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NOTATION
3x3 matrix that depends on the 6's only; replace
the o's by a's for Eqs. 3.41 thru 3.45 only
damping coefficients, i =1, 2, 3
inverse of the [A] matrix
number of constraint equations or conditions
rotational spring coefficients, i =1, 2, 3
see Eqs. 4.4 and 4.8

3x1 vector that depends on the 6's, the 8's, and the
P's
3x3 "stiffness" matrix

Rayleigh's dissipation function

force vectors of the system

th

mass moment of interia of the i member about ijts

centroid
translational spring coefficient

Lagrangian of the system

length of the ™"

th

member
mass of the i~ member

number of degrees of freedom of the system
number of rigid bars in the system

applied loads, i=1, 2, 3

impuise loads, i =1, 2, 3
generalized coordinates of the system

first time derivatives of the generalized coordinates
dy of the system

X



ak second time derivatives of the generalized coordinates
AU of the system

Q547 a generalized coordinate at the i+l time step

di+1 first time derivative of q,,,

9547 second time derivative of 9547

q see Eq. 4.9

Qk generalized forces of the system

. _Fpsition vectors corresponding to the force vectors

J i of the system

R function not dependent on a (see Eq. 4.9)

R1+] R at the i+1 time step (see Eq. 4.10)

{R} 3x1 vector (see Eq. 4.13)

At magnitude of the time step for the numerical
integration procedure

t time

T kinetic energy of the system; period of vibration for

Eq. 4.14 only

T ki . .th . sth .

j kinetic energy of the i~ member; i~ period,
i=1, 2, 3, for Eqs. 3.49, 3.50, 3.51, and 3.52
only

Vs velocity of the mass center (centroid) of the 1th
member; see Eqs. 4.3 and 4.7 for different
definition used in Chapter 4 only

Vv potential energy of the system

X horizontal position of any point along the bar

y vertical position of any point along the bar

o initial angle of the 1th bar (radians)

‘ B see Eqs. 4.2 and 4.4



{9}

error tolerance (see Eq. 4.10)

angle of the bar with the horizontal

h

angle (radians) of the it bar with the horizontal

at any time t

first time derivative of 0,
second time derivative of ¥
3x1 "acceleration" vector

time dependent change in the angle's value from its
initial value o

first derivative of ¢;
second time derivative of ¢
3x1 "displacement" vector
3x1 "acceleration" vector

anﬁu]ar velocity of the ith member for Eq. 3.23 only;
it natural frequency, i = 1, 2, 3

Xi



CHAPTER 1
INTRODUCTION

This chapter contains the purpose and scope of this study. Also
contained is a review of the current literature regarding the dynamic

stability and buckling of arches.

1.1 Purpose and Scope

The primary purpose of this study is to determine stability
boundaries (interaction curves) for a three degree of freedom, shallow
arch model under multiple dynamic loads. The loads are either all
step loads, or all impulse loads.

To accomplish the purpose of this study, first the arch model
is described. Then, the model's equations of motion are derived from
Lagrange's equations of motion. Finally, the stability boundaries are
shown as plots of the "fajlure" or buckling loads (non-dimensional).
These loads are determined by comparing the results from the numerical
integration of the model's non-dimensional nonlinear equations of
motion to the buckling criteria used in this study. If the results
exceed the buckling criteria, then the arch has "buckled" and the

Toads which produce those results are the "failure" or buckling Toads.

1.2 Literature Review: Dynamic Stability and Buckling of Arches

A brief review of the current literature regarding the dynamic

stability and buckling of arches is presented.



a. Stability Criteria

The dynamic stability of arches, with a search for practical
and useful stability criteria, has been studied by many authors.
One of the first studies was conducted by Hoff and Bruce [8],
regarding laterally loaded flat arches. They presented a failure
or buckling criterion based on the plot of the potential energy of
the arch. Their criterion states that failure or buckling can occur
only if the energy applied to the arch is sufficient to cause the
motion of the arch on the energy plot to follow the "path of steepest
decent," which takes the arch from a valley (stable equilibrium
position), over a ridge, through a saddle point, to another valley.
Their study includes results from both step and impulse loading.
Next, Budiansky and Roth [4], in their study of clamped shallow
spherical shells, presented a stability criterion based on a response
parameter, which is defined as the "ratio of the average downward
deflection to the average value of the initial shell height." Their
criterion states that, for step loads applied to "shell geometries
for which axisymmetric, rather than unsymmetric, deformations control
the buckling phenomenon," a "jump" in the response parameter occurs
at the buckling load for a small increase in the load. This "quali-
tative criterion ... has a physically significant basis, and analogous
criteria, based on the rapid change of response with Toading para-
meters, may be useful in other dynamic buckling problems." Finally,
Hsu [11], in his study of elastic bodies with prescribed initial

conditions subjected to impulsive loading, presented a rigorous



definition of dynamic stability, the necessary and sufficient
stability criteria, and a more practical sufficiency condition for
stability. These concepts and criteria are based on the total energy
of the initial state of the elastic bodies, and the total energy of
the stable equilibrium positions of the elastic bodies. They are
discussed in terms of trajectories in a functional phase space (con-
tinuous system) or a phase space of finite dimension (discrete
system). These concepts are similar to the Hoff and Bruce [8]
criterion, but they are more general and rigorously derived. And,

if care is taken, the Budiansky and Roth [4] criterion can be obtained
from the above criteria. Also, the practical sufficiency condition
for stability, as presented in the study, represents a lower bound
for the determination of the failure or buckling loads.

Using the above articles as a basis, many authors proceeded to
‘determine stability criteria for specific problems. Hsu [12] studied
the effects of the amplitudes of the higher harmonics in the arch
shape, the initial thrust, and the stiffness of the elastic supports
at the arch ends on the dynamic stability of shallow arches against
snap-through when subjected to impulsive loads. The results were
"expressed in terms of sufficiency regions of stability in a phase
space of infinite dimensions, which, in turn, lead to simple and
practical energy criteria." Following this article, Hsu [13] studied
the effects of timewise step loads on the dynamic stability of
simply supported, shallow arches. He presented a general method

to treat arches of arbitrary shape and loads of arbitrary spatial



distribution, specifically studying sinusoidal arches under sinusoidal
loads, the effects of the second harmonics in the arch shape and in
the load distribution, and sinusoidal arches subjected to uniform
loads or concentrated and eccentric loads. The results were
"expressed in the form of sufficiency conditions for stability and
sufficiency conditions for instability," which represent lower and
upper bounds, respectively, for the determination of the failure or
buckling loads. As a generalization of the treatment given in
ref. [12], Hsu [14] presented an exact and complete analysis which
allows for the determination of all the possible equilibrium con-
figurations and their dynamic stability character for an arch of
arbitrary shape, with either simply-supported or clamped end con-
ditions. "The results have immediate application to the snap-through
stability of arches when subjected to impulsive loads or time-varying
loads of finite duration." Finally, as an extension of ref. [13],
Hsu, Kuo, and Plaut [15] studied the effects of timewise step loads
on the dynamic stability of clamped shallow arches, specifically
studying "simple" clamped arches under "simple" Toads, clamped
sinusoidal arches under uniformly distributed Toads, clamped parabolic
arches under uniformly distributed loads and clamped sinusoidal arches
under concentrated loads which may be located eccentrically. The
results were expressed as separate sufficient conditions for stability
and for instability.

Authors other than Hsu have determined stability criteria for

specific problems. Popelar and Abraham [30] studied the dynamic



stability of a simply supported, shallow sinusoidal arch subjected
to a nearly symmetric impulsive load. The results were expressed
as upper and lower bounds for the critical initial velocity for
snap-through and the initial velocity necessary to parametrically
excite the unsymmetric modes. These results were compared with
the critical initial velocity obtained from direct numerical
integration of the equations of motion. Cheung and Babcock [5]
studied the dynamic stability of clamped circular arches subjected
to step loading. The results were expressed as upper and lower
bounds for the critical step load. These results were determined
by an energy approach presented in the study, and were compared to
experimental results. Ovenshire and McIvor [27] studied the dynamic
stability of a shallow cylindrical shell subjected to an initial
velocity distribution imparted by a nearly symmetric impulsive
pressure. The results were expressed as a sufficient condition
for stability. Also determined was that either immediate or
delayed snap-through may occur, the latter caused by nonlinear
coupling of the modes. Ovenshire and McIvor [28] also studied

the dynamic stability of a shallow cylindrical shell with the
supports elastically restrained against rotation subjected to
impulsive loading. The results were expressed as a sufficient
condition for stability. Finally, Johnson and Mclvor [17] studied
the effect of the spatial distribution of impulsive loads on the
dynamic snap-through of a shallow circular arch. The results were

expressed as a lower bound for the critical loads, and were compared



to the results from a numerical integration of the approximate
equations of motion using the Budiansky and Roth [4] criterion. Also
determined was that the lower bound was less conservative for finite-
time (delayed) snap-through than for immediate snap-through.

b. Buckling

The dynamic buckling of arches, with a search for the buckling
loads, has been studied by many authors. Humphreys [16] studied the
dynamic buckling of a shallow circular arch subjected to initial-
velocity (impulsive), step and rectangular-pulse loading. For step
loading, a clear dynamic buckling point was observed in terms of a
sudden change in the level of the response curve. For impulsive
loading, there was no specific buckling load, but a critical region
of increased response was observed. The response in the study was
measured as the ratio of the average deflection to the average rise,
similar to the Budiansky and Roth [4] criterion.

Lock [20] studied the dynamic buckling of a simply supported,
shallow sinusoidal arch subjected to a sinusoidally distributed step
pressure load. The buckling loads were determined by the occurrence
of a "jump" in the maximum absolute value of the displacement. These
loads were compared to the buckling loads determined by an infini-
tesimal stability analysis. Also determined in the study was that,
for the nonlinear analysis, two types of snapping occurred, either
direct (immediate) or indirect (time-delayed). The direct snapping
occurred for the rapid application of the pressure load which

induced sufficient displacement of the symmetric mode for an unstable



equilibrium configuration to be attained. The indirect snapping
occurred for parametric excitation of the antisymmetric mode by the
initial motion in the symmetric mode, which in turn interacts with the
symmetric motion and initiates snapping.

Reed and Broyles [32] studied the dynamic buckling of an idealized
structural mechanism. A step load was applied to the apex of the four
bar 1linkage mechanism, and the initial lateral displacement produced
a two-degree-of-freedom planar motion. A one-degree-of-freedom motion
was produced by restraining the apex to vertical linear motion. The
buckling loads for both motions were determined by using a combination
of response parameter plots, energy plots, and phase plane plots, and
did not vary significantly.

