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Mohammad Hesam Soleimani-Babakamali

(ABSTRACT)

Structural health monitoring (SHM) is an anomaly detection process. Data-driven SHM has
gained much attention compared to the model-based strategy, specifically with the current
state-of-the-art machine learning routines. Model-based methods require structural informa-
tion, time-consuming model updating, and may fail with noisy data, a persistent condition
in real-time SHM problems. However, there are several hindrances in supervised and unsu-
pervised settings in machine learning-based SHM. This study identifies and addresses such
hindrances with the versatility of state-of-the-art deep learning strategies. While managing
those complications, we aim at proposing a general, structure-independent (i.e., requires
no prior information) SHM framework. Developing such techniques

I SHM | smart cities. In il supervised SHM il sensor output validation (SOV) cat-
egory, data class imbalance results from the lack of data from nuanced structural states.
Employing Long Short-Term Memory (LSTM) units, we developed a general technique that
manages both SHM and SOV. The developed architecture accepts high-dimensional features,
enabling the train of Generative Adversarial Networks for data generation, addressing the
complications of data imbalance. GAN-generated SHM data improved accuracy for low-
sampled classes from 44.77% to 64.58% and from 73.39% to 90.84% in two SOV and SHM
case studies, respectively. Arguing the unsupervised SHM as a practical category since it
identifies novelties (i.e., unseen states), the current application of dimensionality reduction

(DR) in unsupervised SHM is investigated. Due to the curse of dimensionality, classical




unsupervised techniques cannot function with high-dimensional features, driving the use of
DR techniques. Investigations highlighted the importance of avoiding DR in unsupervised
SHM, as data dimensions that DR suppresses may contain damage-sensitive features for
novelties. With DR, novelty detection accuracy declined up to 60% in two benchmark SHM
datasets. Other obstacles in the unsupervised SHM area are case-dependent features, lack
of dynamic-class novelty detection, and the impact of user-defined detection parameters
on novelty detection accuracy. We chose the fast Fourier transform-based (FFT) of raw
signals with no dimensionality reduction to develop the SHM framework. A deep neural net-
work scheme is developed to perform the pattern recognition of that high-dimensional data.
The framework does not require prior information, with GAN models implemented, offer-
ing robustness to sensor placement in structures. These characteristics make the framework

suitable for developing general unsupervised SHM techniques.
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(GENERAL AUDIENCE ABSTRACT)

Detecting abnormal behaviors in structures from the input signals of sensors is called Struc-
tural health monitoring (SHM). The vibrational characteristics of signals or direct pattern
recognition techniques can be applied to detect anomalies in a data-driven scheme. Machine
learning (ML) tools are suitable for data-driven methods; However, challenges exist on both
supervised and unsupervised ML-based SHM. Recent improvements in deep learning are
employed in this study to address such obstacles after their identification. In supervised
learning, the data points for the normal state of structures are abundant, and datasets are
usually imbalanced, which is the same issue for the sensor output validation (SOV). SOV
must be present before SHM takes place to remove anomalous sensor outputs. First, a unified
decision-making system for SHM and SOV problems is proposed, and then data imbalance
is alleviated by generating new data objects from low-sampled classes. The proposed unified
method is based on the recurrent neural networks, and the generation mechanism is Gen-
erative Adversarial Network (GAN). Results indicate improvements in accuracy metrics for
data classes in the minority. For the unsupervised SHM, four major issues are identified,
including data loss during feature extraction, case-dependency of such extraction schemes.
These two issues are solved with the fast Fourier transform (FFT) of signals to be the features
with no reduction in their dimensionality. The other obstacles are the lack of discrimination
between different novel classes (i.e., only two classes of damage and undamaged) and the

effect of the detection parameters, defined by users, on the SHM analysis. The latter two




predicaments are also addressed by online generating new data objects from the incoming
signal stream with GAN and tuning the detection system to have the same performance
regarding user-defined parameters regarding GAN-generated data. The proposed unsuper-
vised technique is further improved to be insensitive to the sensor placement on structures
by employing recurrent neural network layers in the GAN architecture, with the GAN that

has overfitted discriminator.
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Chapter 1:

Introduction and research gaps

Structural health monitoring is a pattern recognition process [108], utilized for the iden-
tification of structural states (i.e., supervised) or detection of abnormal conditions (i.e.,
unsupervised). Generally, pattern recognition is accomplished via either model-based or
data-driven approaches. Data-driven approaches are also called Machine-Learning-based
(ML-based) SHM. In model-based methods, the established model can be used in super-
vised, unsupervised, or semi-supervised settings [18, 96, 119], the same as in the data-driven

strategy [90]. Any form of prior labeled information can be regarded as a supervised setting.

