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Cell growth, DNA replication, mitosis and division are the fundamental
processes by which life is passed on from one generation of eukaryotic
cells to the next. The eukaryotic cell cycle is intrinsically a periodic process
but not so much a ‘clock’ as a ‘copy machine’, making new daughter cells
as warranted. Cells growing under ideal conditions divide with clock-like
regularity; however, if they are challenged with DNA-damaging agents or
mitotic spindle disrupters, they will not progress to the next stage of the
cycle until the damage is repaired. These ‘decisions’ (to exit and re-enter
the cell cycle) are essential to maintain the integrity of the genome from
generation to generation. A crucial challenge for molecular cell biologists
in the 1990s was to unravel the genetic and biochemical mechanisms of
cell cycle control in eukaryotes. Central to this effort were biochemical
studies of the clock-like regulation of ‘mitosis promoting factor’ during syn-
chronous mitotic cycles of fertilized frog eggs and genetic studies of the
switch-like regulation of ‘cyclin-dependent kinases’ in yeast cells. In this
review, we uncover some secrets of cell cycle regulation by mathematical
modelling of increasingly more complex molecular regulatory networks of
cell cycle ‘clocks’ and ‘switches’.
1. Introduction
The cell cycle is the sequence of events whereby a living cell replicates all its com-
ponents and divides, more or less evenly, into two daughter cells that receive all
the material and information necessary to repeat the process. The central role of
the cell cycle is to transmit a cell’s genome (its full complement ofDNAmolecules)
to the next generation of cells. In eukaryotic cells, this role is achieved by fully and
accurately replicating all chromosomes during S phase of the cell cycle, and sub-
sequently by precisely partitioning the replicated chromosomes to the two
daughter cells during M phase (mitosis) and cell division (figure 1, upper half).
S and M phases are usually separated by temporal gaps, and the sequence
G1–S–G2–M/CD is repeated faithfully in succeeding cell cycles [1].

The replication of cells is an intrinsically cyclic process because cell division
creates two daughter cells that are primed to repeat the process. In some circum-
stances, like the early embryonic divisions of a frog egg or laboratory cells growing
in a rich culture medium, cells replicate their DNA and divide periodically, like a
clock; whereas in other circumstances, like cells whose DNA has been damaged
by ionizing radiation, progression through the cell cycle is blocked by switch-
like ‘surveillance and checkpoint’ mechanisms. Thus, control of cell cycle
progression shares characteristics of the time-keeping and decision-making
processes that are the theme of this special issue [2,3].

Because cell growth and division are foundational to all biological
growth, repair, reproduction and development, it is crucial that we sort out
the clock-like and switch-like properties of the cell cycle, and that we come to
understand the molecular mechanisms that underlie these processes. Success
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Figure 1. The cell cycle. Upper half: in general, the eukaryotic cell cycle is divided into four phases: G1 (unreplicated DNA), S (DNA synthesis), G2 (replicated DNA)
and M (mitosis). During S phase, every chromosome is replicated, and during M phase, the ‘sister chromatids’ are pulled to opposite poles of the mitotic spindle,
followed by cell division. Progression through the cell cycle is monitored at three checkpoints: Q1 (Is DNA undamaged?), Q2 (Is DNA fully replicated?) and Q3 (Are
chromosomes properly aligned on the mitotic spindle?). If the answer to Q1 is yes, then S phase is initiated by its ‘promoting factor’ SPF. If the answer to Q2 is yes,
then M phase is initiated by its ‘promoting factor’ MPF. If the answer to Q3 is yes, then anaphase is initiated by its ‘promoting complex’ APC/C. The dynamics of
these promoting factors are the subject of this review. Lower half: in the first few hours after fertilization, a frog egg proceeds through rapid mitotic cycles. As cyclin
B is synthesized, MPF activity (CycB : Cdk1) rises and initiates mitosis. At the end of mitosis, APC/C is activated, and cyclin B is rapidly degraded after a significant
time delay. In the next cycle, when MPF activity is low, SPF drives DNA replication. These early embryonic cycles alternate between S phase and M phase, lacking
gap phases and checkpoints.
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in this endeavour will have far-reaching consequences for
agriculture, medicine and the biotech industry.
2. Cyclin-dependent kinases
In eukaryotic cells, the initiation of cell cycle events and the
detection and correction of errors are carried out by a com-
plex network of interacting proteins centred around a class
of enzymes called ‘cyclin-dependent kinases’ (CDKs). By
phosphorylating and activating (or inactivating) a host of
target proteins, CDKs orchestrate the events of the cell
cycle, and CDKs themselves are targets of ‘error correction
mechanisms’ that block further progression through the div-
ision cycle until problems in the copying or partitioning of
chromosomes can be resolved [1]. As their name implies,
CDKs must bind to a regulatory subunit, a ‘cyclin’ molecule,
in order to be able to phosphorylate specific protein targets.
The first cyclin–CDK dimer to be characterized biochemically
was cyclin B–Cdk1 [4], also known as M-phase promoting
factor (MPF). We hereafter indicate dimers with a colon,
e.g. CycB : Cdk1.