Fulton and Barton [6] studied the symmetric and antisymmetric
dynamic buckling of a simply supported, shallow arch subjected to
uniformly distributed dynamic loadings. For symmetric buckling, under
either an ideal impulse or a step load of finite or infinite duration,
the buckling toad was determined by a "jump" in the peak average
displacement for a small increase in the load. For antisymmetric
buckling, under an ideal impulse, the buckling load was determined
by a significant growth in the antisymmetric response component.
McIvor [22] questioned the above results for the impulsive loading,
and compared the above results to the results obtained in ref. [27].

Sundararajan and Kumani [34] studied the dynamic buckling of a
clamped shallow circular arch subjected to a timewise step concen-

trated inclined load acting at an arbitrary point. The buckling



loads were determined when the value of the average deflection ratio
became greater than unity.

Rapp, Smith, and Simitses [31] studied the dynamic buckling of
shallow arches with nonuniform stiffness subjected to step, ideal
impulse, and pulse loading. The buckling loads were determined by
the characteristics of the total potential energy surface, as
described in the study.

Lo and Masur [19] presented an alternate approach to the analysis
of the dynamic symmetric and antisymmetric buckling of shallow arches.
The analysis consisted of converting the equations of motion to an
integral-equation-finite-element system, and then numerically inte-
grating the equations to determine the buckling loads. For symmetric
buckling, the results agreed with those of Humphreys [16] and Fulton
and Barton [6]. For antisymmetric buckling, the results agreed with
those of Lock [20] and Fulton and Barton [6].

The results from two final articles must be mentioned. First,
Lock [21] determined that if the load attains its steady value over
a short duration of time, rather than instantaneously as for step
) 1;ads, the critical loads for ref. [20] increase. Secondly, Hegemier
and Tzung [7] determined that, in the presence of velocity-dependent
damping of any nonzero magnitude, no difference exists between the
static and dynamic buckling loads for arch rises above a certain
magnitude for a simply supported, shallow sinusoidal arch subjected
to a sinusoidally distributed step pressure load. Below the fore-
going value of arch rise, buckling is governed entirely by symmetric

buckling.



CHAPTER 2
ARCH MODEL

This chapter contains the description of the arch model and its
parameters. Also contained is the procedure for the determination of

the number of degrees of freedom for the arch model.

2.1 Description of the Model and Its Parameters

The arch model is shown in Fig. 2.1. From the figure, one can
see that the model is comprised of four uniform rigid bars ((:), (:),
(B®), @) ) connected at the joints ( Ij_], , , [4]. ) by
frictionless pins. At each interior joint ( , , El), there is
a rotational spring, a dashpot, and an applied load. At the right
hand exterior joint ( ), there is a linear spring. The model's
parameters are described below.

Each rigid bar has a length Li and a mass m.s where i = 1, 2, 3,
or 4. The rotational springs, which have stiffnesses Ci’ i=1, 2, 3,
supply the moment resistance for the model. The dashpots, which have
damping coefficients Bi’ i=1, 2, 3, supply the viscous damping for
the model. The translational spring, which has a stiffness K,
supplies the compressibility for the model. The applied loads, which
are time dependent and have magnitudes Pi’ i=1, 2, 3, are vertical
and remain so throughout their application to the model. The angles
85 i=1, 2, 3, 4,define the geometry or shape of the model. Also,

these angles are the measure of the angular rotation for the centroids

of the rigid bars [33]. The angles 0, and 0, are measured counter
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clockwise and the angles B3 and 6, are measured clockwise. When no
loads are applied to the model, it is in the undeformed state, and
thus, the angles 6; are equal to their initial values o - This 1is
depicted in Fig. 2.1 by the dashed lines.

2.2 Determination of the Number of Degrees of Freedom

As stated earlier, the model is a three degree of freedom
system. This was determined by examining the definition given by
Wells [35], which states that the number of degrees of freedom is
"the number of independent coordinates (not including time) required
to specify completely the position of each and every ... component
of the system." The four rigid bars, which are the components of
the model (system), have their positions completely specified by their
respective 6's, as can be seen in Fig. 2.1. And it can also be seen in
the figure that any one of the o's can be determined from the other
three 8's and thus is a combination of the other three 8's. For the
given model (system), 64 is chosen to be specified by the other three
6's, with the equation specifying 64 in terms of the other three 98's
given in Appendix A-2. Therefore, for the given model (system), it
has been shown that only three of the 8's are required to be specified
to determine the position of all four rigid bars.

As demonstrated above, one can just look at the figure of this
model to determine its number of degrees of freedom. But there is a
more systematic and rigorous approach which can be used to determine
the number of degrees of freedom of this model (system) or any other

rigid bar system. This approach is described below.
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The equation which determines the number of degrees of freedom

for a system is given as
n=3N-c (2.1)

where n is the number of degrees of freedom of the system, 3 is the
number of degrees of freedom of a rigid bar, N is the number of rigid
bars in the system, and c is the number of constraint equations or
conditions. Three is the number of degrees of freedom of a rigid

bar because, since the length of the bar is constant, specifying the
horizontal position x and the vertical position y for any point along
the bar and the angle o of the bar with the horizontal axis completely
specifies the position of any other point along the bar. The con-
straint equations or conditions for a rigid bar system are the joint
compatibility conditions of the system. Thus, for our model (system),
N equals 4, ¢ equals 9, and the desired result of n equal 3 is given
by Eq. 2.1 [23].

To obtain the value ¢ equals 9 for our model (system), one must
first choose the point at joint on bar @ to be the point at
which x, y, and & will be specified for the bar. If this is done,
one can see that x and y are defined by joint compatibility at joint
, and thus are not "degrees of freedom" for our model. Since the
position of any point along the bar can now be specified, the position
of the point at joint on bar @ is defined. If one now chooses
the point at joint on bar @ to be the point at which x, y, and

6 will be specified for the bar, one can see that x and y will be
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-defined by joint compatibility at joint [2], and thus will not be
"degrees of freedom" for our model. One can continue this process

up to joint . At that joint, no new bar is present, thus no new
X, ¥, and 6 are specified. But there is specified the joint com-
patibility condition y equals 0. Thus, at joint , no new "degrees
of freedom" are specified, but one constraint condition is specified.
If one now counts two constraint conditions per joint for joints

‘m, , , and , and one constraint conditon at joint ,

then the desired result of ¢ equal 9, as stated earlier, is given.



CHAPTER 3
EQUATIONS OF MOTION

This chapter contains the derivation of the model's equations
of motion from Lagrange's equations of motion, prefaced by a brief
description of Lagrange's equations. Also contained is the procedure
for the non-dimensionalization of the model's equations of motion.
Finally, the chapter contains the derivation of the linearized
equations of motion for the model, which are used to determine the
natural frequencies, periods, and mode shapes of the "linearized"

model.

3.1 Description of Lagrange's Equations of Motion

Lagrange's equations of motion were developed to derive the
equations of motion for dynamic problems. Their development was
initiated by trying to extend the principle of virtual work, which
is used to derive the equilibrium equations for static problems, to
dynamic problems. This was accomplished by the use of D'Alembert's
principle. Although D'Alembert's principle "represents the most
general formulation" [23] of dynamic problems and "enables one to
treat dynamic problems as if they were statical" [23], "it is not
very convenient for deriving the equations of motion" [23] because
"the problems are formulated in terms of the position coordinates,
which, in contrast with generalized coordinates, may not all be
independent." Thus, from D'Alembert's principle, Lagrange's
equations of motion, which are formulated in terms of the generalized

coordinates, were developed. For an easy to read and understand

14
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presentation of the complete details of the development of Lagrange's
equations of motion, see Meirovitch [23].
Now, following the brief outline of their development, Lagrange's

equations of motion are presented, having the form

& %; - %I =Q,  k=1,2, .., (3.1)
where
L=T-V (3.2)
and
Qk=_§'|="j-;£i, k=1,2, ..., n. (3.3)
Jj=1 k

As can be seen, Egs. 3.1 are a set of n simultaneous differential
equations, where L is the Lagrangian of the system, q, are the
generalized coordinates of the system, dk are the first time deriva-
tives of the generalized coordinates ap of the system, Qk are the
generalized forces of the system, and t is the time. In Eq. 3.2, T
is the kinetic energy of the system, and V is the potential energy
of the system. In Eq. 3.3, ?} are the force vectors of the system,
and F& are the position vectors corresponding to the force vectors
?3 of the system. In all three equations, n is the number of
generalized coordinates. By making use of all three equations
listed above, the equations of motion for any holonomic system can

be derived [23].
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Of course, Eqs. 3.1 are written for nonconservative systems,
“in which the forces of the system not derivable from a potential
function, such as dissipative forces and time dependent forces, are
included in the generalized forces Qk of the system. Thus, the
potential energy V of the system, given in Eq. 3.2, cannot contain
any applied forces that are dependent on time. However, one exception
to this condition is the applied forces that are step loads of con-
stant magnitude, infinite duration, and applied to the system at
time zero. Because of the nature of these forces, they are not
actually dependent on time, and therefore can be included in the

~ potential energy V of the system. For conservative systems, in
which all the forces of the system are derivable from a potential
function and thus are contained in the potential energy V of the

system, Qk equals 0. In this case, with
Q =0, k=1,2,...,n, (3.4)
Eqs. 3.1 become

ol

L . L, k=1,2, ..., (3.5)
qu

qu

D.IQ.
purs

Finally, as previously stated, all of the above is restricted
to holonomic systems, which is the only type of system considered
in this study. Because of this restriction, one obtains the very
useful result that the number of generalized coordinates of the

system equals the number of degrees of freedom of the system [18].
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Thus, the n of Eq. 2.1 equals the n of Eqs. 3.1, 3.2, 3.3, 3.4,
and 3.5.
For further information concerning the material presented here,

see refs. [18, 23, 33, 35].

