = [ 𝝍1 𝝍2 … 𝝍𝑛] be a representation matrix with dimension of 𝑛 × 𝑛, 

then 
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𝐱 = 𝚿𝐬  (47) 

where 𝐬𝑛×1 is the vector of coefficients that present the original signal 𝐱 at the basis of 𝚿. The 

signal x can be represented as a sparse vector if most of the elements of 𝐬 are zero. Vector 𝐬 is 𝑣-

sparse if it only has 𝑣 nonzero elements (𝑣 is called the sparsity level). Many of the natural and 

engineered signals, at some certain basis 𝚿 (wavelet, Fourier, etc.), are sparse (note that if 𝐱 itself 

is sparse, then 𝚿 = 𝐈)[70, 71]. The sparsity principle is the foundation to reconstruct the signal 

from fewer measurements [70, 71].  Let 𝚽𝑚×𝑛  be a sensing matrix (determined by signal sampling 

scheme) with 𝑚 < 𝑛, then the compressive sensing measurements can be represented as  

𝐲 = 𝚽𝐱 + 𝐞  (48) 

where 𝐲𝑚×1 denotes the measurements, and 𝐞𝑚×1 represents the measurement noise. Substituting 

Eq. (47) into Eq. (48), we have: 

𝐲 = 𝚽𝚿𝐬 + 𝐞  (49) 

Under the compressive sensing paradigm, the dimension of measurement y could be smaller than 

that of the signal s, namely 𝑚 < 𝑛, so the linear equations in Eq. (49) are underdetermined. Thus, 

the sparse solution is utilized. This can be carried out through solving 𝑙0-norm minimization  [71] 

as follows 

min ‖𝐬‖0     s.t. ‖𝐲 − 𝚽𝚿𝐬 ‖2 < 𝛾  (50) 

where  ‖𝐬‖0 is the 𝑙0-norm of the vector 𝐬 which simply represents the number of non-zero 

elements of the vector, and parameter 𝛾 is the noise level ( ‖𝐞‖2 ≤ 𝛾) which enables the sparse 

solution to be robust, namely, small changes in measurements 𝐲 result in small changes in the 

solution. However, solving Eq. (50) is NP-hard [7] as it needs a combinatorial search, i.e., to search 

all possible subsets of 𝐬 with a minimum number of non-zeros. There have been a number of sparse 



 

 

60 
 

solutions methods reported in the literature to estimate the solution for Eq. (50), such as  𝑙1 norm 

minimization [9, 76], greedy methods [14, 77, 78], and Bayesian methods [15, 17].  

There is a similarity between the vectorized linear model Eq. (44) for multi-station assembly 

processes and the linear model Eq. (49) in compressive sensing context. The similarity can be 

highlighted if we let 

𝚽 = 𝚲  (51) 

𝚿 = 𝛀  (52) 

Proposition 1 in Sec. 4.2.3 proves the measurement matrix 𝚲 is only determined by sensor 

placement in multi-stations. Since matrix 𝚽 in compressive sensing context only presents the 

sensor sampling scheme of the signal, Eq. (51) can be justified. Moreover, Eq. (52) indicates that 

the process/product matrix 𝛀 is interpreted as the signal representation matrix 𝚿 in compressive 

sensing context. Equation (52) can also be verified through Proposition 1, which proves that the 

process/product matrix 𝛀 is only determined by product and process information.  

Due to the large number of process errors and relative small number of measurements, it is 

reasonable to assume that the vectorized variance model by Eq. (46) is an underdetermined linear 

system and thus we seek for the sparse solution of 𝜹. The decomposition of matrix D into 

product/process matrix 𝛀  and measurement matrix 𝚲 shows the clear relationship between the 

compressive sensing formulation Eq. (49) and our vectorized variance model Eq. (46). Thus, we 

utilize the criteria exist in compressive sensing theory which depend on the properties of matrix 𝐃 

in Eq. (45). Thus, by optimizing matrix 𝚲 (in 𝐃 = 𝚲𝛀, Eq. (45)), we may achieve the required 

properties for matrix 𝐃. The inherent connections and consistence between our sensor placement 

problem and the CS formulation are justified through Proposition 1, and Eqs. (51) and (52) (see 

Appendix II for the proof). 
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According to the similarities between multi-station assembly processes and compressive sensing 

presented in Eqs. (51) and (52), fault diagnosis for underdetermined systems can be carried out 

using the compressive sensing approach. Using the sparse solution concept based on Eq. (50), fault 

diagnosis (i.e. the solution for Eq. (46)) can be formulated as   

min ‖𝜹‖0     s.t. ‖𝐟 − 𝐃𝜹 ‖2 < 𝛾  (53) 

where 𝐃 = 𝚲𝛀, and ‖𝜹‖0 represents the number of non-zero elements, namely, the number of 

process faults. The sparse solution formulation in Eq. (53) is an NP-hard problem [7]. Therefore, 

finding the exact solution to Eq. (53) via instinctive computation is practically untenable. 

Accordingly, some sparse estimation algorithms have been devised, such as convex optimization 

algorithms [8, 18], greedy algorithms [5, 12, 14] and Bayesian algorithms [15, 17]. 

Bayesian algorithms, such as the relevance vector machine (RVM) method  [15, 17], have recently 

received more attention than other sparse estimation algorithms, due to their more accurate sparse 

estimation performance [43]. Furthermore, as opposed to other sparse estimation algorithms, the 

Bayesian algorithms are able to estimate the noise variance, which is required in the fault 

diagnosis. Therefore, in Sec. 4.1, based on the RVM method [25], we developed an enhanced 

RVM algorithm [58] to solve underdetermined linear systems such as Eq. (53). This method has a 

Bayesian learning framework to estimate the posterior distribution on 𝜹 instead of just a point 

estimate, and also provides the estimate of the noise 𝝃 in Eq. (46). The key idea of RVM is that it 

enforces a parameterized prior on 𝜹 that encourages sparsity in its posterior representation, namely, 

few nonzero values. For more details of the RVM and the enhanced RVM method, please refer 

Refs. [25] and [2]. 
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4.4.1.2 Diagnosability analysis of Multi-Station Assembly Processes 

In general, full diagnosability of process faults ensures that all the process errors can be uniquely 

estimated. In other words, the unique sparse solution for Eq. (53) can be achievable. The criteria 

for unique sparse solution of Eq. (53) have been discussed in the literature of Compressive Sensing 

theory [18], and are manifested through some requirements on the structure of matrix D (Eq. (45)). 

According to Eq. (45), matrix D is determined by process/product matrix 𝛀 and measurement 

matrix 𝚲 (the results of Proposition 1). Since matrix 𝛀 is specified in the design process, it cannot 

be changed during assembly processes to achieve the required conditions on D. However, matrix 

𝚲 is only determined by the sensor placement (based on Proposition 1). Thus, it is possible to 

change the sensor placement to achieve an optimal measurement matrix 𝚲 and then D by which 

the unique sparse solution can be achieved with a high probability.  

The first criterion discussed in Compressive Sensing is represented as Restricted Isometry 

Property (RIP) [70, 71, 76]. However, the challenge with RIP condition is that its evaluation is 

NP-hard [79]. Therefore, instead of RIP, a computationally efficient condition to evaluate matrix 

D has been investigated, such as the mutual coherence in compressive sensing theory [71, 79]. The 

mutual coherence of matrix D is defined as follows, 

𝜇(𝐃) = max
|𝐝i

T𝐝j|

‖𝐝i‖‖𝐝j‖
, 1 < 𝑖, 𝑗 < 𝑛 (𝑖 ≠ 𝑗)  

(54) 

where 𝐝𝑖 is the i-th column of the design matrix 𝐃, and ‖∙‖ represents the 𝑙2-norm of a vector. 

Indeed, the mutual coherence 𝜇(𝐃) measures the largest absolute and normalized inner product 

(correlation) between different columns in matrix D. An alternative way to represent the mutual 

coherence 𝜇(𝐃) is through using the Gram matrix 𝐆 = 𝐃̅𝑇𝐃̅ [6], where 𝐃̅ is the normalized matrix 

𝐃, and the mutual coherence is the largest absolute value of the off-diagonal elements of the Gram 

matrix 𝐆. Note that minimizing the correlation between the columns of matrix 𝐃 contributes to 
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toward orthogonality between the columns of matrix 𝐃 (according to the inner product concept). 

Therefore, matrix 𝚲 could be optimized based on the results of Proposition 1, i.e., 𝐃 = 𝚲𝛀, to 

improve mutual coherence of 𝐃. 

As indicated by Candes and Romberg [70], the unique solution to Eq. (53) is achieved with 

overwhelming probability if the following condition holds, 

𝑚 ≥ 𝐶 ∙ 𝜇2 (𝐃) ∙ 𝑣 ∙ 𝑙𝑜𝑔 𝑛  (55) 

where m and n represent the numbers of measurements and signal dimension, respectively, 𝑣 is the 

0sparsity level; and 𝐶 is some positive constant which can be estimated based on the assumption 

that the sensing matrix is random [16]. However, in our application, measurement matrix 𝚲 is 

constructed based on the sensor placement (location and distribution of the sensors), which is not 

random. Hence, the constant 𝐶 is unknown in our application; but we can still utilize this theoretical 

condition as a qualitative relationship to justify the effect of mutual coherence in seeking unique 

sparse solution. Indeed, for a given multi-station assembly model, where 𝑚 and 𝑛 are usually fixed 

quantities, and the sparsity level 𝑣 (actual number of process faults) is unknown, then clearly the 

only way to improve the diagnosability (probability of achieving the unique solution) is to 

minimize mutual coherence or its variant average mutual coherence which is discussed in the 

following. 

Essentially matrices with low mutual coherence are required for accurate sparse estimation. Some 

theoretical results in Refs. [80, 81] have shown that if the inequality 

 ‖𝜹‖0 ≤
1

2
(1 +

1

𝜇(𝐃)
)  

(56) 

holds, then vector 𝜹 can be uniquely estimated from the measurements 𝐟 = 𝐃𝜹 (non-noisy 

measurements), via some sparse estimation algorithms. From this inequality, it can be seen that 

minimizing mutual coherence 𝜇(𝐃) increases the probability of successfully reconstructing 𝜹; and 
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this result is consistent with Eq. (54). However, Elad [6] argues that minimizing the mutual 

coherence (Eq. (54)) may not improve the actual performance of sparse estimation techniques; but 

an average measure of mutual coherence does. Elad’s claim is based on the fact that the upper 

bound presented in Eq. (56) has been derived according to a worst-case standpoint (i.e., maximum 

pairwise correlation between columns of matrix 𝐃). In other words, optimizing the mutual 

coherence only addresses the effect of the columns of matrix D with maximum pairwise 

correlation, and ignores the effect of all other columns, which however also have impact on the 

probability of obtaining the unique solution. This issue can be resolved by the average mutual 

coherence for optimization, namely, considering the effect of all other columns of matrix D in 

sparse estimation performance [4]. The average measure of mutual coherence can be denoted by 

the average mutual coherence which is defined as follows 

𝜇𝑎𝑣𝑔(𝐃) =
∑ |gij|i≠j

n(n−1)
  

(57) 

where gij represents the element of the Gram matrix 𝐆 = 𝐃̅𝑇𝐃̅ at the i-th row and j-th column, and 

𝑛 is the number of process errors.  

The sparse estimation performance is computed as following. Assume we randomly generate 𝑟 

process fault scenarios , namely, 𝜹𝑖 (∀𝑖 = 1,… , 𝑟) represents the i-th process fault scenario. As 

specific, we generate 𝜹𝑖 with sparsity level of  ‖𝜹𝑖‖0 = 𝑣 for 𝑟 cases, where the location of the 

process faults (i.e., location of nonzero values in vector 𝜹𝑖) has been selected randomly, and the 

magnitude of process faults (i.e., nonzero values in vector 𝜹𝑖) has been generated with some 

considerations of the application case (more details are provided in Sec. 4.5). Let 𝜹𝑖̂ be the 

enhanced RVM estimate of 𝜹𝑖. The estimation error corresponding to the i-th process fault scenario 

is denoted by  
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𝑅𝑖 = ‖𝜹𝑖 − 𝜹𝑖̂‖   ∀𝑖 = 1, … , 𝑟  
(58) 

 and its relative error is  

𝑖 =
𝑅𝑖

‖𝜹𝑖‖ 
   ∀𝑖 = 1, … , 𝑟  

(59) 

where ‖∙‖ denotes a 𝑙2-norm of a vector. Then, we define the diagnosability criterion as the average 

relative error (averaged over 𝑟 process fault scenarios) as follows 

𝜗𝑟 = 𝐸𝑟(𝑖) < 𝜃  (60) 

where 𝜃 is a user-defined scalar threshold for ensuring unique sparse solution. Namely, if average 

relative error 𝜗𝑟 is very small enough (determined by 𝜃 in Eq. (60)), it means that all the r process 

fault scenarios have been accurately estimated; hence the unique solutions have been achieved for 

all the fault scenarios, and consequently the related assembly process is diagnosable.  Therefore, 

we define diagnosability of the system as the following: 

Definition 1: A multi-station assembly processes with underdetermined linear equation is called 

diagnosable if the unique sparse solution to Eq. (53) is achieved, i.e., the condition of Eq. (60) is 

satisfied.  

In the following section, the conditions to achieve the unique sparse solution are investigated. We 

formulate the condition to achieve the unique sparse solution for Eq. (53) as an optimization 

problem seeking an optimal measurement matrix 𝚲 by which the average mutual 

coherence 𝜇𝑎𝑣𝑔(𝐃) is minimized.  

4.4.2 Optimal Sensor Placement based on Compressive Sensing    

The optimal sensor placement in multi-station assembly processes is formulated as an optimization 

problem which minimizes the average mutual coherence 𝜇𝑎𝑣𝑔(𝐃) defined in Eq. (24) by seeking 

the optimal sensor placement 𝚲∗, namely, 
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Min  𝜇𝑎𝑣𝑔(𝐃)  (61.a) 

Subject to  𝛂 ∈ 𝐹 (61.b) 

𝐮 ∈ 𝑆 (61.c) 

where both 𝛂 and 𝐮 are decision variables; 𝛂 refers the sensor’s station assignment; 𝐮 denotes the 

sensor locations (coordinates) on the parts; F and S represent the sensor’s possible station 

assignments and feasible locations on the parts, respectively, which are presented in details as 

follows. Sensor’s station assignment refers the station in which the sensor should be placed and is 

denoted as 

 𝛂 = [𝛼1 𝛼2 … 𝛼𝑐 ]
𝑇  (62) 

where 𝛼𝑖 represents the station to which the i-th sensor is assigned, and 𝑐 is the total number of 

sensors to be utilized.  For example, if there is an assembly process with three stations, and four 

sensors are utilized to take the measurements on the parts in the assembly operations. The sensors 

are distributed as follows: (1) the first and the second sensors are assigned to station 1, (2) the third 

sensor is assigned to station 2, and (3) the fourth sensor is assigned to station 3. Using Eq. (61.a), 

the sensors’ station assignment for the above assembly processes can be represented by  

𝛂 = [𝛼1 𝛼2 𝛼3  𝛼4 ]
𝑇 = [1 1 2 3]𝑇. 

It should be noted that there are some constraints on the first level of design variables Eq. (61.a), 

i.e., assigning the sensors to some specific stations. This is because that sensor cannot be assigned 

to the stations when parts to be measured have not arrived at the assembly process. For example, 

if part number 2 comes to the assembly process at station 2, the measurements for that part cannot 

be taken before station 2. By considering this constraint, the feasible candidates for 𝛼𝑖 in Eq. (61.a) 

are defined with 𝑓𝑖 (for the above example, 𝑓2 = [2  3 ]𝑇) and consequently the constraint on the 

sensor’s station assignment is represented with 𝛂 ∈ 𝐹 where 𝐹 = [𝑓1 𝑓2 … 𝑓𝑐 ] presents all the 

possible sensor assignments, as shown in Eq. (61.a). The sensor location is represented by the 
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coordinates of the sensors on the corresponding part, and is denoted as 𝐮 = [𝑥1 𝑦1 𝑧1  … 𝑥𝑐  𝑦𝑐 𝑧𝑐]
T 

where (𝑥𝑖 𝑦𝑖  𝑧𝑖) represents the coordinate of the i-th sensor. The feasible design space for 𝐮 is 

denoted by S in Eq. ((61.a).c), which is the secondary level of constraints.  

The problem in Eq. (61.a) is a mixed integer nonlinear programming model. The objective function 

𝜇𝑎𝑣𝑔(𝐃) is a complex nonlinear function of u and 𝛂, the design space 𝑆 is a continuous non-convex 

set, and the sensor assignments feasible region 𝐹 contains a set of integer values. We solve the 

problem in two steps. In the first step, we find the feasible region for sensors’ station assignment 

𝛼 (integer programming part of the model). In the second step, given the feasible sensors’ station 

assignment 𝜶, we utilize the sequential space filling methods (adopted from our prior work [82],) 

to solve the resulting nonlinear programming model for u. The sequential space filling method is 

based on the sampling approaches (such as sequential exponential set, Hammersley set, Monte 

Carlo, etc.) to search optimal designs. Then the optimal solution is determined by comparing 

solutions across the assignments, and finding the sensor locations with the minimum 𝜇𝑎𝑣𝑔(𝐃).  

This two-step solution approach may only be utilized for small sized problem (i.e., the number of 

parts in the multi-station assembly processes is small) due to the exhaustive search implemented 

in the first step. For large sized problems, the metaheuristic Tabu search based algorithm 

developed in Ref [83] can be utilized. However, description of the working procedures of this 

algorithm is out of the scope of this subchapter, and the readers are referred to [83] for more details. 

When the resulting optimal sensor placement is obtained from Eq. (61.a), the enhanced RVM [58] 

is run for r process fault scenarios and then the diagnosability criterion in Eq. (60) is applied. If 

the diagnosability criterion is satisfied, we can conclude that a diagnosable system is achieved 

through the optimal sensor placement. 
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4.5 Case Studies 

This section demonstrates the proposed sensor placement optimization method with two case 

studies. In Sec. 4.5.1, the effectiveness of the proposed method is evaluated in improving the 

diagnosability for a single set of process faults. In Sec. 4.5.2, a multiple sets of process faults are 

considered for a more general diagnosability study. 

4.5.1 Fault Diagnosis for a Single Set of Process Faults 

An assembly model from an autobody assembly process is used for demonstrations of the proposed 

method. The assembled product is a floor pan that has four parts shown in Figure 3-4 For 

simplification we refer to these four parts (left-hand floor pan (LFP), right-hand floor pan (RFP), 

left bracket (LB), and right bracket (RB)) as part 1, part 2, part 3, and part 4, respectively. Figure 

3-5 illustrates the multi-station assembly processes for the floor pan. The parts are being held by 

fixtures and part-mating features during the assembly operations. The KCC’s are adopted from our 

previous research work [32]. The locations of the KCCs are presented in Figure 4-3 and Figure 

4-4. Fixtures 3-2-1 are utilized in each station to locate the parts and subassembly as illustrated in 

Figure 4-4. Here, triangles present “3” and straight lines present “2-1”.  

 

 

 

 

 

 

Figure 4-3. The Floor pan assembly process with the fixtures locators 
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Figure 4-4. KCC locations for left-hand and right-hand floor 

Table 4-2 provides the coordinates of KCCs in x-y-z directions. Here for simplification, all the 

fixture locators are for floor pan left-hand, right-hand or subassembly locators, and not for 

brackets.  

The fixture errors and the part-mating feature errors are considered as the process errors or KCCs. 

There are 33 KCCs in this assembly process and four measurement points (sensor locations) to be 

located during the assembly processes. As presented in Figure 3-5, each part has one measurement 

point: M1 on part 1, M2 on part 2, M3 on part 3, and M4 on part 4, respectively. These measurements 

can only be taken in the stations where the corresponding part has been assembled. For example, 

M3 on part 3 cannot be taken at station 1 since part 3 has not yet arrived at the assembly process 

at station 1. With the initial sensor placement shown in Figure 3-5, the design variables has two 

levels as follows: (1) sensor’s station assignment e.g., 𝜶 = [2,1,2,3]𝑇 representing M1, M2, M3 and 

M4 are assigned to stations 2, 1, 2, and 3, respectively, and (2) the sensor locations on the parts 

𝐮 = [𝑥1 𝑦1  𝑧1 …𝑥4 𝑦4 𝑧4]
Tdenoting the coordinates of the sensors. Since the change in z direction 

of the parts is very small and their effect on the sensor placement optimization is assumed to be 

small too, they are removed from the second level of design variables u. The initial u is presented 

in Table 4-3.  
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Table 4-2.  The Coordinates for KCCs 

 

 

 

 

 

 

 

 

Given the floor pan assembly operations, and the initial sensor placement, the diagnosability study 

of a single set of process faults is carried out. Following the method presented in Sec. 4.2.3.1, the 

state-space model of the floor pan is constructed. Applying the methods in our prior research [72, 

74], fault pattern matrix Γ in Eq. (37) is constructed. There are 33 KCCs and 8 KPCs 

(measurements) in the floor pan assembly processes, thus fault pattern matrix Γ has dimension 

of 8 × 33. The 33 KCCs of the floor pan are assumed to have normal distributions. The design 

specifications of their variability are given in terms of tolerance range which is defined as six times 

of the standard deviation of the fixture errors (6-sigma). For KCC1 to KCC30, the design 

specification of tolerance ranges are given as 0.5 mm, and KCC31 to KCC33 as 1 mm. By running 

the Monte Carlo simulation using 3DCSTM software, the assembly process can be accurately 

simulated. 

The floor pan assembly processes is simulated with a single set of purposely designed process 

faults which are manipulated in the way that the tolerance ranges of KCC5, KCC10, KCC16, KCC26 

are increased to 1 mm, which is beyond their design specification, i.e., 0.5 mm (change of variance 

KCCs X Y Z 

P11 857.66 -591.95 36.09 

P12 1719.23 -619.04 36.09 

P13 804.10 -207.98 3.72 

P14 1129.95 -700.00 35.22 

P15 1654.22 -700.00 35.22 

P16 1800.00 -482.95 0 

P24 734.47 681.35 35.22 

P25 1696.78 681.35 35.22 

P26 1800.00 389.1549 0 

P13_s 963.68 567.76 36.09 

P14_s 1402.41 -430.90 0 

P15_s 1402.41 333.92 0 
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∆= 0.02). The number of samples for the simulation is set at 400. After the simulation, the 

measurements of the 8 KPCs of these 400 samples are collected (𝐲 in Eq. (37)).  

Following Proposition 1, the vectorized variance model for the initial floor pan assembly processes 

is constructed. The design matrix 𝐃 = 𝚲𝛀 is also constructed.  The dimension of matrix 𝐃 is 36 ×

33 as there are 8 KPCs (leading to  
8×9

2
=  36 rows in the matrix that basically accounts for the 

number of the upper-triangular elements of the covariance matrix of 𝐲 in Eq. (39.a)).) and 33 

KCCs. The rank of matrix 𝐃 is 26, so we have an underdetermined system. Calculating the 

measurements covariance matrix vectorized in the vector 𝐭 in Eq. (43) and using the design 

specification limits on the KCCs, namely, 𝛔 in Eq. (42) (i.e., 0.5/6 mm for KCC1- KCC30 and 1/6 

mm for the rest of KCCs) from the vector 𝐟 (Eq. (44)). 

According to Sec. 4.4.1, the compressive sensing based diagnosability study is carried out for the 

initial floor pan model. The enhanced RVM is used as the sparse solution method. Following the 

diagnosability analysis presented in Sec. 4.4.1, the enhanced RVM [58] was run, diagnosability 

criterion 𝝑𝒓 defined in Eq. (60) is verified (note that here r=1 since there is only one process fault 

scenario is considered). A summary of the reported results of the fault diagnosis for the initial 

matrix 𝐃 is given in 

Table 4-4. The user-defined 𝜽 denoting the threshold for uniqueness analysis of sparse solution is 

set as 5%. The resulting 𝝑𝒓 for the initial sensor layout is 0.870 (87.0%), which is much larger 

than 𝜽 and indicates that the sparse solution is not unique. Thus, the assembly system is not 

diagnosable given the current sensor placement (i.e.,𝜶 = [𝟐, 𝟏, 𝟐, 𝟑]𝑻  
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Table 4-3. Design parameters and optimal results for sensor locations 

Design 

variables 

Initial 

location (u) 

Design space Optimal 

location 

𝑥1 1285.55 (1200,1400) 1223.12 

y1 -643.50 (-550, -643.50) -561.35 

𝑥2 1285.55 (1200,1400) 1338.39 

𝑦2 662.50 (550, 662.89) 608.76 

𝑥3 1615.14 (1500, 1650) 1571.99 

𝑦3 -442.98 (-350,-450) -442.20 

𝑥4 1615.14 (1500, 1650) 1591.83 

𝑦4 354.66 (350 ,450) 359.92 
 

Table 4-4. Matrix properties and 𝛝𝐫  for the initial and optimal sensor placement 

Initial sensor placement Optimal sensor 

placement (𝐃∗) 

Avg. mutual 

coherence 
𝜗𝑟   Avg. mutual 

coherence 
𝜗𝑟   

0.214 0.870 0.136 0.041 
 

Table 4-5. Sensor’s station assignments scenarios for the floor pan and the minimum, maximum and the mean 

of the mutual coherence for each candidate. 

 

 

 

 

 

 

 

 

 

 

 

Sensor station 

assignment 

Minimum avg. 

mutual coherence 

Mean of the avg. 

mutual coherence 

Maximum avg. 

mutual coherence 

1-1-2-3  0.1641 0.1723 0.1798 

1-2-2-3 0.1743 0.1877 0.2009 

1-3-2-3 0.1867 0.1972 0.2053 

1-1-3-3 0.1360 0.1390 0.1418 

1-2-3-3 0.1480 0.1551 0.1605 

1-3-3-3  0.1538 0.1621 0.1682 

2-1-2-3 0.1924 0.2030 0.2136 

2-2-2-3 0.1743 0.1877 0.2009 

2-3-2-3 0.1867 0.1972 0.2053 

2-1-3-3 0.1739 0.1773 0.1813 

2-2-3-3 0.1480 0.1551 0.1605 

2-3-3-3 0.1538 0.1621 0.1682 

3-1-2-3 0.1987 0.2051 0.2087 

3-2-2-3 0.1881 0.1921 0.2007 

3-3-2-3 0.1652 0.1721 0.1834 

3-1-3-3 0.1714 0.1747 0.1787 

3-2-3-3 0.1774 0.1787 0.1807 

3-3-3-3 0.1585 0.1622 0.1669 
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and initial u presented in Table 4-3). In the following, our optimal sensor placement method 

presented in Sec. 4.4.2 is utilized to increase the possibility of achieving the unique sparse solution, 

namely, improve the diagnosability for the process faults in the floor pan model. The proposed 

optimal sensor placement aiming to minimize the average mutual coherence modeled by Eq. (24) 

includes determining the optimal sensor’s station assignment 𝜶∗ and the sensor locations 𝐮∗ in 

multi-station assembly processes. In our case study, for the sensor locations, we have eight design 

variables which denote the coordinates of the sensors along the axes x and y. The design space (S 

in Eq. (61.a)) for these variables is given in the third column of Table 4-3. The mutual coherence 

values before and after the optimization is shown in Table 4-4. The sensor’s feasible station 

assignment F is provided in Table 4-5 (column 1). There are 18 candidates for the sensor’s station 

assignment.  