In model-based techniques, typically, a finite element model [31, 43|, or physics-based repre-
sentations, such as flexibility matrices [19] are fitted with the available data and continuously
updated with the incoming data [45, 104]. With the model available, novelty detection and
localization is feasible. The main obstacles associated with model-based approaches are
complex optimization algorithms and the lack of a global optimization method for different
structures [60]. Other complications include the need for numerous sensors to capture the
local modal behavior of the system to be modeled [35]. Modal identification also requires
expert supervision, with the results being vulnerable in the presence of noisy data [45, 104].
Furthermore, the structural model (e.g., finite element) can only accurately detect novel-

ties that fit the behavior of the established model, and others are either left undetected or
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misclassified [13].

Data-driven approaches are alternatives to model-based methods in SHM. These approaches
are model-free, requiring no configurational data from structures, e.g., number of stories
or load-resisting system of structures. The difference between supervised and unsupervised
settings is the presence of labeled training sets. As discussed, in model-based approaches,
damages that cannot manifest themselves in the model are undetectable. The same fact is
valid for the supervised approach, in which the only detectable conditions are the classes in
the labeled set. On the other hand, unsupervised approaches require no labeled data, superior
to supervised and model-based approaches. Furthermore, in data-driven approaches, the
employment of representation learning tools, e.g., deep convolutional networks [2], showed
promising results with noisy data. Representation learning success is due to damage-sensitive
features being automatically selected, the most informative representations regarding the
dataset, unlike the hand-crafted features, such as modes. Based on the discussion on model-
based and data-driven approaches, data-driven techniques are selected herein. They are
explored to identify possible obstacles and rooms for improvement using the capacities of

deep learning techniques.

1.1 Supervised learning and research gaps

Supervised learning requires labeled training sets. With the labeled training set, numer-
ous statistical-[34, 85] and artificial neural network-based (ANN) techniques [3, 117] apply.
Such models require features to perform the detection. Previous to the introduction of
the representation learning paradigm, features were mostly based on hand-crafted features,

such as subspaces [109], modal information, or classical linear and non-linear

I ———), o1 Kernel-
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PCA [39, 67]. Autoencoders, as a form of neural network-based dimensionality reduction is
heavily exploited in the recent literature [51, 57, 61, 70]. As discussed, except for the re-
duction in dimensionality that makes the data more manageable, such schemes can remove
noise and environmental factors [25]. Recently, more sophisticated representation learning
techniques, such as the 1D Convolutional neural network layers [2, 3, 12] showed promising

results being employed on the raw time-domain data.

Supervised approaches coupled with DR techniques and representation learning approaches
are mature regarding accuracy. The main obstacle in supervised methods is not the accu-
racy but the need for labeled training sets. Gathering enough data from different structural
conditions, specifically if in operation, is costly and impractical in most cases. The pres-
ence of data samples from only two states of the undamaged and fully damaged system for
performing the damage detection [3] is introduced in the literature, but obtaining fully dam-
aged states is a big challenge in itself. Another solution is deciphering the distribution of
low-sampled data classes and generating new data objects, called data augmentation. This

idea is practiced in several other areas in the literature [10, 58].

1.2 Unsupervised learning and research gaps

Unlike the supervised approaches, Unsupervised techniques do not require labeled training
sets. Data-driven approaches are model-free (e.g., finite element models of structures), and
no need for labeled data can make the unsupervised approach the most prominent tool
in SHM. Investigating unsupervised SHM literature, four key challenges can be identified.
These are the loss of information caused by dimensionality reduction (loss of information),

case-dependency of feature extraction methods (case-dependent feature extraction), lack of a

dynamic-class novelty detection (non-dynamic novelty classes), and the novelty detection’s
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sensitivity to user-defined detection parameters (sensitivity to detection parameters).