The biochemistry of MPF was unravelled in the 1970s and
80s by the joint efforts of biochemists, geneticists and molecu-
lar biologists. The basic picture that arose from early studies of
MPF dynamics in frog oocytes and embryos [5] is illustrated in
figure 1 (lower half ). Cyclin B is synthesized at a constant rate
and rapidly combines with a constant pool of Cdk1 subunits
to form CycB : Cdk1 dimers (i.e. active MPF). When MPF
activity is high enough, the cell enters mitosis. Among many
other mitotic substrates, high activity of MPF phosphorylates
and activates the anaphase-promoting complex/cyclosome
(APC/C). The APC/C has two decisive functions [1]: to
activate separase (promoting sister chromatid separation in
anaphase) and to polyubiquitinate cyclin B (promoting
degradation of cyclin B by proteasomes). APC/C activation
is delayed to give the cell time to condense its chromosomes
and align them on the mitotic spindle [6]. Then, APC/C
activity is maintained long enough during anaphase and
telophase to degrade most of the cell’s cyclin B, even
though MPF activity is dropping precipitously as cyclin B
is degraded. These curious properties of APC/C activity—
the time delay and the persistence—will play crucial roles in
our story.
3. Cell cycle oscillations in early embryonic
divisions of the frog egg

During divisions 2–12 of a fertilized frog egg, the embryo-
nic cells divide rapidly and synchronously without
growth or checkpoint mechanisms. Cyclin B accumulates
steadily during interphase and is then rapidly and fully
degraded as cells exit mitosis and divide. These oscillations
are driven by periodic degradation of cyclin B, in conse-
quence of the negative feedback loop by which CycB :
Cdk1 activates APC/C [7], which in turn causes the degra-
dation of cyclin B and loss of CycB : Cdk1 activity (figure 1,
lower half ).

(a) Model no. 1
In 1991, Goldbeter [8] modelled these oscillations with a set
of ordinary differential equations (ODEs) for [MPF], [Kin]
and [APC]:

d½MPF�
dt

¼ ksy,cycb � (kde1,cycb þ kde2,cycb½APCP�) � [MPF],

ð3:1aÞ
d½KinP�

dt
¼ kph,gwl½MPF� ½Kin�

Jph,kin þ ½Kin� � kdp1,gwl½PP� ½KinP�
Jdp,kin þ ½KinP� ð3:1bÞ

and
d½APCP�

dt
¼ kph,apc½KinP� ½APC�

Jph,apc þ ½APC� � kdp,apc½PP� ½APCP�
Jdp,apc þ ½APCP� :

ð3:1cÞ

In these equations, ‘MPF’ refers to the CycB : Cdk1 dimer
(a protein kinase), ‘KinP’ refers to the active (phosphorylated)
form of an unspecified ‘intermediary’ protein kinase, ‘APCP’
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Figure 2. Time-delayed negative feedback loop. (a) Time courses of limit cycle oscillation. Parameter values: table 1; Jph,kin = Jdp,kin = 0.01, Jph,apc = Jdp,apc = 0.1,
[PP] = [Kintot] = [APCtot] = 1. (b) Projection of limit cycle oscillation onto a pseudo-phase plane.

Table 1. Parameter values for all simulations. For all models,
[PP] = [Gwltot] = [APCtot] = [Cdc20tot] = [B55tot] = 1, [ENSAtot] = 4; unless
otherwise stated, [Cdc20tot] = [Wee1tot] = [Cdc25tot] = 1.

parameter

Model no.