3.2 Derivation of the Model's Equations of Motion

In section 2.2 it was determined that the model used in this
study has 3 degrees of freedom, which were chosen to be 61> 055 and
63. Because the model is holonomic, as stated in section 3.1, it has
3 generalized coordinates, which will be chosen to be the same as
the 3 degrees of freedom, namely 815 6o» and b3- Thus, from sections

2.2 and 3.1, it has been determined that for Egs. 3.1 thru 3.5

n=3, (3.6)
and that

q-l = 6], (3-7)

q2 = 92’ (3.8)

3 = 04 (3.9)

Now, the derivation of the model's equations of motion from
Lagrange's equations of motion can begin by applying Egqs. 3.2, 3.6,
3.7, 3.8, and 3.9 to Egs. 3.1. The result is a set of 3 simultaneous
differential equations, which are

oT-V) _ a(T-V) _ Qe
Bé-l LD 1

d
at (3.10)
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d_ 3(1-v) _ a(T-V) | Q (3.11)
dt . 38 2’ ’
28, 2
dt 38 304 3 ’
3

If these equations are expanded, knowing that the potential energy

V of the system contains no ék terms, they become

d T oT oV

5 o - e Y o Qs (3.13)
dt 38] ae1 ae] 1

d oT oT oV _

i .2 4 L -, (3.14)
d T oT oV _

= —— - = t — =0;. (3.15)
dt A 384 384 3

In the above equations, the potential energy V of the system
contains the applied loads P], P2, and P3, even though they are time
dependent, because they are considered to be step loads for this
model. (For further discussion, see section 3.1.) However, even -
if the applied Toads P], P2, and P3 are not step loads, they could
be included in the potential energy V of the system as long as they
are not functions of the ék' If this is the case, then the applied
loads P], PZ’ and P3 would not affect the first term in Eqs. 3.10,
3.11, and 3.12, and the results from inciuding these loads in the
potential energy V of the system or in the generalized forces Qk of

the system will be the same.
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Since the appliied loads P], PZ’ and P3 are included in the
potential energy V of the system, only the dissipative forces are
included in the generalized forces Qk of the system. To represent
these dissipative forces, Rayleigh's dissipation function F will be

used, resulting in the generalized forces Qk of the system having the

form [23]
Q = - 2—21— , (3.16)
Q, = - %}2 , (3.17)
Q = - g—’;; : (3.18)

Applying these equations to Egs. 3.13, 3.14, and 3.15, and rearranging

terms yields

d oT T aV oF
= £ . L 4+ 2 4+ 2 =90, (3.19)
dt 2%, ae] ae] ae]
d oT oT oV oF
da o _ ol L oV, 9F _gq, (3.20)
d T oT 3V oF
a - + + =0 . (3.21)
dt 3é3 304 365 394

In the above equations, T is the kinetic energy of the system,
V is the potential energy of the system, and F is Rayleigh's dissi-
pation function of the system. Expressing these terms in equation

form yields



where

and

-+
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C'I [(0"] - 0‘2) = (9] - 62)]2

3¢ Llag + ap) - (0 + 5,)1°
7 ¢y oy = a3) - (5 - 091"
1

5 K [L1 cos 67 + L, cos o, + L3 cos o3
+ L4 Cos 8, - L1 cos a, - L, cos o,
- L3 cos aj - L4 cos u4]2

P [L] sin a; - Ly sin e]]

P2 [L1 sin op + L2 sin 0o
- L] sin 0y - L2 sin 82]

P3 [L] sin a + L2 sin oy - L3 sin o5

- L] sin 9, - L, sin 6,

+ L3 sin 93]

(3.22)

(3.23)

(3.24)
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1 . o 2 1 . o 2
Fr=g8 (6 - 8)" + 38, (83 8)
(3.25)

1 N
+ 5 By (e4 - 93) .

th

In Eq. 3.23, Ti is the kinetic energy of the i~ member, Vs is the

velocity of the mass center (centroid) of the ith

th

member, Ii is the

member about its centroid, and
th

mass moment of inertia of the i

w, is the angular velocity of the i~ member.

i
Finally, applying Eqs. 3.22, 3.23, 3.24, and 3.25 to Egs. 3.19,
3.20, and 3.21, rearranging terms, and expressing in matrix form

yields

[A] {6} = {D} , (3.26)

where [A] is a 3 x 3 matrix that depends on the 6's only, {6} is a
3 x 1 "acceleration" vector with 51, 52, and 53 as its members, and
{D} is a 3 x 1 vector that depends on the 8's, the 8's, and the P's.
Eq. 3.26 represents the model's equations of motion, which are non-
linear, and which will be used to determine the dynamic buckling loads
of the model.

For further details of Eqs. 3.23, 3.24, and 3.25, their partial
derivatives, which are needed for use in Eqs. 3.19, 3.20, and 3.21,

and the expressions for the terms in Eq. 3.26, see Appendix A-2.

3.3 Non-Dimensionalization of the Model's Equations of Motion

Non-dimensionalization of the model's equations of motion is
performed so that the numerical solution procedure, which is applied

to the model's equations of motion, will not be involved with units
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(1b, ft, sec, etc.) in the terms of Eq. 3.26. The non-dimension-
alization is to be performed with respect to the model's mys L1,

and K parameters. To accomplish this, all of the model's parameters
are modified according to the following equations, which were derived
so that all of the terms of Eq. 3.26 are non-dimensional. The

equations are

Ly
Ly =1 = o (3.27)
My
mo=1=-l, (3.28)
1
K=1=Lé , (3.29)
L;
L1.=|—_T, i=2,3,4, (3.30)
my
m.izm_s1=t-3334s (33])
1
o (3.32)
P.=—1—, i=1,2,3, 3.32
i KL]
C;
Ci=—p, i=1,2,3, (3.33)
KL,
B,
B, = — i=1,2.3, (3.34)
and
t = ['g— t, (3.35)
1

where the lTeft hand side of the equations represents the model's non-
dimensional parameters, and the right hand side of the equations

represents the model's dimensional parameters.
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In Eqs. 3.27 and 3.35, it can be easily seen that there has
been no change of symbols between the dimensional and non-dimensional
form of the model's parameters. This is done so that both the model's
dimensional and non-dimensional equations of motion have the same
form, thus requiring the model's equations of motion to be written
only once. Although this might create some confusion with regard to
distinguishing between the two forms in the remaining sections of
this study, it is hoped that this has been avoided by carefully
documenting the particular form of the parameters and equations
being used. Thus, the non-dimensionalization of the model's
equations of motion is accomplished by applying Egs. 3.27 thru
3.35 to Eq. 3.26.

Finally, it must be stated that if the model's equations of
motion are to be non-dimensionalized with respect to dimensional
parameters of the model other than mys L1, and K, then relationships
similar to Eqs. 3.27 thru 3.35 must be derived. These relationships
can then be applied to Eq. 3.26 to accomplish the non-dimensioné]-

ization of the model's equations of motion.

3.4 Derivation of the Model's Linearized Equations of Motion

In this section, the model's linear equations of motion are
derived from the model's nonlinear equations of motion. The
derivation procedure applies to both the dimensional and non-
dimensional form of the model's nonlinear equations of motion.

Also, for the parabolic arch (see Table 5.1), the natural
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frequencies, periods, and mode shapes are calculated from the model's
non-dimensional linear equations of motion.

a. Linearized Equations of Motion

The model's nonlinear equations of motion are to be linearized

about the model's initial state. This means that the definition

i=1,2,3,4 (3.36)

must be used, where ¢1(t) is the time dependent change in the angle's
value from its initial value o - It is assumed that 9; represents

a small angle value, so that the equations

cos ¢.= 1 (3.37)
and
sin ¢, = o, (3.38)

can be used. Also, from Eq. 3.36, the equations

6. (t) =1, 2, 3,4 (3.39)

i

]
-
-
—
(o d
-~
-
-
i

and

'e'i (t) (3.40)

il
-
—
—
o+
~—
-
e
i
—_—
-
N
-
w
-
Y

result. Now, with the use of Eqs. 3.36 thru 3.40, the linearization
of Eq. 3.26 can begin.

The first step in the linearization procedure is to delete all
of the éi’ B,, and P, terms in Eq. 3.26. The reason for this is

Eq. 3.39 and the fact that only the undamped free vibration form of
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the model's linearized equations of motion is of interest in this
study. After the above has been accomplished, Eq. 3.40 is applied to
the {5} vector. This results in the {5} vector becoming the {é}
vector with %1, ;2, and 53 as its members. Next, Eqs. 3.36, 3.37,
and 3.38 are applied to the [A] matrix. However, because the [A]
matrix is multiplied by the {5} vector, all of the ¢ terms must be
deleted in order to avoid the nonlinear terms which occur when the
B terms are multiplied by the %1 terms. The result is the same as
if 8, were replaced by o instead of using Eq. 3.36. Thus, the
linearized [A] matrix is the nonlinear [A] matrix with 0 replaced
by as. Finally, Egs. 3.36, 3.37, and 3.38 are applied to the {D}
vector. This results in the {D} vector becoming [DD] {¢} where

[DD] is a 3 x 3 "stiffness" matrix and {¢} is a 3 x 1 "displacement"”
vector with ¢1s o> and 93 s its members. Therefore, after the
linearization procedure has been applied to the model's nonlinear
equations of motion, the model's linear equations of motion have

the form

[A] (s} = [DD] {4} (3.41)

where all the terms are as defined above.

b. Natural Frequencies and Periods

The natural frequencies w of the model's non-dimensional linear
equations of motion for the parabolic arch (see Table 5.1) are found

by writing Eq. 3.41 in the form
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[A] (43 - [DD] ¢} = 0 . (3.42)
Using the substitution

8} = - W? () (3.43)
in Eq. 3.42 and rearranging terms yields

([on] + w® [A1) {6} = 0 . (3.44)

As can be seen, this is the characteristic-value or eigenvalue
problem of the system. For a nontrivial solution of Eq. 3.44 to

exist, the equation
det ([DD] + w? [A]) = O (3.45)

must be satisfied. Eq. 3.45 is called the characteristic equation
of the system, which is a cubic polynomial in w2 with 3 real roots.

Solving for these roots and taking their square roots yields

wy = 0.36848 , (3.46)
wy = 0.15605 , (3.47)
wy = 0.07487 , (3.48)

which are the natural frequencies of the model's non-dimensional
linear equations of motion for the parabolic arch. (Note: for the
numerical calculations, Ci = 0.001, i=1, 2, 3 was used.)

The periods T for the parabolic arch are determined from
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T. =L, i=1,2,3, (3.49)

which relates the periods to the natural frequencies. Using Egs.

3.46, 3.47, and 3.48 in Eq. 3.49 yields

T] = 17.05163 , (3.50)
T, = 40.26392 , (3.51)
T3 = 83.92127 , (3.52)

which are the non-dimensional periods of the system [24].

c. Mode Shapes

The mode shapes describe the time independent relationships
between the displacement parameters 015 95 935 and ¢4 for the 3
different undamped free vibration states (modes) that are defined
~ by their natural frequencies ws and their corresponding periods Ti'
To determine the relationships between the ¢'s , replace the w in
Eq. 3.44 by its corresponding numerical value and solve for ¢y
and ¢3 in terms of ¢q - (Note: ¢4 can be given in terms of 91 by
using the relationship between 64 and 61, 62, and 93 given in
Appendix A-2 and Eq. 3.36.) This is done for all 3 natural

frequencies w; with the results being

0 ) ( 4
9o 2.62780 9

b= 4 (3.53)
b 1.81157 ¢,

)

1.84480 ¢,
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for Eq. 3.46,
(4 ( 4 \
9o -1.93399 ¢y
4 - W | (3.54)
¢3 -1.94383 9
¢ 1.01018 ¢
[ % ' 1
for Eq. 3.47, and
r & = ( .
¢ -0.96223 9
3 - = (3.55)
¢3 0.96388 91
L 94 y \ -0.99352 ¢4

for Eq. 3.48. Egs. 3.53, 3.54, and 3.55 represent the non-dimensional

mode shapes of the system [24].