The first challenge is the loss of information. Application of DR techniques in unsupervised
SHM problems is a common practice to address the curse of dimensionality [98], specifically
for distance-metric-based threshold models (e.g., clustering). However, unsupervised SHM
aims to detect novelties that have not been witnessed before. That setting differs from
supervised SHM with known classes; a DR model is trained on those classes, both intact and
damaged, accompanied by clustering or other decision-making tools. DR techniques delete
the non-informative, correlated, and redundant portion of their training set upon learning
from the full distribution of possible classes. Still, it is currently not clear whether DR
performs the same for the incoming data from unseen data populations and thus requires
a comparative analysis with and without DR. Such comparative analyses aid researchers in

selecting between Raw- and DR-based features to develop their SHM methods.

The second challenge, case-dependent feature extraction, refers to the non-scalability of fea-
ture extraction methods between different structures. Furthermore, such models need to be
trained again from scratch for machine learning-based techniques and any new structure,
which is time-consuming. Defining a simple, meaningful, and universal feature that requires
no DR can solve this issue. However, the main challenge is not defining such a feature, which
can be the FFT of signals, but the tools (e.g., neural network architecture) to manage this

feature in an unsupervised novelty detection problem.

The third challenge is non-dynamic novelty classes. In an unsupervised setting, enough
data is available for the baseline class, i.e., intact system; however, data from recently
identified novel classes are scarce. Thus, tuning the detection system for continuing the
novelty detection process is impossible unless sufficient data for the tuning is first captured.
That is why in the literature, there are plenty of binary-unsupervised SHM studies [86, 94, 95,

107, 110]. In such studies, a novelty detector cannot discriminate between different classes
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of novelties, and the result is whether the system is normal or abnormal. There are studies
in the literature that tried to have a dynamic-class detection, such as Bouzenad Bouzenad
et al. [20], Rhara de Almeida Cardoso de Almeida Cardoso et al. [30], and Entezami Entezami
and Shariatmadar [35]. But these methods have other issues due to the lack of information

explained in the fourth challenge.

The fourth challenge is the sensitivity to detection parameters. User-defined (detection)
parameters, such as the number of time-series data object to undergo the detection process in
each detection iteration (i.e., detection window length) [30], detection thresholds for having
a dynamic number of clusters [20], or the order of autoregressive models [35] can result in
different detections with the change in their hyper-parameters. One of the reasons behind
such behavior is the lack of data instances to make the detection robust to user-defined

detection parameters.

1.3 The need for a general SHM approach and associ-

ated challenges

Based on what was discussed, the most suitable ML-based SHM approach is unsupervised,
as it requires no labeled data or structural model. Still, transforming an unsupervised SHM
technique into a general approach faces several challenges, some of which were discussed
beforehand, i.e., loss of information due to DR and case-dependent feature extraction. These
challenges make current approaches case-dependent and non-generalizable. In such cases, the
novelty detection process cannot go online for new structures unless sufficient information
from the baseline condition is captured and feature extraction routines are trained. Hence,

a general model is unachievable unless designed to be, first, prior-information-free, and
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second, function with raw features. On top of that, sensor planning h key [N
I techniques. Numerous optimization studies focus on
selecting the best sensor placements to capture the behavior of structures [29, 112, 118].
Those optimization routines suffer from the same issues of hand-crafted features or what
can be called a rule-based representation of data (i.e., structure-dependent). For instance,
the optimization method that works for a bridge may fail for a frame with several stories [60)].

Hence, sensor location sensitivity must also be mitigated to obtain a general SHM framework.

1.4 Research contributions

Based on the research directions mentioned above, this study offers the following contribu-

tions to the ML-based SHM.

1. Employing a deep learning scheme to address data imbalance in SHM and SOV
datasets. Proposing a general novelty detection approach that works for both SHM
and SOV problems is the key concept, as data imbalance is simultaneously addressed

for both SHM and SOV.

2. A thorough identification of current challenges in unsupervised SHM and how they im-
pact novelty detection accuracy. We propose a framework that addresses the identified

obstacles via deep learning.