1 2 3 4

ksy,cycb 0.04 0.04 0.04 0.04

kde1,cycb 0.02 0.02 0.02 0.02

kde2,cycb 0.4 2 0.5 1

kph,gwl 0.2 0.1 2 2

kdp1,gwl 0.08 0.2 2 0.5

kph,apc 0.2 1 1 1

kdp,apc 0.08 20 20 20

kph,ensa 0.2 1 1

kcat 0.1 1 1

kas1 10 10 10

kdi1 0.1 0.1 0.1

kdp2,gwl 20 20

kph1,cdk 0.02

kph2,cdk 2

kdp1,cdk 0.2

kdp2,cdk 2
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refers to the active form of APC/C, and ‘PP’ denotes
a protein phosphatase that opposes the kinase activities.
(The intermediary kinase is introduced to provide a time
delay in the negative feedback loop between CycB and
APC, which is a requirement for limit cycle oscillations;
see e.g. [9].) Furthermore, [Kin] = [Kintot]− [KinP] and
[APC] = [APCtot]− [APCP], where [Kintot] and [APCtot] are
the ‘total’ concentrations, assumed constant. [PP] is also
assumed to be a constant concentration. The other par-
ameters: ksy and kde are rate constants for synthesis and
degradation (of cyclin B, the limiting component of MPF),
kph and kdp are rate constants for substrate phosphorylation
and dephosphorylation, and Jph, and Jdp are Michaelis con-
stants for the kinases and phosphatases. (The reason for the
unexpected ‘gwl’ and ‘dp1’ notation in equation (3.1b) will
become apparent soon.) Figure 2a plots a representative oscil-
lation for ODEs (3.1a–c), using the parameter values in
table 1. (Computer codes for all the models can be found in
the supplementary material.) These oscillations (period
approx. 46 min) compare favourably with MPF oscillations
in the early frog embryo (period approx. 30 min). In figure 2b,
we project the limit cycle oscillation onto the plane spanned
by [MPF] and [APCP]. The red and green curves are ‘null-
clines’, calculated by solving equation (3.1b) for the pseudo-
steady state value of [KinP] as a function of [KinT] and
[MPF], substituting this function into equation (3.1c), and
then treating equation (3.1a) and (3.1c) as a pair of nonlinear
ODEs for [CycB] and [APCP]. The green curve is a true null-
cline for MPF because the vector field is vertical along this
curve. The red curve is a pseudo-nullcline for APCP—the
orbit (the grey curve) does not cross the ‘nullcline’ curve hori-
zontally—because KinP induces a time delay between CycB
and changes in APCP.

At the time, this model was appropriate because exper-
imental observations clearly showed a delay between
activation of CycB : Cdk1 kinase and CycB degradation
(induced by APC/C ubiquitination of CycB) [6]. Goldbeter’s
assumption that the activations of Kin and APC are ‘ultra-
sensitive’ response functions was confirmed, in part, by
Yang & Ferrell [10], who showed that APC activity as a func-
tion of [CycB : Cdk1] is a very steep, sigmoidal function
(effective Hill exponent = 32). Nonetheless, the interpretation
of these oscillations was unclear because the molecular
mechanism of the delay (i.e. the ‘intermediary’ enzyme)
was unknown.

(b) Model no. 2
More recently the molecular basis of this delay has become
clearer, thanks to a study by Mochida et al. [11] and Gharbi-
Ayashi et al. [12] of the protein phosphatase 2A (PP2A) and
its regulatory subunit, B55. These authors found that PP2A:
B55 is indirectly inhibited by CycB : Cdk1 during mitosis,
by the mechanism illustrated in the inset to figure 3b.
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Figure 3. B55-ENSA-Gwl (BEG) pathway (see inset in (b)). APC/C is activated by a coherent feed-forward loop from MPF directly and indirectly through Gwl, ENSA
and B55. In the figures, ‘APC/C’ refers to the active form of the ubiquitin ligase, namely APCP : Cdc20. (a) Time courses of limit cycle oscillation. Parameter values:
table 1; Km= 0.0008, [dUb]= 0.75. (b) Projection of limit cycle oscillation (dotted curve) onto a pseudo-phase plane.

royalsocietypublishing.org/journal/rsfs
Interface

Focus
12:20210075

4

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 D

ec
em

be
r 

20
22

 

CycB : Cdk1 phosphorylates and activates a protein kinase
called ‘Greatwall’ (Gwl) [13], which in turn phosphorylates
and activates ENSA, an inhibitory substrate of PP2A : B55.
To connect this pathway to APC/C dynamics, Zhang et al.
[14] proposed that PP2A : B55 is at least partly responsible
for dephosphorylation/inactivation APC/C, as in figure 3b
(inset). This interaction creates a coherent feed-forward
loop: MPF→APC/C, and MPF→Gwl→ ENSA─|B55─|
APC/C. A physiological advantage of this coherent feed-
forward loop is that high kinase activity tends to depress
phosphatase activity, and vice versa; thereby limiting ‘futile
cycling’ of ATP. We model this network by the following
ODEs, adapted from Zhang et al. [14]:

d½MPF�
dt

¼ ksy,cycb � (kde1,cycb þ f kde2,cycb)

� [MPF],
ð3:2aÞ
d½GwlP�
dt

¼ kph,gwl½MPF� ½Gwl�

� kdp1,gwl½PP� ½GwlP�,
ð3:2bÞ
d½ENSAP�
dt

¼ kph,ensa½GwlP�[ENSA]

� kcat½ENSAPB55�,
ð3:2cÞ
d½APCP�
dt

¼ kph,apc½MPF� ½APC�

� kdp,apc½B55� ½APCP�,
ð3:2dÞ
d½APCPC20�
dt

¼ kas1ð½APCP� � ½APCPC20�Þð½C20tot�

� ½APCPC20�Þ � kdi1½APCPC20�
ð3:2eÞ
and ½ENSAPB55�¼ 2½ENSAP� ½B55tot�
Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4½ENSAP� ½B55tot�

q , ð3:2fÞ
where B¼½ENSAPþB55tot�þKm , Km¼ðkdi2þkcatÞ=kas2,

½Gwltot� ¼ ½Gwl� þ ½GwlP�, ½APCtot� ¼ ½APC� þ ½APCP�,
½B55tot� ¼ ½B55� þ ½ENSAPB55�,