The number of samples for the sequential space filling is set to 1000, and we have 18 candidates 

for the sensor sensor’s station assignment. Thus, there are a total of 18,000 alternatives. The 

corresponding design matrix D should be constructed for each alternative. The average mutual 

coherence for each of the constructed matrices D is calculated. The results on the minimum, mean, 

and maximum of the average mutual coherence for each candidate are reported in Table 4-5. From 

these 18 cases, the sensors’ station assignment  𝜶∗ = [𝟏 𝟏 𝟑 𝟑 ]𝑻 has the smallest average mutual 

coherence. The Optimal sensor locations 𝐮∗ is provided in the 4th column of Table 4-3. 

Given the optimal solutions for Eq. (61.a), i.e., 𝚲∗ which results in the least average mutual 

coherence for matrix D, we would like to verify if the resulting optimal sensor layout provides 

sufficient diagnosability for the floor pan assembly model. Again, the enhanced RVM method is 

utilized to solve Eq. (53) given the optimal matrix 𝐃∗  = 𝚲∗𝛀  (from Eq. (45)) and vector f. The 

enhanced RVM is run and the diagnosability criterion 𝜗𝑟 is 0.0409 (4%) (Table 4-4), which is 
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smaller than the user-defined 𝜃 that is set to 5%. The small value of 𝜗𝑟 indicates the existence of 

a unique sparse solution for Eq. (53) which uniquely identifies the process faults as KCC5, KCC10, 

KCC16, and KCC26. These exactly match the faults we simulated to the process.  

4.5.2 Fault Diagnosis for Multiple Sets of Process Faults 

In the previous case study, the optimal sensor placement method is verified for a specific set of 

process faults introduced to the assembly process (i.e. KCC5, KCC10, KCC16, and KCC26). Now, 

the question that could be asked is that whether the proposed method is only effective for these 

four process faults. How about another set of process faults with size of four of KCCs (e.g. KCC2, 

KCC7, KCC20, and KCC24). In this case study we demonstrate that the optimal sensor placement 

is also effective for diagnosis of many other sets of process faults (different scenarios). This case 

study is originally adopted from the work of Elad [6] where he proposes an optimal sensing matrix 

for compressive sensing problems. We adopted this case study to our multi-station assembly 

processes application. This case study includes the following steps. 

Step 1- Simulate multiple sets of process faults: In this step we simulate r=200 process fault 

scenarios including 200 vector 𝜹 of Eq. (53), by randomly picking 4 process errors from KCC1 

through KCC33 , and purposely increasing their tolerance ranges (the value of the variance change 

is randomly selected from a normal distribution with mean of 0.02, and standard deviation of 

0.001).   

Step 2- Generate the initial case: In this step we choose the initial design matrix D as the same as 

Sec. 4.5.1. Through the simulation process for the floor pan assembly also presented in the 

previous section, we construct the vector  𝐟 in Eq. (53) for 200 times given the same initial D.  

Step 3- Test the diagnosability criterion 𝜗𝑟 for D: In this step, we carried out the diagnosability 

study for the initial D, through using the enhanced RVM for all the 200 cases. In other words, we 
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solve Eq. (53) for all the r =200 scenarios simulated in Step 2 with the enhanced RVM method, 

and calculate the 𝜗𝑟 through Eq. (60). 

Step 4- Optimize sensor placement: The optimal sensor placement method proposed in Sec. 4.4 is 

utilized to determine the optimal measurement matrix 𝚲∗ which consequently provides 𝐃∗  = 𝚲∗𝛀  

for the provided floor pan assembly process. 

Step 5- Test the performance of the proposed method: In this step we simulate vector 𝐟 for all the 

200 scenarios provided in Step 1 given 𝐃∗ and test the performance of the sensor placement 

method. As in Step 3, we utilize the enhanced RVM method for all the 200 cases generated earlier 

in this step and calculate 𝜗𝑟. 

Table 4-6. 𝛝𝐫 for multiple sets of process faults with the initial and optimal design matrix 

 

 

 

Following the steps mentioned above, we are able to compare the diagnosability of the initial D 

with the optimal 𝐃∗ in identifying multiple (200) sets of process faults that are randomly simulated. 

The results for the case study are reported in Table 4-6. According to Table 4-6, after optimization, 

the diagnosability criterion  𝝑𝒓  the 200 cases is very small: 0.068. However, before optimization, 

for the initial case, 𝝑𝒓  is very large which does not present a unique solution. Moreover, among 

the 200 scenarios that the enhanced RVM was run with the optimal sensor placement, only 4 of 

them have 𝝑𝒓 larger than 7% (the user-defined 𝜽 is set to 7% in this case study), but for the initial 

case, all the 200 scenarios have larger 𝝑𝒓 than 7%.  Therefore, the proposed sensor placement 

method optimizes the sensor distribution for the floor pan with 𝚲∗ that provides sufficient 

diagnosability for 196 out of 200 randomly simulated process fault scenarios. This means that for 

Design matrix 𝜇𝑎𝑣𝑔(𝐃) 𝜗𝑟  (%) Non-diagnosable 

systems 

Initial case (𝐃) 0.2136 102% 200 

Optimal case (𝐃∗) 0.1360 6.8% 4 
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196 out 200 sets of process faults, the diagnostic method (enhanced RVM) successfully identify 

all the process faults with the optimized sensor placement. 

4.6 Concluding Remarks 

This subchapter investigates an optimal sensor placement method for multi-station assembly 

processes with underdetermined systems. We vectorize the variance model that is derived using 

the state space model. This formulation helps us draw close connections between the 

diagnosability study of the vectorized variance model and compressive sensing principles. 

Average mutual coherence is adopted from the compressive sensing theory to carry out the 

diagnosability analysis. An optimization method is proposed for optimal sensor placement in a 

multi-station assembly process based on the average mutual coherence criterion.  

Two case studies are presented to demonstrate the effectiveness of the proposed method. In the 

first case study, a single set of process faults are intentionally introduced to the assembly process 

of a floor pan. Given the initial sensor placement, the diagnosability analysis of the floor pan model 

is carried out. The diagnosability criterion is computed as 𝜗𝑟=87%, which demonstrates that the 

floor pan assembly model is not diagnosable given the initial sensor placement. Then the optimal 

sensor placement for the given case study is determined through minimizing the average mutual 

coherence. According to the resulting optimal sensor placement using the proposed method, all 

four of the process faults in the floor pan assembly model are identified accurately with 

diagnosability criterion 𝜗𝑟=4.059%. Therefore, the proposed method offers the sufficient 

diagnosability for the illustrated case study. The second case study illustrates the effectiveness of 

the proposed method for multiple sets of process faults. 200 scenarios of process faults are 

randomly generated and introduced to the floor pan assembly model. After applying the proposed 

optimal sensor placement method, 196 out of 200 scenarios, which were not diagnosable before 
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using the optimal sensor placement, were identified diagnosable. Also, the average of the 

diagnosability criterion for all 200 cases (𝜗𝑟 decreased from 102% to 6.8%) indicates the 

effectiveness of the proposed method in improving the diagnosability for the process faults. 

In this subchapter we present that by minimizing the average mutual coherence we can reach to a 

diagnosable multi-station assembly processes. However, the challenging issue that still remains is 

that how small the average mutual coherence should be. In other words, under which conditions 

the proposed method could effectively make a fully diagnosable system. Indeed, holding these 

conditions ensures the unique sparse solution for our under-study underdetermined linear system 

Eq. (53). There is a need to theoretically investigate these requirements for the enhanced RVM 

method which is used as the fault diagnosis approach in the manuscript. In the future we are going 

to research the theoretical conditions that the proposed optimal sensor placement method along 

with the underlying fault diagnosis method (enhanced RVM) provides the unique sparse solution. 

Furthermore, It should be mentioned that our optimization model in Eq. (61.a) can be extended to 

a more general case, by considering the number of measurements as a decision variable, along 

with 𝛼, and 𝑢. This will enable us to determine the minimum number of measurements leading to 

optimal sensor placement. We are going to study this extension in our future research work as well. 
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Chapter 5. Real-time Monitoring in Advanced 

Manufacturing Processes from Multiple Sensor Data 

The objective of this chapter is to realize real-time monitoring of process conditions in advanced 

manufacturing using multiple, heterogeneous sensor signals. To achieve this objective we propose 

an approach invoking the concept of sparse estimation called online sparse estimation-based 

classification (OSEC). The novelty of the OSEC approach is in representing data from sensor 

signals as an underdetermined linear system of equations, and subsequently, solving the 

underdetermined linear system using a new developed greedy Bayesian estimation method. We 

apply the OSEC approach to two advanced manufacturing scenarios, namely, a fused filament 

fabrication (FFF) additive manufacturing process (AM); and an ultraprecision semiconductor 

chemical mechanical planarization (CMP) process. Using the proposed OSEC approach, process 

drifts are detected and classified with higher accuracy compared to popular machine learning 

techniques. Process drifts were detected and classified with a fidelity approaching 90% (F-score) 

using OSEC. In comparison, conventional signal analysis techniques, e.g., neural networks, 

support vector machines, quadratic discriminant analysis, naïve Bayes, were evaluated with F-

score in the range of 40% to 70%3.  

5.1 Introduction 

5.1.1 Objective and Motivation 

The aim of this work is to achieve real-time monitoring in advanced manufacturing processes using 

multidimensional, heterogeneous sensor data. This objective is realized by developing a novel 

                                                 
3 Bastani, K., Rao, P, and Kong, Z., 2015, “An online sparse estimation based classification approach for 

real-time monitoring in advanced manufacturing processes from heterogeneous sensor data,” IIE 

Transactions (in press). DOI: 10.1080/0740817X.2015.1122254. 
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supervised classification approach termed as online sparse estimation-based classification 

(OSEC), which is rooted in the areas of sparse estimation and compressive sensing [1]. The 

imperative need for real-time detection of anomalous process conditions from heterogeneous 

sensor data, particularly, in advanced manufacturing scenarios is the motivation for this work. This 

is a practically important problem; for instance, a few seconds of an uncompensated process drift 

during planarization may result in scrapping of an entire 300 mm semiconductor wafer, leading to 

prohibitive yield losses [84, 85].  

A large body of research in machine learning has been devoted to supervised classification of 

process conditions (labels) from sensor observations, such as support vector machine (SVM), 

linear/quadratic discriminant analysis (LDA/QDA), and neural networks (NN), etc. [86]. These 

algorithms are either computationally intensive or have poor classification accuracy for application 

to real-time monitoring in advanced manufacturing processes. The motivation of the proposed 

OSEC approach is to overcome the above shortcoming by achieving the following two aims: (1) 

improve the classification accuracy; and (2) reduce the computational burden for real-time process 

monitoring.  

5.1.2 Significance and Novelty 

The proposed OSEC approach achieves the above objectives based on a novel sparse 

representation classification framework [87]. This framework directly utilizes the raw sensor data 

to formulate the supervised classification problem as an underdetermined system of linear 

equations4. As further elucidated in the forthcoming literature review section (Sec. 5.2), existing 

sparse estimation approaches can solve the underdetermined linear system [8-17]. However, most 

of these existing approaches are not computationally efficient to accommodate real-time 

                                                 
4 In an underdetermined system, the number of equations is less than the number of unknown variables. 
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monitoring the large volume of data and high sampling rates of sensors typical to advanced 

manufacturing scenarios.  Therefore, a fast sparse estimation algorithm is further developed in this 

subchapter, namely, the greedy Bayesian method (GBM) presented in Sec. 5.3. Our proposed 

OSEC approach utilizes the GBM to efficiently solve the supervised classification problem. There 

are two advantage accrued from the proposed OSEC approach:  

(1) It is equipped with the GBM algorithm, which we demonstrate is accurate, as well as 

computationally efficient, compared to existing sparse estimation algorithms.  

(2) Precludes the need for extraction of statistical features (as opposed to existing supervised 

classification algorithms), because it directly operates on the raw sensor data. These claims are 

substantiated with numerically simulated and experimental data in Sec. 5.3.3 (for GBM) and 

Sec. 5.5 (for OSEC), respectively. 

The rest of this subchapter is organized as follows: the related research in the area of sparse 

estimation is reviewed in Sec. 5.2; we develop a novel sparse estimation algorithm termed as GBM 

in Sec. 5.3; based on GBM, the OSEC approach is subsequently presented in Sec. 5.4; the 

effectiveness of the OSEC approach is demonstrated for real-time monitoring of AM and CMP 

processes in Sec. 5.5; and finally, conclusions and avenues for further work are discussed in Sec. 

5.6.  

5.2 Research Background and Related Work 

The overarching goal of our real-time monitoring approach in this subchapter is to accurately 

determine the process state to which a new sensor data 𝐲 ∈ ℝ𝑚 belongs by using prior knowledge 

based on 𝑛 training samples acquired from 𝑘 distinct predefined process states. The training 

samples are contained in a matrix 𝚽 ∈ ℝ𝑚×𝑛 where m is the sensor dimension and n the number 

of data points. The distinct predefined process states (training data 𝚽) are obtained by extensive 
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experiments and process observation. The OSEC approach attains the above goal by sparse 

representation of 𝐲 using the entire training matrix 𝚽. Consequently, the domain of sparse 

representation/estimation is briefly reviewed in this section to provide the basic foundation of the 

proposed OSEC approach. 

The sparse estimation problem is based on the following relationship, 

 𝐲𝑚×1 = 𝚽𝑚×𝑛𝐰𝑛×1 + 𝛆𝑚×1, (63) 

the aim is to estimate the coefficient vector 𝐰 ∈ ℝ𝑛 based on measurements  𝐲𝑚×1, where 𝚽𝑚×𝑛 

is the given training (system) matrix with a condition of 𝑚 << 𝑛, and 𝛆  represents the 

measurement noise, This is a challenging problem to solve due to its inherently ill-defined (ill-

posed) characteristics – there are infinite possible solutions. In other words, on expanding Eq. (63) 

as a system of linear equations, it is evident that the number of equations (m) are less than the 

number of variables (n).  Such as system is called an underdetermined linear system.  

Assuming that the vector 𝐰 is sparse, i.e., it has a small number of nonzero elements, provides 

reasonable conditions to overcome the underdetermined nature of the sparse estimation 

formulation, and thereby achieve a unique solution [18]. Accordingly, the sparse estimation 

problem can be formally stated as,  

𝑚𝑖𝑛 ‖𝐰‖0      
 ‖𝐲 − 𝚽𝐰‖𝟐

𝟐 ≤ 𝛿 
(64) 

where  ‖𝐰‖0 is the 𝑙0-norm of vector 𝐰 that represents the number of nonzero elements of the 

vector, and 𝛿 is the noise level (‖𝛆‖𝟐
𝟐 ≤ 𝛿) [3]. However, the following challenges are evident for 

solving Eq. (64). 

(1) It needs an exhaustive search over all subsets of vector 𝐰, in order to find a particular support 

set with smallest cardinality satisfying the constraint in Eq. (64). 
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(2) The sparse estimation formulation in Eq. (64) is an inherently computationally intensive, 

combinatorial NP-hard problem [7].  

Therefore, finding the exact solution to Eq. (64) via instinctive computation is practically 

untenable. Accordingly, a number of sparse estimation algorithms are reported in literature to solve 

this problem, such as convex optimization algorithms [8-11], greedy algorithms [12-14], and 

Bayesian algorithms [15-17].  

The above research in the field of sparse estimation reveal that if 𝐰 is sufficiently sparse, then the 

solution to Eq. (64) is equivalent to a form of a relaxed convex optimization problem attained by 

replacing  ‖𝐰‖0 with  ‖𝐰‖1, where,  ‖∙‖1 = ∑|∙| is the 𝑙1-norm [6]. The sparse estimation problem 

on account of the relaxed convex optimization modification is,  

𝑚𝑖𝑛 ‖𝐰‖1      
 ‖𝐲 − 𝚽𝐰‖𝟐

𝟐 ≤ 𝛿 
(65) 

Convex optimization algorithms, such as Dantzig selector [8], basis pursuit de-noising (BPDN) 

[9], total variation (TV) regularization [10], and lasso [11] have been developed to solve the 

relaxed convex optimization problem of Eq. (65). A typical drawback of these algorithms is that, 

due to their global search, they are computationally intensive for large dimensional problems.  

Therefore, they are not suitable for real-time process monitoring applications. 

To overcome the computational burden, some heuristic algorithms (also called Greedy 

algorithms), such as thresholding algorithm [14], orthogonal matching pursuit (OMP) [14], stage-

wise orthogonal matching pursuit (STOPM) [12], and least angle regression (LARS) [13] have 

been proposed. These Greedy algorithms are based on a heuristic search to estimate the true 

support set Λ = {𝑖 : 𝐰𝑖 ≠ 0, ∀𝑖 = 1, … , 𝑛}, which represents the location of nonzero elements in 

vector 𝐰.  



 

 

83 
 

One of the most reliable greedy algorithms is OMP, which uses an iterative approach to estimate 

the true support set Λ of 𝐰. Letting 𝑆 be the estimated support set, OMP starts with the null set 

𝑆 = {}, and iteratively populates the set 𝑆 by identifying the columns of matrix 𝚽, which are 

maximally correlated with the measurement residual vector 𝐫 (for brevity purposes, the OMP 

approach is detailed in Appendix C). OMP is computationally efficient due to its heuristic nature. 

However, there is an inherent tradeoff, the sparse estimation performance of OMP often sacrifices 

accuracy for speed, and consequently, it is susceptible to be confined in a local minima.  

While the convex optimization algorithms and greedy algorithms mentioned above provide a point 

estimate for coefficient 𝐰, in contrast, Bayesian algorithms, such as relevance vector machine 

(RVM) [15, 16], and sparse Bayesian learning (SBL) [17] provide a posterior distribution on the 

coefficient 𝐰. Particularly, RVM has recently received more attention than other sparse estimation 

algorithms, due to its comparatively better (more accurate) sparse estimation performance. RVM 

assumes a Gaussian likelihood function, and a conjugate prior promoting sparsity on the 

coefficient 𝐰. By applying the Bayesian rule, the posterior distribution of 𝐰 is estimated. The 

estimated posterior mean is then utilized as the RVM estimate 𝐰RVM (RVM algorithm is 

summarized in Appendix D; further details of RVM can be found in Ref. [15]). 

5.3 Greedy Bayesian Method (GBM) for Sparse Estimation  

As discussed in Sec. 5.2, it is beneficial to integrate the inherent advantages stemming from the 

Bayesian framework in RVM, and computational efficiency of OMP for estimation of the support 

set by proposing a novel sparse estimation algorithm known as GBM. The computational 

efficiency of the proposed algorithm is critical for the success of the process state classification 

problem studied in this work, recognizing that it is intended for application to real-time monitoring 



 

 

84 
 

of advanced manufacturing processes, where reticent detection of process drifts can lead to 

prohibitive losses.  

5.3.1 The Proposed GBM Algorithm 

Wipf and Nagaragan [88]show that the RVM estimate 𝐰RVM = 𝝁𝑆, where 𝝁𝑆 is a subvector of 

estimated posterior mean 𝝁 whose elements correspond to the estimated support set 𝑆 by RVM, 

satisfies,  

arg
𝐰

min‖𝐲 − 𝚽𝐰‖2
2 + σ2𝑔(𝐰)  (66) 

𝑔(𝐰) = argmin
𝛂≥𝟎

𝐰𝑇𝐁𝐰+log|σ2𝐈 + 𝚽𝐁𝚽𝑇|  (67) 

where 𝐁 = 𝐷𝑖𝑎𝑔(𝜶),  𝜶 = [𝜶1, 𝜶2, … , 𝜶n]
𝑇,  𝜶i represents the hyperparameter associated with the 

𝑖-th coefficient 𝐰i, and σ2 is the noise variance in the Gaussian likelihood function 𝑝(𝐲|𝐰, σ2). 

However, Solving Eq. (66) is computationally intensive for high dimensional problems as it 

requires several matrix inversion operations to estimate 𝑆. This can be verified through the 

following analysis of RVM: 

Let 𝝁𝑆 = σ𝑡
−2𝜮𝑆𝚽𝑆

𝑇𝐲 and 𝜮𝑆 = (σ𝑡
−2𝚽𝑆

𝑇𝚽𝑆 + 𝐁𝑆)
−1 be the posterior mean and posterior 

covariance of 𝐰, and 𝛂𝑖
𝑡 =

1−𝛂𝑖
𝑡−1Nii

𝝁i
2  , σ𝑡

2 =
‖𝐲−𝚽𝑆𝝁𝑆‖𝟐

𝟐

𝑚−∑ (1−𝛂𝑖
𝑡 Nii)𝑖∈𝑆

 be the estimates for hyperparameterts, 

where Nii is the 𝑖-th diagonal element of 𝜮, and index 𝑡 denotes the iteration number. RVM starts 

with estimated support set 𝑆 = {1,… , 𝑛}, and iteratively updates 𝝁𝑆, 𝜮𝑆 with respect to 𝛂𝑖
𝑡, σ𝑡

2, and 

vice versa. By progression of RVM algorithm (after some iterations of RVM), the hyperparameter 

of irrelevant coefficients gradually start to achieve very large values (e.g. > 106). Let 𝑄 =

{𝑣: 𝛂𝑣
𝑡 > 𝜌 = 106  ∀𝑣 ∈ 𝑆}  be the index set of these coeficients, then the estimated support set is 

updated by 𝑆 = 𝑆\𝑄. From 𝜮𝑆 it can be seen that one must invert matrices of size 𝑛 × 𝑛 at least 

for the first few iterations, and then by updating 𝑆, the size of matrix inversion can be reduced to 
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|𝑆|  × |𝑆|. Clearly these procedures of estimating support set 𝑆 is computationally intensive for 

high dimensional problems (large 𝑛).  

This shortcoming can be resolved by developing an iterative greedy method to optimize Eq. (66). 

The proposed algorithm is named GBM, as it utilizes a greedy method in estimating the support 

set, and is equipped with a Bayesian framework (RVM approach) to estimate the nonzero elements 

associated with the estimated support set. Mathematically, GBM incrementally selects the columns 

of matrix 𝚽, which locally optimizes Eq. (66). The GBM algorithm starts with an empty support 

set 𝑆 = {} and populates it iteratively. In specific, GBM determines suitable candidates to be 

included in the support set 𝑆 by evaluating columns of matrix 𝚽 that have the best fit with respect 

to the measurement residual vector 𝐫 (consistent with OMP iterative approach as explained in Sec. 

2).  The procedures are enumerated in the following steps (see also Figure 5-1): 

GBM Algorithm 

Step 1. Initialization (t=1) 

Initiate the hyperparameters 𝜶1 = (𝜶1
1,  𝜶2

1 , … , 𝜶n 
1 )𝑇 = 𝟏,and σ1

2 = 0.01 ×
𝑣𝑎𝑟(𝐲)           

 Set the support set S = { } and its compliment 𝑆𝑐 = {1,… , 𝑛} 

 Set the initial measurement residual vector 𝐫 = 𝐲 

Normalize the columns of matrix 𝚽 to have a unit norm 

Step 2. Estimate the support set: 

solve 𝑖∗ = argmax{|𝐫𝑇𝐠𝑖|},   ∀𝑖 ∈ 𝑆𝑐 

set 𝑆 =  𝑆 ⋃ 𝑖∗,𝑆𝑐 = 𝑆𝑐\{𝑖∗} 
Step 3. Estimate posterior covariance and posterior mean, and Estimate 

hyperparameters 𝜶𝑆
𝑡 = {𝛂𝑖

𝑡} ∀𝑖 ∈ 𝑆 and σ𝑡
2 corresponding to 𝑆: 

𝜮𝑆 = (σ𝑡
−2𝚽𝑆

𝑇𝚽𝑆 + 𝐁𝑆)
−1 

𝝁𝑆 = σ𝑡
−2𝜮𝑆𝚽𝑆

𝑇𝐲 

𝛂𝑖
𝑡 =

1−𝛂𝑖
𝑡−1Nii

𝝁i
2        𝑖 ∈ 𝑆 

σ𝑡
2 =

‖𝐲−𝚽𝑆𝝁𝑆‖𝟐
𝟐

𝑚−∑ (1−𝛂𝑖
𝑡 Nii)i

 𝑖 ∈ 𝑆                                                                                                    

Step 4. Increment 𝑡 = 𝑡 + 1, let 𝐰̂ = 𝝁𝑆 and compute the residual 

   𝐫 = 𝐲 − 𝚽S𝐰̂ 

 Stop if  𝑡 = 𝜗 (or ‖𝐫‖𝟐
𝟐 < 𝜔), otherwise go to Step 2 

Figure 5-1. GBM algorithm for sparse estimation 
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Step 1: In the initialization step, we set the initial values for the hyperparameters 𝜶1 =

(𝜶1
1,  𝜶2

1, … , 𝜶n 
1 )𝑇 = 𝟏, and σ1

2 = 0.01 × 𝑣𝑎𝑟(𝐲). Let the initial estimated support set be 𝑆 = { }, 

its compliment be 𝑆𝑐 = {1,… , 𝑛}, and the initial measurement residual vector be 𝐫 = 𝐲. Matrix 𝚽 

is also normalized to have unit norm, namely ‖𝐠𝑖‖2 = 1 (∀𝑖 = 1,… , 𝑛), where 𝐠𝑖 represents the i-

th normalized column of matrix 𝚽.  

Step 2: To estimate the support set, we derive a greedy rule which is consistent with the OMP 

algorithm. Unlike RVM that determines the support set S by globally solving Eq. (66) , which is 

computationally intensive for high dimensional problems, we propose that its upper bound,  

arg
𝐰

min‖𝐲 − 𝚽𝐰‖𝟐
𝟐 + σ2(∑ 𝑔(𝐰i)

𝑛
𝑖=1 + log|σ2𝐈 + 𝚽𝐁𝚽𝑻|)  (68) 

where 𝑔(𝐰i) = 𝜶i𝐰𝑖
2, should be iteratively minimized. The upper bound Eq. (68) can be easily 

verified by the definition of 𝑔(𝐰) ≤ ∑ 𝑔(𝐰i) + log|σ2𝐈 + 𝚽𝐁𝚽𝑻|𝑛
𝑖=1 . Clearly Eq. (68) is convex 

with respect to 𝐰, hence we estimate the support set 𝑆 by iteratively minimizing Eq. (68). Indeed, 

we solve the following optimization problem at each iteration (note we dropped the constant term 

log|σ2𝐈 + 𝚽𝐁𝚽𝑇| which is not relevant to the optimization), 

min
𝐰𝑖

‖𝐫 − 𝐠𝑖𝐰𝑖‖2
2 + σ2𝑔(𝐰𝑖)∀𝑖 ∈ 𝑆𝑐  (69) 

by taking the derivative of Eq. (69) with respect to 𝐰𝑖 to 0. The optimal 𝐰𝑖
∗ is expressed as  

𝐰𝑖
∗ =

𝐠𝑖
𝑇𝐫

1+σ2 𝛂i
1  ∀𝑖 ∈ 𝑆𝑐 ; (70)  

Note that we use the initial value for the hyperparameters 𝜶i (∀𝑖 ∈ 𝑆𝑐) since they are not estimated 

yet. Substitute Eq. (70) into Eq. (69), evaluate, 

‖𝐫 − 𝐠𝑖𝐰𝑖
∗‖2

2 + σ2[ 𝛂i
1𝐰𝑖

∗2] = 𝐫𝑇𝐫 − 2
(𝐠𝑖

𝑇𝐫)2

1 + σ2 𝛂i
1 

+
(𝐠𝑖

𝑇𝐫)2

(1 + σ2 𝛂i
1)2

(1 + σ2 𝛂i
1) = −

(𝐠𝑖
𝑇𝐫)2

1 + σ2 𝛂i
1 + 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡, 

(71)  

and select the index with smallest cost function, which is equivalent to 
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𝑖∗ = argmax|𝐠𝑖
𝑇𝐫|,  ∀𝑖 ∈ 𝑆𝑐 (72)  

Then update the support set 𝑆 = 𝑆 ∪ {𝑖∗} as well as 𝑆𝑐 = 𝑆𝑐\{𝑖∗}.   