CHAPTER 4
SOLUTION TECHNIQUES

This chapter contains a brief review of the current literature
regarding the direct numerical integration techniques that are
presently available and being used. Also contained is the description
of the particular procedure used in this study, and the reasons for

its use.

4.1 Direct Numerical Integration Techniques

A brief review of the current Titerature regarding direct
numerical integration techniques is necessary because presently
many techniques are available for use. These techniques include both
implicit methods and explicit methods [3], each of which has its own
particular advantages and disadvantages. Because of this, a decision
on which particular method to use in this study was made according to
the conclusions drawn from the results of the articles listed below.

Bathe and Wilson [2] "present a systematic and fundamental pro-
cedure for the stability and accuracy analysis of direct integration
methods and apply the techniques to the Newmark, the Houbolt and
the Wilson 6 method." They found that for linear problems, "the
Newmark method with & = %~and a = %~is most accurate and only gives
period elongations.” This method also "retained the response of the
high frequency components."

Nickell [26] analyzed "several alternative methods for carrying

out the step-by-step integration of the equations of motion of a

29
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(Tinear) structural system" for "forced structural vibration"
problems, which are "dominated by lTow frequency components of the
response." Although the Newmark method has been found to become
unstable for some problems, it has been determined that in most cases
this can be avoided by the proper selection of the size of the time
step used. Thus, his conclusion is that "from all evidence, then,

it would seem that the trapezoidal, or Newmark, operator is the most
attractive operator for both linear and nonlinear problems."

Adeli, Gere, and Weaver [1] investigated "several competitive and
widely-used numerical integration techniques in order to determine
which is the most efficient technique for nonlinear dynamic analysis
of structures modeled by finite elements." Three implicit and three
explicit methods were investigated. "The accuracy, stability, and
efficiency of the methods were examined by comparing the results for
a plane stress sample problem." The results were that "among the
three explicit methods, it was concluded that the central difference
predictor is the best," and that among "the three implicit approaches,
the Park stiffly-stable method was found to be somewhat better than
the Newmark-Beta method.... For large time steps, the results for
the Newmark-Beta method with B = %—and y = %—tend to be unstable."

Although the three articles described above are just a small
sample from the current literature on the subject of direct numerical
integration techniques, it is felt that they represent the general

results. For further discussion, see Horne [10].
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4.2 Solution Method

In this section, the equations and procedures used in the
Newmark-Beta method, which is the numerical integration technique
used for the numerical integration of the model's non-dimensional
nonlinear equations of motion, are described. Also, the reasons
for the selection of the Newmark-Beta method and the accuracy of this
method are described.

a. Description of the Method Used

The Newmark-Beta method, with g = %3 has been selected as the

numerical integration technique for use in this study. The basis

of the Newmark-Beta method is the equations

Gia1 = V5 ¥ g G Ot (4.1)
_ - 2
where
. 1 )
Vi ® a3 t 79 At (4.3)
and

d; =q; + di At + (%—- B) 51 at? . (4.4)

In the above equations, q represents one of the generalized

coordinates, q represents the first time derivative of q, a repre-
sents the second time derivative of q, At represents the magnitude
of the time step for the integration procedure, and the subscript i

represents the ith time step [1, 2, 3, 9, 25, 26]. Thus, for
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8 = 1 Egs. 4.1, 4.2, 4.3, and 4.4 become

. "' .

Qipp = O; *+ 7 Aiyq A2 S (4.6)

Vi =4, fra. st (4.7)

d. = q. + 4. At + +q. at? . (4.8)
i- 979 7 9 '

The procedure used in the Newmark-Beta method is listed below,
and applies only to the equations that are in the form or can be

written in the form
q =R (4.9)
where R is not a function of a. The steps of the procedure are:

1) initialize the quantities 99s %> 99 Vo> and do

)
for each generalized coordinate q;

2) for each time step:

~a) assume a. = 51 for each generalized

i+
coordinate q;

b) compute q.,, and q.,, from Eqs. 4.5 and 4.6 for

i+l i+l
each generalized coordinate q;

c) compute R in Eq. 4.9 for each generalized
coordinate q;

d) test equilibrium of Eq. 4.9 for each generalized

coordinate q by checking if
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is satisfied, where | | means absolute value and ¢
is a very small number. If Eq. 4.10 is satisfied

for all of the generalized coordinates, go to 2e.

If Eq. 4.10 is not satisfied for all of the

= R

generalized coordinates, Tlet ai for the

+] i+]
generalized coordinates not satisfying Eq. 4.10,

but do not alter 51 for the generalized coordinates

+1

satisfying Eq. 4.10, and then go to 2b and repeat;

e) calculate Vi and di+1 from Eqs. 4.7 and 4.8 [9].

As stated above, the Newmark-Beta method applies only to equations
written in the form of Eq. 4.9. Thus, Eq. 3.26 must be written in the

form of Eq. 4.9. To accomplish this, let
[8] = [A]”' (4.11)

where it is assumed that the inverse of the [A] matrix exists.

Applying Eq. 4.11 to Eq. 3.26 and rearranging terms yields

fe} = [B] D} , (4.12)
which can be written as

{6} = (R} (4.13)

where {R} is a 3 x 1 vector. Thus, Eq. 4.13 represents a form of

the model's non-dimensional nonlinear equations of motion which can
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be numerically integrated by using the Newmark-Beta method described
above.

b. Reasons for the Selection of the Method Used

The Newmark-Beta method was selected to numerically integrate
the model's non-dimensional nonlinear equations of motion for three
main reasons.

The first reason for the selection is, based on the discussion
of section 4.1, that the Newmark-Beta method is one of the best,
if not the best, method used for numerical integration of linear and
nonlinear equations. Even though some researchers have found that
the method tends to be unstable for some nonlinear problems [26],
most conclude that if the stability of the method can be guaranteed
or proved for a problem, then it is still one of the best methods
available [26].

The second reason for the selection is that the equations and
procedures used in the Newmark-Beta method are easy to program.
Since the user can program the method, more freedom is given in the
selection of the particular programming procedures used. Also, since
the user writes the algorithm for the method, it will be easier to
check for errors, make changes, and follow the logic, than if a
"canned" routine written by someone else is used.

Fiha]]y, the last reason for the selection is that, for our
model, the Newmark-Beta method requires from 5 to 10 times Tess
execution time than a Hamming predictor-corrector (SSP) method, with

essentially no difference in the results obtained from the use of
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the two methods. This was determined from a comparison of the two
methods on a limited basis.

One additional influence for the selection is that the author
prefers the Newmark-Beta method over the other methods because he
is more familiar and more confident with this method.

c. Accuracy

In the previous section, four reasons were presented for using
the Newmark-Beta method to numerically integrate the model's non-
dimensional nonlinear equations of motion. But as stated earlier,
the Newmark-Beta method has been determined to be unstable for some
nonlinear problems. Thus, it must be determined whether or not the
method is stable for our model. If the method is determined to be
unstable, then the reasons stated in the previous section for its
use are invalid.

It has been determined that for Tinear problems, the Newmark-
Beta method, B = %3 is unconditionally stable, and converges if the

equation

=z
(+

< 0.318 (4.14)

is satisfied, where At is the magnitude of the time step used, and
T is the magnitude of the smallest period of the linear problem.
Thus Eq. 4.74 can be used to determine the "critical" time step
magnitude for which the convergence of the method is guaranteed for
linear problems [3, 9, 25]. Also, it has been suggested that the

usual time step magnitude used in the method should be approximately
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%E to %ﬁ of the smallest period of the system. Therefore, if Eq. 4.14

is applied to the smallest period calculated for the parabolic arch
from the model's non-dimensional linear equations of motion, the
critical time step magnitude is determined to be 5.4. The usual
time step magnitude for the parabolic arch, as calculated from the
criteria described above, is between 0.9 and 1.1.

Now the periods and "critical" time step magnitude for the
parabolic arch, determined from the model's non-dimensional nonlinear
equations of motion, will be examined. When a time step magnitude of
1.0 is used in the Newmark-Beta method, it is determined that for low
loads, there exists two different periods of magnitude 18 and 48 for
the system. If these periods are compared to Egs. 3.50 and 3.51, then
it can be seen that the two lowest periods determined for the linear
and nonlinear equations of motion are similar. Also, from numerical
studies, it was determined that the "critical" time step magnitude
to "guarantee" convergence for the nonlinear equations of motion is
5.4. As can be seen, this is equal to the "critical" time step
magnitude for the linear equations of motion.

Thus, by comparison of the periods and the "critical" time step
magnitudes, there is determined to be little difference between the
model's linear and nonlinear non-dimensional equations of motion
(at least for Tow loads). Therefore, the author believes that by
using a time step magnitude of 1.0 in the Newmark-Beta method, the
numerical integration of the model's non-dimensional nonlinear

equations of motion is "guaranteed" to be "stable" and "convergent".
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Two final comments must be made at this point. The first comment
is that the error tolerance ¢ in Eq. 4.10 was specified to be 1.0 x

-12 for all of the above work. This number was selected arbitrarily.

10
Thus, for a different value of e, the results may differ slightly from
those presented above. The last comment is that even though the above
work was done for the parabolic arch, the general result that a time

step magnitude of 1.0 used in the Newmark-Beta method will "guarantee"
the "stability" and the "convergence" of the numerical integration of
the model's non-dimensional nonlinear equations of motion should also

apply for an eccentric arch, because the periods and "critical" time

step magnitudes of the two arch types should not differ greatly.



CHAPTER 5
RESULTS

This chapter contains the results (interaction curves) for five
problems, prefaced by an introduction explaining how the results are
determined. Al1l of the values listed in this chapter are non-

dimensional quantities.

5.1 Introduction

In this study, the results for each type of loading, either
step or impulse, are determined for two different initial shallow
arch geometries or shapes, parabolic and eccentric. The parabolic
arch is éharacterized by bars of equal lengths and equal masses,
and by equal rotational springs. It is also symmetric, with o
equal to 2.0 e The eccentric arch is characterized by bar (:)
being 2.5% less in both length and mass than the other bars, but
with equal rotational springs. It is not symmetric, but oy equals
2.0 e, and %y equals ag. The values of the parameters, for both
the parabolic arch and the eccentric arch, are 1isted in Table 5.1.

The interaction curves for the problems studied are determined
by plotting the buckling loads as points in a two dimensional load
space, and drawing a "smooth" curve through those points. The
buckling loads are determined for the four "principal" axes, PI’

P P3, and P1 = P3, and the eighteen rays which divide the four

2!
"principal" planes. The four "principal" planes and the rays in those

planes are shown in Figs.5.1, 5.2, 5.3, and 5.4. For information

38
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regarding interaction curves for static problems, see Plaut [29] and
Welton [36].