½ENSAtot� ¼ ½ENSA� þ ½ENSAP,free�þ ½ENSAPB55�
¼ ½ENSA� þ ½ENSAP�

and f ¼ [CycBUb4]
[MPF]

¼ [APCPC20]
½deUB�

� �4

1� [APCPC20]
½deUB�

� �

� 1� [APCPC20]
½deUB�

� �5
 !�1

:

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

ð3:2gÞ
The derivation of these equations requires some explanation.
(3.2a) [MPF] = [CycB : Cdk1], where Cdk1 is in excess, and
CycB is synthesized at constant rate and degraded slowly
(kde1) by a constitutive protease, or rapidly (kde2) after CycB
has been multiply ubiquitinated by APCP : Cdc20; f = fraction
of CycB pool that is polyubiquitinated, according to an
ordered-distributive mechanism [15] with [deUb] = constant
activity of a deubiquitinating enzyme. (To be definite,
we assume that CycB must be ubiquitinated four times
before it is degraded by proteasomes.) (3.2b) Gwl is phosphory-
lated by MPF and dephosphorylated by a constitutive
phosphatase, PP. (3.2c) ENSA is phosphorylated by Gwl and
dephosphorylated by PP2A : B55, abbreviated as ‘B55’ [16];
[ENSAPB55] is the concentration of the enzyme–substrate com-
plex, and kas2, kdi2 and kcat are the rate constants for association,
dissociation and catalysis of the enzyme–substrate complex.
(3.2d ) APC is phosphorylated by MPF and dephosphorylated
by B55. (3.2e) APCP binds reversibly with Cdc20 to form the
active ubiquitin ligase, APCP : Cdc20; the association and
dissociation rate constants are kas1 and kdi1. (3.2f ) The
enzyme–substrate complex [ENSAPB55] is calculated by the
‘total quasi-steady state approximation’ [17]. Notice that
[ENSAP] = [ENSAP,free] + [ENSAPB55].

In figure 3, we plot oscillations of [MPF], [B55] and
[APCPC20] predicted by this model as functions of time (a)
and as a limit cycle projected on the plane spanned
by [MPF] and [APCPC20] (b). The oscillations are ‘soft’
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Figure 4. APC is regulated by a bistable switch. Inset to (b) shows the reaction network. As before, ‘APC/C’ is the variable [APCPC20]. (a) Time courses of limit
cycle oscillation. MPF, B55 and APC/C are plotted with respect to the left axis and ENSA with respect to the right axis. Parameter values: table 1; Km= 0.0026,
[dUb] = 0.5. (b) Projection of limit cycle oscillation onto a pseudo-phase plane. Notice that APC/C activity is now a bistable function of MPF.
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(nearly sinusoidal), and the phosphatase (B55) is only
about 90° out-of-phase with the kinase (MPF), so ‘futile
cycling’ is reduced but not as much as would be possible
with phase shift of a 180°.

In figure 3b, we also plot pseudo-nullclines for MPF (green)
and APCPC20 (red). The pseudo-nullclines are calculated using
the capacity of XPPAUT to plot one-parameter bifurcation dia-
grams for a reduced set of ODEs [18]; XPPAUT is freely
available from http://www.math.pitt.edu/~bard/xpp/xpp.
html. For example, to calculate the pseudo-nullcline for MPF,
we remove equation (3.2e) from the ODEs, treating [APCPC20]
as a parameter, and plot the one-parameter bifurcation diagram
for the remaining equations, with [MPF] as the variable and
[APCPC20] as the parameter. Similarly, for the APCPC20 null-
cline, we remove equation (3.2a) from the ODEs, treating
[MPF] as a parameter, and plot the one-parameter bifurcation
diagram for the remaining equations, with [APCPC20] as
the variable and [MPF] as theparameter. Because our dynamical
system is five-dimensional, the projected orbit (the dotted line in
figure 3b) does not cross the pseudo-nullclines horizontally and
vertically, as it would for true nullclines of a two-dimensional
dynamical system; but, nonetheless, the pseudo-nullclines pro-
vide a useful projection of the vector field of the full dynamical
system, and we shall use pseudo-nullclines, calculated in this
way, to describe more complex mechanisms to come.