Step 3: In this step, the nonzero coefficients 𝐰̂ associated with the estimated support set 𝑆 are 

determined. We estimate these nonzero coefficients 𝐰̂ by minimizing the original Eq. (66). From 

the results of Wipf and Nagarajan [88], if the estimated support set is optimal (i.e., 𝑆 = Λ), then 

𝝁𝑆 is the globally minimizer of Eq. (66). Following this result, in each iteration 𝑡, we utilize 

Bayesian learning procedures of RVM (presented in Appendix D) to achieve 𝐰̂ = 𝝁𝑆, which 

requires estimation of 𝜮𝑆, 𝛂𝑖
𝑡(i ∈ 𝑆), and σ𝑡

2 accordingly. Note that the procedures of RVM in 

estimating the support set is different than GBM (i.e. Step 2). However, if the greedy rule of GBM 

determines the right candidate (𝑖∗) to the estimated support set 𝑆 at each iteration, then clearly 𝐰̂ =

𝝁𝑆, where 𝑆 is the estimated support set at the current iteration 𝑡, is always a local optimal of Eq. 

(66). In Theorem 1 presented in Sec. 5.3, we prove some theoretical conditions under which GBM 

determines the right candidate to the estimated support set 𝑆 at each iteration. Thus, once the true 

support set is correctly estimated by GBM, i.e., 𝑆 = Λ, then the GBM estimate 𝐰̂ = 𝝁𝑆 will be the 

globally minimizer of Eq. (66). 

Step 4: In this step, the measurement residual vector 𝐫 = 𝐲 − 𝚽𝑆𝐰̂ is updated. The previous steps 

(ii) through (iii) are continued either until 𝜗 iterations (assuming the sparsity level of 𝐰 is known), 

or until ‖𝐫‖2 < 𝜔, where 𝜔 is a user-defined threshold (e.g.10−6). The GBM algorithm is further 

summarized in Figure 5-1. 

From Eq. (72), which delineates the GBM rule for determination of the support set 𝑆, it is evident 

that the GBM support set estimation is identical to the OMP procedure as outlined in Appendix C 

(i.e., selecting the columns of matrix 𝚽 with maximum correlation with measurement residual 

vector 𝐫). However the other terms (in Step 3) are analogous to the Bayesian learning of RVM as 
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evident from see Appendix D. The essential difference between GBM and OMP is in the update 

rule for residual vector 𝐫. 

The computational cost of GBM is comparable to OMP as they have the same support set 

estimation procedure (see Appendix C). According to Step 2 in Figure 5-1, a single candidate 𝑖∗ is 

added to the estimated support set 𝑆, based on Eq. (72). Thus, the main portion of the GBM 

computational time relates to the inference part represented in Step 3. From the posterior 

covariance matrix 𝜮𝑆, the matrix inversion operation has complexity 𝒪(|𝑆|3). It starts with |𝑆| =

1 at the first iteration and progressively increases until convergence. Therefore, as opposed to 

RVM, GBM never requires inversion of an 𝑛 × 𝑛 matrix. This difference leads the computational 

cost of GBM to be markedly lower than purely Bayesian algorithms such as RVM.  

5.3.2 Performance Guarantee for the Greedy Bayesian Method (GBM) 

In the following, we will delineate the performance guarantee conditions for the proposed GBM 

algorithm. In other words, our aim is to obtain the conditions under which GBM algorithm leads 

to small sparse estimation error. These conditions mainly depend on certain properties of the 

training matrix 𝚽 as delineated from the existing literature on sparse estimation and compressive 

sensing [3]. One critical criterion condition is called mutual coherence; it is utilized to evaluate 

the suitability of matrix 𝚽 for successful sparse estimation. Mutual coherence 𝜇 is defined as 

follows: 

𝜇 = max
𝑖≠𝑗

|𝐠𝑖
𝑇𝐠𝑗| (73)  

The general idea of mutual coherence 𝜇 is to seek low correlation between any two columns of 

matrix 𝚽. It is interesting to provide mutual coherence-based performance guarantee conditions 

under which GBM algorithm would have a satisfactorily small estimation error. We will show (in 

Theorem 1) that the performance of GBM under certain conditions, is at least as good an oracle 
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estimator (OE). The OE is known as the best unbiased sparse estimator as it assumes that the true 

support set of 𝐰, i.e. Λ is known as a priori, and uses the least squares (LS) method to estimate the 

nonzero coefficients of 𝐰 whose index correspond to Λ. Let 𝐰OE be the OE estimator for 𝐰, then 

we have 

𝐰OE = {    
𝐰OE,Λ = (𝚽Λ

𝑇𝚽Λ)−1
 
𝚽Λ

𝑇𝐲 

𝐰OE,Λ𝑐 = 𝟎
 (74)  

where 𝐰OE,Λ represents the OE estimate of the coefficients on the true support set Λ which is given 

by LS method, and 𝐰OE,Λ𝑐  is estimate of the coefficients on Λ𝑐 which is set to a zero vector 𝟎 with 

appropriate dimension (𝑛 − |Λ|).  OE is not a practical estimator since the true support set Λ is 

unknown in general. However, OE is typically used to compare the performance of different sparse 

estimation algorithms. Ben Haim et al. [5] provide an upper bound for OE performance as a 

function of the sparsity level 𝜗, dimension 𝑛, true noise variance 𝜎2, and the mutual coherence 𝜇 

as: 

‖𝐰OE − 𝐰‖𝟐
𝟐 ≤ 𝜖0 = 2𝜗𝜎2(1 + 𝜃)log𝑛

1

(1−(𝜗−1)𝜇̃)2
. 

where constant 𝜃 > 0 is utilized to control the probability of bounding‖𝐰OE −  𝐰‖𝟐
𝟐 (more details 

are provided in Appendix E, see Lemma 2). 

To derive the theoretical results of GBM, the following notations will be used: let GBM 

estimate 𝐰GBM = {
𝐰̂
𝟎

𝑜𝑛 𝑆
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, where 𝑆 is the estimated support set after the termination of 

GBM algorithm (here the termination procedure is based on 𝑡 = 𝜗 ), 𝜶𝑚𝑎𝑥 = max 𝜶𝑆, where 𝜶𝑆 is 

the estimated hyperparameters associated with estimated support set 𝑆 (for simplification we 

dropped the index 𝑡 presented in Step 3 of Figure 5-1), and 𝜎∈
2 = σ𝑡

2 be the estimated noise 

variance after termination of GBM. In the following, we outline a mathematical proof (Theorem 
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1 below) delineating the performance guarantee conditions for GBM. We also show that the error 

bound of GBM is at least as good as that of OE under certain conditions.  

Theorem 1. Let 𝐰GBM be the GBM estimate of an unknown sparse vector 𝐰 with true support 

set Λ = {𝑖 : 𝐰𝑖 ≠ 0, ∀𝑖 = 1, … , 𝑛} with known sparsity |Λ| = 𝜗, and let  𝐲 = 𝚽𝐰 + 𝛆, 

where 𝜺~𝑁(0, 𝜎2𝐈) ∈ ℝ𝑚. Define |𝐰𝑚𝑖𝑛| and|𝐰𝑚𝑎𝑥| be the minimum absolute value and 

maximum absolute value of nonzero elements in 𝐰, respectively, and 𝜇 be the mutual coherence 

of matrix 𝚽. If the dimension of measurement 𝑚 > 𝜗 +
𝜗[1+(𝜗−1)𝜇̃+𝐶][(1+(𝜗−1)𝜇̃)2𝛽−1]

2[1+(𝜗−1)𝜇̃]
, where 𝐶 =

𝑚[1−(2𝜗−1)𝜇̃]2

𝜗(1+𝜃)log (𝑛)
 for some positive constant 𝜃 and 𝛽 >

4

(1−(2𝜗−1)𝜇̃)2
,  and the following conditions 

hold, 

|𝐰𝑚𝑖𝑛| ≥ 𝜗1 =
2𝜎√2(1 + 𝜃)𝑙𝑜𝑔𝑛

1 − (2𝜗 − 1)𝜇
 (75)  

|𝐰𝑚𝑎𝑥| ≤ 𝜗2 = √2𝛽𝜎2(1 + 𝜃)𝑙𝑜𝑔𝑛 (76)  

then with a probability of at least  

(1 −
1

n𝜃√𝜋(1+𝜃) log𝑛
) ∙ (1 − 2𝑒−

𝑚

2 ) (77)  

GBM determines the true support set Λ of 𝐰, and satisfies the quadratic error bound of 

‖𝐰GBM − 𝐰‖𝟐
𝟐  < 2𝜗𝜎2(1 + 𝜃)log𝑛

1

(1 − (𝜗 − 1)𝜇)2
 

(78)  

Proof. The proof for Theorem 1 is provided in Appendix III.  

The theoretical results derived in Theorem 1 are intended to indicate that if Eq. (75) holds GBM 

determines the true support set (𝑆 = Λ) with certain probabilities, and furthermore, under the 

condition of number of measurements and Eq. (76), the GBM quadratic error bound is at least as 

good  as OE. In the following we emphasize some remarks, which are helpful for delineating the 

proposed OSEC approach. 
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Remark 1. In condition |𝐰𝑚𝑖𝑛| ≥ 𝜗1 =
2𝜎√2(1+𝜃)𝑙𝑜𝑔𝑛

1−(2𝜗−1)𝜇̃
, the parameters 𝜎, and 𝜗 are usually unknown 

in practice, 𝜃 is a constant that controls the probability of determining the true support set (see 

Lemma 2), and 𝑛 is the dimension of coefficient vector 𝐰 which cannot be changed. Thus the only 

parameter which can be changed is the mutual coherence 𝜇̃. In order to relax the condition 𝜗1 (make 

this bound smaller), we need to reduce 𝜇̃.  

Remark 2. Condition of number of measurements 𝑚 > 𝜗 +
𝜗[1+(𝜗−1)𝜇̃+𝐶][(1+(𝜗−1)𝜇̃)2𝛽−1]

2[1+(𝜗−1)𝜇̃]
  is 

interpreted as an upper bound on 𝛽. In other words, we relax the condition on 𝑚, and instead 

restrict an upper bound on 𝛽. The upper bound is derived as, 

𝛽 < 𝜉 =
1

(1 + (𝜗 − 1)𝜇)2
+ [

𝑚 − 𝜗

𝜗
]

2

(1 + (𝜗 − 1)𝜇 + 𝐶)(1 + (𝜗 − 1)𝜇)
 

(79) 

Recall that from Theorem 1, we require 𝛽 >
4

(1−(2𝜗−1)𝜇̃)2
, thus combining the lower bound and the 

upper bound we can define a range for 𝛽 as 
4

(1−(2𝜗−1)𝜇̃)2
< 𝛽 < 𝜉, for which GBM estimate is at 

least as good as OE with a high probability. 

Remark 3. In condition |𝐰𝑚𝑎𝑥| ≤ 𝜗2 = √2𝛽𝜎2(1 + 𝜃)𝑙𝑜𝑔𝑛), again 𝜎2 is unknown, and 𝜃 and 𝑛 are 

fixed. The only parameter can be changed is 𝛽. Hence, to relax |𝐰𝑚𝑎𝑥| ≤ 𝜗2 (make this bound 

larger), we need to increase the upper bound on 𝛽, namely, 𝜉. From Eq. (79), 𝜗 is unknown in 

practice, and 𝑚 is fixed, thus the only parameter can be changed to increase 𝜉 is the mutual 

coherence 𝜇̃. It can be easily verified that lower mutual coherence 𝜇̃, makes the upper bound 𝜉, and 

consequently 𝜗2 larger. 

5.3.3 Performance Demonstration for the Proposed GBM Algorithm 

We now test and verify the proposed GBM with respect to its theoretical results in Sec. 5.3.2, as 

well as its estimation accuracy and computational efficiency. The numerical example in this 
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section is adopted from Ben-Haim, et al. [5], which is a benchmark simulation for performance 

evaluation of various sparse estimation algorithms compared with OE given their theoretical 

conditions.  

The training matrix 𝚽 is chosen as the concatenation of two orthogonal matrices, namely,  𝐇 , 

accordingly, 𝚽 = [𝐈 𝐇], where 𝐈 is an identity matrix with dimension of 256 × 256, and 𝐇 is a 

Hadamard matrix [5] with the same dimension. The mutual coherence of matrix 𝚽 is computed 

as 𝜇 = 1 16⁄ . The sparsity level of 𝜗 = 5 is assigned for sparse vector 𝐰. The indices in the true 

support set Λ of sparse vector 𝐰 are randomly chosen. To generate the corresponding nonzero 

values, two conditions should be held according to Theorem 1. The first condition restricts the 

minimum absolute value of nonzero elements |𝐰𝑚𝑖𝑛| ≥ 𝜗1 as presented in Eq. (75) in order to 

determine the true support set by GBM. The second condition requires Eq. (76) |𝐰𝑚𝑎𝑥| ≤ 𝜗2to 

ensure the error bound in Eq. (78). Note we require to have 𝛽 >
4

(1−(2𝑘−1)𝜇̃)2
= 20.9 (by Theorem 

1) where 𝜗 = 5 and 𝜇 = 1 16⁄ . Consequently, the nonzero values are generated randomly as 

follows,  

𝐰𝑖 = 𝑥{𝑢𝜗1 + (1 − 𝑢)𝜗2} − (1 − 𝑥){𝑢𝜗1 + (1 − 𝑢)𝜗2}    ∀𝑖 ∈ Λ 

where 𝑢~𝑈𝑛𝑖𝑓(0,1),and 𝑥~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) with 𝑃(𝑥 = 1) = 𝑝. In this setting, 𝜃 (Eqs. (75) and 

(76)) is assigned as one and equal probability is considered for positive or negative 𝐰𝑖’s (i.e.  𝑝 =

1 − 𝑝 = 0.5).  

From Eq. (76) and the range 
4

(1−(2𝜗−1)𝜇̃)2
< 𝛽 < 𝜉, we generate different cases by changing 𝜗2 

through 𝛽 values. Ten different values of 𝛽 within the range of 21 ≤  𝛽 ≤ 200 is considered in 

our simulation. We keep the noise variance σ2 =  10−2 during all the simulation cases. This 

simulation process is repeated 1,000 times for each case. The estimation performance of sparse 

vector estimators GBM, and OE are obtained. Mean square error is utilized as the estimation 
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performance criterion to compare the performance of these estimators. The results are provided in 

Figure 5-2(a). It was observed that, OE slightly outperforms GBM for larger 𝛽 values, since OE 

assumes that the true support set Λ is known beforehand. However, it can be observed that at lower 

values of 𝛽, namely in the range of  20.8 ≤ 𝛽 ≤ 40.1, the GBM performance is consistently 

superior to OE (the magnified portion is provided in Figure 5-2(b)).The reason for this superiority 

is that GBM results in a tighter performance bound given its theoretical conditions. Indeed, this 

behavior matches the theoretical results as explained in Remark 2, namely, in the range defined in 

Eq. (79), the GBM estimate is at least as good as OE (note that from Eq. (79), the upper bound 𝜉 

is computed 40.1).We note that different case studies can be generated based on changing matrix 

𝚽 (i.e., mutual coherence 𝜇), sparsity level 𝜗 in a way that we are able to satisfy the conditions in 

Theorem 1. 

 

Figure 5-2: Mean square error (MSE) of OE and GBM for sparse estimation problems with matrix 𝚽, 

nonzero elements larger than Eq. (75), (a) 𝛔𝟐 =  𝟏𝟎−𝟐 and different 𝜷 values, (b) 𝜷 within its theoretical 

values (𝟐𝟎. 𝟖 ≤ 𝜷 ≤ 𝟒𝟎). 

 

5.4 The Proposed Online Sparse Estimation based Classification Algorithm (OSEC) 

The proposed OSEC algorithm consists of the following two phases: 

(1) Phase 1 (Sec. 5.4.1) formulates the supervised classification problem into an underdetermined 

linear system of equations; 

(a) (b) 
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(2) Phase 2 (Sec. 5.4.2) applies the developed GBM algorithm (in Sec. 5.3) to perform sparse 

estimation to efficiently solve the underdetermined linear system obtained in Phase 1, and uses 

a classification membership analysis for classification of system state.  

5.4.1 Phase 1: Formulation of Process States as Underdetermined Linear System from 

Sensor Data 

Wright et al. [87] illustrate the use of labeled training data in the context of sparse representation 

based classification (SRC), i.e., the sensor data captured from the same condition is marked with 

the same label. SRC formulates the supervised classification problem into an underdetermined 

linear system. An underdetermined linear system is that in which the number of equations is 

smaller than the number of unknown variables. The approach devised by Wright et al. 

[87]considers that data belonging to the same label should have some intra-relationship that 

distinguishes them from data in other labels.  

The key idea of SRC is to model this intra-relationship as an underdetermined system of linear 

equations. Consequently, any data belonging to a specific label can be represented as a linear 

combination of some of the training elements in that label. Mathematically, this entails, if  𝚽𝑖 =

[𝝋𝑖
1 𝝋𝑖

2 …𝝋𝑖
𝑛𝑖] ∈ ℝ𝑚×𝑛𝑖 (𝑚 << 𝑛𝑖) represents a set of data belonging to a particular label (i), 

where 𝑛𝑖 is the number of available data points in that label, and letting 𝐲 ∈ ℝ𝑚 be the 

observational data belonging to same label, due to the auto-correlation of data with the same label, 

we can then formulate 𝐲 as a linear combination of the elements of  𝚽𝑖, 
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𝐲 = ∑𝝋𝑖
𝑗
 𝐰𝑖

𝑗

𝑛𝑖

𝑗=1

 (80) 

where 𝝋𝑖
𝑗
 represents the 𝑗-th data belonging to label i, and  𝐰𝑖

𝑗
 are the coefficients utilized for this 

linear representation. However, two restrictive assumptions limit the practical viability of Eq. (80), 

namely, 

(i)  There may be dependencies (inter-relationships) between different labels. Hence, the implicit 

independence assumption in the formulation of Eq. (80) might be violated.  

(ii) Moreover, other unknown factors (noise) could also influence Eq. (80), although their effect 

is assumed to be inconsequential.  

In order to overcome the above shortcomings, Eq. (80) is re-expressed as, 

𝐲 = ∑∑𝝋𝑖
𝑗
𝐰𝑖

𝑗
 

𝑛𝑖

𝑗=1

 

𝑘

𝑖=1

+ 𝛆 (81) 

In Eq. (81), it can be seen the effect of inter-label dependencies in representation of 𝐲 is accounted 

with the second summation over index i. Indeed, variable i represents the label index and it is 

assumed that there are k such labels; also we note that k is known due to the intrinsic data 

sufficiency and observability assumptions of supervised classification. Moreover, the effect of 

unknown factors is accounted with the error term 𝛆 ∈ ℝ𝑚; it is assumed that effect of the so called 

noise term 𝛆 is small. Simplifying Eq. (81) into a matrix form, the supervised classification 

problem is cast as an underdetermined system of linear equations that have the same form as Eq. 

(63). For convenience, it is re-written here as follows, 

𝐲 = 𝚽𝐰 + 𝛆 (82) 

where 𝐲 ∈ ℝ𝑚 denotes the observational data which is to be classified; 𝚽 ∈ ℝ𝑚×𝑛 (𝑚 << 𝑛) 

represents the training matrix, since it consists of the training data set; 𝐰 ∈ ℝ𝑛 is a vector 
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containing the classification membership coefficients; and 𝛆 ∈ ℝ𝑚 represents the noise due to 

unknown and inconsequential effects. The training matrix is constructed as follows, 

𝚽 ≝ [𝚽1 𝚽2 … 𝚽k] (83)  

where 𝚽𝑖 = [𝝋𝑖
1, 𝝋i

2 …𝝋𝑖
𝑛𝑖] ∈ ℝ𝑚×𝑛𝑖 contains the training data available on the 𝑖-th label (∀𝑖 =

1, . . . , 𝑘), 𝑛𝑖 is the size of 𝑖-th labeled training data, and the relationship between 𝑛 and 𝑛𝑖 is  

∑ 𝑛𝑖 = 𝑛𝑘
𝑖=1 . Moreover, the classification membership coefficients are defined as,  

𝐰 ≝ [𝐰1
𝑇 𝐰2

𝑇 … 𝐰𝑘
𝑇]𝑇 (84)  

where 𝐰𝑖 = [𝐰𝑖
1 𝐰𝑖

2 …𝐰𝑖
𝑛𝑖]𝑇 ∈ ℝ𝑛𝑖 is the vector containing the classification membership 

coefficients corresponding to the 𝑖-th label. For an ideal case, it is evident that if observation 𝐲  

truly belongs to label 𝑖, then the corresponding 𝐰𝑖 should have nonzero elements, and consequently 

all other 𝐰𝑗’s (∀𝑗 = 1,2. . , 𝑘\𝑖) should contain zero elements. Based on this intuition, it follows 

that vector 𝐰 is inherently sparse. Hence the name sparse representation classification (SRC).  

Thus, based on Eqs. (82) through (84), a 𝑘-way classification can be performed for an 

observational data 𝐲. This can be done through estimation of 𝐰, i.e. 𝐰∗. Noting that, Eq. (82) is an 

underdetermined system, since the number of equations 𝑚 is smaller than that of the unknown 

variables 𝑛 (𝑚 << 𝑛), consequently Eq. (82) has infinitely large number of solutions. The central 

premise is that vector 𝐰 is sparse, i.e., most of its elements are zero. As explained in Sec. 5.2, 

starting with this sparsity assumption it is possible to approximate 𝐰 using so-called sparse 

estimation algorithms; the estimate of 𝐰 obtained therefrom is represented as 𝐰∗ in this work. A 

sizeable focus of this work has been based on developing a novel algorithm (GBM) for 

approximating 𝐰, which is not only highly accurate, but also computationally efficient. 
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 5.4.2 Phase 2: Classification Membership Analysis  

To accommodate real-time monitoring in an advanced manufacturing scenario, which is typically 

attributed with high volume of data, and sampling rate of sensors, there is a need to solve Eq. (82) 

with a computationally efficient algorithm. Therefore, we equip the OSEC approach with the GBM 

algorithm developed in Sec. 5.3. Letting  𝐰∗ be the GBM sparse estimation ( 𝐰∗ = 𝐰GBM), our 

objective is to classify the observation 𝐲 based upon 𝐰∗, i.e., deciding the label (or process state) 

of an observation 𝐲. Let 

 𝑆𝑢𝑝𝑝 = {𝑖:𝐰𝑖
∗ ≠ 0, ∀𝑖 = 1,… , 𝑛}  

be a set containing the location of nonzero elements in 𝐰∗, where 𝐰𝑖
∗ represents the i-th element 

of 𝐰∗, and 

T𝑖 ≝ {∑ 𝑛𝑗−1
𝑖
𝑗=1 + 1,… ,∑ 𝑛𝑗

𝑖
𝑗=1 }        (85) 

be the index set corresponding to the 𝑖-th label in our training data, where 𝑛𝑖−1 < 𝑛𝑖 ∈ ℕ (∀𝑖 =

1, . . , 𝑘), and 𝑛0 = 0. It can be shown that the index set 𝑇𝑖 has the following properties, 

|𝑇𝑖| = 𝑛𝑖 (a) 

    (86)  𝑇1 ∩ 𝑇2 ∩ …∩ 𝑇𝑘 = ∅ (b) 

𝑇1 ∪ 𝑇2 ∪ …∪ 𝑇𝑘 = {1,… , 𝑛} (c) 

We reiterate, given the supervised classification used in this work, it is explicitly assumed that the 

labels of the index set 𝑇𝑖 are known. In other words, we have a priori knowledge of the 𝑘 labels 

from which the training data originate. Now supposing observation  𝐲 belongs to the 𝑖-th label, 

then it is evident we expect 𝑆𝑢𝑝𝑝 ⊆ 𝑇𝑖 (as defined in Eq. (85)). This is apparent for an ideal case 

where 𝐲 can be fully represented as a linear combination of the 𝑖-th labeled training data. However, 

as explained previously in phase 1 (Sec. 5.4.1) this situation is improbable in practice due to the 

presence of inter-relationship between different labels, the presence of measurement noise, and the 
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possible estimation errors resulting from the GBM algorithm. To overcome this drawback and 

make our approach practically viable, we propose the following classification membership 

analysis. The outline of the analysis is enumerated herewith: 

(i) Let 𝑀𝑖 be the intersection of 𝑆𝑢𝑝𝑝 with index sets 𝑇𝑖’s  

𝑀𝑖 = 𝑆𝑢𝑝𝑝 ∩ 𝑇𝑖  (∀𝑖 = 1, . . , 𝑘) (87) 

and, 𝐰𝑀𝑖

∗  be a subvector of  𝐰∗associated to the set 𝑀𝑖. 

(ii) Compute the coefficient membership criterion  

𝐰̃i =
‖𝐰𝑀𝑖

∗ ‖
2

2

‖ 𝐰∗‖2
2     (∀𝑖 = 1, . . , 𝑘) (88)  

where ‖𝐰𝑀𝑖

∗ ‖
2

2
 represents the energy of the estimated coefficients corresponding to the 𝑖-th label, 

and ‖ 𝐰∗‖2
2 is the total energy of the estimated coefficients 𝐰∗. Then use Lemma 1 result below. 