3. Establishing a general unsupervised SHM approach. The proposed approach must
be prior information-free, with raw features, and at the same time, robust to sensor
configuration of structures. The proposed technique can be labeled as the first of its

kind.
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Chapter 2:

A general framework for supervised structural health
monitoring and sensor output validation mitigating
data imbalance with generative adversarial

networks-generated high-dimensional features

Mohammad Hesam Soleimani-Babakamali, Roksana Soleimani-Babakamali, and Ro-
drigo Sarlo. A general framework for supervised structural health monitoring and sensor
output validation mitigating data imbalance with generative adversarial networks-generated

high-dimensional features. Structural Health Monitoring, page 14759217211025488, 2021. doi:

_/ 14759217211025488. | / 14759217211025488

Abstract

This study proposes a novelty-classification framework that applies to structural health mon-
itoring (SHM) and sensor output validation (SOV) problems. The proposed framework
has simple high-dimensional features with several advantages. First, the feature extraction

method is extensively applicable to instrumented structures. Second, the high-dimensional

11




CHAPTER 2. A GENERAL FRAMEWORK FOR SUPERVISED STRUCTURAL HEALTH MONITORING AND
SENSOR OUTPUT VALIDATION MITIGATING DATA IMBALANCE WITH GENERATIVE ADVERSARIAL

12 NETWOR KS-GENER ATED HIGH-DIMENSIONAL FEATURES
features’ utilization alleviates one of the main issues of supervised novelty-classifications,

namely, imbalanced datasets and low-sampled data classes. The recurrent Neural Networks
are employed for the classification of high-dimensional features. Furthermore, Generative
Adversarial Networks are trained with low-sampled data classes’ high-dimensional features
for generating new data objects. The generated data objects are combined with the initial
training set for improving classification results. The proposed framework is studied on two
SHM and SOV datasets. The SHM dataset has twenty-one data classes, with a total test ac-
curacy of 99.60% compared to another study with 88.13% accuracy. The SOV classification
shows improved results with a mean accuracy of 96.5% compared to three other studies with
mean accuracy values of 93.5%, 92.97%, and 71.1%. Furthermore, the integration of GAN’s
generated data objects with low-sampled classes improved those classes” mean Fj score from
44.77% to 64.58% and from 73.39% to 90.84% on SOV and SHM case studies, respectively.
The integration of GAN-generated data objects with the initial low-sampled data classes for
accuracy improvement shows more potential in the SHM dataset than the SOV case, which

can be due to the signal pattern-based labeling logic of SOV datasets.

2.1 Introduction

As rapid urbanization increases the demands on the construction and maintenance of engi-
neering structures [65], sensor-driven structural monitoring is becoming a popular strategy
to preserve resources, protect human lives, and reduce overall maintenance costs [88]. This
paper will focus on two standard monitoring tasks, namely, structural health monitoring
(SHM) [108], and sensor output validation (SOV) [113]. For this discussion, SHM will be
defined as a tool for identifying structural damages, whereas SOV is defined as a tool for

faulty sensor signal identification. Both SHM and SOV can be performed model-based or
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data-driven with machine learning-based techniques in a supervised, unsupervised, or semi-

SI.II)E‘-I'ViSE‘-d manner.

Supervised methods are practical tools for damage detection, localization, and severity mea-
surement [21], whereas unsupervised techniques are not suitable for damage localization
since no labeled data is available. In addition, supervised methods, unlike the model-based
approaches [45, 104] can have good robustness to noisy data [115], a common issue in SHM
and SOV. However, gathering data from different damage scenarios is a requirement for su-
pervised techniques. Data samples from normal structural behavior are plentiful, but data
from damaged conditions or anomalous sensor outputs are rare. In the presence of data from
both normal and damaged status, those classes can have vastly different numbers of data
objects, resulting in imbalanced datasets with low-sampled classes of data. The imbalanced
datasets may result in over-fitting to the normal data, which is in the majority, and poor

generalizability.