The buckling Toads are those loads for which the results obtained
from the numerical integration of the model's non-dimensional non-
Tinear equations of motion exceed the buckling criterion. For this
study, it has been decided that the arch has buckled when the values
of both 0 and 8, are simultaneously less than zero. Thus, the
buckling criterion states that, if the values of both 61 and 64 are
never negative simultaneously, then the arch has not buckled.

A1l of the buckling loads are determined to three digits, with
the digits being determined from left to right. Thus, for example,
if a buckling load has a value 245, first the 2 is determined,
secondly the 4 is determined, and finally the 5 is determined. This
procedure is used to determine the buckling loads because it requires
from 3 to 30 times less execution time than incremental loading,
incrementing the third (right most) digit by 1 beginning with zero
load.

The numerical integration of the model's non-dimensional non-
linear equations of motion is performed for a non-dimensional time
of 300.0, which represents approximately 3 times the longest non-
dimensional period of the linearized model as given by Eq. 3.52.
Johnson and McIvor [17] determined that the use of 3 times the
longest period as the duration of time for the numerical integration
of the equations of motion to be performed is sufficient, with no

effect on the buckling loads obtained for increased time. Refs.
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[6, 16, 19, 20] also use 3 times the longest period as the duration
of time for the numerical integration of the equations of motion to
be performed, although it is not specifically stated. The linearized
period is used because, as stated in section 4.2.c, the linear and non-

linear models do not differ considerably.

Finally, it must be repeated that all of the values listed in

this chapter are non-dimensional quantities.
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TABLE 5.1

Non-Dimensional Values of the Model's
Parameters for the Parabolic and Eccentric Arches

Parameter Parabolic Eccentric
oy 0.30 0.30
%y 0.15 0.15
oy 0.15 0.15
ag 0.30 0.30794
m, 1.0 1.0
m, 1.0 1.0
ms 1.0 1.0
my 1.0 0.975
L 1.0 1.0
L2 1.0 1.0
L3 1.0 1.0
L4 1.0 0.975
C1 0.001 0.001
C, 0.001 0.001
C3 0.001 0.001
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FIGURE 5.1: Rays in the P2 VS, P] Plane
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FIGURE 5.2: Rays in the P2 VS, P3 Plane
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FIGURE 5.3: Rays in the P2 VS, P] = P3 Plane
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Ray 15

FIGURE 5.4: Rays in the P] VS. P3 Plane



46

5.2 Step Loads

A1l of the loads for the three problems discussed below are step
loads of infinite duration applied at time zero. Also, all of the
initial velocities for the three problems discussed below are set
equal to zero.

a. Parabolic Arch with Damping

In this problem, the interaction curves are determined for a
parabolic shallow arch with velocity dependent damping.

The value of the damping used in this problem is Bi = 0.001,
i=1, 2, 3.

The buckling loads are listed in Table 5.2, and the interaction
curves are presented in Figs. 5.5, 5.6, 5.7, and 5.8.

The P2 VS, P] and the P2 VS. P3 interaction curves, given in
Figs. 5.5 and 5.6, respectively, are convex toward the origin. The
P2 Vs, P] = P3 interaction curve, given in Fig. 5.7, is concave toward
the origin. The P1 VS. P3 interaction curve is bounded (from above)
by and can be approximated by the straight lines connecting the
buckling load on the P] axis to the buckling load on the P] = P3
axis and the buckling load on the P3 axis to the buckling load on
the P] = P3 axis.

After buckling, the arch does not remain in the buckled region,
but snaps back to the unbuckled region, with the motion oscillating
between the two regions. The final shape of the arch for the given

buckling loads is not determined in this study.
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Finally, the change in the value of the buckling Toads due to the
use of different durations of time for the numerical integration is
determined for a Timited number of the buckling loads. For a duration
of 200.0, the values of the buckling loads increase by up to 20% of
the values listed in Table 5.2. For a duration of 400.0, the values
of the buckling loads decrease by less than 1% of the values Tisted
in Table 5.2. This verifies that the chosen duration of 300.0 for

the numerical integration is appropriate.



Non-Dimensional Buckling Loads for a
Parabolic Arch with Damping Under Step Loads

48

TABLE 5.2

", 2_y 3.4

Axis or Ray (x 10°7) (x 10°7) (x 10°7)
P] axis 5.46 0.0 0.0
Py axis 0.0 9.48 0.0
P3 axis 0.0 0.0 5.47
P]=P3 axis 5.33 0.0 5.33
ray 1 4.26 1.76 0.0
ray 2 3.29 3.29 0.0
ray 3 2.61 5.21 0.0
ray 4 1.34 6.74 0.0
ray 5 0.0 1.77 4.27
ray 6 0.0 3.29 3.29
ray 7 0.0 5.21 2.16
ray 8 0.0 6.74 1.34
ray 9 5.00 2.07 5.00
ray 10 4.50 4.50 4.50
ray 11 2.87 6.93 2.87
ray 12 1.65 8.30 1.65
ray 13 1.07 0.0 5.39
ray 14 2.22 0.0 5.37
ray 15 3.59 0.0 5.38
ray 16 5.39 0.0 3.60
ray 17 5.36 0.0 2.22
ray 18 5.43 0.0 1.08
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3
' K4

]

(x 10-4)

FIGURE 5.5: P2 VS, P] Interaction Curve for a Parabolic
Arch with Damping Under Step Loads
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(x 1074

FIGURE 5.6: P2 VS. P3 Interaction Curve for a Parabolic
Arch with Damping Under Step Loads
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7.0 »
Py =P3
(x 1074

FIGURE 5.7: P2 vS. P1 = P3 Interaction Curve for a
Parabolic Arch with Damping Under Step Loads
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FIGURE 5.8: P1 VS. P3 Interaction Curve for a Parabolic
Arch with Damping Under Step Loads
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b. Parabolic Arch without Damping

In this problem, the interaction curves are determined for a
parabolic shallow arch with no velocity dependent damping.

The buckling loads are listed in Table 5.3, and the interaction
curves are presented in Figs. 5.9, 5.10, 5.11, and 5.12.

The P2 VS. P] and the P2 VS, P3 interaction curves, given in
Figs. 5.9 and 5.10, respectively, can be approximated by a straight
line connecting the buckling load on the P2 axis to the buckling
load on the P] axis and the buckling Toad on the P2 axis to the
buckling load on the P3 axis, respectively. The P2 VS. P] = P3
interaction curve, given in Fig. 5.11, is concave toward the origin.
The P] Vs. P3 interaction curve can be approximated by the straight
lines connecting the buckling load on the P1 axis to the buckling
load on the P] = P3 axis and the buckling load on the P3 axis to the
buckling load on the P] = P3 axis.

After buckling, the arch does not remain in the buckled region,
but snaps back to the unbuckled region, with the motion oscillating
between the two regions.

The buckling Toad on the P2 axis "bounces". "Bouncing of the
buckling loads," as pertains to this study, is defined as the
existenée of loads larger than the buckling loads for which the
arch does not buckle. This means that, as the loads increase, the
arch buckles for some value, then does not buckle for a slightly
higher value, and then buckles again for still a higher value. This

cycle is repeated a number of times until a value is reached where
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the arch buckles for all higher values. This phenomenon has also been
found in the study by Johnson and McIvor [17].

The buckling loads of this problem are less than the static
buckling loads determined by Welton [36] for the same parabolic arch,
except for rays 10, 11, and 12. (See Fig. 5.11.) Also, the inter-
action curves of this problem do not have the same shape as the static
interaction curves determined by Welton [36] for the same parabolic
arch.

Finally, the change in the values of the buckling loads due to
the use of different durations of time for the numerical integration
is determined for a limited number of the buckling loads. For a
duration of 200.0, the values of the buckling loads increase by up to
20% of the values listed in Table 5.3. For a duration of 400.0, the
values of the buckling loads decrease by less than 5% of the values
listed in Table 5.3. This verifies that the chosen duration of 300.0

for the numerical integration is appropriate.
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TABLE 5.3

Parabolic Arch without Damping Under Step Loads

P]_4 P2_4 P3_4

Axis or Ray (x 10°7) (x 1077) (x 10°7)
P] axis 5.32 0.0 0.0
P2 axis 0.0 8.78 0.0
P3 axis 0.0 0.0 5.33
P]=P3 axis 5.15 0.0 5.15
ray 1 4.17 1.73 0.0
ray 2 3.22 3.22 0.0
ray 3 2.12 5.12 0.0
ray 4 1.32 6.64 0.0
ray 5 0.0 1.73 4.17
ray 6 0.0 3.22 3.22
ray 7 0.0 5.12 2.12
ray 8 0.0 6.64 1.32
ray 9 4.85 2.01 4.85
ray 10 4.41 4.47 4.41
ray 11 2.80 6.76 2.80
ray 12 1.60 8.04 1.60
ray 13 1.05 0.0 5.27
ray 14 2.17 0.0 5.24
ray 15 3.50 0.0 5.24
ray 16 5.24 0.0 3.50
ray 17 5.24. 0.0 2.17
ray 18 5.28 0.0 1.05
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— — — — Static Case [36]

FIGURE

5.9:

v

(x 1074

P2 Vs. P1 Interaction Curve for a Parabolic
Arch without Damping Under Step Loads
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— — — — Static Case [36]

"

FIGURE 5.10: P2 VS. P3 Interaction Curve for a Parabolic

Arch without Damping Under Step Loads
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10.0 ¢

— — — — Static Case [36]

FIGURE 5.11: P2 VS. P] = P3 Interaction Curve for a Parabolic
Arch without Damping Under Step Loads
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— — — — Static Case [36]

FIGURE 5.12: P1 VSs. P3 Interaction Curve for a Parabolic
Arch without Damping Under Step Loads
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c. Eccentric Arch without Damping

In this problem, the interaction curves are determined for an
eccentric shallow arch with no velocity dependent damping.

The buckling loads are listed in Table 5.4, and the interaction
curves are presented in Figs. 5.13, 5.14, 5.15, and 5.16.

The P2 VS. P] interaction curve, given in Fig. 5.13, is convex
toward the origin. The P2 VS, P3 interaction curve, given in Fig.
5.14, can be approximated by a straight 1ine connecting the buckling
load on the P2 axis to the buckling Toad on the P3 axis. The P2 VS.
P] = P3 interaction curve, given in Fig. 5.15, is concave toward the
origin. The P] VS. P3 interaction curve, given in Fig. 5.16, can be
approximated by the straight lines connecting the buckling load on
the P] axis to the buckling load on the P] = P3 axis and the buckling
load on the P3 axis to the buckling load on the P] = P3 axis.

After buckling, the arch does not remain in the buckled region,
but snaps back to the unbuckled region, with the motion oscillating
between the two regions.