(c) Model no. 3
Another level of control was proposed by Vinod & Novak
[19] and experimentally confirmed by Mochida et al. [20]
that PP2A : B55 dephosphorylates Gwl (see inset to figure 4b).
They modelled the revised diagram by the dynamical system
(3.2) with equation (3.2b) replaced by

d½GwlP�
dt

¼ kph;gwl½MPF� ½Gwl�
� kdp1;gwl½PP� þ kdp2;gwl½B55�
� � � ½GwlP�:

ð3:3bÞ

As before, we plot the time courses and pseudo-phase plane in
figure 4a,b. This seemingly slight modification to the model
causes a dramatic qualitative change to the phase plane. The
APCP pseudo-nullcline is now S-shaped, i.e. APC/C activity
is now a bistable function of MPF because PP2A : B55 activity
is now controlled by a bistable switch. Bistability of B55
derives from the positive feedback loop: Gwl→ ENSA─|
B55 ─|Gwl, which is modulated by MPF. Bistability of B55
drives bistability of APC/C. That APC/C activity is a bistable
function of MPF was already a reasonable hypothesis, given
the very abrupt activation of APC/C by increasing activity
of MPF (nH = 32, observed by [10]), and, indeed, it has been
confirmed recently by Kamenz et al. [21].

As is evident in figure 4, the oscillations of Model no. 3
are now ‘hard’ (i.e. abrupt jumps between B55 active,
APC/C inactive and vice versa). Now MPF activity looks
more like the observed mitotic cycles of early embryos,
with a steady rise of [MPF] and an abrupt fall. But futile
cycling is still a problem because MPF and B55 are both
active during much of interphase.
4. Cell cycle oscillations in frog egg extracts
In 1989, Murray & Kirschner [22] described how to prepare
frog egg extracts that exhibit sustained oscillations of MPF
activity in vitro. Unlike in vivo, the in vitro oscillations are
marked by significant inhibitory Cdk1-phosphorylation in
interphase. As worked out by Nurse & Hayles [23] in fission
yeast, Cdk1 is inactivated by phosphorylation on a tyrosine
residue by Wee1 kinase (CycB : Cdk1→CycB : Cdk1P) and
reactivated by dephosphorylation by Cdc25 phosphatase.
Furthermore, Wee1 is inactivated by phosphorylation by
MPF, and Cdc25 is activated by phosphorylation by MPF
[5]. It is known that Wee1 and Cdc25 are phosphorylated
on multiple sites by MPF, and that the activity of each is a sig-
moid function of MPF activity [24,25]. This reaction network
is illustrated in figure 5a.
(a) Model no. 4
Introducing these reactions in Model no. 3, we obtain

d½CycBT�
dt

¼ ksy,cycb � kde1,cycb þ f kde2,cycb
� � � ½CycBT�, ð4:1aÞ

d½MPF�
dt

¼ ksy,cycb � kde1,cycb þ f kde2,cycb
� � � ½MPF�

� kph1,cdk½Wee1P� þ kph2,cdk½Wee1�� � � ½MPF�
þ kdp1,cdk½Cdc25� þ kdp2,cdk½Cdc25P�
� �

� ½CycBT� � ½MPF�� �
: ð4:1bÞ

http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://www.math.pitt.edu/~bard/xpp/xpp.html
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Figure 5. APC and MPF are both regulated by bistable switches. (a) The reaction network. MPF + preMPF = CycBT. (b) Time courses of limit cycle oscillation. As
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d[GwlP]/dt is given by equation (3.3b), d[ENSAP]/dt,
d[APCP]/dt and d[APCPC20]/dt are given by equations
(3.2c–e), [ENSAPB55] by (3.2f ), and B through f by (3.2g). Also

½Wee1�
½Wee1tot� ¼ 1� [MPF]

½CAP�
� �5

 !
1� [MPF]

½CAP�
� �9

 !�1

ð4:1cÞ

and
½Cdc25P�
½Cdc25tot� ¼

[MPF]
½CAP�
� �5

1� [MPF]
½CAP�
� �4

 !

� 1� [MPF]
½CAP�
� �9

 !�1

, ð4:1dÞ

where [Wee1P] ¼ ½Wee1tot� � [Wee1]

and [Cdc25] ¼ ½Cdc25tot� � [Cdc25P]:

)
ð4:1eÞ

These ODEs require some explanation. (4.1a) [CycBT] =
[CycB : Cdk1] + [CycB : Cdk1P] = ‘total cyclin B’. (4.1b)
[MPF] = [CycB : Cdk1] = ‘active MPF’. (4.1c,d ) [Wee1] = con-
centration of the ‘more active’ (i.e. unphosphorylated) form
of Wee1, and [Cdc25P] = concentration of the ‘more active’
(i.e. phosphorylated) form of Cdc25. In this model, Wee1
and Cdc25 are phosphorylated on eight sites by MPF by an
ordered-distributive mechanism [15], with counter-acting
phosphatase ‘CAP’, assuming that Wee1P5–8 are less active
and Cdc25P5–8 are more active.
The time courses of selected components of this model
are plotted in figure 5b, alongwith two pseudo-phase plane por-
traits in figure 5c,d. The time courses of CycBT and MPF agree
nicely with the measurements of Pomerening et al. [26] on frog
egg extracts, if 1 timeunit is approximately equal to 1 min. Com-
paring the phase plane portraits in figures 4b and 5c, we see that
APC/C activity is still a bistable function of [MPF] (red curves in
figures 4b and 5c), but nowMPF activity is a bistable function of
[APCPC20] (green curve in figure 5c). The bistability of MPF
activity is better visualized in the MPF-CycBT phase plane
(green curve in figure 5d). As [CycBT] increases, MPF activity
is lowat first, but jumpsabruptly tohighactivity ([MPF] approxi-
mately equal to [CycBT]) for [CycBT] greater than 1.2. Then, as
[CycBT] decreases (as cyclin B is degraded by active APC/
C), MPF activity stays high until [CycBT] drops below
0.5. (This bistability of MPF activity for intermediate levels of
[CycBT] was demonstrated experimentally in frog egg extracts
by Sha et al. [27] and Pomerening et al. [28].) Notice, in figure 5d,
that [CycBT] continues to decrease even after MPF is inactivated
by tyrosine-phosphorylation, because there is a time delay
between the inactivation ofMPFand the subsequent inactivation
of APC/C by PP2A:B55.

Dual bistability in Model no. 4 has the added advantage
that MPF and B55 activities are now strictly out-of-phase.
Because the kinase and phosphatase are not active at the
same time, mitotic proteins are highly phosphorylated in
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mitosis and dephosphorylated in interphase, with minimal
futile cycling.

Another potential modification worth mentioning is the
likely possibility that PP2A : B55 is one of the phosphatases
that activates Wee1 and inactivates Cdc25P [29]. This interaction
creates two ‘interlinked’ bistable switches [20,30] that are
coupled by mutual inhibition (MPF→Gwl─|B55 and B55→
Wee1─|MPF). As Rata et al. [30] have shown, this network
can exhibit three coexisting stable steady states: (1) interphase,
with low MPF activity and high B55 activity, (2) metaphase,
with high MPF and low B55, and (3) prophase, with intermedi-
ate activities of MPF and B55. We will not comment further
on this behaviour, because it hasyet to be carefully studied theor-
etically or convincingly demonstrated experimentally [30].
erface
Focus

12:20210075
5. Checkpoints
Instead, using Model no. 4, we turn our attention to the three
checkpoints that monitor genome integrity during the cell div-
ision cycle: the G1 checkpoint, the G2 checkpoint and the
spindle assembly checkpoint (SAC). (In figure 1, they are
denotedQ1, Q2 andQ3, respectively.)We describe these check-
points in terms of pseudo-phase plane portraits. For Model
no. 4, as illustrated in figure 5d, the (pseudo) nullclines are
N-shaped (green) and Z-shaped (orange), and they intersect
on the intermediate (unstable) branches of both nullclines;
hence, the dynamical system for this particular choice of kinetic
parameter values executes sustained limit cycle oscillations (the
dotted curve).Clearly, however, as parametervalues change, the
nullclines will move relative to each other, and new (stable)
steady states may be created. Three such configurations are rel-
evant to cell cycle checkpoints: (1) a stable steady state at low
[CycBT] and low [MPF]—that would be a cell arrested in G1;
(2) a stable steady state at high [CycBT] and low [MPF]—a cell
primed to enter mitosis, but not yet committed to do so; and
(3) a stable steady state of high [CycBT] and high [MPF]—a
cell arrested in metaphase, with high MPF activity (until all
chromosomes are properly aligned on the mitotic spindle).

To model these checkpoints, we extend Model no. 4 to
include surveillance signals from DNA damage, unreplicated
DNA and unaligned chromosomes, as in figure 6a.

(a) Model no. 4—G2
To illustrate aG2 checkpoint (figure 6b), we assume that unrepli-
cated DNA induces sequestration of approximately 40% of
Cdc25 in the cytoplasm (we decrease [Cdc25tot] to 0.4). This par-
ameter change creates a pair of steady states—a node and a
saddle point (filled circle and open circle)—on the upper
branch of the CycBT nullcline, thereby blocking progression
into M phase. As DNA replication is completed, [Cdc25tot]
increases back to 1, and the limit cycle in figure 5d is reestablished
by a SNIC bifurcation (saddle-node on an invariant circle).

(b) Model no. 4—spindle assembly checkpoint
Unaligned chromosomes induce the SACbygenerating ‘mitotic
checkpoint complexes’ (MCCs) that sequester Cdc20, prevent-
ing it from binding to APCP. To model this mechanism, we
decrease the total amount of Cdc20 available for binding to
APCP (we decrease [Cdc20tot] from 1 to 0.2). This parameter
change creates a stable state (filled circle) of ‘mitotic arrest’ on
the right branch of the MPF nullcline (high MPF activity,
figure 6c). When all chromosomes are properly aligned on the
mitotic spindle, MCC is rapidly disassembled, the full comp-
lement of Cdc20 becomes available to APCP, and the limit
cycle in figure 5d is recreated (again by a SNIC bifurcation).