Feature extraction is the starting point of both supervised and unsupervised techniques. To
avoid issues with the curse of dimensionality [98], many SHM and SOV techniques greatly
reduce the sensor output dimensions in the feature extraction step. For example, princi-
pal component analysis (PCA) and subspace-based techniques which transform structural
responses into few subspaces are commonly used for SHM [17, 109, 114] and for SOV prob-
lems [33, 36]. However, linear subspace techniques such as PCA cannot capture the non-
linearity in SHM or SOV problems [67]. The non-linear dimensionality reduction can be
achieved by utilizing deep-learning networks such as autoencoders [70]. These approaches
are case-dependent, and the network should be trained from scratch for each new structure,
which is a time-consuming procedure. Furthermore, non-linear feature extraction steps with

desirable results for a structure may produce poor results for another structure [2].

By employing neural network architectures that can handle high-dimensional data objects,
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classification with simple feature extraction steps becomes possible. Recently in SHM, simple
feature extraction steps such as having the signals’ FF'T in a matrix format or the raw sensor
output signals were used with 2-D [70], and 1-D convolutional layers [3]. In the SOV case,

raw signals were transformed to images and classified via deep neural networks [16, 100].

The previously mentioned studies in SHM performed the analysis in situations where enough
data was available. On the discussed SOV studies [16, 100], imbalanced datasets were
present. However, the number of data objects in those studies was high, even for the least
populated class. Hence, down-sampling of all other classes to have the same number of
data objects equal to the class in the minority is utilized to improve the classification re-
sults. However, in general, and specifically for SHM, the low-sampled class population is
deficient (e.g., a few samples or data objects); hence, other classes cannot be under-sampled

for improving the classification accuracy.

This study aims to define a general feature extraction step and utilize proper neural network
architectures for the classification. Furthermore, a general approach for handling imbalanced
datasets with low-sampled classes of data for both SHM and SOV is established. These tasks
are not trivial since SHM and SOV have different labeling logic for data classes. Labeling
in SHM datasets is determined by changes in the monitored system’s underlying physics. In
contrast, labeling in SOV datasets is based on arbitrary signal patterns (e.g., square wave or
dead channel). Hence, SHM and SOV generally have different classification approaches. For
example, sensor data reconstruction methods [33, 74] are designed explicitly for SOV and
do not apply to SHM. In employing the same deep neural network approaches, the feature
extraction step is still different for SHM and SOV. In SOV, the features are mostly taken as
images of sensors’ outputs [16, 61]. In SHM, however, features are the outputs from specific

neural network layers, such as the autoencoders.

The approach in this paper leverages general, high-dimensional features in both the time and
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frequency domains. These high-dimensional features require specific neural network layers
to handle the pattern recognition task, such as convolutional or recurrent neural network
(RNN) layers. In this approach, each feature is assumed to be a meaningful sequence. The
Long Short-Term Memory (LTSM) architecture is utilized to carry out the classification.
Furthermore, a specific kind of deep generative model, namely, Generative Adversarial Net-
works (GAN) [37], is employed to aid the classification accuracy of low-sampled classes of
data in an unsupervised manner. In GAN, a generator is trained from a bounded probability
density function to mimic the training data. In this study, one-dimensional GANs are used
on the low-sampled classes. The primary goal is to demonstrate how the combination of
LSTMs with high-dimensional features can address different types of SHM and SOV clas-
sification tasks with comparable or superior accuracy compared to other recently applied
methods, as well as mitigating the issue of low-sampled classes by merging the dataset with
GAN'’s generated data objects. It should be noted that, among deep networks, recurrent
neural networks (e.g., LSTM networks) and GANs are scarce in the structural monitor-
ing literature [13]. Thus, this paper’s results are also intended to encourage the further

employment of these techniques to solve problems in the field.

In the following sections, we first present the summary for two benchmark classification
case studies addressed with this approach, one in SHM and another in SOV. Subsequently,
the proposed features are explained, and the sequential format of extracted features is dis-
cussed. The generalized neural network and GAN architectures are then defined. Finally,
the step-by-step procedure for performing the two datasets’ classification and introducing
GAN-generated data objects to the training set is presented. The results are discussed and

compared to some of the previous literature that used the same datasets.
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2.2 Case Studies

Two experimental case studies of instrumented structures are used to evaluate the proposed
methodology: Yellow Frame and Sutong Bridge datasets to evaluate the proposed framework
for SHM and SOV problems, respectively. A summary of both case studies’ structures, a
brief explanation of acquisition systems, and a summary of both datasets are also explained

in this section.