The buckling load on the P2 axis "bounces." Also, the buckling
loads to the right of and near to the P] = P3 axis of the P] Vs, P3
interaction curve "bounce."

The buckling loads of this problem are less than the static
buckling loads determined by Welton [36] for the same eccentric
arch, except for rays 10, 11, and 12. (See Fig. 5.15.) Also, the

interaction curves of this problem, except for the P] VS. P3 inter-
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action curve, have a shape similar to the static interaction curves
determined by Welton [36] for the same eccentric arch.

Finally, the change in the values of the buckling loads due to
the use of different durations of time for the numerical integration
is determined for a Timited number of the buckling loads. For a
duration of 200.0, the values of the buckling Toads increase by up
to 20% of the values Tisted in Table 5.4. For a duration of 400.0,
the values of the buckling loads decrease by less than 3% of the
values listed in Table 5.4. This verifies that the chosen duration

of 300.0 for the numerical integration is appropriate.
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Eccentric Arch without Damping Under Step Loads

P

Axis or Ray (x 18'4) (x 13'4) (x 18'4)
P] axis 5.32 0.0 0.0
P2 axis 0.0 9.15 0.0
P3 axis 0.0 0.0 5.55
P]=P3 axis 5.19 0.0 5.19
ray 1 4.16 1.72 0.
ray 2 3.21 3.21 0.
ray 3 2.11 5.09 0.
ray 4 1.31 6.59 0.
ray 5 0.0 1.79 4.33
ray 6 0.0 3.34 3.34
ray 7 0. 5.29 2.19
ray 8 0. 6.84 1.36
ray 9 4.78 1.98 4.78
ray 10 4.02 4.02 4.02
ray 11 2.63 6.35 2.63
ray 12 1.60 8.04 1.60
ray 13 1.09 0.0 5.48
ray 14 2.26 0.0 5.46
ray 15 3.65 0.0 5.46
ray 16 5.25 0.0 3.51
ray 17 5.24 0.0 2.17
ray 18 5.28 0.0 1.05
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_4)

— — — — Static Case [36]

FIGURE 5.13:

\ %

P2 VS. P] Interaction Curve for an Eccentric
Arch without Damping Under Step Loads
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FIGURE 5.14: P2 Vs, P3 Interaction Curve for an Eccentric
Arch without Damping Under Step Loads
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10.0 4

— — — — Static Case [36]

FIGURE 5.15: P2 Vs, P1 = P3 Interaction Curve for an Eccentric
Arch without Damping Under Step Loads
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— — — — Static Case [36]

FIGURE 5.16: P] VS. P3 Interaction Curve for an Eccentric
Arch without Damping Under Step Loads
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5.3 Impulse Loads

A1l of the loads for the two problems discussed below are
impulse loads, which impart initial velocities to the arch. The
relationships between the impulse loads and the initial velocities
are derived and listed in Appendix A-3. Thus, the numerical
’integration of the model's nondimensional nonlinear equations of
motion is performed for no loads, but with the initial velocities
imparted by the impulse loads.

a. Parabolic Arch without Damping

In this problem, the interaction curves are determined for a
parabolic shallow arch with no velocity dependent damping.

The buckling loads are listed in Table 5.5, and the interaction
curves are presented in Figs. 5.17, 5.18, 5.19, and 5.20.

A1l of the interaction curves, given in Figs. 5.17, 5.18, 5.19,
and 5.20, are concave toward the origin.

After buckling, the arch does not remain in the buckled region,
but snaps back to the unbuckled region, with the motion oscillating
between the two regions.

A1l of the buckling loads, except those for rays 16, 17, and 18
of the 51 VS, 53 interaction curve, "bounce." The "bouncing" of the
buckling loads does not appear until the last of the three digits of
the buckling loads is determined. Because of this, the buckling Toads
listed in Table 5.5 are not the lTowest buckling loads. Limited study,

using incremental Toading, shows that the value of the lowest buckling

loads may be up to, if not more than, 5% less than the values listed
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in Table 5.5. The Towest buckling loads are not determined in this
study, due to a lack of time. (See section 6.2.)

Finally, limited study, using incremental loading and a
duration of time of 400.0 for the numerical integration, shows that
the values of the buckling loads decrease by up to 5% of the values
listed in Table 5.5. Thus, for incremental loading, there is little
difference in the values of the buckling loads obtained by using
either a duration of 300.0 or 400.0. This verifies that the chosen

duration of 300.0 for the numerical integration is appropriate.
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TABLE 5.5

Parabolic Arch without Damping Under Impulse Loads

1.2 "2, "3,

Axis or Ray (x 10°°) (x 1077) (x 107%)
I:J] axis 2.37 0.0 0.0
P2 axis 0.0 2.33 0.0
53 éxis 0.0 0.0 2.36
P]=P3 axis 1.51 0.0 1.51
ray 1 2.52 1.04 0.0
ray 2 2.01 2.01 0.0
ray 3 1.05 2.53 0.0
ray 4 0.53 2.66 0.0
ray 5 0.0 1.01 2.43
ray 6 0.0 1.85 1.85
ray 7 0.0 2.49 1.03
ray 8 0.0 2.5] 0.50
ray 9 1.55 0.64 1.55
ray 10 1.61 1.61 1.61
ray 11 1.04 2.51 1.04
ray 12 0.52 2.61 0.52
ray 13 0.43 0.0 2.17
ray 14 0.89 0.0 2.14
ray 15 1.28 0.0 1.91
ray 16 1.95 0.0 1.30
ray 17 2.15 0.0 0.89
ray 18 2.31 0.0 0.46
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FIGURE 5.17: ﬁz VS. 51 Interaction Curve for a Parabolic
Arch without Damping Under Impulse Loads
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FIGURE 5.18: 52 VS. P3 Interaction Curve for a Parabolic
Arch without Damping Under Impulse Loads
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FIGURE 5.19: ﬁz VS. P] = P3 Interaction Curve for a Parabolic

Arch without Damping Under Impulse Loads
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FIGURE 5.20: P] VS. P3 Interaction Curve for a Parabolic
Arch without Damping Under Impulse Loads
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b. Eccentric Arch without Damping

In this problem, the interaction curves are determined for an
eccentric shallow arch with no velocity dependent damping.

The buckling loads are listed in Table 5.6, and the interaction
curves are presented in Figs. 5.21, 5.22, 5.23, and 5.24.

A1l of the interaction curves, given in Figs. 5.21, 5.22, 5.23,
and 5.24, are concave toward the origin.

After buckling, the arch does not remain in the buckled region,
but snaps back to the unbuckled region, with the motion oscillating
between the two regions.

A1l of the buckling loads, except those for rays 16, 17, and 18
of the ﬁ] VS. 53 interaction curve, "bounce." The "bouncing" of the
buckling loads does not appear until the last of the three digits
of the buckling loads is determined. Because of this, the buckling
loads listed in Table 5.6 are not the lowest buckling loads. Limited
study, using incremental loading, shows that the value of the Towest
buckling loads may be up to, if not more than, 8% less than the
values listed in Table 5.6. The lowest buckling loads are not
determined in this study, due to a lack of time. (See section 6.2.)

Finally, limited study, using incremental loading and a
duration of time of 400.0 for the numerical integration, shows that
the values of the buckling loads decrease by up to 14% of the values
listed in Table 5.6. Thus, for incremental loading, there is

approximately a 6% decrease in the values of the buckling loads
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obtained by using a duration of 400.0 instead of a duration of
300.0. This verifies that the chosen duration of 300.0 for the

numerical integration is appropriate.
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TABLE 5.6

Non-Dimensional Buckling Loads for an
Eccentric Arch without Damping Under Impulse Loads

~ A ~

P]_z P2_2 P3-2

Axis or Ray (x 10°°) (x 10°°) (x 107°)
Py axis 2.35 0.0 0.0
?2 axis 0.0 2.39 0.0
E3 éxis 0.0 0.0 2.41
P]=P3 axis 1.55 0.0 1.55
ray 1 2.52 1.04 0.0
ray 2 1.96 1.96 0.0
ray 3 1.12 2.70 0.0
ray 4 0.50 2.51 0.0
ray 5 0.0 1.00 2.41
ray 6 0.0 1.95 1.95
ray 7 0.0 2.56 1.06
ray 8 0.0 2.77 0.55
ray 9 1.65 0.68 1.65
ray 10 1.71 1.71 1.71
ray 11 1.04 2.51 1.04
ray 12 0.51 2.56 0.51
ray 13 0.46 0.0 2.31
ray 14 0.92 0.0 2.21
ray 15 1.38 0.0 2.07
ray 16 1.96 0.0 1.31
ray 17 2.15 0.0 0.89
ray 18 2.31 0.0 0.46
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FIGURE 5.21: ﬁz VS. P] Interaction Curve for an Eccentric
Arch without Damping Under Impulse Loads
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FIGURE 5.22: 52 VSs. P3 Interaction Curve for an Eccentric
Arch without Damping Under Impulse Loads
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3
(x 10_2)

~

FIGURE 5.23: 52 VS. ﬁ] = P3 Interaction Curve for an Eccentric
Arch without Damping Under Impulse Loads
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2.50 ¢

FIGURE 5.24: P] VS. P3 Interaction Curve for an Eccentric
Arch without Damping Under Impulse Loads



CHAPTER 6
SUMMARY

This chapter contains the conclusions of this study, which are

drawn from the results presented. Also contained are the suggestions

for further study, which are prompted by the results and conclusions

of this study.

6.1

Conclusions

The conclusions drawn from the results of this study are

enumerated and listed below.

1.

For step loads with no damping, a comparison between the
parabolic arch and the eccentric arch shows that the shapes

of the P2 VsS. P3 and P2 vs. P

similar, while the shapes of the P2 Vs. P1 and P] VS. P3

1= P3 interaction curves are

interaction curves differ slightly. Also, a comparison
between the values of the buckling loads (Tables 5.3 and
5.4) shows that they differ only slightly.

For impulse loads with no damping, a comparison between the
parabolic arch and the eccentric arch shows that the shapes
of the 52 VS. 53 and ﬁz VS. ﬁ] = 53 interaction curves are
similar, while the shapes of the Ez VS. B] and §1 VS. 53
interaction curves differ slightly. Also, a comparison
between the values of the buckling Toads (Tables 5.5 and 5.6)

shows that they differ only slightly.

81
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For the parabolic arch with no damping, a comparison between

the step loads and the impulse Toads shows that the shapes of

the interaction curves are completely dissimilar, except that the
P2 vs. P] = P3 and 52 VS. ﬁ] = ﬁ3 interaction curves are concave
toward the origin.

For the eccentric arch with no damping, a comparison between

the step loads and the impulse loads shows that the shapes of

the interaction curves are completely dissimilar, except that the
P2 Vs, P1 = P3 and §2 VS. 5] = 53 interaction curves are concave
toward the origin.