(c) Model no. 4—G1
DuringG1 phase, whenCdc20 is absent, APC/Cbinds to Cdh1
(a protein homologous toCdc20) and induces polyubiquitinyla-
tion of cyclins, until the start of DNA replication [31]. Unlike
Cdc20, Cdh1 binds to unphosphorylated APC/C. To model
the role of Cdh1, we rewrite equation (4.1a) as

d½CycBT�
dt

¼ ksy,cycb �
�
kde1,cycb þ f kde2,cycb

þ kde3,cycb
�½APCtot� � ½APCP�

� �½CycBT�: ð5:1Þ

In figure 6d, we set kde3,cycb= 0.2. The activity of
Cdh1 : APC/C keeps CycBT very low (at filled circle), so the
cell is arrested in G1 phase. To lift the checkpoint, Cdh1
needs to be inhibited by phosphorylation by G1-active CDKs,
which only happens in the absence of DNA damage [31].
6. Size control of cell division in fission yeast
So far, we have focused our attention on limit cycle oscillations
ofMPF in early embryonic divisions of a fertilized frog egg and
in frog egg extracts, because these preparations illustrate the
basic principles of mitotic control by CDKs and their opposing
phosphatases. This approach highlights the time-keeping
aspects of cell cycle regulation in embryos, where periodic alter-
nations between interphase and mitosis are governed by limit
cycle oscillations. Then, we touched briefly on mechanisms of
checkpoint regulation—only enough to show that the
decision-making functions of checkpoints are implemented
by bifurcations (figure 6) that introduce a stable steady state
into the orbit of the limit cycle. In technical terms, these are
saddle-node-on-invariant circle, or ‘SNIC,’ bifurcations. In this
section, we illustrate how the G2-SNIC bifurcation plays a
major role in understanding ‘size-control’ of the cell division
cycle in fission yeast (Schizosaccharomyces pombe). Similar con-
siderations apply to budding yeast, green algae and animal
cells, for which we refer readers to literature sources [32–35].

Progression through the cell division cycle of fission yeast is
strongly coupled to cell growth, as has been demonstrated in
many experiments over the years [36]. Similarly convincing
experimental evidence demonstrates the role of size control in
other simple eukaryotic organisms [37], like budding yeast
[38,39] and slime moulds [40–42], and there is some evidence
for size control of the division of mammalian cells in culture
[43], although less conclusive. In wild-type fission yeast cells,
cell size governs progression through the cell cycle at the G2
checkpoint [36], and it seems to work by a cell-size-dependent
increase in the concentration of Cdc25 duringG2phase [44].We
introduce this effect into Model no. 4 by making [Cdc25tot] a
function of cell ‘size’, V(t), which (we assume) increases expo-
nentially from birth to division and is reduced by a factor of 2
at cell division; i.e. we append to Model no. 4

½Cdc25tot� ¼ VðtÞ; dV
dt

¼ mV;

VðtÞ! VðtÞ=2
at cell division:

9>>>=
>>>;

ð6:1Þ
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The cell divides if it first enters mitosis (i.e. [MPF] increases
above a predefined threshold) and then exits mitosis ([MPF]
decreases below a different threshold).

Implementing this model, we show in figure 7a the time
course of oscillations. Cell size, V(t), increases exponentially
and drops twofold at cell division.Notice that the phosphatase,
PP2A : B55, is active during most of interphase (short G1 + S
phase + long G2, as in wild-type fission yeast cells). Total
cyclin B accumulates steadily in interphase, but MPF activity
is very low, because Cdk1 is phosphorylated by Wee1. At the
end of G2 phase, MPF is rapidly activated by Cdc25 phospha-
tase activity, and the cell enters mitosis. Meanwhile, B55 is
inactivated by the MPF–Gwl–ENSA pathway, and, conse-
quently, APC is phosphorylated/activated by MPF. APCP

binds with Cdc20 and drives degradation of CycB, and falling
activity of MPF triggers cell division. Newborn daughter cells
repeat the process. Notice that the cell cycle time (G1 + S +
G2 +M) is exactly equal to the mass doubling time.