2.2.1 Yellow Frame

Yellow Frame [63] is a four-story, one-third scaled modular steel frame established at the
University of British Columbia, as shown in (Fig. 2.1a). The frame’s elements, such as
beams, masses, and braces, can be manipulated to simulate different damage scenarios.
Yellow Frame is considered a benchmark for testing the state-of-the-art SHM approaches.

Further details on Yellow Frame can be found in Mendler Mendler et al. [63].

The frame response is measured via fifteen accelerometers with a sampling frequency of 1000
Hz over four different days. Further instrumentation details are explained in Allahdadian [4].
A dataset with twenty-one data classes is selected for the proposed framework’s evaluation
(DC1-DC21). The induced damages descriptions and data summary is shown in Table 2.1
with the frame’s modular element labeling depicted in Fig. 2.1b. Studying imbalanced
datasets with low-sampled damage classes is of this study’s interest to demonstrate the
GAN’s potential in improving classification accuracy. In this dataset, the difference between
the number of data objects in different classes is not high. Hence, in the results section, a

low-sampled class is synthesized for the implementation of GANs.

Damage localization and severity measurements were performed on the same damage config-
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Figure 2.1: Yellow Frame: (a) structure [4] (b) brace labeling, and sensor locations. Used
with author’s permission.

uration of Yellow Frame by Bernagozzi Bernagozzi et al. [18]. Bernagozzi Bernagozzi et al.
[18] utilized a modal-flexibility-based approach under the Positive Shear Inspection Load
(PSIL) for the classification. This method is exclusively for shear-planar frames, generalized
to this 3-D non-planar frame, with the damage localization results compared to the proposed

methodology’s classification in the results section.

2.2.2 Sutong Bridge

Sut ongh densely instrumented | NENREREEEBEBBBBE. ;):0ducing vast amounts

B data from various implemented sensors (e.g., accelerometers, thermometers, and strain-
gauges). Sutong Bridge dataset used for evaluating the proposed framework is captured in
January of 2012 (one month-long) by 38 accelerometers. The dataset contains seven classes

of normal and abnormal sensor output patterns. The accelerometers’ placement is shown in
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Table 2.1: The dataset summary for Yellow Frame, including various classes of damage
simulated by removing certain bracing components, with labels shown in Fig. 2.1b.

Damage Removed brace ID length Damage Removed brace ID length
class (No.) (sec) class (No.) (sec)
‘ { DCL1 + (17, 19, 25, (
None 668 DC12 27) (I)* 1003
B 2, 4(11)" 1100  DCI3 bes 1;%(11;)3.; 17, 1053
e DC2 + (18, 20)(I1) 1000  DCl4 (10, 12)(II) 1047
DC3+ (1, 3, 17,
[ ] m;))((ﬂ;' h 830 DC15 DC14 + 21(IT), 23(1) 1147
B DC2 + (17, 19)(1I) 1002 DC16 (21, 23)(1) 1147
[ ] DC2 + (18, 20)(I) 830 DC17 (7-8, 21, 22)(I) 666
[ ] 2(I1) 1101 DC18 (5, 6,7, 8,21, 24)(I) 559
DC18 .8, 21,
| @2, 4)(0) 713 DC19 ¢ ;)(&) > < 665
DC19 + (5, 6, 23,
— (25, 27)(1) 1050 DC20 1 ;4)((13 b2 559
[ (29, 31, 8, 6)(I) 1170 DC21 (6, 8)(1211)((211)= 22,33, 659
[ (21, 23 29, 31)(1) 1170

* One brace is removed
*%
Both braces are removed

Fig. 2.2 with further information on this dataset presented in Li and Ou [54].

o 2-D Accelerometers (1) North y South
= z

‘ 2-D Accelerometers (2)

D 3-D Accelerometers (1)

X direction channels: 2,4, 6, 8, 10,12, 14, 16, 18, 20, 22, 24,26, 28,29,31,33 36
Y direction channels: 1,3,5,7,9,11,13,15,17,19,21,23 25,27 35 38
Z directionchannels: 30,32, 34,37

Figure 2.2: Sutong Bridge instrumentation [100].