For the parabolic arch, a comparison between the static case [36]
and the dynamic case (step loads with no damping) shows that the
shapes of the interaction curves differ slightly. Also, a com-
parison between the values of the buckling loads shows that the
static buckling loads are larger than the dynamic buckling loads
by 25% or less along an axis or ray, except for rays 10, 11, and
12 (Fig. 5.11), where the dynamic buckling loads are larger than
the static buckling loads by 12% or less along a ray.

For the eccentric arch, a comparison between the static case [36]
and the dynamic case (step loads with no damping) shows that the
shapes of the interaction curves differ slightly. Also, a com-
parison between the values of the buckling loads shows that

the static buckling loads are larger than the dynamic buckling

loads by 25% or less along an axis or ray, except for rays 10,

11, and 12 (Fig. 5.15), where the dynamic buckling loads are
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larger than the static buckling loads by 7% or less along a

ray.

For the parabolic arch under step loads, a comparison between
damping and no damping shows that the shapes of the P2 vs. P1 =
P; and P, vs. P3 interaction curves are similar, while the
shapes of the P2 VS. P1 and P2 Vs. P3 interaction curves differ
slightly. Also, a comparison between the values of the buckling
loads (Tables 5.2 and 5.3) shows that they differ only slightly,
with the damping producing Targer loads.

For both the parabolic and eccentric arches with no damping under
impulse loads, the values of the buckling loads (Tables 5.5 and
5.6) are unreliable because of the "bouncing" phenomenon in com-
bination with the loading procedure used. (See sections 5.2.b

and 5.1.)

6.2 Suggestions for Further Study

The suggestions for further study prompted by the results and

conclusions of this study are enumerated and listed below.

1.

For the parabolic arch with no damping under impulse loads,

use incremental loading (incrementing the third digit by 1 from
zero) to determine reliable values of the buckling loads and the
extent of the "bouncing."

Because there was little difference between the parabolic arch
and the eccentric arch for both step and impulse loads with no

damping, increase the amount of eccentricity (shorten bar (:))
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for the eccentric arch and determine if the shapes of the inter-
action curves are affected.

Increase the height of the parabolic arch (increase the value of
a1) and determine if the shapes of the interaction curves are
affected. Also for the parabolic arch, vary the ratio of o to

oy for constant height and determine if the shapes of the inter-
action curves are affected.

For the parabolic arch under impulse loads, apply damping to
determine if the "bouncing" can be either eliminated or reduced.
Compare the results from the Newmark-Beta method to the results
from a Runge-Kutta method, a Gear variable order method, or other
methods to verify that the Newmark-Beta method is the most accurate
for least execution time. (This was not done in this study because

the two methods mentioned above were not available for use.)
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EQUATIONS OF MOTION

Definitions

L] sin e1 + L2 sin 62 = L3 sin 93 + L4 sin 94

0, = sin'] [El-sin 6, + Eg-sin 0, - I—_§-s1‘n |
4 L4 1 L4 2 L4 3
L L L
. 1 1 - 2 3 .
6, = [+ 6, cos 6; + — 6, €COS 6, - =~ B, COS 6]
4 cos 64 L4 1 1 L4 2 2 L4 3 3
L L L
.. 'I 'I e 2 . 3 '
9, = —— [+— 6, cos 6, + — 6, COS 6, - T 6, COS O
4  cos 6, L4 1 1 L4 2 2 4 3 3
L L L
1.2 . 2«2 . 32 .
- — 08, sin 6, - — 8, sin 6, + — 6, sin @
L4 1 1 L4 2 2 L4 3 3
2
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Definitions

394 394 L] cos e]
ae]

864 884 ) L2 cosS 62
862 . L4 cos 64

863 aé3 L4 cos 64
ae] dt aé] L4 1 cos 64
L,y cos 8y
+ — 8, sin @
L4 (cos 64)2 4 4
Ba_d Payl tzg SN %
362 dt Béz L4 2 cos 64
L, cos 6
2 2 . .
+ — ———= 86, S1Nn 6
Ly (cos 64)2 4 4
Efﬂ_= Q_.[Egﬂ] - Eﬁ.é Ejf_gi
383 dt 3é3 L4 3 cos 64
L, cos ©
3 3 . .
- E—-——-—————?-e4 sin 64

4 (cos 64)
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Kinetic Energy and Its Derivatives

Definitions

(note: refer to Eqs. 3.19 thru 3.23, pp. 19-20)

_d _
v =5 (s) . 1=1,2,3,4
1 1
v =94 (s i=1,2, 3,48
‘y. dt y- b ] b ] ] b ]
1 1
2 _ 2 2 .
vi.ioEv T vy_ . i=1,2,3,4
1 1
_ 1 2 _
I =1z m L5, i=1,2,3,4

oT T T T
gg = ae] * aez * 393 * 394 ’ i=1,2,3
i i i i i
T oT oT
d T ,.d 2Ny od Pl Pl a0
at [—1] = at [— ]+ af'[ . ]+ at [ - 1+ T [
BG]- 61- 00 i



T
d 11 _ 1
d—t[;é_]'?fm]
1
oT
d 2Ny _d
Cr-%

Member 1
L
SX1 =5 cos 91
Ly .
Sy] =5 sin e]
Ly,
L] .
1 2«2
Tr=sm Ly &

94
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Member 2
L,
sz = L] cosS e] + 7 €OS 62
. Ly .
Syz = |__I sin e.l + —2—— Sin 62
. Ly .
) Ly .

1 2 2.1

Tp=zmp by 87 *2my Ly Ly 6y 8, cos (8 - 8y)

2

] . 2

3T2 -I . . .
38, - "2 M2 by be 9 O sin (6g - 05)

3T2 'l . . .

1 o 2 .
tgmp Ly Ly 6y sin () - 0y)

] . . .
- 5 my Ly Ly 8 8, sin (e] - 62)
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Q—[E:r—g“=—]—m L, L, 6 cos (6, - 6,)
dt aéJ 22 -1 2 ] 2
2
1 .« 2 .
- =My L] L2 61" sin (e1 -92)
sl 8, 8 sin (8, - 6,)
221 k2 "1 P2 1 2
'I 2..
tgmy Ly 6y
T
d 2
g l=1=0
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Member 3
L3

Sx3 = L] cos e] + L2 cos 82 + 7 COS 63

. . =
S‘v3 = L1 sin e] + L2 sin 92 -5 sin 63

. . . . L3 . .

vx3 = - L1 e] sin e] - L2 62 sin 92 -5 93 sin 63

. . L3 .
vy3 = L1 e] cos e1 + L2 92 cos 62 - 5—-93 cos 63

1 2 .72 . .

—

- 5 My Ly L3 8, 65 cos (e] + 63)

1 2

. 2
tomy Ly 6y

1 . .

aT, L
Flmy Ly Ly 6y 6, sin (6, + 6,)
2731737173 1 3

8T3 - - .

——

+ 5 My L2 L3 0, 64 sin (62 + e3)



98

5 My Ly L3 6, 64 sin (92 + 63)

3 _ 2 .. .

- my L] L2 61 8 sin (91 - 92)

.« 2 .

3T
3.1
%6, 2™ Ly L3
L]
T
861
21
2
1
7
1
7
g T

ms L] L3 05 COS (e] + 83)
Mg L1 L3 6, 03 sin (e] + 93)

my Ly Ly é32 sin (6] + 93)

. 2 .
- My L1 L2 6, sin (e1 - 62)

-+

1
2

1
2

-+

—

t2

2.-

my Lo 6

my Ly Ly 65 cOS (92 + 63)
m, L, L, 6,2 sin (6, + 64)
372 "°3°"3 2 3

my Lo L3 0, 64 sin (e2 + 63)



o= M= = N N N

w|—

3
w

3
w

3
w

3
w

3
w

Ly L3
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5] cos (e] + 63)
é]2 sin (0 + 65)
6, 65 sin (8, + 65)
52 cos (6, + 63)

2

0, sin (92 + e3)

8, 63 sin (62 + 63)
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Member 4
Ly

Sx4 = L1 cos e] + L2 cos 92 + L3 cos e3 + 7~ COS 94
L

L
_ <. .. . I
vx4 = - L] 6] sin e] - L2 62 sin 92 - L3 63 sin 63 -3 64 sin 94
L ] . . L4 .
vy4 = L] e] cos e] + L2 92 cos 82 - L3 63 cos 93 - §—-e4 cos 84
T, =xm L2 8.2 +m, L. L, 8, 8, cos (6, - 6,)
4 274 1 1 4 -1 -2 71 "2 1 2

my Ly Ly 8 85 cos (6] + 83)

] - .

1

2
7MLy

+

.« 2 . .
8,7 - My Lo L3 8, 85 cOS (e2 + 93)

—

1 2 +2 .1 s e
t5m, L3 03" + 5 my, L3 L4 63 6, COS (e3 - 94)
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Q
<D

— |
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tmy L1 L3 6y 5 sin (e] + 93)

1 L §. 90

-=m, L 8 4
274 71 -4 71 sgl—COS (61 + 64)
1 . 0,
t5m, L] L4 e] (1+ae)s1n (e]+e4)

1

1 . 99
-5y L2 L4 62 T)—GTCOS (92 + 94)
1 909,

+

2 m4 L2 L4 62 64 55;’51” (62 + 64)

-+

+
[¥8)

3
£

—
B
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1 . 20
- §m4 LZ L4 62 'EEZ—COS (92 + 94)

1 . %, .

+

] A

-+

864
my L3 Ly 83 64 3 3, S (63 - 8y)

+
r\)l—-

36
2 . 99
my Ly 8y 30,

wl—

=my Ly Ly é] é3 sin (o + 33)

1 . 30,
. 30
My Ly Ly &y 8y 55 3, sin (o) + ¢y)

+
—

+my Ly L3 8, 63 sin (92 + 83)

1 . 38,
-5my Ly Ly 6, SEE'COS (62 + 94)

., 9% |

| —

. 39

—

-I 864 .