Lemma1. Let 𝐰̃i be defined in Eq. (88), 𝑀𝑖 be defined in Eq. (87). Then 𝑀𝑖 and 𝐰̃i (∀𝑖 = 1, . . , 𝑘) 

consist of the following properties (proof of Lemma 1 is omitted from the subchapter)  

𝑀𝑖 (∀𝑖 = 1, . . , 𝑘) are mutually exclusive (89)  

𝐰̃i ≥ 0 (∀𝑖 = 1, . . , 𝑘) (90)  

∑𝐰̃i

𝑘

𝑖=1

= 1 (91)  

 From Lemma 1, it is evident that 𝐰̃i is akin to a probability mass function. Thus, using Eq.  (88), 

we can interpret the result of GBM estimation as the probability that GBM estimation classifies 𝐲 

into label 𝑖, by the following rule 

𝜆 = argmax
1≤𝑖≤𝑘

  𝐰̃i (92)  
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Essentially, the Eq. (92) entails assigning the index (or label) with the maximum probability for 

an observation 𝐲. With the last phase of the proposed OSEC approach thus elucidated, we now 

proceed to apply the approach to experimentally acquired multi-sensor data.  

5.5 Application of the Proposed OSEC for Advanced Manufacturing Processes 

This section demonstrates the proposed methodology (OSEC) in practical manufacturing related 

scenarios. We compare the performance OSEC approach in terms of classification accuracy with 

popular machine learning approaches as measured using the F-score metric. Accordingly, we use 

sensor-data two different advanced manufacturing processes. 

 Sec. 5.5.1: A fused filament fabrication (FFF) additive manufacturing (AM) process. The data 

consists of signals from 7 sensors acquired at sampling rate of 2.5 Hz. 

 Sec. 5.5.2: A semiconductor chemical mechanical planarization (CMP) process used for 

polishing blanket copper wafers to specular finish. The data consists of a two axis wireless 

vibration sensor signal acquired at a sampling rate of 685 Hz.  

The data used in these studies is acquired from experiments conducted at our facilities, the 

experimental details are available in the literature [2, 85]. Each of the datasets presented are 

analyzed using OSEC, whose performance is compared against five popular machine learning 

approaches frequently used in the signal analysis and process prognosis domains. The approaches 

used for comparison are: (i) quadratic discriminant analysis (QDA); (ii) support vector machine 

(SVM); (iii) neural network (NN); (iv) k nearest neighborhood (k-NN); and (v) naïve Bayes (NB). 

To ensure equitable comparison, the classification algorithms operate on the same training and 

validation data sets as OSEC, the classification performance is evaluated based on a common 

criterion called the F-score [2], which is defined as: 
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𝐹𝑖 = 2 ∙
(𝑃𝑖𝑆𝑒𝑖)

𝑃𝑖 + 𝑆𝑒𝑖
 (93) 

where 𝑃𝑖 and 𝑆𝑒𝑖 are precision and sensitivity of classification, respectively. In our studies, the 

average F-score obtained from 100 realizations are reported.  

5.5.1 Case Study for Fused Filament Fabrication (FFF) Additive Manufacturing (AM) 

Process 

We now apply the OSEC approach to experimental data acquired from a fused filament fabrication 

(FFF) additive manufacturing (AM) process. The experimental data is relatively high dimensional, 

consisting of 13 sensor signals, albeit acquired at a low sampling rate of 2.5 Hz.  

5.5.1.1 Experimental Studies with FFF Process 

Fused Filament Fabrication (FFF) is an additive manufacturing (AM) process in which an object 

is manufactured by depositing progressive layers of extruded semi-molten material [89, 90](see 

Figure 5-3). In FFF a thermoplastic material is heated past its glass transition temperature and 

extruded through a nozzle in a controlled manner (Figure 5-3(a)). In the absence of real-time 

process monitoring, quality control in FFF is largely limited to offline techniques, leading to high 

scrap rates [90].  In this work we investigate the means to detect improper extrusion of the material. 

We instrumented the MakerBot Replicator 2X desktop FFF machine with multiple sensors (see 

Figure 5-3 (b)). The technical details of the various sensors used in this work are provided 

elsewhere [2]. We acquired temperature and vibration information at several different locations on 

the machine (see Figure 5-3 (c)-(e)).  
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Figure 5-3: (a) Schematic of the FFF process. (b) Schematic of the FFF setup instrumented with multiple in situ 

for measuring process conditions in real-time. (c) – (e): Photographs of various sensors used in this study [2].  

Data from the six thermocouples and two vibration sensors (three channels each) is collated in 

real-time. These twelve different sensor channels are synchronized and recorded at a sampling rate 

of ~ 2.5 Hz. Data from the infrared (IR) meltpool temperature sensor has a sampling rate of 1 Hz. 

Thus in total, thirteen channels of sensor data are acquired. In this work we will use seven channels 

of sensor data from the total thirteen, namely, the six vibration channels (three each from bed and 

extruder) and one IR temperature sensor channel. This is because, the thermocouples are not 

directly representative of changes in process dynamics.  

From our intensive experimental studies [2], we have observed that one of the main quality issues 

with our FFF machine, which may lead to a failed part, essentially relates to the filament extrusion 

process.  The borescope video (see Figure 5-3(c)) has been used to record the entire printing 

process for each run. This camera gives a real-time live video feed of the nozzle and extrusion 

process, which allows us to monitor the extrusion process visually from start to finish. From our 

intensive experimental studies, we have determined some inappropriate process parameters which 

(c) (e) (d) 
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lead to the nozzle being clogged, such as printing under low flow rate (rate of extrusion of material) 

to feed rate (movement of the extruder head) ratio in conjunction with low layer height (thickness 

of the deposited extrudate). We have carefully used the borescope video to monitor the filament 

extrusion of the above printing process. Based on the visual analysis with the borescope video, 

three process states are identified a priori (please see the top panel in Figure 5-4): (1) normal 

operation of the process (Figure 5-4(a)); (2) abnormal operation due to insufficient extrusion 

(Figure 5-4 (b)); and (3) failure (stoppage) of extrusion due to nozzle clog (Figure 5-4 (c)).  

Nozzle clog occurs due to improper selection of process conditions. The onset of extrusion failure 

due to a nozzle clog is a gradual process. Initially, the process remains in the normal state for the 

initial third of the layers (~ 15 minutes out of 45 minutes) with stable extrusion. Thereafter the 

extrusion tends to be intermittent; at this stage the extrudate is relatively less consistent (almost 

stringy), and we term this the abnormal process state. Finally, the extrusion process completely 

stops or fails on account of a nozzle clog. It would be valuable to detect the process drift as it 

progresses from normal to abnormal, so that opportune corrective action can be taken and part 

build failure can be avoided. The corresponding IR temperature sensor signals acquired during 

these phases are juxtaposed in the bottom panel of Figure 5-4. These signal trends show a clear 

decreasing trend vis-à-vis the change in process state as it changes from normal to abnormal and 

finally, failure (stoppage) state. The overarching aim of this work is to construct a classifier for the 

three process states delineated above, using the data acquired from different sensors and then to 

apply this classifier for real-time process monitoring. 



 

 

103 
 

 
Figure 5-4: The three observed process states in FFF, demarcated as normal, abnormal, and stoppage due to 

nozzle clog [2]. The bottom panel shows the corresponding IR sensor signals. 

5.5.1.2 Application and Verification of OSEC Approach for FFF Process Monitoring 

In this section, we present the classification performance for AM process using our OSEC 

approach. As explained in Sec. 5.5.1.1, there exists three conditions (or labels, i.e., 𝑘 = 3), in AM 

process, namely, normal extrusion condition, abnormal extrusion condition, and stoppage 

condition (failure). The OSEC approach is implemented as follows: 

Phase 1: We formulate the underdetermined linear system 𝐲 = 𝚽𝐰 + 𝛆, where 𝚽 is the pre-

labelled training matrix, given sensor observation 𝐲. There are a total of 401, 331, and 901 data 

available on normal, abnormal, and failure conditions, respectively. We randomly split the 

available labeled data into training data set and validation data set in the ratio of 70 to 30 percent, 

respectively. The size of training data for each label are 𝑛1= 280, 𝑛2 = 231, and 𝑛3 = 630. Thus, 

from Eq. (85)      (85), we have 𝑇1 = {1,… ,280}, 𝑇2 = {281,… ,511}, 𝑇3 = {512,… ,1141}.  

Next, we construct the training matrix as 𝚽 = [𝚽1 𝚽2 𝚽3], where 𝚽1 ∈ ℝ7×280, 𝚽2 ∈ ℝ7×231, 

and 𝚽3 ∈ ℝ7×630 represent the randomly selected training data for labels 1, 2, and 3, respectively 
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(the index 7 represents the number of sensors used in the work). Hence, the sequence of the 

columns in matrices 𝚽i′𝑠 (∀𝑖 = 1,2,3) is not important anymore. Consider a single training data 

𝝋𝑖
𝑗
∈ ℝ𝑚 randomly selected from the historical data belonging to label 𝑖, then it does not matter 

where we locate 𝝋𝑖
𝑗
 in matrix 𝚽i  (it can be located as any column of matrix 𝚽i). In this way, we 

would be able to reduce the correlations in the columns of matrix 𝚽 (lower mutual coherence as 

suggested by Remark 1 and 3).  

Phase 2: We solve the underdetermined linear system 𝐲 = 𝚽𝐰 + 𝛆 using GBM. In our FFF 

studies we have 121 + 100 + 271 = 492 data to be used for validation. Let us denote them with 

𝐘 = {𝐲𝑡1, … 𝐲𝑡𝑞 , … , 𝐲𝑡𝟒𝟗𝟐}, where 𝐲𝑡𝑞  represents the 𝑞-th validation data set.  Then, in each time, 

we let  𝐲 = 𝐲𝑡𝑞  (∀𝑞 = 1, . .492), and solve 𝐲 = 𝚽𝐰 + 𝛆 using GBM. From the GBM estimation 

results 𝐰̂, we perform classification membership analysis. In other words, we compute 𝜆 by Eq. 

(92) for all 492 validation cases. The average F-score over 100 replications of the above procedure 

are reported for each FFF process state. The following inferences can be drawn from the results 

summarized in Table 5-1. 

(1) It is evident that OSEC has the highest average F-score in comparison to other approaches 

studied. Additionally, we noted the average computational time for classification of a single 

observation; this is estimated to be close to 0.7 milliseconds for the OSEC. Thus, OSEC can 

be utilized for real-time monitoring of AM process due to its computationally efficiency, as 

well as accurate classification performance as reported in Table 5-1. Indeed, the OSEC 

approach is able to obtain an accurate estimate (F-score > 90%) well within 0.2% of the time 

period of the signal (sampling rate 2.5 Hz).  

(2) The kNN algorithm and NN algorithm perform relatively well on classification of normal and 

faulty conditions. However their performance for the abnormal condition is poor. This could 



 

 

105 
 

be due to the abnormal condition closely resembling both normal condition and extrusion 

failure condition in its early stage. Detecting the abnormal stage is therefore a challenge for 

existing classification algorithms to detect successfully.  

(3) Although the reported average F-score for the abnormal condition is lower than for other 

conditions, yet OSEC performs significantly better than the other algorithms against which it 

is compared for the abnormal process state.  

Table 5-1. Average F-score and computational time for classification of FFF process states. (SRC stands for 

sparse representation classification) 

 Process States  

Algorithms Tested 

Normal 

Extrusion 

Abnormal 

Extrusion 
Failure 

Computational 

Time 

(Milliseconds) 

OSEC (GBM)  0.942 0.891 0.950 0.71  

SRC (CO) 0.903 0.783 0.917 140 

SRC (RVM) 0.921 0.822 0.942 81.1 

SRC (OMP) 0.875 0.81 0.89 0.83  

QDA 0.896 0.543 0.882 1.5 

SVM 0.799 0.611 0.848 11 

NN 0.911 0.614 0.896 3.4 

kNN 0.917 0.578 0.902 0.14 

NB 0.915 0.629 0.882 0.022 

 

(4) We further extended the classification of FFF process states using other sparse estimation 

algorithms, namely, convex optimization, OMP, and RVM, which are incorporated into the 

SRC framework, to solve the underdetermined linear system. They are referred to as SRC 

(CO), SRC (RVM), and SRC (OMP) in Table 5-1. 

(5) From Table 5-1, it is observed that the performance of OSEC is superior to the SRC approach 

equipped with other sparse estimation algorithms. In addition to that, the computational time 

(in seconds) related to OSEC is the lowest compared to the SRC approach equipped with other 

sparse estimation algorithms. This analysis confirms that not only GBM algorithm alleviates 
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the computational cost associated with real monitoring of FFF process, but also improves the 

classification performance.  

(6) Pertinently, the classification performance in terms of F-score of the OSEC approach and SRC 

approach, regardless of what sparse estimation algorithm it is equipped with, was found to be 

superior in comparison with other algorithms studied, such as SVM, QDA, k-NN, NN, and 

NB. 

5.5.2 Case Study for Chemical Mechanical Planarization (CMP) of Copper Wafers 

We proceed to apply the OSEC approach to CMP data consisting of two in situ wireless vibration 

signals acquired at 685 Hz. 

5.5.2.1 Experimental Studies with CMP process 

CMP is a free abrasive process similar to lapping [85, 91, 92], which is widely used in the 

semiconductor industry for finishing dielectric and metal interconnect layers patterned on 

semiconductor wafers. The dimensional consistency of these interconnect layers is crucial to the 

functional performance of semiconductor devices, and should therefore be tightly controlled 

during manufacture [84, 93]. Since, a typical modern semiconductor integrated circuit (IC) has 7 

to 10 interconnect layers each requiring a CMP step, CMP induced variations in layer thickness 

can severely impede device functionality. Hence, real-time monitoring of CMP process is vital for 

ensuring functional integrity of semiconductor devices [84, 93, 94]. 

In this work, sensor data is obtained from a benchtop CMP apparatus (Buehler model Automet 

250) instrumented with a wireless two channel MEMS accelerometer (vibration sensor) [85], 

whose sampling rate is ~ 685 Hz (Figure 5-5(a) and (b)). Cylindrical copper wafers of diameter 

40.6250 mm (1.625 in.), and thickness 12.5 mm (0.5 in.) are polished on this apparatus. Scratch 
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free, near-optical finish with Ra ~ 5 nm is reported in this work (Figure 5-5 (c) and (d)). In our 

previous work, we identified certain optimal CMP process conditions [3].     

 

 

Figure 5-5: Description of CMP apparatus and results. (a) Buehler polishing apparatus instrumented with 

wireless vibration sensors. (b): Close-up view of the wireless vibration sensing setup. (c) and (d): Specular 

finished copper wafer with surface roughness in the range of Ra ~ 5 nm. 

The vibration data acquired from the CMP process is complex [85]. Thus, it is challenging to detect 

evanescent process drifts from complex data using traditional statistics and data mining 

approaches. In this study we analyzed signals from both controlled sub-optimal and optimal CMP 

process conditions; representative vibration signals for some suboptimal CMP process conditions 

are shown in Figure 5-6.   

The objective is to ascertain the performance of the OSEC approach for classifying CMP various 

process states. Sub-optimal conditions include, for instance: polishing at high pressure and high 

velocity; worn out pads (Figure 5-6(a)); insufficient supply of polishing compounds (Figure 5-6 

(b)); introduction of foreign particles (Figure 5-6(c)). These suboptimal conditions damage the 

wafer surface and often lead to deep scratches impeding device yield rates.  
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Figure 5-6: MEMS wireless vibration signals (685 Hz sampling rate) in the tangential (x-axis) and radial 

directions (y-axis) acquired from the experimental copper CMP test bed for three types of process faults. (a) 

Condition C3: CMP with a worn out polishing pad, note the gradual change in signal amplitude with time.  

This fault causes deep scratches on the wafer (b) Condition C4:  polishing slurry is suddenly cut-off during the 

process, the changes are not visibly prominent in the time domain, however, subtle change in the frequency 

domain were observed (not shown). This condition resulted in scratches on the wafer. (c) Condition C5: 

polishing slurry contaminated with foreign sand particles. Note the sudden spike when the particles contact the 

wafer. This fault caused deep scratches (> 20 nm deep) on the wafer. 

Accordingly, there are in total nine experimental CMP conditions studied (Table 5-2). These are 

labelled C1 through C9, of which C6 and C8 are considered near-optimal conditions. Each of these 

experimental conditions is replicated 5 times. For brevity, we abstain from providing extensive 

details of the experimental conditions; these are detailed in Refs. [85]. The objective is to classify 

these nine conditions, which is a practically relevant problem, because knowing the status of the 

process from sensor data will allow an operator to take corrective action. In the forthcoming 

section, we will demonstrate that the OSEC approach can classify these nine process conditions 

with higher fidelity compared to conventional machine learning techniques. 
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Table 5-2: Summary of CMP experimental process conditions to be classified. Barring C6 and C8 all other 

process conditions are suboptimal. 

Condition 

Label 
Condition Summary 

C1 Workpiece loses contact with polishing pad (no material removal). 

C2 
Polishing with excessive load (8 lb.) with worn out pad, leaving scratches 

on the wafer. 

C3 
Polishing at low load (2 lb.) condition with worn pad leaving deep 

scratches on wafer 

C4 
Polishing at low load (2 lb.), slurry supply is suddenly throttled resulting in 

suboptimal wafer surface finish and damage to polishing pad. 

C5 
Polishing at low load (2 lb.) with introduction of fine sand particles in the 

slurry. Deep scratches are observed on the wafer. 

C6 2 lb. load and 30 RPM wafer speed. Optimal condition. 

C7 
8 lb. load and 30 RPM wafer speed. Suboptimal condition leading to poor 

wafer uniformity. 

C8 2 lb. load and 60 RPM wafer speed. Near optimal condition. 

C9 

8 lb. load and 60 RPM wafer speed. Highest material removal rate, 

suboptimal condition leading to poor wafer uniformity and shearing of pad 

material. 

 

5.5.2.2 Application and Verification of OSEC approach for CMP Process Monitoring 

The aim of this section is to classify process states C1 and C9 using the OSEC approach, and 

compare its performance with existing approaches as in the preceding AM case. As before, we 

describe the application of the OSEC as stratified in three phase: 

Phase 1: We formulate the underdetermined linear system 𝐲 = 𝚽𝐰 + 𝛆, where 𝚽 is the pre-

labelled training matrix, given sensor observation 𝐲. However, for the CMP case, because the 

sampling rate approaches 685 Hz, the size of the available dataset is considerable. Consequently, 

we present our classification study based upon different sizes of training data on each label, namely 

𝑛𝑖 = {1000, 2000, 5000}. These training data lengths are predicated by the physical characteristics 

of the sensing system; the wireless sensors used in this work have a transmit-receive 

acknowledgment cycle of 1 second (685 data points). Hence choosing a training length of less than 

685 data points is not physically congruous given system constraints. For each training size 𝑛𝑖’s, 
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we define the index set 𝑇𝑖
′𝑠 (∀𝑖 = 1,… ,9) by Eq. (85). The training data on each label 𝚽𝑖 are 

randomly selected from the available data. Hence, the training matrix is formed as 𝚽 =

[𝚽1  𝚽2 … 𝚽9]. The validation data set 𝐲 are also selected randomly out of the remaining sensor 

data (with the size of 250 on each label). 

Phase 2: We solve the underdetermined linear system 𝐲 = 𝚽𝐰 + 𝛆 using GBM. In our studies we 

have 9 × 250 = 2250 data to be used for validation. We denote them with 𝐘 =

{𝐲𝑡1, … 𝐲𝑡𝑞 , … , 𝐲𝑡𝟐𝟐𝟓𝟎}, where 𝐲𝑡𝑞  represents the 𝑞-th validation data set.  Then, in each time, we 

let  𝐲 = 𝐲𝑡𝑞  (∀𝑞 = 1,… ,2250), and solve 𝐲 = 𝚽𝐰 + 𝛆 using GBM. From the GBM estimation 

results 𝐰̂, we perform classification membership analysis. In other words, we compute 𝜆 by Eq. 

(92) for all 2250 validation cases. 

We repeat all the procedures explained above to achieve 100 realizations for classification analysis 

of the CMP process. We also analyze the data using other classification algorithms on the same 

training and validation data sets as above. The average F-score is presented in Table 5-3 along 

with computational efficiency in Table 5-4. The following inferences can be drawn based on Table 

5-3 and Table 5-4: 

(1) OSEC is significantly superior in terms of F-score among all other classification algorithms 

studied. Moreover, increasing the size of training data improves the classification performance 

of OSEC, at the risk of increasing detection delay.  

(2) Indeed, the highest average F-score for the OSEC algorithm is obtained for the training size of 

𝑛𝑖 = 5000. Therefore, increasing the size of the training data could be helpful, albeit at the cost 

of increased computational load and detection delay incurred by increasing the  
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Table 5-3: Average F-score for classification algorithms based on different 𝒏𝒊′𝒔 for CMP process. C6 and C8 

are near-optimal CMP process conditions. 

F-score for Training Data Size = 1000 

Process 

Condition  
C1 C2 C3 C4 C5 C6 C7 C8 C9 

OSEC  0.929 0.937 0.913 0.946 0.931 0.954 0.953 0.826 0.834 

SRC (CO) 0.87 0.912 0.905 0.924 0895 0.956 0.96 0.813 0.789 

SRC (RVM) 0.889 0.872 0.941 0.932 0.922 0.965 0.941 0.851 0.862 

SRC (OMP) 0.825 0.812 0.892 0.785 0.842 0.941 0.875 0.812 0.812 

QDA 0.563 0.741 0.402 0.553 0.217 0.308 0.613 0.534 0.295 

SVM 0.424 0.525 0.398 0.023 < 0.10 0.651 < 0.10 0.676 0.572 

NN 0.548 0.754 0.438 0.622 < 0.10 0.642 < 0.10 0.24 0.623 

kNN 0.586 0.786 0.281 0.613 0.476 0.493 0.573 0.576 0.446 

NB 0.532 0.757 0.325 0.558 0.213 0.268 0.618 0.314 0.494 

F-score for Training Data Size = 2000  

OSEC  0.969 0.962 0.950 0.978 0.966 0.974 0.970 0.915 0.901 

SRC (CO) 0.912 0.932 0.914 0.932 0.912 0.932 0.972 0.882 0.882 

SRC (RVM) 0.924 0.923 0.955 0.942 0.941 0.971 0.967 0.892 0.912 

SRC (OMP) 0.845 0.865 0.924 0.825 0.889 0.975 0.895 0.889 0.864 

QDA 0.549 0.748 0.337 0.560 0.480 0.283 0.648 0.218 0.466 

SVM 0.442 0.604 0.373 0.039 < 0.10 0.652 < 0.10 0.69 0.606 

NN 0.544 0.789 0.393 0.575 0.206 0.506 0.494 0.61 0.572 

kNN 0.569 0.79 0.291 0.609 0.463 0.422 0.603 0.365 0.487 

NB 0.526 0.759 0.270 0.593 0.471 0.226 0.628 0.267 0.533 

F-score for Training Data Size = 5000 

OSEC  0.99 0.992 0.977 0.996 0.984 0.988 0.992 0.951 0.965 

SRC (CO) 0.964 0.962 0.962 0.948 0.942 0.953 0.984 0.965 0.945 

SRC (RVM) 0.975 0.972 0.989 0.981 0.972 0.982 0.994 0.912 0.941 

SRC (OMP) 0.892 0.912 0.941 0.872 0.921 0.994 0.932 0.925 0.894 

QDA 0.564 0.745 0.298 0.562 0.5 0.31 0.65 0.2 0.482 

SVM 
0.422 0.634 0.393 0.069 < 0.10 0.672 < 0.10 0.71 

0.605

3 

NN 0.548 0.787 0.386 0.573 0.254 0.474 0.572 0.603 0.505 

kNN 0.58 0.786 0.297 0.61 0.438 0.451 0.591 0.354 0.491 

NB 0.542 0.759 0.242 0.5977 0.477 0.225 0.632 0.256 0.551 

 

dimension of matrix 𝚽. This is especially important for real-time monitoring of CMP process 

where the sampling rate could be as high as 685 Hz. 

(3) Therefore, in order to study the tradeoff between computation time vs training data size, we 

compared the computational time for the proposed OSEC algorithm given different 𝑛𝑖 values. 
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The average computational cost of a single observation classification is in Table 5-4. It is 

evident from Table 5-4 that a larger training set size (𝑛𝑖) incurs higher computational costs. 

For 𝑛𝑖 = 5000 OSEC is slowest due to the large dimension of the training matrix yet 

commensurate with the sampling rate in CMP process (685 Hz). Therefore, the training size of 

5000 on each label would be appropriate due to its high classification performance. 

Additionally, we compared the computational time of OSEC with SRC approach equipped 

with different sparse estimation algorithms, as well as other supervised classification 

algorithms such as NN, kNN, and SVM. Our results indicate that the OSEC approach is the 

fastest among the SRC approach equipped with different sparse estimation algorithms. For 

example, it was observed that for the smallest training size (𝑛𝑖 = 1000), SRC (CO) is more 

than 1000 times slower than OSEC approach. This is because of the fact the GBM algorithm 

incorporated into OSEC framework is computationally more efficient than convex 

optimization algorithm, and even RVM algorithm. This analysis confirms that not only GBM 

algorithm alleviates the computational cost associated with real monitoring of CMP process, 

but also improves the classification performance. 

(4) Even with a training data set of 5000 data points, one classification task is completed within 

about 0.9 milliseconds using the proposed OSEC approach, i.e., within 60% the time it takes 

for a data point to be recorded (1.5 milliseconds, given 685 Hz sampling rate). 

Table 5-4: OSEC’s computational time given different training size on each label (sensor sampling rate 

685 Hz) 

 Computational Time (Milliseconds) 

Training 
Data Size 

OSEC 
 

SRC  
(CO) 

SRC 
(RVM) 

SRC 
(OMP) 

QDA SVM NN kNN NB 

1000 0.410  520  23.700 0.690   0.030 7.800 0.510 0.016 0.002 

2000 0.591  1080  39.400 0.890 0.041   19.900 1.50 0.024 0.004 

5000 0.854  4330  321.9 1.021 1.702 1235.54 103.6 0.824 0.012 
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5.6 Conclusions and Future Work 

In this subchapter, we proposed a supervised classification approach based on the concept of sparse 

estimation for real-time monitoring applications.  The proposed online sparse estimation based 

classification (OSEC) formulates the supervised classification problem as an underdetermined 

system of linear equations. To accommodate real-time monitoring in advanced manufacturing 

scenarios, we further developed a fast sparse estimation algorithm in this subchapter, namely, the 

greedy Bayesian method (GBM), and incorporated it into the OSEC approach to efficiently solve 

the underdetermined system. 

We validated the OSEC approach for monitoring of two advanced manufacturing processes, 

namely, a fused filament fabrication (FFF) additive manufacturing process; and a semiconductor 

chemical mechanical planarization (CMP) process. This is valuable for condition monitoring of 

advanced manufacturing processes. Specific outcomes from the practical case studies (AM and 

CMP, Sec. 5.5.1 and Sec. 5.5.2, respectively) illustrated in this work are as follows: 

(1) For the fused filament fabrication (FFF) additive manufacturing process, the existing three 

conditions (labels), namely, normal extrusion condition, abnormal extrusion condition, and 

extrusion stoppage condition are monitored. The classification performance of OSEC is 

measured and compared with some of the existing classification algorithms for verification 

purposes. The classification results show that the proposed OSEC algorithm has superior 

performance in comparison to other algorithms studied. F-score performance for the proposed 

OSEC approach was between 89% and 95%. 