In figure 7b, we portray the ‘logic’ of these growth-
controlled cell division cycles using the concept of a
one-parameter bifurcation diagram from the theory of dyna-
mical systems. This diagram depicts the characteristic states
of a dynamical system in dependence on the value of a par-
ameter in the differential equations. In this case, the ‘state’ of
the system is represented by the value of the dynamical vari-
able [MPF], and the ‘parameter’ is cell size V. We can treat
cell size as a parameter because the rate of change of V,
namely μV (with μ = 0.005) is very slow compared with the
rates of change of the dynamical variables [CycBT], [MPF],
[APCP], etc. For this reason, we may set V constant and
solve the remaining ODEs for the behaviour of the underlying
molecular control system at that particular size. In the one-par-
ameter bifurcation diagram, we see that, at small size, the only
stable solution of the ODEs is a steady state (red line) of low
MPF. As the cell slowly grows, the dynamical system will
cling to this stable steady state at first. Let us pick up this
‘cell cycle trajectory’ (the green dotted curve in figure 7b) at
V≈ 0.5. The cell continues to grow, at lowMPF, until the trajec-
tory reaches the SNIC bifurcation at V≈ 0.85. At this
bifurcation point, the stable steady state of low MPF (a
‘node’) coalesces with the unstable steady state (on the inter-
mediate locus—the grey dashed curve—of ‘saddle points’),
giving rise to a stable limit cycle (an ‘invariant circle’) whose
maximum and minimum excursions of MPF activity are
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plotted by the green filled circles. Upon passing the SNIC
bifurcation point, the growing cell should ‘hop’ onto the
limit cycle oscillation, but the speed of the transition is very
slow at the bifurcation point. Hence, the cell continues to
grow (slowly) until it passes some distance from the SNIC
point (V≈ 1) before the cell cycle trajectory is captured by
the limit cycle. As MPF activity increases abruptly, the cell is
driven into mitosis, and as MPF activity drops rapidly, as
active APC/C degrades CycB, the cell exits mitosis and
divides. As the cell divides, one can see the cell cycle trajectory
drop abruptly fromV≈ 1 toV≈ 0.5. At this size, the only long-
term behaviour of the dynamical system is the stable steady
state of low MPF. The newborn cell enters G1 phase, which
(in fission yeast) is very short. Soon thereafter, the cell has
enough CDK activity to enter S phase; even the residual
kinase activity of tyrosine-phosphorylated MPF is enough to
initiate DNA replication [45]. The cell will not enter mitosis
until MPF is fully activated, as just described.

Notice that this description of the cell cycle trajectory is
independent of the specific growth rate μ of the cells
(within a broad range), so, by this mechanism, the interdivi-
sion time will always equal the mass doubling time, a
characteristic feature of unicellular eukaryotic organisms.
7. Discussion
Living cells exhibit many types of oscillatory behaviours,
such as circadian rhythms, Ca2+ and cyclic AMP oscillations,
pulsatile hormone secretion, periodic somitogenesis and
oscillatory expression of transcription factors like p53 and
NF-κB [46]. In each of these cases, oscillations are central
to the time-keeping function of the process. But the cell
cycle is not intrinsically a periodic process. The primary
function of the cell cycle is to accurately replicate the cell’s
genome and to partition the replicated chromosomes
evenly between the two daughter cells. Hence, the cell
cycle is monitored by surveillance mechanisms that can
block further progression if problems arise, such as DNA
damage, incomplete DNA replication or aberrant alignment
of chromosomes on the mitotic spindle. So, progression
through the cell cycle is, in most circumstances, more like
a copy machine (which can be halted by a paper jam or
an empty toner cartridge) than like an alarm clock (which
continues to tick whether one gets out of bed or not).

Nonetheless, there are specific circumstances in which cell
division cycles proceed with clock-like regularity. For
example, in laboratory settings, when cells are cultured in
rich growth media and protected from genome hazards,
they grow and divide with a roughly constant interdivision
time. A more natural example is that of the early mitotic
cycles of a fertilized egg, like frog and sea urchin eggs.
These division cycles are typically rapid and synchronous
(up to the mid-blastula transition), and they often proceed
without safeguarding checkpoint mechanisms.

The mitotic cycles of a fertilized egg are rather like the
copy machine in the departmental office during exam
week, when it is outputting exam copies at top speed; or
like the clothes washing machine in a home with a new
baby, which is dealing with dirty linen non-stop. Under less
stressful conditions, these machines work at a more leisurely
pace, dealing with demands as they arise and heeding check-
point signals with equanimity. We might say that the free-
running mitotic cycles of early embryos, as central as they
were to unravelling the biochemistry of cell cycle control in
eukaryotes and as appealing as they are to describing the
dynamical properties of cell cycle progression, are rather
‘special cases’ of cell cycle control. Much more representative
are the unhurried replication–division cycles of growing
yeast cells and the somatic cells of plants and animals. In
these common circumstances in vivo (rather than in labora-
tory cultures), cell cycle progression is less like a ‘clock’ (a
limit cycle) and more like a ‘copy machine,’ i.e. a sequence
of copy-and-collate functions governed by external demands
(driven by autonomous cell growth and/or responding to
specific growth factors) and internal requirements (com-
pletion of DNA synthesis, repair of any DNA damage,
perfect alignment of sister chromatids on the mitotic spindle).
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These physiological constraints make the study of cell cycle
control a delightfully complex example of time-keeping and
decision-making in living cells.
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