The sensors out puts were divided into seven categories based on the descriptions presented in

Table 2.2. The dataset has one-hour-long acceleration signals as data objects. The dataset
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summary and examples of each class data object are reported in Table. 2.2, and Fig.2.3,
respectively. According to the dataset summary, this dataset is imbalanced with low-sampled
classes of PC4 and PC7. Hence, GAN-generated data objects can be tried to improve the
classification accuracy by merging the generated data objects with the training set. There
are two studies [16, 100] that worked explicitly on this dataset, however, with more data
points (i.e., longer acquisition period). Another study employed the same dataset [11], to
perform the classification with the shapelet transformation [56]. The proposed framework’s

results are compared to those three studies in the results section.

Table 2.2: The dataset summary for Sutong Bridge, including abnormal patterns’ definitions.

Pattern
class

Normal (PC1)
Missing (PC2)

Description ([100]) Data objects

The pattern is symmetrical; frequency response
has peaks
Most /all of the time response is missin

13575
2942

Minor (PC3) l - 1775
Outlier (PC4) [

N (PC5) I

Drift (PCT) The O

5.3

This section first defines the general high-dimensional features used for both SHM (i.e.,
damage detection) and SOV (i.e., signal pattern classification). Generalized neural network
architecture is then presented for SHM and SOV problems. The high-dimensional feature
makes it possible to improve classifier performance by having a GAN trained on those fea-

tures. Finally, we present a GAN architecture that generates new data objects based on the
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Normal Missing Minor Outlier

Square Trend Drift
Figure 2.3: Seven classes of sensor output patterns for Sutong Bridge.

low-sampled classes.

2.3.1 Sequential high-dimensional features and RNNs

This study argues the possibility of having the time- and frequency-domain data from the
raw input signals as meaningful sequences and utilizing sequence-deciphering neural networks
for the classification. amplitudes [ sensor
I related amplitudes that follow each other in a particular order. The order can

define different states of the system or the presence of a novelty.

Aside from striving to have a general extraction method, the resulting features should also
be designed to be compatible with the 1-D GAN. Generally, having features’ values to
oscillate in a fixed range (e.g., 0-255 for images) is beneficial for training GANs. The feature
extraction method shown in Fig. 2.4 was developed based on this logic. Before the feature
extraction occurs, it is beneficial to scale the signals to a sensible range, such as 0-10.

The captured accelerations are very small; thus, the scaling can improve the classification
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process. In the proposed extraction method, h data channels, 7 [

B o cceleration data points ] each data object. In the proposed extraction method,
the sensor output is divided into two features: the time-domain feature (F_I) and the
frequency-domain feature (F_II). The F_T feature results from some simple arithmetic,
such as taking the absolute value. The F_II feature is the half-spectrum magnitude of the
fast Fourier transform of a signal divided by its mean value and bounded between zero and
ten. Having a bounded FFT cannot capture the time-series amplitudes, which is crucial for
SOV problems and is the reason for having the F_II feature. Finally, both F T and F_1II

features are merged into a 3-D matrix, F_III, for the classification.

2.3.2 General neural network architecture for SHM and SOV clas-

sification.

The proposed neural network architecture, shown in Fig. 2.5, is utilized for both SOV and
SHM. One of the architecture’s flexible parameters is N (i.e., number of channels), which
specifies the number of branches in the proposed neural network. The number of channels for
an SOV problem is one since the novelty detection is performed for each channel separately.
On the other hand, the number of channels can be any number for SHM. The input of the
network (i.e., a matrix) has 2N channels. The first N channels the F_ T features, and the
rest are the F_II features. FIIT has a 3-D matrix format so that each channel's F T and
F_1II features become extractable with 2-D convolutional layers in the general architecture.
Based on the number of channels, the Attach layer output can be high dimensional; therefore,
more than one fully connected layer (FCL) might be required to capture the network’s best

accuracy in such cases. All data processing and network training are done in MATLAB

R2020a.
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