(2) We further verified the OSEC approach with semiconductor chemical mechanical 

planarization (CMP) process. Nine CMP process conditions were used for classification. Data 

from two vibration sensors are gathered with a sampling rate approaching 685 Hz. With the 
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proposed OSEC algorithm, classification performance consistently approaches 90% (F-score), 

in contrast the best performance amongst all of the other traditional supervised classification 

algorithms studied is at most 75%. Moreover, the computational time for OSEC was close to 

0.85 milliseconds, which is well within the sampling time (15 milliseconds) of the sensing 

system. Thus, the OSEC approach is successfully applied to a multiple sensor monitoring 

scenario having high sampling rates. 

In summary, the proposed OSEC algorithm is shown to be computationally efficient, as well as 

more accurate than traditional machine learning algorithms against which it was compared, viz., 

k-NN, QDA, NB, NN, SVM) for real-time monitoring of manufacturing processes with high 

dimensional training matrix (exceeding 45000). The number of sensors utilized for manufacturing 

applications is usually small  (< 25 ), for the cases where a larger number of sensors, such as in 

weather monitoring where more than 1000 sensors can be active simultaneously, the complexity 

of the proposed method can be overwhelming. A prescription could be utilizing a random sampling 

from the training matrix 𝚽 [3]. We are currently augmenting the OSEC approach for multivariate 

big data mining applications.  
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Chapter 6. Wearable Sensor Selection Optimization 

with Applications to Manual Material Handling Tasks 
 

Occupational jobs often involve different types of manual material handling (MMH) tasks. 

Performing such tasks can be physically demanding, and which may put workers at an increased 

risk of work-related musculoskeletal disorders (WMSDs). To control and prevent WMSDs, there 

has been a growing interest in online posture monitoring using wearable sensors. In this Chapter, 

we utilize OSEC algorithm for monitoring and evaluation of MMH activities, as it was shown in 

Chapter 5 that it is computationally efficient for online decision making. We further propose an 

optimization approach to improve classification performance, by differentially weighting sensor, 

thereby representing the relative of a sensor in classification performance. As such, optimizing 

these weights enables us to determine the most relevant sensors for classification. A case study 

using 37 sensors with 111 channels of data was completed to validate performance of the proposed 

method. With only 30 optimally-selected sensor channels, our method provides high classification 

accuracy (>84%) and outperforms several benchmark methods, including support vector machine, 

quadratic discriminant analysis, and neural network5. 

6.1 Introduction 

Occupational tasks often involve different types of manual material handling (MMH), requiring 

workers to, for example, lift, carry, push/pull, and manipulate an object.  Performing such tasks 

can be physically demanding, and contributes substantially to work-related musculoskeletal 

disorders (WMSDs) reported annually in the United States [95].  WMSDs are an important issue 

                                                 
5 Bastani, K., Kim, S., Kong, Z., and Nussbaum, M., 2016, “Online classification and sensor selection 

optimization with applications to human material handling tasks using wearable sensing technologies,” 

IEEE Transactions on Human-Machine Systems (Accepted). 
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in the workplace, which accounts for a substantial portion (>30%) of lost workday cases [96, 97].  

To control and prevent WMSDs, high risk conditions for a given job need to be identified to 

develop effective interventions [98, 99].  Identification of such conditions ideally requires 

monitoring and understanding worker behaviors during MMH tasks in an actual work 

environment, since specific working strategies that individual or groups of workers use to perform 

MMH tasks can affect the level of physical exposures experienced.  Understanding and 

characterizing MMH strategies used by workers in situ can thus aid in the design and evaluation 

of interventions targeted for high risk work strategies and/or situations, and further help improve 

the effectiveness of interventions since intervention effectiveness can depend on the individual 

worker and their specific situations or context [100]. 

To efficiently monitor and assess working strategies, there is growing interest in human activity 

and posture monitoring, such as using wearable sensors [101-103] or depth cameras [93, 104]. 

Self-report and observational methods (e.g., checklists) are often used in practice to monitor 

activities and postures, yet they are labor-intensive and provide relatively crude outputs [105, 106]. 

Using wearable sensors such as inertial measurement units (IMUs), along with automatic activity 

classification, has great potential to enable rapid, comprehensive assessment of physical demands 

in diverse work settings, providing detailed information on body kinematics (e.g., joint angles) and 

work demands / strategies (e.g., distribution or frequency of task types during a work shift, or 

temporal changes in a given task type).  Previous studies on activity classification with wearable 

sensors have reported classification accuracy of ~30% to ~99% [102, 107, 108].  In these studies, 

poorer performance was generally related to larger movement variability and/or less distinct 

motion characteristics. These performance-limiting conditions may be common in an occupational 
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setting (e.g., healthcare, construction, and service industries), since workers are often required to 

perform diverse types of manual tasks. 

Therefore, one challenge in promoting the use of IMUs (or similar wearable sensors) for physical 

exposure assessments is to improve task classification performance.  Using such sensors to monitor 

whole-body kinematics can provide high dimensional time series data, for which accurate and 

timely online processing is challenging and computationally extensive. To effectively overcome 

these challenging issues, we recently developed a supervised classification algorithm based on a 

computationally efficient sparse estimation method to support online decision making for 

manufacturing processes [109].  Here, we extend the application of this algorithm to improve 

classification performance for MMH tasks, by incorporating an optimization approach based on 

sparse estimation performance criteria. Specifically, given that each sensor captures different 

aspects of body kinematics, we differentiate levels of importance of sensors to improve 

classification performance. Another advantage of the proposed optimization method is that it can 

be utilized as a sensor selection methodology to reduce the number of sensors, yet maintain 

satisfying classification performance. 

The remainder of the paper is organized as follows: Sec. 6.2 provides the research background 

required for MMH task classification. In Sec. 6.3, we propose our optimization approach and its 

extension as a sensor selection methodology for online MMH task classification. Sec. 6.4 presents 

the effectiveness of the proposed approaches through case studies. Finally, Sec. 6.5 concludes the 

paper.  

6.2 Research Background 

Use of wearable technologies with online MMH task classification can facilitate real-time physical 

exposure assessments. Some studies have indeed explored a potential of integrating wearable 
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sensors with classification algorithms to monitoring MMH tasks or other occupationally relevant 

activities. In this section, existing and related studies are reviewed and their limitations are 

discussed. To overcome those limitations, we utilize OSEC algorithm proposed in Chapter 5 due 

to its fast computational speed, as well as its accurate classification performance.  

Wearable sensors have been widely used to classify physical activities in the fields of healthcare-

related research and manufacturing assembly lines [102, 107, 108, 110-120]. In these and related 

report, diverse supervised classification algorithms have been to recognize and associate patterns 

in wearable sensor data to specific physical activities. Note, the reader is referred to Preece et al. 

[119] and references therein for more detailed review. Algorithms used have included k-nearest 

neighborhood (k-NN) [112, 116, 121], support vector machines (SVM) [110, 120], neural 

networks (NN) [108, 118], linear discriminant analysis (LDA) [107], and Naïve Bayes classifiers 

[102, 114, 116, 121].  

The working procedures of such classification algorithms vary from simple heuristic based 

approaches (e.g., k-NN) to more advanced approaches such as NN and SVM. Differences in 

working procedures of these classifiers likely results in observed differences in classification 

performance. Hence, there have been a number of studies comparing different classifiers for 

activity classification in the literature [107, 116, 118, 120]. From such reported results, k-NN and 

NN often perform better than other classifiers. However, this conclusion cannot be established as 

a general conclusion for activity classification, since performance of the classification algorithms 

noted above depend substantially on the preprocessing procedures applied to wearable sensor data 

(i.e., feature extraction). Input variables to these classifiers are the features extracted initially from 

the wearable sensor data, typically represented by statistical features, frequency-domain features, 

time-domain features, etc. [111, 117, 122]. Feature extraction techniques usually result in high 
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dimensional data, with some additional methods used subsequently for dimensionality reduction 

[113, 115]. The extracted low(er)-dimensional features are then imported into the classifier, to 

determine the specific physical activity label.  

If the features extracted from obtained wearable sensor data are not sufficiently representative, 

these classification algorithms likely have relatively poor performance. Different feature extraction 

techniques and dimensionality reduction methods have been utilized to provide the input features 

[98, 100, 103, 104, 111]. However, there is no consensus on which features lead to better (or worse) 

classification performance for physical activity identification, and there is little practical guidance 

to help guide feature selection. Therefore, it would be very useful to apply a classification 

algorithm for MMH task recognition that is not dependent on the selected features. Furthermore, 

the computational cost of the classification algorithm should be low enough to be conveniently 

utilized for online classification (such as MMH tasks, of interest here).  

6.3 Optimization Problems for Online MMH Task Classification 

To improve the classification performance of the OSEC algorithm, we first need a criterion to 

measure OSEC classification performance. Since there is no a priori knowledge that a new 

observation 𝐲 correctly belongs to a specific label, we cannot utilize classification error as the 

criterion. Hence, there is a need for an indirect measure to quantify classification performance. 

Given the nature of the OSEC algorithm, classification performance depends on how well the 

sparse estimation of Eq. (82) is carried out. Thus, we consider existing performance criteria used 

for sparse estimation [71, 79, 123]. These criteria depend mainly on some properties of matrix 𝚽, 

introduced in Sec. 6.3.1. Then, Sec 6.3.2 presents the proposed optimization method to improve 

sparse estimation/classification performance, by optimizing the weighting of each individual 

sensor. In Sec. 6.3.3, we extend the proposed optimization problem by incorporating some physical 
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interpretation for the weights assigned to sensors, and which leads to a sensor selection 

methodology.   

6.3.1 Properties of Matrix 𝜱 

Two effective criteria have been reported to evaluate the properties of matrix 𝚽 for sparse 

estimation problems, namely (1) restricted isometry property (RIP) [71, 123], and (2) mutual 

coherence [79]. It is defined that matrix 𝚽 satisfies RIP condition of order 𝜐 if we have an isometry 

constant 0 < 𝛿𝜐 < 1 such that 

(1 − 𝛿𝜐) ≤
‖𝚽S𝐰S‖2

2

‖𝐰S‖2
2 ≤ (1 + 𝛿𝜐)   

(94) 

is satisfied for every index set S with cardinality of 𝜐. The RIP condition requires that any sub-

matrix 𝚽S from the original matrix 𝚽 is nearly orthogonal as 𝛿𝜐 becomes very small. It has been 

proved that if the RIP holds then sparse estimation algorithms can approximate 𝐰 within a very 

small error bound with high probability [76, 124]. It has also been shown that a random matrix 𝚽 

(e.g., sampled from a Gaussian distribution) satisfies the RIP condition with high probability [4]. 

But for an arbitrary matrix 𝚽, it is NP-hard to compute the isometry constant 𝛿𝜐 [5]. 

The second criterion to evaluate matrix 𝚽 is mutual coherence, and which is more computationally 

tractable than the RIP criterion. Let 𝐆 = 𝚽̃𝑻𝚽̃ be the Gram matrix of 𝚽̃ computed from matrix 𝚽 

after normalizing each of its columns [6]. Then, mutual coherence 𝜇(𝚽) is defined as the largest 

absolute off-diagonal elements of matrix 𝐆, namely, 

𝜇(𝚽) = max|𝑔𝑖𝑗| 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗  (95) 

where 𝑔𝑖𝑗 represents the 𝑖-th element of the 𝑗-th column of matrix 𝐆. Mutual coherence measures 

the highest correlation between columns of matrix 𝚽. From Eq. (95), clearly, mutual coherence 𝜇 

can be efficiently computed, as opposed to 𝛿𝑘 which is not computationally tractable. Essentially, 
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a large 𝜇(𝚽) represents a vulnerability of matrix 𝚽 for sparse estimation, since columns that are 

highly correlated could easily deteriorate the performance of sparse estimation algorithms [6]. 

Therefore, matrices with low mutual coherence are required for accurate sparse estimation. Some 

theoretical results on mutual coherence reported in Refs. [80, 81] prove that if the inequality 

 ‖𝐰‖0 ≤
1

2
(1 +

1

𝜇(𝚽)
)  (96) 

holds, then vector 𝐰 is necessarily the sparsest representation of 𝐲 = 𝚽𝐰 (non-noisy 

measurements), and some sparse estimation techniques are guaranteed to succeed in reconstruction 

of 𝐰. Thus, given inequality Eq. (96), minimizing mutual coherence 𝜇(𝚽) yields a wider set of 

vectors 𝐰 to be reconstructed successfully. However, Elad [6] argues that minimizing the proposed 

mutual coherence (Eq. (95)) may not improve the actual performance of sparse estimation 

techniques; but, an average measure of mutual coherence does. Based on Elad’s study, we consider 

average mutual coherence defined as follows, 

𝜇𝑎𝑣𝑔(𝚽) =
∑ |𝑔𝑖𝑗|1≤𝑖,𝑗≤𝑛,𝑖≠𝑗 

𝑛(𝑛−1) 2⁄
  

(97) 

Indeed, 𝜇𝑎𝑣𝑔(𝚽) computes the average of absolute off diagonal elements of gram matrix 𝐆 as 

opposed to Eq. (95) which considers the worst case scenario with the highest correlation. As 

discussed above, it is necessary to minimize 𝜇𝑎𝑣𝑔(𝚽) to improve the sparse estimation 

performance/classification performance. In Sec. 6.3.2, we present two optimization problems 

dealing with 𝜇𝑎𝑣𝑔(𝚽), by assigning different weights to different sensor channels. 

6.3.2 Optimization for Training Matrix 𝜱 

In the proposed linear model (Eq. (82)), the training matrix 𝚽 is constructed from time series data 

associated to each label (see Eq. (83)). Due to the nature of times series data, columns of matrix 
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𝚽 from the same label should be correlated. Thus, 𝜇𝑎𝑣𝑔(𝚽)  is expected to be high. Thus, matrix 

𝚽 may be vulnerable for sparse estimation, as discussed in Sec. 6.3.1.  

We propose an optimization method that aims to minimize 𝜇𝑎𝑣𝑔(𝚽), by assigning different 

weights to each row (i.e., each sensor channel) of matrix 𝚽. Let 𝐳 = {𝐳1 𝐳2 … 𝐳m}𝑇 be the decision 

variables, where 𝐳𝑗  represents the weight assigned to the 𝑗-th row/sensor (∀𝑗 = 1,… ,𝑚). We 

define  

𝚽(𝐳) = [
𝐳1𝚽1

⋮
𝐳𝑚𝚽𝑚

]  
(98) 

where 𝚽𝑗 is the 𝑗-th row of matrix 𝚽 (∀𝑗 = 1,… ,𝑚). Each row/sensor weight 𝐳𝑗  is assumed to be 

between [0, 1]. Now, the optimization problem is formulated as, 

min𝜇𝑎𝑣𝑔(𝚽(𝐳)) 

𝐳 = {𝐳1 𝐳2 … 𝐳m}𝑇 

S.T.: 0 ≤ 𝐳𝑗 ≤ 1  (∀𝑗 = 1,… ,𝑚) 

(99) 

To determine the underlying solution approach to Eq. (99), the objective function and constraints 

should be characterized. The constraints of 0 ≤ 𝐳𝑗 ≤ 1  (∀𝑗 = 1,… ,𝑚) are convex, as they are 

linear, and in the following lemma we prove that 𝜇𝑎𝑣𝑔(𝚽(𝐳)) is a nonconvex sum-of-ratios 

function of variable 𝐳. 

Lemma 1- Let 𝚽(𝐳) ∈ ℝ𝑚×𝑛 be a function of 𝐳 ∈ ℝ𝑚, as defined in Eq. (98), and 𝜇𝑎𝑣𝑔(𝚽(𝐳)) be 

the average mutual coherence of 𝚽(𝐳), then 𝜇𝑎𝑣𝑔(𝚽(𝐳 )) is a nonconvex sum-of-ratios function 

of variable 𝐳.  

Proof.  Following the definition of average mutual coherence, matrix 𝚽(𝐳) must first be 

normalized. It can be normalized by introducing the normalization matrix 
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𝐍(𝐳) = 𝑑𝑖𝑎𝑔(∑ 𝐳𝑖
2𝑞𝑖𝑗

2𝑚
𝑖=1 )1/2 (∀𝑖 = 1,… , 𝑛)   (100) 

where 𝑞𝑖𝑗 is the i-th element of matrix 𝚽 at its j-th column. The normalized matrix is below, 

𝚽̃(𝐳) = 𝚽(𝐳)𝐍(𝐳)  (101) 

Then, the Gram matrix of 𝚽̃(𝐳) is defined as  

𝐆(𝐳) = 𝚽̃(𝐳)𝑇𝚽(𝐳)  (102) 

From the definition, average mutual coherence 𝜇𝑎𝑣𝑔(𝚽(𝐳)) is the average of absolute off-diagonal 

elements of Gram matrix 𝐆(𝐳). By matrix multiplication and simple algebra, the absolute off-

diagonal elements of the Gram matrix can be expressed as  

𝑔𝑖𝑗 =
|∑ 𝐳𝑘

2𝑞𝑘𝑖𝑞𝑘𝑗
𝑚
𝑘=1 |

√∑ 𝐳𝑘
2𝑞𝑘𝑖

2𝑚
𝑘=1 √∑ 𝐳𝑘

2𝑞𝑘𝑗
2𝑚

𝑘=1

 ) 1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗  (103) 

Then, average mutual coherence is a simple average of Eq. (103) over (1 ≤ 𝑖, 𝑗 ≤ 𝑛, 𝑖 ≠ 𝑗), 

namely, 

𝜇𝑎𝑣𝑔(𝚽(𝐳)) = ∑
|∑ 𝐳𝑘

2𝑞𝑘𝑖𝑞𝑘𝑗
𝑚
𝑘=1 |

√∑ 𝐳𝑘
2𝑞𝑘𝑖

2𝑚
𝑘=1 √∑ 𝐳𝑘

2𝑞𝑘𝑗
2𝑚

𝑘=1

1≤𝑖,𝑗≤𝑛,𝑖≠𝑗   (104) 

Note that we dropped the irrelevant term 𝑛(𝑛 − 1) 2⁄  as it is constant for our optimization problem. 

From Eq. (104), it can be seen that it is a sum-of-ratio function of 𝐳, where both |∑ 𝐳𝑘
2𝑞𝑘𝑖𝑞𝑘𝑗

𝑚
𝑘=1 | 

and √∑ 𝐳𝑘
2𝑞𝑘𝑖

2𝑚
𝑘=1 √∑ 𝐳𝑘

2𝑞𝑘𝑗
2𝑚

𝑘=1  are convex with respect to 𝐳. It is clear that the numerator of Eq. 

(104) is a convex function in z. The denominator consists of two terms √∑ 𝐳𝑘
2𝑞𝑘𝑖

2𝑚
𝑘=1 , and 

√∑ 𝐳𝑘
2𝑞𝑘𝑗

2𝑚
𝑘=1  which are realized as weighted norm of vector 𝐳. By triangular inequality and the 

definition of a convex function, it can be shown that each of these terms is convex in 𝐳. Since both 
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terms are non-decreasing functions, the product of these two terms is also convex. Thus, the ratios 

of two convex functions is nonconvex, and this completes the proof. Q.E.D. 

Following Lemma 1, 𝜇𝑎𝑣𝑔(𝚽(𝐳)) is a nonconvex sum-of-ratios in variable z. Thus Eq. (99) 

becomes a nonconvex optimization problem and is difficult to solve. However, Jong [125] 

developed a practical global optimization algorithm for nonconvex sum-of-ratios problems with 

convex constraints. Hence, we utilize this algorithm as the solution approach for Eq. (99). This 

algorithm transforms the sum-of-ratios problem into a convex parametric programming problem 

and finds the global solution successfully. Utilizing this algorithm for a given training matrix 𝚽, 

we can always improve (reduce) its average mutual coherence. Thus, performance of the sparse 

estimation based classification can be improved correspondingly. This can be done by modifying 

the underdetermined linear system proposed in Eq. (82), leading to an improved OSEC algorithm. 

The procedures of this algorithm is exactly the same as OSEC algorithm, but the only difference 

is that instead of solving Eq. (82), improved OSEC algorithm proposes to solve   

𝐲(𝐳̅) = 𝚽(𝐳̅)𝐰 + 𝛆  (105) 

where 𝐳̅ is the optimal solution to Eq. (99),  𝐲(𝐳̅) = [
𝐳̅1𝐲1

⋮
𝐳̅𝑚𝐲𝑚

], and 𝐲𝑗 represents the 𝑗-th element of 

𝐲 (∀𝑗 = 1, … ,𝑚). Matrix 𝚽(𝐳̅) in Eq. (105) benefits from lower average mutual coherence than 

𝚽 in Eq. (82) Consequently, we can conclude that solving Eq. (105) rather than Eq. (82) is 

expected to improve the sparse estimation of 𝐰.  Note that if the noise term was known beforehand, 

we should have replaced the left hand side of Eq. (105) with 𝐲′ = 𝐲(𝐳̅) + (1 − 𝐳̅)𝛆. Since the noise 

term 𝛆 is assumed to be small, the difference between 𝐲′and 𝐲(𝐳̅) is negligible. Hence, we can still 

use the solution of Eq. (105) for our classification membership analysis. 
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6.3.3 Sensor Selection Methodology  

In Sec. 6.3.2 we showed that, by assigning different weights (𝐳𝑗  in Eq. (99)) to each row of the 

design matrix, the average mutual coherence of the training matrix can be reduced. Here, we would 

like to select the sensors that contribute more to classification performance. This is particularly 

useful to reduce the number of wearable sensors, and which could subsequently reduce costs 

associated with sensors and any potential sensor discomfort to workers.  

The sensor selection methodology is formulated as selecting 𝑢 out of 𝑚 potential sensors, to 

minimize average mutual coherence. We propose the sensor selection problem as follows  

min𝜇𝑎𝑣𝑔(𝚽𝑃) 

S.T.: |𝑃| = 𝑢 

(106) 

where 𝑃 is a selection subset of the sensor set {1, … ,𝑚}, with cardinality of |𝑃| = 𝑢; and 𝚽𝑃 is a 

submatrix of 𝚽 where its rows corresponds to 𝑃. Let 𝐳 = {𝐳1 𝐳2 … 𝐳m}𝑇 be the decision variable 

where 𝐳𝑗  (∀𝑗 = 1,… ,𝑚) represents whether sensor 𝑗-th should be selected (𝐳𝑗 = 1), or not (𝐳𝑗 =

0). Using 𝐳 with row-wise multiplication on matrix 𝚽 as defined in Eq. (98), we can rewrite Eq. 

(106) as follows 

min𝜇𝑎𝑣𝑔(𝚽(𝐳)) 

S. T. : 𝟏𝑇𝐳 = 𝑢 

𝐳𝑗 ∈ {0,1} (∀𝑗 = 1,… ,𝑚) 

(107) 

where 𝟏 is a vector with all elements as one, and constraint 𝟏𝑇𝐳 = 𝑢 ensures that the number of 

selected sensor is 𝑢. One method to solve Eq. (107) is to try all (
𝑚
𝑢

) choices to evaluate 

performance. However, this is clearly not practical unless 𝑚 or 𝑢 is very small. It can be shown 

that the sensor selection problem is NP-hard [126]. Therefore, to make it solvable in polynomial 

time, we relax the nonconvex constraints 𝐳𝑗 ∈ {0,1}(∀𝑗 = 1,… ,m) with convex constraints 
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0 ≤ 𝐳𝑗 ≤ 1 in Eq. (107). In other words, we assign different weights, between zero and one, to 

various sensors/rows. Now, the relaxed optimization problem is presented as 

 min𝜇𝑎𝑣𝑔(𝚽(𝐳)) 

 S. T. : 𝟏𝑇𝐳 = 𝑢 

0 ≤ 𝐳𝑗 ≤ 1  (∀𝑗 = 1,… ,𝑚)  

(108) 

In Lemma 1, we showed that 𝜇𝑎𝑣𝑔(𝚽(𝐳)) is characterized as a nonconvex sum-of-ratios function 

of optimization variable 𝐳. The constraints added for the purpose of sensor selection are convex. 

Therefore, the optimization problem in Eq. (108) can still be solved by the solution approach in 

Ref. [125]. 

Note that the optimal solution to Eq. (108), denoted by 𝐳∗, can be fractional as opposed to integer 

solution to Eq. (107). Thus, these two problems are not equivalent. Let 𝜇∗ be the optimal objective 

value of Eq. (107). Then, it can be shown that the optimal objective value of Eq. (108), is a lower 

bound on 𝜇∗, namely, 

 𝐿𝜇∗ = 𝜇𝑎𝑣𝑔(𝚽(𝐳∗))  (109) 

This can be realized through the fact the feasible region in Eq. (108) contains the feasible region 

of Eq. (107), and therefore the optimal objective value of Eq. (108) cannot be larger than 𝜇∗. On 

the other hand, we can utilize 𝐳∗ to achieve a suboptimal solution for Eq. (107), denoted by 𝑃̂. 

Indeed 𝑃̂ is a subset from the set {1,2, … ,𝑚}, which represents the suboptimal sensor selection. 

Following the approach developed by Joshi and Boyd [127], we define 𝑃̂ corresponding to the 𝑢 

largest elements of 𝐳∗. Let 𝐳∗ be sorted in a descending order, then 𝑃̂ is defined as 

𝑃̂ = {𝑖1, 𝑖2, … , 𝑖𝑢}  (110) 

which is a set representing the indices corresponding to the 𝑢 largest elements of 𝐳∗. Let 𝐳̂ =

{𝐳1, 𝐳2, … , 𝐳𝑚} be a binary vector correspond to 𝑃̂, where  
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𝐳𝑗̂ = {
1, 𝑗 ∈ 𝑃̂
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

,  

then clearly 𝐳̂ is a feasible solution to Eq. (108), since it meets the constraints of Eq. (108). Thus, 

its associated objective function is an upper bound for the original optimal objective value of Eq. 

(107), i.e. 

𝑈𝜇∗ = 𝜇𝑎𝑣𝑔(𝚽(𝐳̂ ))    (111) 

The upper bound 𝑈𝜇∗  and lower bound 𝐿𝜇∗  of the original optimal objective value can be used to 

find a gap, defined as 

𝜹 = 𝑈𝜇∗ − 𝐿𝜇∗ = 𝜇𝑎𝑣𝑔(𝚽(𝐳̂ )) − 𝜇𝑎𝑣𝑔(𝚽(𝐳∗))  (112) 

The ideal case happens at 𝜹 = 0, which means that 𝐳̂ is optimal for Eq. (107). If this gap is small 

enough, we can make sure that the selected sensors resulted from solving Eq. (108) are almost 

equivalent to the results of Eq. (107). The case studies in Sec. 4.3 present the results of sensor 

selection methodology associated with small gap 𝜹. 

As discussed above, the sensor selection set is determined by 𝑃̂ with  |𝑃̂| = 𝑢, which is computed 

from 𝐳∗ through Eq. (110). Then, the supervised classification can be carried out from the selected 

sensor data, specifically by solving  

𝐲𝑃̂ = 𝚽𝑃̂𝐰 + 𝛆  (113) 

where 𝐲𝑃̂ is a subvector of y associated to 𝑃̂, and 𝚽𝑃̂ is a submatrix of 𝚽 whose rows are associated 

to 𝑃̂. 

6.4 Case Study 

We demonstrate the effectiveness of the proposed optimization method by application to online 

classification of MMH tasks. Sec. 6.4.1 describes experimental procedures using wearable sensors 
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to obtain whole-body kinematics during a simulated job. In Sec. 6.4.2, we demonstrate the 

effectiveness of the proposed optimization method in reducing the average mutual coherence. Sec. 

6.4.3 validates the performance of the improved OSEC algorithm as well as the proposed sensor 

selection methodology. 

 6.4.1 Simulated MMH Tasks 

In an experiment reported previously [107], 10 gender-balanced young participants (19-29 years 

old) completed four cycles of a simulated job a laboratory environment. Each job cycle was 

designed to include major MMH tasks such as lifting/lowering, pushing/pulling, and carrying.  

Participants were allowed to complete each MMH task using self-selected comfortable styles and 

speeds.  Each of the four job cycles was paced to last 7 minutes, rest was given after each cycle, 

and the four cycles were repeated three times.  

For classification purposes, ground truth MMH task labels were manually assigned by direct 

observation (via video recordings).  MMH task labels include: 1) lifting from the ground (LG), 2) 

lifting from knuckle height (LK), 3) lowering to the ground (LoG), 4) lowering to knuckle height 

(LoK), 5) pushing, 6) pulling, 7) carrying, and 8) walking (only as required to perform the tasks).   

During the simulated job, whole-body kinematics were monitored at 60 Hz using an inertial motion 

capture system (MVN BIOMECH, Xsens technologies B.V., Enschede, the Netherlands), with 17 

IMUs positioned on the head, sternum and pelvis; and bilaterally on the scapulae, the upper and 

lower arms, hands, thighs, shanks, and feet (Figure 6-1 for more details, please refer to [128]). 

Note that all participants indicated that the system was neither intrusive nor distracting. Whole-

body kinematics were derived using 37 anatomical bony landmarks, each with three channels 

(leading to 111 sensor channels in total) required to define bony segments [129, 130].  Time series 

of the anatomical landmark locations were used as inputs to the proposed OSEC algorithm.   
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Figure 6-1The MVN™ system setup using 17 inertial measurement units. 

6.4.2 Numerical Results for Optimizing Training Matrix 𝜱  

The input matrix 𝚽 into our optimization problem (Eq. (99)) is the training matrix collected from 

MMH tasks explained in Sec. 6.4.1. Following the procedures (in Eq. (82)) explained in Chapter 

5, matrix 𝚽 can be constructed. More specifically, we randomly chose 50 training samples from 

each label. This number was chosen for simplicity of illustration of the proposed optimization 

method. There were a total of 8 labels in the MMH experiment (see Sec. 6.4.1); thus, matrix 𝚽 has 

the dimension of 111 (the total number of sensor channels)×400. We solve the optimization 

problem in Eq. (99) to achieve the optimal solution 𝐳̅.  

Figure 6-2 summarizes the absolute values of off-diagonal elements of the gram matrix 𝐆 of both 

the original matrix 𝚽 and optimized matrix 𝚽(𝐳̅).  It can be seen that there is a shift towards the 

origin of the histogram after optimization. This indicates that the absolute values of off-diagonal 

elements of the gram matrix 𝐆 have been reduced, hence the average mutual coherence is reduced 

accordingly. 
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Figure 6-2. Histogram of the absolute off-diagonal elements of the Gram matrix of original matrix𝚽, and optimized 

matrix 𝚽(𝐳̅). The y axis shows the frequency and the x axis shows the values of mutual coherence. The mean and median 

of the left and right graphs are (0.4199, 0.4060) and (0.3019, 0.2694), respectively. 

6.4.3 Online Classification and Sensor Selection Optimization for MMH Tasks  

The classification performance of improved OSEC algorithm, and the effectiveness of the 

proposed sensor selection optimization for MMH tasks are presented in this section, and 

subsequently compared with the following widely used supervised classification methods as 

benchmarks: support vector machine (SVM), quadratic discriminant analysis (QDA), neural 

network (NN), naïve Bayes (NB), and k-nearest neighborhood (k-NN) (𝑘 = 5 for our analysis). 

All these algorithms were coded in Matlab (with the CPU of Intel dual core 2.5 GHz). From our 

cross validation analysis, the settings for these algorithms were as follows: SVM with Gaussian 

kernel, NN with one hidden layer containing 30 hidden units, QDA with an empirical prior 

distribution, and NN approach with a Gaussian distribution and empirical prior. 

As explained in Sec. 6.4.1, there are in total 8 labels of sensor data. The first step of improved 

OSEC is to construct the training matrix 𝚽. Therefore, the size of the training data for each label  

𝑛𝑖 should be determined. Determining training data size in our proposed method is a trade-off 

between classification accuracy and computational efficiency. In this case study, a training data 

size of  𝑛𝑖=500 samples on each label (task) was randomly selected from the historical data to 

construct the training matrix 𝚽. In our current work, determining this size was done by numerical 

Original Matrix Φ Optimized Matrix Φ(𝑧 )   
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experiments. We tried a number of analyses to converge on the training data size of “500”. It was 

found that this number was sufficient to conduct the classification analysis with very good 

performance. But, further increasing the number of training data did not substantially improve the 

classification performance.  

The 500 data samples on each label were randomly selected from the data set with a maximum of 

100,000 samples on each label (the entire data set obtained from 10 participants doing a simulated 

job lasting for 7 minutes). Hence, the 500 samples do not correspond to a short duration (of 8.3 

seconds). Rather, these points are randomly sampled over a time period of 7 minutes (out of 

100,000 sensor data points), and a sample set that we consider to be a good representative for the 

entire data set. From the remaining historical data, we randomly selected the validation data (test 

data) to compare the performance of the proposed improved OSEC algorithm with the 

benchmarks. The validation data (test data) set 𝐲 is selected with the size of 250 on each of the 8 

labels.   

Now, given the validation data set 𝐲 and 𝚽 we would be able to run our improved OSEC algorithm. 

As the first step, solving the optimization problem in Eq. (99) leads to the optimal solution(𝐳̅), 

based on which 𝚽(𝐳̅) and 𝐲(𝐳̅) are computed. Now we would like to perform our classification 

analysis by applying the sparse estimation of Eq. (105). Following the improved OSEC 

procedures, we apply our proposed GBM algorithm for sparse estimation purpose. Since there are 

250 validation data available on each label, the GBM algorithm is run 8 × 250 = 2000 times. 

Given the GBM estimation, we further perform our classification membership analysis to 

compute 𝜆 by Eq. (92).  

For comparison purpose, we also conducted the classification analysis using the benchmark 

classification algorithms on the same training and validation data sets as explained above. The 
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classification performance of the improved OSEC and other benchmark algorithms are measured 

based on a common criterion, namely,    

𝐹𝑆𝑐𝑜𝑟𝑒
𝑖 = 2 ∙

(𝑃𝑖∙𝑆𝑖)

𝑃𝑖+𝑆𝑖    , ∀𝑖 = 1,… , 𝑘  
(114) 

where 𝑃𝑖 and  𝑆𝑖 are precision and sensitivity of classification, respectively. 𝐹𝑆𝑐𝑜𝑟𝑒
𝑖 (∀𝑖 = 1,… ,8) 

for each of the classification algorithm was computed. We repeated all the procedures explained 

above to achieve 1000 realizations for classification analysis of our MMH tasks. The average 

𝐹𝑆𝑐𝑜𝑟𝑒 over 1000 realizations are then reported. 

We further study the effectiveness of the proposed sensor selection optimization formulated by 

Eq. (108). Indeed, we are interested in studying how effective the classification could be, if the 

number of sensor channels selected is reduced. Thus, we conducted the analysis for different 

number of sensor channels in range (30-100). For a given number of sensor channels, the 

optimization problem Eq. (108) is solved and consequently the optimal solution, namely, 𝚽(𝐳̂ ) or 

𝚽𝑃̂, is achieved. Then, we performed the classification study by applying the OSEC procedure 

with Eq. (113).  

Table 6-1 presents 𝐹𝑆𝑐𝑜𝑟𝑒
𝑖 (∀𝑖 = 1,… ,8) for MMH task classification with different numbers of 

sensor channels selected. Our results show the effectiveness of OSEC with optimized training 

matrix as well as OSEC with sensor selection optimization module. As observed, OSEC with 

optimized training matrix (OSEC_111) has the highest 𝐹𝑆𝑐𝑜𝑟𝑒 for all the labels (> 0.93). Among 

other classification algorithms, QDA and k-NN give relatively better classification performance 

than SVM, NB, and NN. However, compared to OSEC_111, their performance is substantially 

lower. Following sensor selection optimization with different numbers of selected sensor channels, 

it can be seen that overall classification performance decreases generally with a smaller number of 
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sensor channels selected, yet this loss of classification performance appears minimal. 

Classification performance of OSEC is therefore considered superior over the benchmarks.  

Table 6-1. Average 𝑭𝑺𝒄𝒐𝒓𝒆 of different classification algorithms for MMH tasks (OSEC_xxx stands for the 

improved OSEC method with different numbers of sensor channels selected). The final column indicates the 

average computational time of each classification by each of these algorithms 

Algorithms Carrying Walking LoK LoG LK LG Pulling Pushing Time (Sec.) 

OSEC_111 1 1 0.971 1 0.990 0.939 0.980 0.960 0.0078 

OSEC_100 1 0.990 0.923 1 0.938 0.949 1 0.961 0.0066 

OSEC_90 1 0.980 0.941 0.990 0.931 0.949 0.990 0.960 0.0052 

OSEC_80 1 0.980 0.923 0.990 0.940 0.948 0.990 0.960 0.0044 

OSEC_70 
0.990 0.960 0.923 1 0.949 0.939 0.990 0.970 

0.0038 

OSEC_60 1 0.959 0.942 0.990 0.939 0.920 0.970 0.939 0.0029 

OSEC_50 1 0.960 0.904 0.980 0.905 0.922 0.990 0.939 0.0027 

OSEC_40 1 0.959 0.923 0.971 0.875 0.960 0.970 0.898 0.0023 

OSEC_30 0.980 0.939 0.840 0.990 0.860 0.909 0.960 0.940 0.0019 

SVM 0.891 0.179 0.394 0.980 0.512 0.795 0.914 0.402 0.4087 

QDA 0.929 0.766 0.661 0.912 0.436 0.716 0.639 0.725 0.0010 

k-NN 0.949 0.816 0.561 0.962 0.486 0.766 0.699 0.695 0.0003 

NB 0.765 0.571 0.349 0.697 0.244 0.290 0.400 0.189 0.0001 

NN 0.943 0.762 0.361 0.918 0.447 0.648 0.588 0.522 0.0120 

In Figure 6-3 we show the change of the global average 𝐹𝑆𝑐𝑜𝑟𝑒 (i.e., 
∑ 𝐹𝑆𝑐𝑜𝑟𝑒

𝑖8
𝑖=1

8
) as a function of 

the number of selected sensors. This shows that reducing the number of optimal selected sensors 

will deteriorate the classification performance of OSEC (global average 𝐹𝑆𝑐𝑜𝑟𝑒). The two limits of 

lowest and highest benchmark performances (i.e. NB, and k-NN, respectively) are provided in 

Figure 6-3 as well.  From the figure, it can be seen that using only 30 sensor channels, which are 

optimally selected, yields better performance compared to other benchmark algorithms using 111 

sensor channels. However, it can be observed that using less than 30 sensor channels also 

deteriorates the OSEC classification performance. This can be justified from the fact that the sparse 

estimation problem becomes much more ill-posed, so that a unique solution is not achievable. 
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Figure 6-3. Global average 𝑭𝑺𝒄𝒐𝒓𝒆 results for different number of optimal selected sensors compared to the lowest and 

highest benchmark performance 

The computational time required for each of these algorithms was reported in last column of Table 

6-1. This computational time was determined as the mean time taken an algorithm to classify a 

single test data. In this, there were 1,000 trials, each with 2,000 test data, used to compare 

classification performance of the algorithms. Hence the computational time was the mean over 

2 × 106 test data.  From Table 6-1, it can be seen that the fastest algorithms were NB and kNN. 

The OSEC_111 algorithm was faster than some existing machine learning algorithms such as SVM 

and NN. Although OSEC-111 algorithm was not as fast as NB and kNN, its classification 

performance was substantially higher than these. Moreover, the OSEC_111 algorithm, with 

computational time of 0.0078 seconds, is fast enough for online classification of MMH tasks using 

wearable sensors at a sampling rate 60 Hz.  

The effectiveness of the sensor selection optimization approach in reducing the computational time 

can be verified as well. The OSEC_30 with computational time of 0.0019 seconds, was the fastest 

algorithm among all other OSEC_xxx algorithms. Therefore, the developed sensor selection 
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optimization not only reduces the number of sensors, but also achieve higher classification 

accuracy than other benchmark algorithms in the case study. 

It is also useful to evaluate which sensors contribute more to classification of MMH tasks. For this, 

we have provided the optimal 30 selected sensor channels (due to the space limits, the optimal 

sensor channels for other cases are not shown).  The corresponding optimal values 𝐳 ∗ for these 

sensors (using Eq. (108)) are also reported in Table 6-2. As can be observed, the z channel 

(gravitational direction) contributes more than channels x and y to the classification of the MMH 

tasks.  This can be justified through some physical interpretation of the sensors as follows. Due to 

the nature of MMH tasks, it is expected to see more variation in the z direction of the body 

kinematics while performing these tasks. Hence, it is expected that in monitoring the MMH tasks, 

wearable sensors should have more capability in detecting different patterns of data in their 

corresponding z direction rather than x or y directions. From Table 6-2, it can be observed that the 

sensor codes (32z-37z) contain the maximal value of weight, namely, one. Furthermore, it can be 

seen that the 30 optimal sensor channels out of 111, relate to 26 unique sensors out of the total of 

37 sensors. This is certainly a very interesting result, as we could use only these unique sensors to 

monitor MMH tasks. As a result, the proposed sensor selection methodology could reduce costs 

induced by physical sensors, computational costs of handling high dimensional data, and avoiding 

worker discomfort by reducing the number of wearable sensors. 
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Table 6-2. Optimal selected sensors with their corresponding optimal optimization variable 𝐳∗ 

* MT1 and MT5: 1st and 5th metatarsal bones   * L5/S1: Lumbosacral joint 

* PSIS: Posterior superior iliac spine    * ASIS: Anterior superior iliac spine 

 

6.5. Conclusions and Future Work 

Combining wearable sensors with computationally efficient classification algorithms will facilitate 

real-time physical exposure assessments, by providing detailed contextual information for MMH 

tasks. However, wearable sensors yield high dimensional time series data regarding whole-body 

kinematics, which requires complex and computationally extensive analytics. To overcome the 

computational issues associated with analyzing these data, we utilized the OSEC algorithm 

developed in our previous research work. The OSEC algorithm is computationally efficient and 

Sensor  

Code 

Body 

segment 

Anatomical 

location 

Optimal 

(𝑧∗) 

Sensor 

Code 

Body 

segment 

Anatomical 

location 

Optimal 

(𝑧∗) 

32z Left Foot MT5 1.000 17z Left Arm Radius 0.491 

33z Left Foot MT1 1.000 24z Left Leg Medial Knee 0.469 

34z Left Foot Heel 1.000 20z Right Arm Ulnar 0.415 

35z 
Right 

Foot 
MT5 1.000 13z Pelvis L5/S1 0.358 

36z 
Right 

Foot 
MT1 1.000 13x Pelvis L5/S1 0.316 

37z 
Right 

Foot 
Heel 1.000 18z Right Arm 

Lateral 

Elbow 
0.294 

1z Head Top 0.903 15x Left Arm 
Medial 

Elbow 
0.261 

26z Left Leg 
Medial 

Malleolus 
0.897 21y Right Arm Radius 0.248 

31z Right Leg 
Medial 

Malleolus 
0.877 16x Left Arm Ulnar 0.231 

25z Left Leg 
Lateral 

Malleolus 
0.860 20x Right Arm Ulnar 0.231 

30z Right Leg 
Lateral 

Malleolus 
0.784 19x Right Arm 

Medial 

Elbow 
0.226 

23z Left Leg 
Lateral 

Knee 
0.708 14x Left Arm 

Lateral 

Elbow 
0.222 

16z Left Arm Ulnar 0.658 12y Pelvis Left PSIS 0.215 

29z Right Leg 
Lateral 

Knee 
0.594 9y Pelvis Right ASIS 0.215 

21z 
Right 

Arm 
Radius 0.491 11y Pelvis Right PSIS 0.210 
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benefits from accurate classification performance, and was thus considered potentially effective 

for online classification of MMH tasks.  

Furthermore, we proposed an optimization approach aiming to improve MMH tasks classification 

performance/sparse estimation performance, by assigning different weights to the sensors. The 

criterion to measure classification performance is defined as an average of pairwise correlations 

(i.e., average mutual coherence) between the columns of the training matrix defined in the OSEC 

algorithm. The optimization problem was formulated as a generic approach to minimize average 

mutual coherence of any arbitrary matrix, by assigning weights to different rows/sensors. The 

proposed optimization problem was shown as a promising approach to improve the OSEC 

classification algorithm, by optimizing the training matrix. We further extended the proposed 

optimization approach by presenting physical interpretation coming from the importance level of 

various sensors. This leads to our proposed sensor selection methodology, which aims to select a 

desired number of sensors while improving classification performance. This is certainly useful 

since not only is the high dimensionality of the data reduced, but also the costs induced by physical 

sensors are decreased.   

We evaluated the effectiveness of our proposed optimization problems using both numerical 

studies and motion data for MMH tasks. In the numerical studies, we demonstrated that the 

proposed optimization problem can be effectively utilized to improve the average mutual 

coherence of a matrix. Specifically, it was shown that the optimal solution (optimal row weights) 

significantly reduces the average mutual coherence of an original training matrix constructed from 

motion data. The obtained real data from MMH tasks was further utilized to evaluate the 

effectiveness of the proposed sensor selection methodology. From the results, it was observed with 

at least 30 optimal sensor channels, the MMH classification results of OSEC were always superior 
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to several other common benchmarks approaches. Overall, the OSEC algorithm (improved OSEC 

algorithm) has the potential to rapidly provide information on work activities (e.g., distribution or 

frequency of task types during a work shift) at the workplace or changes in these after an 

ergonomic intervention is introduced.  Such information can permit understanding work activity 

characteristics between workers or across workplaces, and evaluating the effectiveness of 

ergonomic intervention.  

It should be noted, though, that the primary contribution of this paper is the development of a fast 

and accurate online classification (supervised) algorithm for monitoring of MMH tasks. In future 

work, to fully utilize this algorithm in practice, additional actions are need. One practical solution 

could be the use of the sliding window technique (e.g., with a sampling rate of 60 Hz, a sliding 

window size of 60 samples can be considered). The OSEC algorithm (improved OSEC algorithm) 

is fast enough to conduct 60 predictions (classifications) per second (this has been verified in Table 

6-1). As a result, 60 predictions can be efficiently made within each window.  But, there is no need 

to make 60 decisions. Instead, only one final decision on the task type is made, by accumulating 

all these 60 predictions. In other words, among all the 60 predictions, the task with the highest 

frequency is determined as the representative activity out of the sliding window. 

While our results are promising, future work is also needed to evaluate classification performance 

of the OSEC, under more realistic conditions and for longer durations, since a laboratory study 

(vs. a real world application) likely provides higher classification performance [131].  There is 

also a need to support detailed physical exposure assessments (e.g., quantifying body kinetics).  

As such, in addition to the wearable sensors for body kinematics, future work should examine 

incorporation of a sensor system that can capture external body kinetics (e.g., in-shoe pressure 

measurement) to quantify task-specific or individual-specific body kinetics, and also to potentially 
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improve MMH classification performance and/or to further reduce the number of wearable sensors 

required.  
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Chapter 7. Conclusions and Future Work 

Sensor-based predictive analytics has been utilized as a promising approach for making quality 

improvement decisions for manufacturing and service systems. There has been always an interest 

of using a large number of sensors to provide comprehensive information from the processes 

(systems), which may improve the accuracy of the analytics. However, the excessive use of sensors 

typically results in high sensing costs, and high dimensionality of the sensor data whose analysis 

require intensive computational costs. The proposed compressive sensing based research 

methodology in this dissertation proposes approaches to reduce the number of sensors while 

ensuring the collected information from the processes (systems) is representative enough for 

predictive analytics.   

The applications of the proposed research methodology have been studied in manufacturing and 

services systems, namely, multi-station assembly processes, advanced manufacturing (such as 

additive manufacturing), and manual material handling. Sensor placement optimization and fault 

diagnosis methodologies is developed based on compressive sensing for multi-station assembly 

processes. As opposed to the existing methodologies in the literature which require to use a large 

number of sensors, the proposed methodologies are capable of conducting fault diagnosis by a 

reduced number of sensors which are optimally located to improve the diagnosability of the multi-

station assembly processes. The proposed methodologies are validated through real-case studies 

from auto body assembly processes which are known as typical examples for multi-station 

assembly processes.   

A real-time monitoring methodology based on compressive sensing is further proposed in this 

dissertation. The proposed methodology is a novel supervised classification method equipped with 
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a computationally fast sparse estimation algorithm to accommodate online quality assurance for 

advanced manufacturing processes. The performance of the proposed methodology is compared 

with the existing supervised classification algorithms for real-time monitoring applications in 

advanced manufacturing processes. The case studies demonstrate the superiority of the proposed 

methodology over the benchmarks.  

Finally a sensor selection optimization methodology is developed based on compressive sensing. 

The proposed methodology optimally prioritizes the sensors, and selects the sensors with the 

highest priority, which provide the most relevant information for real-time monitoring 

applications. The effectiveness of the proposed methodology is studied for real-time body posture 

monitoring using wearable sensing technologies for manual material handling tasks. From the 

numerical studies, it is verified that by using the proposed sensor selection optimization 

methodology, the number of sensors can be effectively reduced, as well as the computational time 

required for real-time analysis of the data is significantly lowered.  

The methodologies developed in this dissertation can be easily applied to big data analytics. Big 

data are characterized by three components, also known as 3 V’s, namely, (1) volume, (2) velocity, 

and (3) variety. These three components are presented in Figure 7-1. Volume is related to the high 

dimensionality of the data, velocity represents how fast the data is collected (i.e. real-time data), 

and variety relates to the different forms of data.  

The proposed methodologies in this dissertation address the volume and velocity components of 

big data. For example, the sensor selection and sensor placement optimization methodologies 

tackle the challenge of high dimensionality of big data, and the proposed real-time monitoring 

methodology can be used to address the high velocity of big data. However, most of the data sets 

studied in this dissertation include only numerical data. By combining data with different forms 
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(i.e., the variety component), including numerical and categorical, the accuracy of the analytics 

might be improved. As a part of future research work, CS can be explored and extended to develop 

methodologies for the sake of addressing all these three components together.  

 

Figure 7-1. Big data analytics 

Following the proposed future research in the area of big data analytics, a very promising 

application is introduced. The terminology given to this area of research is smart sensor analytics, 

which is a combination of three elements, (1) sensors, (2) analytics, and (3) actions. The diagram 

of smart sensor analytics is presented in Figure 7-2. From this figure, these three elements are 

connected to each other in the following way. Different types of sensors are utilized to collect 

structured and unstructured real-time data (i.e., big data). Dimensional reduction methodologies 

using CS approaches would be useful to extract features, and reduce the high dimensionality of 

the data. Given the extracted feature, the analytics (predictive analytics) are carried out. With real-

time data, there is need to develop computational models enabling real-time analytics on the 

extracted features. Following the real-time analytics, online decisions can be made regarding the 
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operations improvement or quality improvement. These decisions are considered as the inputs to 

the actions element of smart sensor analytics. The final task is to take actions and implement these 

decisions to make improvement in the operations or quality of systems. The paradigm of 

interconnected sensors, analytics, and actions, result in smart systems based on which training can 

be done through the system. Any change in the system can be captured by the analysis of real-time 

data, and improvement actions can be further implemented to sustain the system, and ensure 

continuous improvement. 

In the future, the application of smart sensor analytics will be explored in the areas of advanced 

manufacturing, healthcare, and other service systems with the aim of reaching to start-up ideas.  

 

Figure 7-2. Smart Sensor Analytics Diagram 
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Appendix  
Appendix A 

The derivation of 𝐿(𝛂, Σ𝜎2) (Eq. (31)) with respect to 𝛂  and Σ𝜎2 is provided here. Firstly, the 

derivation of 𝐿(𝛂, Σ𝜎2) is presented. We note that 
𝑑𝑙𝑛|𝑋|

𝑑𝛂
= 𝑇𝑟(𝑋−1 𝑑𝑋

𝑑𝛂
). The derivative of a matrix 

with respect to a vector can be derived in a way that the whole elements of the matrix are derived 

according to all the elements of the vector, i.e.,  
𝑑𝑋

𝑑𝛼1
,

𝑑𝑋

𝑑𝛼2
, … ,

𝑑𝑋

𝑑𝛼𝑁
  [132].  The estimate of each 

element of α is: 

𝛂𝑛𝑒𝑤 𝑖 =
1−𝜶𝒊∑𝑖𝑖

𝝁𝒊
𝟐   (A.1) 

where ∑𝑖𝑖is the i-th diagonal element of the covariance matrix 𝜮 (Eq. (25)) of the posterior weight 

w.  

Similarly, setting the derivative of 𝐿(𝛂,∑𝜎2) with respect to 𝜷 to zero provides the estimate for 

each element of 𝑩. In Eq. (31), there are only three terms containing 𝜷, and the rest are just 

constants. Thus, we have 

𝑑𝐿(𝛂,Σ
𝜎2)

𝑑𝜷
= −

1

2

𝑑𝑙𝑛|𝚺−1|

𝑑𝜷
+

1

2

𝑑𝑙𝑛|Σ
𝜎2
−1|

𝑑𝜷
−

1

2

𝑑(𝐭 −𝜱𝝁)𝑇Σ
𝜎2
−1(𝐭 −𝚽𝝁)

𝑑𝜷
 (A.2) 

The derivative of the first term in Eq. (A.2) with respect to the j-th element of 𝜷 is  

𝑑𝑙𝑛|Σ−1|

𝑑𝜷𝑗
=

−1

𝜎 𝑗
2 𝑇𝑟(𝚺𝚽𝑇𝐽𝑗𝚽)   (A.3) 

where 𝛽𝑗 denotes the j-th element of 𝛽, 𝐽𝑗 is an 𝑚 × 𝑚 matrix where all its elements are zero except 

the j-th diagonal element which is one. Please note that we took advantage of the fact that for a 

general matrix, we have 
𝑑𝑙𝑛|𝑋|

𝑑𝜶
= 𝑇𝑟(𝑋−1 𝑑𝑋

𝑑𝜶
). For the second term  𝑙𝑛|Σ𝜎2

−1|, the derivation with 

respect to j-th element of  𝐵 is illustrated as Eq. (A.4) 

  𝑑𝑙𝑛|∑
𝜎2

−1|

𝑑𝜷𝑗
=

−1

𝜎 𝑗
2   (A.4) 
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Finally, Eq. (A.5) presents the derivation of the third term with respect to 𝐵𝑗, which is  

𝑑(𝐭 −𝚽𝝁)𝑇Σ
𝜎2

−1(𝐭 −𝚽𝝁)

𝑑𝜷𝑗
=

−(𝐭 𝑗−𝚽𝐣𝝁)2

(𝜎 𝑗
2)2

  (A.5) 

where 𝐭𝑗 is the j-th element of column vector 𝐭,  and 𝚽𝑗  is the j-th row of 𝚽 matrix. After 

illustration of all these derivations, Eq. (31 can be written as 

𝑑𝐿(𝛂,Σ
𝜎2)

𝑑𝜷
=

1

2𝜎 𝑗
2 𝑇𝑟(Σ𝚽𝑇𝐽𝑗 𝚽) −

1

2𝜎 𝑗
2 

+
(𝐭 𝑗−𝚽𝑗𝝁)2 

2(𝜎 𝑗
2)2

  (A.6) 

The last step is to set Eq. (A.6) to zero to achieve the estimate of the noise variance. The estimate 

of the noise variance is presented as follows:  

𝜎 𝑗
2 =

(𝐭 𝑗−𝛷𝑗𝜇)2 

1−𝑇𝑟(Σ𝛷𝑇𝐽𝑗 𝛷)
  (A.7) 

Appendix B 

Proof of Proposition 1 

We start the derivation process with expanding the left hand side of Eq. (6.a) as follows  

𝑐𝑜𝑣(𝐲) = [

𝑐𝑜𝑣(𝐲1) 𝑐𝑜𝑣(𝐲1, 𝐲2) … 𝑐𝑜𝑣(𝒚1, 𝐲𝑀)
𝑐𝑜𝑣(𝐲2, 𝐲1) 𝑐𝑜𝑣(𝐲2) … 𝑐𝑜𝑣(𝐲2, 𝐲𝑀)

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣(𝐲𝑀, 𝐲1) 𝑐𝑜𝑣(𝐲𝑀, 𝐲2) … 𝑐𝑜𝑣(𝐲𝑀)

] 

where cov(𝐲i) denotes the covariance matrix of the measurements at station i, and cov(𝐲j, 𝐲k) 

includes all the covariance elements between station j and k, i.e. 

𝑐𝑜𝑣(𝐲𝑗 , 𝐲𝑘) =

[
 
 
 
 
𝑐𝑜𝑣(𝐲1𝑗, 𝐲1𝑘) 𝑐𝑜𝑣(𝐲1𝑗, 𝐲2𝑘) … 𝑐𝑜𝑣(𝐲1𝑗, 𝐲𝑚𝑘𝑘)

𝑐𝑜𝑣(𝐲2𝑗, 𝐲1𝑘) 𝑐𝑜𝑣(𝐲2𝑗, 𝐲2𝑘) … 𝑐𝑜𝑣(𝐲2𝑗, 𝐲𝑚𝑘𝑘)

⋮ ⋮ ⋱ ⋮
𝑐𝑜𝑣(𝐲𝑚𝑗𝑗

, 𝐲1𝑘) 𝑐𝑜𝑣(𝐲𝑚𝑗𝑗
, 𝐲2𝑘) … 𝑐𝑜𝑣(𝐲𝑚𝑗𝑗

, 𝐲𝑚𝑘𝑘)]
 
 
 
 

  

where 𝐲𝑖𝑘 is the i-th measurement at station k, 𝑚𝑗 and 𝑚𝑘 are the number of measurements at 

station j and k, respectively.  
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Here we do the vectorization on each element (i.e. 𝑐𝑜𝑣(𝐲𝑗, 𝐲𝑘), ∀𝑗 ≤ 𝑘 = 1, . . , 𝑀  ) and then we 

stack all of them together to have the final vectorized form of the variance model. From Eqs. (5) 

and (6), the covariance elements between stations j and k are presented as, 

𝑐𝑜𝑣(𝐲𝑗, 𝐲𝑘) = 𝐶𝑗[∑ 𝛟j,i𝐁𝑖 𝑐𝑜𝑣(
𝑗
𝑖=1 𝐮𝑖)(𝛟j,i𝐁𝐢)

𝑇]𝐂𝑘
𝑇 + 𝑐𝑜𝑣(𝜺𝑗, 𝜺𝑘)    

                                                                                                      (A.8.a) 

 Let  𝐅ji = 𝛟j,i𝐁𝑖, and  𝐅ki = 𝛟k,i𝐁𝑖          (A.8.b)   

 This simplifies Eq. (A.8.a) into 

𝑐𝑜𝑣(𝐲𝑗, 𝐲𝑘) = 𝐂𝑗[∑ 𝐅𝑗𝑖𝑐𝑜𝑣(
𝑗
𝑖=1 𝐮𝑖)𝐅𝑘𝑖

𝑇]𝐂𝑘
𝑇 + 𝑐𝑜𝑣(𝜺𝑗 , 𝜺𝑘)  (A.9) 

We expand the right hand side of Eq. (A.9),  

𝑐𝑜𝑣(𝐲𝑗 , 𝐲𝑘) = 𝐂𝑗𝐅𝑗1𝑐𝑜𝑣(𝐮1)𝐅𝑘1
𝑇𝐂𝑘

𝑇  + 𝐂𝑗𝐅𝑗2𝑐𝑜𝑣(𝐮2)𝐅𝑘2
𝑇𝐂𝑘

𝑇  + ⋯ 

+𝐂𝑗𝐅𝑗𝑗𝑐𝑜𝑣(𝐮𝑗)𝐅𝑘𝑗
𝑇𝐂𝑘

𝑇  + 𝑐𝑜𝑣(𝜺𝑗, 𝜺𝑘) 

       (A.10) 

By Eq. (A.8.b) and some matrix product properties on Eq. (A.8.b), we have 

𝑐𝑜𝑣(𝐲𝑗, 𝐲𝑘) = 𝐂𝑗[∑𝜎𝑖1
2𝐟:𝑖

𝑗1

𝑛1

𝑖=1

𝐟𝑖:
𝑘1]𝐂𝑘

𝑇  + 𝐂𝑗[∑𝜎𝑖2
2𝐟:𝑖

𝑗2

𝑛2

𝑖=1

𝐟𝑖:
𝑘2]𝐂𝑘

𝑇  + ⋯ 

+𝐂𝑗[∑ 𝜎𝑖𝑗
2𝐟:𝑖

𝑗𝑗𝑛𝑗
𝑖=1 𝐟𝑖:

𝑘𝑗]𝐂𝑘
𝑇  + 𝑐𝑜𝑣(𝜺𝑗, 𝜺𝑘)            (A.11) 

where  𝐟:𝑖
𝑗𝑟

is the i-th column in matrix 𝐅𝑗𝑟, and 𝐟:𝑖
𝑘𝑟

 is the i-th row in  matrix 𝐅𝑘𝑟 (∀𝑟 =

1,2, … 𝑗). For simplification, Let 

𝐆𝑖𝑟𝑗𝑘 = 𝐟:𝑖
𝑗𝑟𝐟𝑖:

𝑘𝑟
 (∀𝑟 = 1,2, … 𝑗, ∀𝑖 = 1,2, … 𝑛𝑟 )                            (A.12.a) 

then Eq. (11) can be expressed as, 

𝑐𝑜𝑣(𝐲𝑗, 𝐲𝑘) = 𝐂𝑗[∑ ∑ 𝜎𝑖𝑟
2𝑚𝑟

𝑖=1
𝑗
𝑟=1 𝐆𝑖𝑟𝑗𝑘]𝐂𝑘

𝑇 + 𝑐𝑜𝑣(𝜺𝑗, 𝜺𝑘)              (A.12.b) 

 j ≤ 𝑘 

 j ≤ 𝑘 
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We use vectorization operator 𝑉𝑒𝑐(∙) [133] on Eq. (A.12.b) and utilizing the properties of the 

vectorization operator on the product of matrices. Equation (A.12.b) can be written as, 

𝑣𝑒𝑐 (𝑐𝑜𝑣(𝐲𝑗 , 𝐲𝑘))=(𝐂𝑘 ⊗ 𝐂𝑗)[∑ ∑ 𝜎𝑖𝑟
2𝑚𝑟

𝑖=1
𝑗
𝑟=1 𝑣𝑒𝑐(𝐆𝑖𝑟𝑗𝑘)] + 𝑣𝑒𝑐(𝑐𝑜𝑣(𝜺𝑗, 𝜺𝑘))     

    (A.13) 

where ⊗ is the Kronecker matrix product [133]. To recognize the vectorized form of Eq. (6.a), 

Let: 

𝐭𝑗𝑘= 𝑣𝑒𝑐 (𝑐𝑜𝑣(𝐲𝑗 , 𝐲𝑘))   (A.14.a) 

𝚲𝑗𝑘 = (𝐂𝑘 ⊗ 𝐂𝑗)                       (A.14.b) 

𝛀𝑗𝑘 = [𝑣𝑒𝑐(𝐆11𝑗𝑘), … , 𝑣𝑒𝑐(𝐆𝑚11𝑗𝑘), 𝑣𝑒𝑐(𝐆12𝑗𝑘),… 𝑣𝑒𝑐(𝐆𝑚𝑗𝑗𝑗𝑘
)]  (A.14.c) 

𝐛𝑗𝑘 = [𝜎11
2, 𝜎21

2, … , 𝜎𝑚1,1
2, 𝜎12

2, … , 𝜎𝑚𝑗,𝑗
2 ]

𝑇
                  (A.14.d) 

𝝃𝑗𝑘 = 𝑣𝑒𝑐(𝑐𝑜𝑣(𝜺𝑗 , 𝜺𝑘))                    (A.14.e) 

then Eq. (A.13) can be expressed as 

𝐭𝑗𝑘 = 𝚲𝑗𝑘𝛀𝑗𝑘𝐛𝑗𝑘 + 𝝃𝑗𝑘  ∀𝑗 = 1,2, …𝑀  , ∀𝑘 = 1,2, …𝑀       (A.15) 

with vectorization of 𝑐𝑜𝑣(𝐲𝑗, 𝐲𝑘), we can have the vectorization of 𝑐𝑜𝑣(𝐲) by stacking all the 

results from Eq. (A.15) as follows, 

[
 
 
 
 
 
 
𝐭11

𝐭12

⋮
𝐭1𝑀

𝐭22

⋮
𝐭𝑀𝑀]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
𝚲11

𝚲12

⋮
𝚲1𝑀

𝚲22

⋮
𝚲𝑀𝑀]

 
 
 
 
 
 

[𝛀11 𝛀12 … 𝛀1𝑀 𝛀22 … 𝛀𝑀𝑀]

[
 
 
 
 
 
 
𝐛11

𝐛12

⋮
𝐛1𝑀

𝐛22

⋮
𝐛𝑀𝑀]

 
 
 
 
 
 

+

[
 
 
 
 
 
 
𝝃11

𝝃12

⋮
𝝃1𝑀

𝝃22

⋮
𝝃𝑀𝑀]

 
 
 
 
 
 

  

(A.16) 

Equation (A.16) can be simplified into 

𝐭 = 𝚲𝛀𝐛 + 𝝃 (A.17) 

 j ≤ 𝑘 
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where t=[𝐭11
𝑇 𝐭12

𝑇
··· 𝐭1𝑀

𝑇
  𝐭22

𝑇
··· 𝐭𝑀𝑀

𝑇]T, Λ=[𝚲11
𝑇𝚲12

𝑇
  ···  𝚲1𝑀

𝑇  𝚲22
𝑇  ·· 𝚲𝑀𝑀

𝑇]T, 𝛀=[𝛀11 𝛀12 ··· 

𝛀1M 𝛀22 ··· 𝛀MM],𝐛=[𝐛11
𝑇

 𝐛12
𝑇

 ··· 𝐛1𝑀
𝑇
 𝐛22

𝑇
 ··· 𝐛𝑀𝑀

𝑇
]T, and  𝝃=[𝝃11

𝑇
 𝝃12

𝑇
 ··· 𝝃1𝑀

𝑇 𝝃22
𝑇

·· 𝝃𝑀𝑀
𝑇
]T.  

From Eq. (A.14.a), it is clear that vector 𝐭 represents the sensor measurements. Matrix 𝚲 is termed 

as the measurement matrix since it denotes the sensor placement information which is only 

determined by the observation matrix 𝐂𝑖 in Eq. (A.14.b). Matrix 𝛀 is termed as the product/process 

matrix since it represents the product and process information through multiple stations, which is 

only determined by matrices 𝐀𝑖 and 𝐁𝑖 considering Eqs. (A.14.c), and (A.14.a). Variable 𝐛 denotes 

the variance of the process errors as shown in Eq. (A.14.d), and 𝝃 represents the variance and 

covariance elements of the noise terms as in Eq. (A.14.e). Q.E.D.  

Appendix C 

OMP Algorithm 

(1) At the first iteration (𝑡 = 1), the measurement residual vector 𝐫 is set as the measurement 

vector 𝐲, and the support set is empty (𝑆 = { }).  

(2) The index (𝑖∗ = argmax{|𝐫𝑇𝐠𝑖|}) of the maximum correlated column in matrix 𝚽 with vector 𝐫 

is the first candidate to the support set 𝑆 = 𝑆 ∪ { 𝑗}.  

(3) LS is utilized to estimate the nonzero values represented by 𝐰OMP
𝑡 = (𝚽𝑆

𝑇𝚽𝑆)
−1𝚽𝑆

𝑇𝐲  at iteration 

t, where 𝚽𝑆 is a submatrix of matrix 𝚽, whose columns are associated with 𝑆, and 𝐰OMP
𝑡  

represents the OMP estimate at iteration 𝑡. The measurement residual vector is updated based 

on 𝐫 = 𝐲 − 𝚽𝑆𝐰OMP
𝑡 .  

(4) The above procedure is repeated for 𝜗 (sparsity level of the sparse vector) times. It is assumed 

that the sparsity level 𝜗 of the sparse vector 𝐰 is known. In case of unknown 𝜗; ‖𝐫‖𝟐
𝟐 < ω is 



 

 

156 
 

used as the stopping criterion, where ω is a user-defined threshold (ω = 10−6) that terminates 

the algorithm if the norm of measurement residual vector 𝐫 is small enough.  

Appendix D 

RVM Algorithm 

RVM assumes a Gaussian likelihood function 𝑝(𝐲|𝐰, σ2) = 𝑁(𝚽𝐰,σ2𝐈), and a conjugate prior 

on 𝐰, namely 𝑝(𝐰|𝐁) = 𝑁(0, 𝐁−1), where 𝐁 = 𝐷𝑖𝑎𝑔(𝛂) with hyperparameters 𝛂 =

[𝛂1, 𝛂2, … , 𝛂n]  (inverse of the variance). By applying the Bayesian rule, the posterior distribution 

on the sparse vector 𝐰 can be analytically computed due to the conjugacy of the prior. The 

posterior distribution is estimated 𝑝(𝐰|𝐲, 𝐁, σ2) = 𝑁(𝝁, 𝜮) with 𝝁 = σ−2𝚺𝚽𝑇𝐲, and 𝜮 =

(σ−2𝚽𝑇𝚽 + 𝐁)−1. The remaining task is to estimate the hyperparameters 𝛂 and noise variance 

σ2 from data by maximizing the marginal likelihood. The estimates are given as 𝜶i
𝑛𝑒𝑤 =

1−𝛂iNii

𝝁i
2 , 

∀𝑖 = 1, … , 𝑛 and 𝜎2 =
‖𝐲−𝚽𝝁‖2

𝑚−∑ (1−𝛂i Nii)i
, where Nii is the 𝑖-th diagonal element of 𝜮  

RVM has an iterative structure in updating the hyperparameters 𝛂,  σ2, 𝝁, and 𝜮. Upon its 

convergence, it can be observed that many of the hyperparameters 𝛂 are driven to very large 

values. Thus, the corresponding posterior variances become nearly zero, which means that there is 

a high probability that the corresponding coefficients in 𝐰 are peaked around zero. This is 

advantageous as the resulting posterior mean 𝝁 becomes sparse. The iterative procedures of RVM 

is presented in Figure A1., and explained in the following: 
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RVM Algorithm 

Step 1. Initialization (t=1)   

Initiate the hyperparameters  𝛂1 = 𝟏,σ1
2 = 0.01 × 𝑣𝑎𝑟(𝐲) 

Set the support set 𝑆 = {1, 2, … , 𝑛}  
Step2. Estimate posterior covariance and posterior mean:  

             𝜮S = ( σ𝑡
−2𝚽𝑆

𝑇  𝚽𝑆  + 𝐁𝑆)
−1,    

             𝝁𝑆 =  σ𝑡
−2𝜮𝑆𝚽𝑆

𝑇𝐲,       

             𝐁S = Diag(𝛂𝑆
𝑡) 

Step3. Estimate the hyperparameters corresponds to estimated support set 

𝛂𝑆
𝑡 , and noise variance  σ𝑡

2:  

            𝛂𝑖
𝑡 =

1−𝛂𝑖
𝑡−1Nii

𝝁i
2  and σ𝑡

2 =
‖𝐲−𝚽𝑆𝝁𝑆‖2

𝑚−∑ (1−𝛂𝑖
𝑡 Nii)i

∀i ∈ 𝑆 

Step 4. Update support set 𝑆 

Let 𝑄 = {𝑣: 𝛂𝑣
𝑡 > 𝜌 ∀𝑣 ∈ 𝑆), then 𝑆 = 𝑆 \𝑄  

Step 5. Stop if  max|𝛂𝑖
𝑡 − 𝛂𝑖

𝑡−1| <  10−6 ∀i ∈ 𝑆,  

Otherwise increment 𝑡 = 𝑡 + 1 and go to Step 2                                                                                                                                    

Figure A1. RVM algorithm for sparse vector estimation 

In the initialization step, i.e., iteration 𝑡 = 1, RVM sets the support set 𝑆 = {1,2, . . , 𝑛}, 𝛂1 = 𝟏, 

and σ1
2 = 0.01 × 𝑣𝑎𝑟(𝐲). In step 2, RVM estimates the posterior mean 𝝁𝑆 =  σ𝑡

−2𝜮𝑆𝚽𝑆
𝑇𝐲 and 

posterior covariance 𝜮𝑆 = ( σ𝑡
−2𝚽𝑆

𝑇𝚽𝑆 + 𝐁𝑆)
−1 associated with the support set 𝑆, where 𝐁𝑆 =

𝐷𝑖𝑎𝑔(𝛂𝑆
𝑡), with 𝛂𝑆

𝑡  is a subvector of 𝜶 associated with estimated support set 𝑆 at iteration 𝑡.  

Step 3 of RVM estimates the hyperparameters 𝛂𝑆
t and the variance noise σ𝑡

2 from data by 

maximizing the marginal likelihood. The update for the hyperparameters 𝛂𝑆
𝑡  contains the elements  

𝛂𝑖
𝑡 =

1−𝛂𝑖
𝑡−1Nii

𝝁i
2   (∀𝑖 ∈ 𝑆) where Nii is the diagonal element of 𝜮𝑆 corresponds to index 𝑖, and the 

noise variance is given by  σ𝑡
2 =

‖𝐲−𝚽𝑆𝝁𝑆‖2

𝑚−∑ (1−𝛂𝑖
𝑡 Nii)i

 at each iteration 𝑡. 

In Step 4, let 𝑄 = {𝑣: 𝛂𝑣
𝑡 > 𝜌 ∀𝑣 ∈ 𝑆) (e.g. 𝜌 = 106), then RVM updates the support set 𝑆 =

𝑆 \𝑄 . Note that updating the support set is very essential in reducing the computational time of 

the algorithm. The reason is that in practice it can be seen that after a few iterations some of the 

hyperparameters get very large values such that 𝛂𝑣
𝑡 > 𝜌 (∀𝑣 ∈ 𝑆) (their corresponding indices are 

denoted by 𝑄). Then we can simply remove them from our computations, and accordingly update 

the support set by 𝑆 = 𝑆 \𝑄. Thus, there will be less number of parameters to be updated. Finally, 
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in Step 5, RVM stops if max|𝛂𝑖
𝑡 − 𝛂𝑖

𝑡−1| <  10−6 ∀i ∈ 𝑆, otherwise increments 𝑡 = 𝑡 + 1 and 

goes to Step 2.    

Appendix E 

Proof of Theorem 1 

We provide some Lemmas along with their proofs, which is used for proof of Theorem 1. 

Lemma 2. (see Ref. [5]): Suppose 𝜺~𝑁(0, 𝜎2𝐈) ∈ ℝ𝑚, 𝐠𝑖  is the i-th normalized column of matrix 

𝚽 ∈ R𝑚×𝑛, then the event 𝑈 = {𝑚𝑎𝑥 |𝐠𝑖
𝑇𝜺| < 𝜏, 1 ≤ 𝑖 ≤ 𝑛 } where 𝜏 = 𝜎√2(1 + 𝜃)𝑙𝑜𝑔𝑛 and 

𝜃 > 0, occurs with a probability of at least  

1 −
1

n𝜃√𝜋(1 + 𝜃)𝑙𝑜𝑔𝑛
 (A.17) 

Lemma 2 will be used to prove that GBM determines the right support set 𝑆 with at least the 

probability specified by Eq. (A.17). Note that 𝜃 is a constant controls our confidence about 

event 𝑈, namely, larger 𝜃 results in higher probability (confidence).  

Lemma 3. (see Ref. [5]): Let 𝐰 be an unknown vector having a support set Λ =

{𝑖: 𝐰𝑖 ≠ 0 ∀𝑖 = 1,⋯ , 𝑛} with cardinality of |Λ| = 𝜗, and 𝐲 = 𝚽𝐰 + 𝜺 for some noise 𝜺 (defined 

in Lemma 2). Define |𝐰𝑚𝑎𝑥| as the maximum absolute value of nonzero elements in sparse 

vector 𝐰, and suppose that  

|𝐰𝑚𝑎𝑥| ≥
2𝜏

1 − (2𝜗 − 1)𝜇̃
 (A.18) 

where 𝜏 = 𝜎√2(1 + 𝜃)𝑙𝑜𝑔𝑛, and 𝜇 ̃denotes the mutual coherence of matrix 𝚽. Then if the event 

𝑈 defined in Lemma 2 holds, we have 

max
𝑖∈Λ 

 |𝐠𝑖
𝑇𝐲| > max

𝑖∉Λ 
 |𝐠𝑖

𝑇𝐲| (A.19) 

Based on Lemma 3, we can show that given the condition in Eq. (A.18), GBM algorithm 

determines the right candidate to estimated support set S at the first iteration. Equation (A.19) 
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indicates that there is at least one index on the true support set Λ whose corresponding column in 

matrix 𝚽 has larger correlation with 𝐲 than that of other indices not belonging to the true support 

set (𝑖 ∉ Λ). Recall that the GBM algorithm at the first iteration 𝑡 = 1 selects the index of 

columns 𝐠𝑖’s which is maximally correlated with 𝐲, namely 𝑖∗ = argmax
𝑖∈𝑆𝑐 

{|𝐠𝑖
𝑇𝐲|}, where 𝑆𝑐 =

{1,2, … , 𝑛}. Thus, if Eq. (A.19)  holds, then 𝑖∗ ∈ Λ.  

Lemma 4. Let 𝐰 be an unknown vector having a support set Λ = {𝑖: 𝐰𝑖 ≠ 0 ∀𝑖 = 1,⋯ , 𝑛} with 

cardinality of |Λ| = 𝜗, 𝐰GBM
𝑡−1 be the GBM estimate of 𝐰 at the (𝑡 − 1)-th iteration(1 < 𝑡 ≤ 𝜗) 

having a support set 𝑆 with cardinality of |𝑆| = 𝑡 − 1,  𝐰̅𝑡−1 = 𝐰 − 𝐰GBM
𝑡−1 , and 𝐫 = 𝚽𝐰̅𝑡−1 + 𝜺 

denotes the current measurement residual vector . Define 𝐰̅𝑚𝑎𝑥
𝑡−1  as the maximum absolute value of 

𝐰̅𝑡−1, and suppose that  

𝐰̅𝑚𝑎𝑥
𝑡−1 ≥

2𝜎√2(1 + 𝜃)𝑙𝑜𝑔𝑛

1 − (2𝜗 − 1)𝜇
 (A.20) 

then if event 𝑈 in Lemma 2 holds, and 𝑆 ⊂ Λ, we have 

max
𝑖∈Λ 

|𝐠𝑖
𝑇𝐫|  > max

𝑖∉Λ 
|𝐠𝑖

𝑇𝐫| (A.21) 

Proof: Following the same idea in proof of Lemma 3 (Ref. [5]), we first derive an upper bound for  

max
𝑖∉Λ 

|𝐠𝑖
𝑇𝐫|. By the definition of 𝐫, 

 max
𝑖∉Λ 

|𝐠𝑖
𝑇𝐫|  = max

𝑖∉Λ 
|𝐠𝑖

𝑇𝚽𝐰̅𝑡−1 + 𝐠𝑖
𝑇𝜺|. 

Based on the condition that 𝑆 ⊂ Λ,  𝐠𝑖
𝑇𝚽𝐰̅𝑡−1 = ∑ 𝐠𝑖

𝑇𝐠𝑣𝐰̅𝑣
𝑡−1

𝑣∈Λ  where 𝐰̅𝑣
𝑡−1 represents a 

coefficient corresponds to an index 𝑣 ∈ Λ  in 𝐰̅𝑡−1. Then we have 

max
𝑖∉Λ 

|𝐠𝑖
𝑇𝐫|  = max

𝑖∉Λ 
|∑ 𝐠𝑖

𝑇𝐠𝑣𝐰̅𝑣
𝑡−1

𝑣∈Λ 

+ 𝐠𝑖
𝑇𝜺| 

≤ max
𝑖∉Λ 

|𝐠𝑖
𝑇𝜺| + max

𝑖∉Λ 
|∑ 𝐠𝑖

𝑇𝐠𝑣𝐰̅𝑣
𝑡−1

𝑣∈Λ 

| 

(A.22) 
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≤ max
𝑖∉Λ 

|𝐠𝑖
𝑇𝜺| + ∑ max

𝑖∉Λ 
|𝐠𝑖

𝑇𝐠𝑣||𝐰̅𝑣
𝑡−1|

𝑣∈Λ

 

< 𝜏 + 𝜗𝜇𝐰̅𝑚𝑎𝑥
𝑡−1   

where 𝐰̅𝑚𝑎𝑥
𝑡−1 = max|𝐰̅𝑡−1|.  Note that the first term at the end of Eq. (A.22) has been derived 

based on Lemma 2 showing that event 𝑈 = {𝑚𝑎𝑥 |𝐠𝑖
𝑇𝜺| < 𝜏, 1 ≤ 𝑖 ≤ 𝑛 } is held with a  

probability of at least Eq. (A.17). The second term at the end of Eq. (A.22)  can be verified through 

the definition of mutual coherence, i.e. |𝐠𝑖
𝑇𝐠𝑣| ≤ 𝜇.  

Now we derive a lower bound on max
𝑖∈Λ 

|𝐠𝑖
𝑇𝐫| as follows: 

max
𝑖∈Λ 

|𝐠𝑖
𝑇𝐫| = max

𝑖∈Λ 
|𝐰̅𝑖

𝑡−1 + ∑ 𝐠𝑖
𝑇𝐠𝑣𝐰̅𝑣

𝑡−1 + 𝐠𝑣
𝑇𝜺

𝑣∈Λ−{𝑖}

| 

≥ max
𝑖∈Λ 

|𝐰̅𝑖
𝑡−1| − max

𝑖∈Λ 
| ∑ 𝐠𝑖

𝑇𝐠𝑣𝐰̅𝑣
𝑡−1 + 𝐠𝑣

𝑇𝜺

𝑣∈Λ−{𝑖}

| 

> 𝐰̅𝑚𝑎𝑥
𝑡−1 − 𝜏 − (𝜗 − 1)𝜇̃𝐰̅𝑚𝑎𝑥

𝑡−1  

= 𝐰̅𝑚𝑎𝑥
𝑡−1 − (2𝜗 − 1)𝜇𝐰̅𝑚𝑎𝑥

𝑡−1 − 𝜏 +𝜗𝜇𝐰̅𝑚𝑎𝑥
𝑡−1  

(A.23) 

Now comparing the two bounds in Eqs. (A.22)  and (A.23), we conclude  

max
𝑖∈Λ 

|𝐠𝑖
𝑇𝐫| > 𝐰̅𝑚𝑎𝑥

𝑡−1 − (2𝜗 − 1)𝜇𝐰̅𝑚𝑎𝑥
𝑡−1 − 2𝜏 + max

∀𝑖∉Λ
|𝐠𝑖

𝑇𝐫| (A.24) 

if the condition presented in Eq. (A.20) holds, QED. 

GBM has an iterative way in determining the support set as presented in Figure 5-1. Lemma 4 

proves that, given Eq. (A.20) and the condition 𝑆 ⊂ Λ, we always have max
𝑖∈Λ 

|𝐠𝑖
𝑇𝐫|  > max

𝑖∉Λ 
|𝐠𝑖

𝑇𝐫| 

with high probability. At iteration 𝑡, GBM should solve 𝑖∗ = argmax
𝑖∈𝑆𝑐 

{|𝐠𝑖
𝑇𝐫|}, where 𝐫 is the 

current measurement residual vector. Since we already showed that max
𝑖∈Λ 

|𝐠𝑖
𝑇𝐫|  > max

𝑖∉Λ 
|𝐠𝑖

𝑇𝐫|, 

hence 𝑖∗ always belongs to the true support set Λ, simply because at least there is one index on the 

true support set Λ whose corresponding correlation with 𝐫 is always larger than that of all other 

indices which do not belong to the true support set (𝑖 ∉ Λ). Therefore GBM determines the right 

candidate to the estimated support set at the 𝑡-th iteration (1 < 𝑡 ≤ 𝜗).  
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Lemma 5. Let 𝚽Λ ∈ 𝑅𝑚×𝜗 with rank(𝚽Λ) = 𝜗, where Λ ={𝑖: 𝑤𝑖 ≠ 0 ∀𝑖 = 1,⋯ , 𝑛} with 

cardinality of |Λ| = 𝜗, and let 𝐌 = 𝜎∈
2𝐁Λ = 𝜎∈

2𝐷𝑖𝑎𝑔(𝜶Λ) where 𝜶Λ = {𝜶𝑖: 𝑖 ∈ Λ},  𝜶𝑚𝑎𝑥 =

max(𝜶Λ), 𝜎∈
2 be the estimated variance noise from GBM, and 𝜆𝑚𝑎𝑥[∙] denotes the maximum 

eigenvalue of a matrix. Then, 

𝜆𝑚𝑎𝑥[(𝐈 + ( 𝚽Λ
𝑇𝚽Λ)−1𝐌)−2] ≤ {

1 + (𝜗 − 1)𝜇̃

1 + (𝜗 − 1)𝜇 + 𝜎∈
2 𝜶𝑚𝑎𝑥

}

2

 
(A.25) 

𝜆max[𝐌(𝚽Λ
𝑇𝚽Λ)−2𝐌] ≤ {

𝜎∈
2 𝜶𝑚𝑎𝑥

1 − (𝜗 − 1)𝜇̃
}

2

 
(A.26) 

Proof: By Courant-Fischer Theorem [134], we can show that the minimum eigenvalue of the 

matrix 𝐈 + (𝚽Λ
𝑇𝚽Λ)−1𝐌 is larger than the sum of minimum eigenvalues of 𝐈 and (𝚽Λ

𝑇𝚽Λ)−1𝐌   

𝜆min[𝐈 + (𝚽Λ
𝑇𝚽Λ)−1𝐌 ] ≥ 1 + 𝜆min[(𝚽Λ

𝑇𝚽Λ)−1𝐌] (A.27) 

Using Corollary 11 in Ref. [28] we have 

𝜆min[(𝚽Λ
𝑇𝚽Λ)−1𝐌 ] ≥ 𝜆min[(𝚽Λ

𝑇𝚽Λ)−1]𝜆max[𝐌] ≥
𝜎∈

2𝜶𝑚𝑎𝑥

1 + (𝜗 − 1)𝜇
 (A.28) 

 where we have utilized the Gershgorin disc theorem [135], by which it can be verified that 

𝜆min[(𝚽Λ
𝑇𝚽Λ)−1] ≥

1

1+(𝜗−1)𝜇̃
 . Utilizing Eqs. (A.27) and (A.28), and the fact that 𝜆𝑚𝑎𝑥[𝐕

−2] ≤

(
1

𝜆𝑚𝑖𝑛[𝐕]
)2 where 𝐕 is an arbitrary matrix, we can show Eq. (A.25). Now again using Corollary 

11 in [29] then 

𝜆max[𝐌(𝚽Λ
𝑇𝚽Λ)−2𝐌]  ≤ 𝜆max[𝐌]𝜆min[(𝚽Λ

𝑇𝚽Λ)−2𝐌]  

≤ 𝜆max[𝐌]𝜆max[(𝚽Λ
𝑇𝚽Λ)−2]𝜆max[𝐌] (A.29) 

 

and this can be simplified into Eq. (A.26), QED. 
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We will utilize Lemma 5 to find the upper bounds for 𝜆max[(𝐈 + (𝚽Λ
𝑇𝚽Λ)−1𝐌)−1] and 

𝜆max[𝐌(𝚽Λ
𝑇𝚽Λ)−2𝐌] that will be used in Lemma 6 to derive the quadratic error bound for GBM 

estimate. 

Lemma 6. Let w be an unknown vector with support set Λ ={𝑖: 𝑤𝑖 ≠ 0 ∀𝑖 = 1,⋯ , 𝑛}, 𝐲 = 𝚽𝐰 +

𝜺 for some noise 𝜺 (defined in Lemma 2), and let 𝐰𝐺𝐵𝑀 be the GBM estimate, and 𝜶𝑚𝑎𝑥 and 𝜎∈
2 

be the maximum precision and noise variance estimated from GBM, respectively. Assume GBM 

has estimated the true support set, namely  𝑆 = Λ under the event 𝑈 in Lemma 2, and   

|𝐰𝑚𝑎𝑥| ≤ 𝜗2 = √2𝛽𝜎2(1 + 𝜃)𝑙𝑜𝑔𝑛 (A.30) 

for some constant 𝛽 >
4

(1−(2𝜗−1)𝜇̃)2
. If the dimension of measurements 𝑚 satisfies the following  

𝑚 > 𝜗 +
𝜗[1 + (𝜗 − 1)𝜇 + 𝐶][(1 + (𝜗 − 1)𝜇)2𝛽 − 1]

2[1 + (𝜗 − 1)𝜇]
 (A.31) 

where 𝐶 =
𝑚[1−(2𝜗−1)𝜇̃]2

𝜗(1+𝜃)log (𝑛)
 for some positive constant 𝜃, then with a probability of at least 

(1 −
1

n𝜃√𝜋(1+𝜃) log𝑛
) ∙ (1 − 2𝑒−

𝑚

2 ) (A.32) 

the error bound of 𝐰GBM is bounded as  

‖𝐰GBM − 𝐰‖𝟐
𝟐 < 2𝜗𝜎2(1 + 𝜃)log𝑛

1

(1 − (𝜗 − 1)𝜇)2
 (A.33) 

Proof: We assume that GBM has estimated the true support set namely 𝑆 = Λ, then 𝐰 and 𝐰GBM 

have the same support set, thus 

‖𝐰GBM − 𝐰‖𝟐
𝟐 = ‖𝐰̂ − 𝐰Λ‖𝟐

𝟐 = ‖𝝁Λ − 𝐰Λ‖𝟐
𝟐 (A.34) 

Recall that 𝝁Λ is the estimated posterior mean from GBM, and let 𝜮Λ = (𝚽Λ
𝑇𝚽Λ + 𝜎∈

2𝐁Λ)−1, then 

it can be shown that 𝝁Λ = 𝜮Λ𝚽Λ
𝑇𝐲. Here we just moved the noise variance 𝜎∈

2 term into the inverse 

matrix for simplification purpose. Now 𝝁Λ can be written in terms of the oracle estimator 𝐰OE,Λ  

Eq. (74), i.e.  
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𝝁Λ = 𝚺Λ𝚽Λ
𝑇 𝚽Λ𝐰OE,Λ = (𝐼 + (𝚽Λ

𝑇𝚽Λ)−1𝐌)−1𝐰OE,Λ (A.35) 

where 𝐌 = 𝜎∈
2𝐁Λ, and then, 

‖𝝁Λ − 𝐰Λ‖𝟐
𝟐 = ‖(𝐈 + (𝚽Λ

𝑇𝚽Λ)−1𝐌)−1𝐰OE,Λ − 𝐰Λ‖
𝟐

𝟐
 

= ‖(𝐈 + (𝚽Λ
𝑇𝚽Λ)−1𝐌)−1[𝐰OE,Λ − (𝐈 + (𝚽Λ

𝑇𝚽Λ)−1𝐌)𝐰Λ]‖
𝟐

𝟐
 

≤ 𝜆𝑚𝑎𝑥[(𝐈 + (𝚽Λ
𝑇𝚽Λ)−1𝐌)−2]‖𝐰OE,Λ − 𝐰Λ − (𝚽Λ

𝑇𝚽Λ)−1𝐌𝐰Λ‖
𝟐

𝟐
 

≤ 𝜆𝑚𝑎𝑥 [(𝐈 + (𝚽𝑆
𝑇  𝚽𝑆)

−1
𝐌)

−2

] {‖𝐰OE,Λ − 𝐰Λ‖
𝟐

𝟐
+ ‖(𝚽Λ

𝑇𝚽Λ)−1𝐌𝐰Λ‖
𝟐

𝟐
} 

(A.36) 

where 𝜆𝑚𝑎𝑥(. ) denotes the maximum eigenvalue of a matrix. Ben-Haim et al. [5] provides an 

upper bound for the oracle estimator 𝐰OE,Λ error as follows,  

‖𝐰OE − 𝐰‖𝟐
𝟐 = ‖𝐰OE,Λ − 𝐰Λ‖

𝟐

𝟐
≤ 𝜖0 = 2𝜗𝜎2(1 + 𝜃)log𝑛

1

(1 − (𝜗 − 1)𝜇)2
 (A.37) 

Using the result of Lemma 5 (Eqs. (A.25) and (A.26)), and Eq. (A.37) the upper bound on Eq. 

(A.36) is derived as follows 

‖𝝁Λ − 𝐰Λ‖𝟐
𝟐 ≤ {

1 + (𝜗 − 1)𝜇

1 + (𝜗 − 1)𝜇 + 𝜎∈
2𝛼𝑚𝑎𝑥

}

2

∙ {𝜖0 + ‖(𝚽Λ
𝑇𝚽Λ)−1𝐌𝐰Λ‖

𝟐

𝟐
}  

‖𝝁Λ − 𝐰Λ‖𝟐
𝟐 ≤ {

1 + (𝜗 − 1)𝜇

1 + (𝜗 − 1)𝜇 + 𝜎∈
2𝛼𝑚𝑎𝑥

}

2

∙ {𝜖0 + ‖(𝚽Λ
𝑇𝚽Λ)−1𝐌𝐰Λ‖

𝟐

𝟐
} (A.38) 

≤ {
1 + (𝜗 − 1)𝜇

1 + (𝜗 − 1)𝜇 + 𝜎∈
2𝛼𝑚𝑎𝑥

}

2

∙ {𝜖0 + 𝜆𝑚𝑎𝑥[𝐌(𝚽Λ
𝑇𝚽Λ)−2𝐌]‖𝐰Λ‖𝟐

𝟐} 
 

≤ {
𝟏+(𝝑−𝟏)𝝁̃

𝟏+(𝝑−𝟏)𝝁̃+𝝈∈
𝟐𝜶𝐦𝐚𝐱

}
𝟐

{𝝐𝟎 + {
𝝈∈

𝟐𝜶𝒎𝒂𝒙

𝟏−(𝝑−𝟏)𝝁̃
}
𝟐

‖𝐰𝚲‖𝟐
𝟐}   

From the assumption in Lemma 5, |𝐰𝑚𝑎𝑥| is bounded as below 
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|𝐰𝑚𝑎𝑥| ≤ √2𝛽𝜎2(1 + 𝜃)𝑙𝑜𝑔𝑛 (A.39) 

with 𝛽 >
4

(1−(2𝜗−1)𝜇̃)2
 which is necessary to meet the condition Eq. (75) on the minimum absolute 

value of nonzero element of the sparse vector 𝐰. From the definition of 𝑙2-norm, it can be verified 

that 

‖𝐰Λ‖𝟐
𝟐 ≤ 𝜗(|𝐰𝑚𝑎𝑥|)

2 ≤ 𝛽2𝜗𝜎2(1 + 𝜃)𝑙𝑜𝑔𝑛 (A.40) 

Substitute Eq. (A.40) as an upper bound on ‖𝐰Λ‖𝟐
𝟐 in Eq. (A.38) to derive  

‖𝝁Λ − 𝐰Λ‖𝟐
𝟐 ≤ (1 + 𝛽(𝜎∈

2𝛂max)
2) ∙ {

1 + (𝜗 − 1)𝜇

1 + (𝜗 − 1)𝜇 + 𝜎∈
2𝛂max

}

2

𝜖0 (A.41) 

Let 𝜌 = 1 + (𝜗 − 1)𝜇) and 𝑟 = 𝜎∈
2𝛂max, and use Eqs. (A.33) and (A.41), then the quadratic error 

bound on GBM estimate is derived as 

‖𝐰GBM − 𝐰‖𝟐
𝟐 ≤ (1 + 𝛽𝑟2) ∙ {

𝜌

𝜌 + 𝑟
}
2

𝜖0 (A.42) 

Recall that 𝜖0 is the error bound on OE (see Eq. (A.37)) Now, given the error bound in Eq. (A.42), 

we would like to show that the GBM estimate is at least as good as OE, namely,  ‖𝐰GBM − 𝐰‖𝟐
𝟐 <

𝜖0. In other words we need to verify  

(1 + 𝛽𝑟2)(
𝜌

𝜌 + 𝑟
)2 < 1 (A.43) 

Clearly 𝛽 and 𝜌 depends on the given conditions of the sparse estimation problem, i.e., the sparsity 

level 𝜗 and mutual coherence 𝜇. But 𝑟 is determined by the GBM algorithm. Equation (A.43) is 

equivalent to the following condition  

𝑟 <
2(1 + (𝜗 − 1)𝜇)

𝛽(1 + (𝜗 − 1)𝜇)2 − 1
 (A.44) 

Therefore, Eq. (A.44) is the sufficient condition to verify that ‖𝐰GBM − 𝐰‖𝟐
𝟐 < 𝜖0. We then use 

proof by contradiction as the following: We first assume that  
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 ‖𝐰GBM − 𝐰‖𝟐
𝟐 ≥ 𝜖0 (A.45) 

, and later we show that Eq. (A.45) leads to a bound on 𝑟 = 𝜎∈
2𝛂max which satisfies Eq. (A.44). 

Hence this is a contradiction, and  ‖𝐰GBM − 𝐰‖𝟐
𝟐 < 𝜖0 must hold then.  

We start the proof by deriving the bound on 𝑟 = 𝜎∈
2𝛂max. Recall that we have assumed GBM has 

estimated the true support set  𝑆 = Λ, then according to the estimate 𝜶i’s (𝑖 ∈ Λ) and variance noise 

𝜎∈
2 presented in step 3 of  Figure 5-1 we have 

𝑟 = 𝜶𝑚𝑎𝑥𝜎∈
2 = [

1 − 𝛂𝑚𝑎𝑥
𝑡−1 N𝑖𝑑𝑖𝑑

𝝁𝑖𝑑
2

] ∙ [
 ‖𝐲 − 𝚽Λ𝝁Λ‖𝟐

𝟐

m − ∑ (1 − 𝛂𝑖
𝑡 Nii)𝑖∈Λ ≤ 𝜗

] (A.46) 

where 𝑖𝑑 represents the index corresponds to the maximum of estimated 𝜶𝑚𝑎𝑥, and N𝑖𝑑𝑖𝑑 is the 

diagonal element corresponds to the index 𝑖𝑑 on the estimated posterior covariance matrix 𝜮Λ. 

From [15] it is known that in general 1 − 𝛂𝑖
𝑡−1Nii ≤ 1 (𝑖 ∈ S = Λ), thus 1 − 𝛂𝑚𝑎𝑥

𝑡−1 N𝑖𝑑𝑖𝑑 ≤ 1, and 

∑ (1 − 𝜶iNii)𝑖∈Λ ≤ 𝜗. Let 𝝁𝑚𝑖𝑛 be the minimum absolute value of 𝝁Λ, which means 𝝁𝑖𝑑
2 ≥

𝝁𝑚𝑖𝑛
2. Now we can bound 𝑟 in Eq. (A.46) as follows, 

𝑟 ≤
 ‖𝐲 − 𝚽Λ𝝁Λ‖𝟐

𝟐

(𝑚 − 𝜗)𝝁𝑚𝑖𝑛
2 =

 ‖𝚽Λ𝐰Λ + 𝜺 − 𝚽Λ𝝁Λ‖𝟐
𝟐

(𝑚 − 𝜗)𝝁𝑚𝑖𝑛
2  

=
 ‖𝚽Λ(𝐰Λ−𝝁Λ)+𝜺‖𝟐

𝟐

(𝑚−𝜗)𝝁𝑚𝑖𝑛
2 ≤

𝜆max(𝚽Λ
𝑇𝚽Λ) ‖𝐰Λ−𝝁Λ‖𝟐

𝟐+ ‖𝜺‖𝟐
𝟐

(𝑚−𝜗)𝝁min
2  . 

(A.47) 

where we used the definition of 𝐲 = 𝚽𝐰 + 𝜺 = 𝚽Λ𝐰Λ + 𝜺. From [5], it can be shown that 

𝜆𝑚𝑎𝑥(𝚽Λ
𝑇𝚽Λ) ≤ 1 + (𝜗 − 1)𝜇̃, then we have 

𝑟 ≤
[1 + (𝜗 − 1)𝜇̃] ‖𝐰Λ − 𝝁Λ‖𝟐

𝟐 +  ‖𝜺‖𝟐
𝟐

(𝑚 − 𝜗)𝜇min
2  

≤
𝜗

𝑚 − 𝜗
∙
[1 + (𝜗 − 1)𝜇̃] ‖𝐰Λ − 𝝁Λ‖𝟐

𝟐 +  ‖𝜺‖𝟐
𝟐

 ‖𝐰Λ − 𝝁Λ‖𝟐
𝟐

 

=
𝜗

𝑚−𝜗
∙ [1 + (𝜗 − 1)𝜇 +

 ‖𝜺‖𝟐
𝟐

 ‖𝐰Λ−𝝁Λ‖𝟐
𝟐].    

(A.48) 
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Recall that ‖𝐰Λ − 𝝁Λ‖2
2 =  ‖𝐰GBM − 𝐰‖2

2, then substituting Eq. (A.45) into Eq. (A.48) 

results in  

𝑟 ≤
𝜗

𝑚−𝜗
[1 + (𝜗 − 1)𝜇 +

1

2𝜗(1+𝜃)log𝑛
1

(1−(𝜗−1)𝜇̃)2

∙
 ‖𝜺‖𝟐

𝟐

𝜎2 ]. (A.49) 

In Eq. (A.49), let 𝒛 =
𝜺

𝜎
~𝑁(0, 𝐈) where 𝜺 ∈ ℝ𝑚, and 𝜺~𝑁(0, 𝜎2𝐈), thus it can be shown that  

‖𝐳‖2 =
‖𝛆‖2

𝜎2
~𝜒2

𝑚
 with   

𝑟𝐹𝜒2
𝑚 (2𝑚) ≥ 1 − 2𝑒−

𝑚

2 . (A.50) 

where 𝐹𝜒2
𝑚 (. ) is the cumulative distribution function (CDF) of 𝜒2

𝑚
 with 𝑚 degree of freedoms 

[136]. Therefore, with probability of at least Eq. (A.50), we have ‖𝐳‖2 ≤ 2𝑚 which consequently 

leads to 

𝑟 ≤
𝜗

𝑚 − 𝜗
[1 + (𝜗 − 1)𝜇̃ +

𝑚(1 − (𝜗 − 1)𝜇)2

𝜗(1 + 𝜃)log𝑛
] (A.51) 

Let 𝐶 =
𝑚(1−(𝜗−1)𝜇̃)2

𝜗(1+𝜃)log𝑛
 and simplify Eq. (A.51) as follows 

𝑟 ≤
𝜗

𝑚 − 𝜗
[1 + (𝜗 − 1)𝜇 + 𝐶] (A.52) 

From the condition in Lemma 6 (Eq. (A.31)) it can be easily verified that 

𝜗

𝑚 − 𝜗
[1 + (𝜗 − 1)𝜇 + 𝐶] <

2(1 + (𝜗 − 1)𝜇)

𝛽(1 + (𝜗 − 1)𝜇̃)2 − 1
 (A.53) 

In other words the assumption  ‖𝐰GBM − 𝐰‖𝟐
𝟐 ≥ 𝜖0 has led to the bound in Eq. (A.52) which is 

smaller than our sufficient condition in Eq. (A.44). There is a contradiction here, and 

 ‖𝐰GBM − 𝐰‖𝟐
𝟐 < 𝜖0 must hold then. By this, we showed that under the conditions of Eqs. (A.30) 

and (A.31), GBM estimate is at least as good as OE  ‖𝐰GBM − 𝐰‖𝟐
𝟐 < 𝜖0 with a probability of 

(1 −
1

n𝜃√𝜋(1+𝜃) log𝑛
) ∙ (1 − 2𝑒−

𝑚

2 ), since this result is under the joint probability of the event of 𝑈 
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(to determine the true support set) as well as ‖𝐳‖2 ≤ 2𝑚 (see Eq. (A.51) to bound the performance 

bound).This completes the proof, Q.E.D. 

We use Lemma 6 to derive an upper bound on the quadratic error bound for GBM, and verify that 

it is tighter than that of the OE estimator. Now in the following, we prove Theorem 1 based on 

Lemmas 2 to 6.  

Proof for Theorem 1:  Based on Lemma 2 and Lemma 3 we show that GBM correctly determines 

the first candidate to the estimated support set S with at least the probability specified by Eq. 

(A.17). Now following the same approach (i.e., by induction) as Ben Haim, et al. (See Ref. [5]), 

we show that GBM can correctly estimate the support set in 𝜗 iterations (i.e. 𝑆 = Λ) with certain 

probabilities. Suppose that we are at the 𝑡-th iteration(1 < 𝑡 ≤ 𝜗), and have correctly determined 

(𝑡 − 1) candidates to the estimated support set 𝑆 so far. If we show that at iteration 𝑡, we can also 

determine the right candidate then the proof is completed. The proof is as the following: 

Let 𝐰GBM 
𝑡−1 be the GBM estimate at iteration 𝑡 − 1, therefore ‖𝐰GBM

𝑡−1 ‖
0

= 𝑡 − 1 with support set 

𝑆 ⊂ Λ. From Step 2 of Figure 5-1, the GBM algorithm at the 𝑡-th iteration is to find 𝐠𝑖 which 

satisfies 

 𝑖∗ = argmax
𝑖∈𝑆𝑐 

{|𝐠𝑖
𝑇𝐫|} (A.54) 

where = 𝚽𝐰̅𝑡−1 + 𝜺 , 𝐰̅𝑡−1 = 𝐰 − 𝐰GBM
𝑡−1 , and  𝑆𝑐 = {1,2, … , 𝑛} ∖ 𝑆. In Lemma 4, we showed 

that if Eq. (A.20) holds, the GBM rule presented in Eq. (A.54) determines the right candidate to 

the estimated support set since max
𝑖∈Λ 

|𝐠𝑖
𝑇𝐫| > max

𝑖∉Λ 
|𝐠𝑖

𝑇𝐫|. However, Eq. (A.20) automatically is 

satisfied if Eq. (75) in Theorem 1 holds. The reason is that, since we have determined the right 

candidates to the estimated support set 𝑆 so far, the support set for 𝐰̅𝑡−1 is a subset of true support 

set Λ with cardinality of less than or equal 𝜗. Thus, there is at least an element in 𝐰̅𝑡−1 equals to 

the corresponding element in 𝐰 which means  
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max|𝐰̅𝑗−1| ≥ |𝐰min| ≥
2𝜎√2(1 + 𝜃)𝑙𝑜𝑔𝑛

1 − (2𝜗 − 1)𝜇
 (A.55) 

Recall that max|𝐰̅𝑗−1| = 𝐰̅𝑚𝑎𝑥
𝑡−1 , hence 𝐰̅𝑚𝑎𝑥

𝑡−1 ≥
2𝜎√2(1+𝜃)𝑙𝑜𝑔𝑛

1−(2𝜗−1)𝜇̃
. Therefore by induction, we proved 

that if the condition Eq. (75), GBM determines the right support set, namely 𝑆 = Λ in 𝜗 iterations. 

Now, given the right support set estimated by GBM, we utilize Lemma 5 and Lemma 6 to derive 

the GBM quadratic error bound. From the conditions in Lemma 6 (Eqs. (A.30) and (A.31)), it is 

can be verified  ‖𝐰GBM − 𝐰‖𝟐
𝟐 < 𝜖0. This means the GBM estimate is at least as good as OE, (i.e., 

the error bound of GBM is tighter than that of the OE).  Note that all the procedures of this proof 

is under the joint probability of the event of 𝑈 (to determine the true support set) as well as ‖𝐳‖2 ≤

2𝑚 (see Eq. (A.51) to bound the performance bound), namely,  

1 −
1

n𝜃√𝜋(1 + 𝜃)𝑙𝑜𝑔𝑛
. 1 − 2𝑒−

𝑚
2  

This completes the proof, QED.

 