3

Ly 63 64 (

36
1 2 . 99
tamy by 8y N
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dt

oT

EL:)

1

-4 = my

-+

o

+
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2 e .o
m, L, L, 8,2 sin (64 - 6,)
4 =1 -2 72 1 2
my Ly Ly 05 cos (e] + 63)
my Ly Ly 67 €3 sin (6] + e3)

. 2
my Ly L3 83

sin (e] + 93)
%—m4 L] L4 54 cos (e] + 64)
L4 01 64 sin (e1 + 64)

4 é42 sin (87 + 6,)



1 . 364
- —2-m4 L2 L4 62 —— cos (92 + 64)
36
1
090
s d
- %—m4 L2 L4 85 “{'[‘T&J cos (92 + 64)
86]
36
1 2 774 .
My, L2 L4 8, —— sin (e2 + 64)
96,
] . %0
+5my Ly Ly 6,8, — sin (8, + ;)
891
1 2,
+5my Ly Ly 63— cos (63 - 6)
36]
36
1 . d %
+ 5y Ly Ly 85 qp [ cos (65 - 6,)
BB-I
36
1 « 2 774
381
1 ., 2%
+tamy Lyl 656, — sin (eg
36,
36
] 2 4
tymy by 0
38]
36
1 2+ d 4
tamy Ly 0y g []
36,
d aT4 .
2

.2 .
- my L] L2 8;" sin (e] - 62)
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-+

1
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m4 L] L2 e] 62 Sin (6] - 82)

] . 36,
?‘m4 L] L4 9] —j—'COS (6] + 64)
392
26
7MLy Ly &y g [0 cos (o + o)
862
36
%’m4 L] L4 é]z —Tﬂ'sin (G] + 64)
392
1 . 0
?‘m4 L1 L4 61 64 —T—'S1n (8] + 64)
862

2.. .

m4 L2 62 - m4 L2 L3 63 CcoSs (62 + 63)
my L, Ly 8, 65 sin (8, + 63)

my L, Ly 6,2 sin (6, + 0.)

4 =2 =3 3 2 3

1 o :
§'m4 L2 L4 64 COos (62 + 64)

1 .o
?'m4 Lz L4 62 64 Sin (82 + 64)

1

. 2
7y Ly Ly 0y

sin (e2 + 64)

. . 9,
?’m4 L2 L4 82 —T_'COS (82 + 94)
862
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oT
4
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i 36
862
36
1 - 2 "4
882
1 . %y
862
1 . 38,
362
] 3%,
* gy Ly Ly by g [0 cos (e - o)
862
36
1 -2 74
892
1 aé4
2
1 2 = 96
tymyly 0y 8
862 .
a8
1 2 . d 4
t3m by 9 gt b
362

.2 .
+m, L] L3 8," sin (e1 + 63)

My L] L3 0, 05 sin (e] + 93)
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1 . 894
My Ly Ly 87 —cos (o + g)
365

1 29,
2M L b 6 dt[ —Jcos (8 + 9y)
903
Y
363
1. aé4
263

my Lo Ly 6, cOS (62 + 93)
my, L, L, 6 2 gin (6, + 08,)
4 -2 =3 V2 2 3

my L, Ly 6, 03 sin (e2 + 93)

36

4
5 My Lo Ly 62 cos (62 + 64)
3

—l

I L, 8 Q__[Eéﬂ] cos (6, + 6,)
274 -2 -4 V2 dt . p 4
363
96
] « 2 74 .
883
1 3é4
5 My Lo L4 62 64 sin (92 + 64)
3
m, L 2 o, + l~m L. L, 8, COS (6, - 6,)
4 -3 3 24 -3 74 "4 3 4
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Derivatives of the Potential Energy

%%;’= - C] [(“] - az) = (9] - 32)]

394
= C3 [(a4 - a3) - (64 = 63)] 56;'

- K [L] cos 8y + L, cos 0,
+ L3 cos 93 + L4 cos 64
- L] cos ay - L2 cos Gy

- L3 Cos aj - L4 cos a4]

. 900y
[L] sin 6, + L4 56? sin 94]

+ (P] + Pyt P3) L, cos 8,

%%E = C] [(a] = az) = (6] - 92)]

= CZ [(03 + “2) = (93 + 92)]
394
- C3 [(a4 - 03) - (64 - 93)] SEE
- K [L] cos 6y + L2 cos o,
+ L3 cos 63 + L4 cos 64
- L'l cosS Q-I - L2 CcOS 0.2

- L3 cos ag - L4 cos a4]
) 08,
[L2 sin e, + L4 565'51" 64]

+ (P2 + Py) L, cos 6,

3)
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%‘,}3— = -, [ag * ap) = (o5 +6,)]

30,
t 3 [ley - ag) - (8 -03)1[ 1 - 5551
- K [L] cos 6 + L, cos o,
+ L3 cos 64 *+ L4 cos 8,
- L] cos aqy - L2 cos a,

- L3 Cos ag - L4 cos a4]
36,
[L3 sin 65 + L4 56;—s1n 64]
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Derivatives of Rayleigh's Dissipation Function

oOF _ . .
e] -
. . . 99,
+ By [0, - 85] ;———
]
.
oF - B[4, - 6,]
. 1 1 2
36,

. 36,
+ B3 [64 63] -0
28,
F _ o rd
o B2 L83 % 8,
84 .
. 9, ]
+ By [6, - 6,] [— -1
3 4 3 3%
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Definitions

TA

cos 84

L L
_ 1 12 . 2«2 . 3.2 .
4 4 4
L L L
1 1 2 s 3 = 2
TC = —= [+ 6, cos 6, + += 6, coS 6, - = 6, COS 6,]
TA3 L4 1 ] L4 2 2 4 3 3

H . . 1.2
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|A| matrix

A 2
Ay = Lgmyp+my +mg +my] Ly

+m, L, [- El-EEE——Bl-cos (6, + 6,)
4 -1 2 cos 8y 1 4

L4 cosS e]_igi

3 cos 64 aé]
L 36
- 2—4cos (67 + 8y) ——.5

88]

Ay, = {[‘7 my +my +m,] Ly Lo} cos (o - o)
L] cos 62
tmy Ly [- 5 cos 6, cos (8 + 84)
L4 cos 62 864

3 cos 64 361

L 38

L] cos 03
tmy Ls [?—'Eos 8, cos (e] * 84)

i E&_COS 93 864
3
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A21 = {[lz-m2 tmg + m4] L] L2} cos (e] - 92)

L2 cos e]
+omy L] [- 2 cos 0, cos (62 + 64)

L4 cos e] 894

+__ —
3 cos e4 aéz
L 36
- ?&-cos (8, + 04) —Tﬁj

362

o 2
App = [z my +my+mllL,

L2 cos ©

+tm, L, [- cos (e2 + 64)

2 cos 94
Eﬂ-cos 62 394
3 cos ®

4 aez
L 36
4 4
- 5~ COs (e2 + 64) " ]
92

- 1

L2 cos 83

my Ly [~ o5 5, O (6, + 8y)

a0y ¥y

3 cos 6 .

4 aez

L 98

+ éﬂ-cos (65 - 8,) _4]
862
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1
A3] = '{EE my + m4] L1 L3} cos (e] + 63)

L3 cos 6

+my Ly [“z“EEé‘E; cos (63 - 6,)

L, cos 6, 96
., 4 1 %%

“l
0
o
(%]
@

L 26
- ?ﬂ'COS (61 + 94) —TﬂJ
364

A32 = -{[%—m3 + m4] L2 L3} coS (92 + 63)

L3 cos 62
tmy b [Tm; cos (83 - 8,)
N Eﬂ.cos 82 Egi
3 cos 8 .
4 393
L 36
4 4
- 5—cos (8, +96,) —]
2 2 4 ¥
3
_ 2
Azg = [3mg+ml Ly
L, cos ©
3 3 _
my L3 [- 2 cos 8, cos (63 94)
e 0y
3 cos 8 .
4 363
L 36

4 4
+ 5~ cos (63 - 64) EE—J
3
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{D} vector
= _gr] .
-{[J m, +m,] L, Ly} -
23 4- -1 -3
2

63 sin (e] + 93)

+ [lz-m4 L L4] sin (e] + 64) .

26
[-85° - &% =]

861

1 . ,

36

. 2
[-6, 'Tﬁ
361

36
(8,7 —1
89]
+ % my L L4] cos (e1 + 64) .
[TB + TC]
Y
21 2%
- [ my L7 [ (18 + TC)]
®1
+

C1 [(a] - ag) - (91 = 92)]

894

C3 [lag = ag) - {8 = 03)] 55

-+
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+ K [L1 cos 6 + L2 cos 6, + L3 cos o3
+ L4 cos 64 - L1 cos aj - L2 cos a,

- L3 CoS a3 - L4 cos a4] .
] 864 .

- (Py + P, + P5) Ly cos o,

26

- . 4
- B, (8, - 85) —
3 Y4 3 39]
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- ()

« 2 .
8" sin (e-I - 62)

ALy mg +myl Ly Ly)

.« 2 .
657 sin (e, + 93)

-+

+ [-]2— my L L4] sin (61 94) .

36
s 2
[-8,° —]
862

+ [%—m4 L, L4] sin (92 + 64) .

38
['942 - 922 "_4
362
36
[832 —Tﬂq
36,
+ [lz-m4 Ly L4] cos (e2 + 94)
[TB + TC]
30
- [Emy 1,21 [ (1B + TC)]

C] [(a] = 02) - (61 = 62)]

+

CZ [(a3 + az) = (93 + 92)]

<+

C3 [(a4 - 0‘3) - (94 = 93) 565
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+ K [L] cos 6y + L2 cos 6, + L3 cos 6,
+ L4 cos 64 - L] cos aq - L2 cos a,

- L3 cos aj - L, cos a4] .

By .
[L2 sin 8, + L, 55;—51n 64]

(P2 + P3) L2 cos 6,
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= —qf] .

. 2 .
6," sin (e1 + 63)

. 2 .
8,  sin (62 + 83)

36
['6']2 _,4‘]
+ [ymy Ly L] sin (0, + 6;) -
36
["922 _',i
363
1 .
+ [§ my Lg L4] sin (93 - 94)

36

[_é2+62 4
4 3 o
363

+

[%-m4 Ly L4] cos (e3 - 64)

[-T8 - TC]

56
L L% 2 (1B + TC)]
3 L] T

83

+

CZ [(013 +0‘2) - (93 +92)]

394
- C3 [(a4 - a3) - (94 - 63)] [] = Sggi
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+ K [L] cos 8y + L2 cos 0, + L3 cos 6,
+ L4 cos 64 - L] cos oy - L2 cos a,

- L3 CoS a3 - L4 cos a4] .
. 99 .

+ P3 L3 cos e3

- 82 (93 + 92)

. . Y
= B3 (94 - 93) [_?_4— - 1]
363
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INITIAL VELOCITIES FOR IMPULSE LOADS

The initial velocities, é], éz, and 63, imparted to the model

A

by the impulse loads, P1, ISZ’ and I33, (applied at joints , ,

and [:], respectively,) are derived from the equation

ap = Qk . k=1,2, ..., n, (A-3.1)
where
t+e
ap, = lim A (A-3.2)
e~0 qu t
and
o P = arj ( )
Q.= & F. - — . A-3.3
k Jj=1 J oG

As can be seen, Eqs. A-3.1 are a set of n simultaneous equations,
where Ap are the changes in the generalized momenta Py of the system,
and dk are the gensralized impulses of the system. In Eqs. A-3.1,
A-3.2, and A-3.3, Fj are the impulse force vectors of the system,
F{ are the position vectors corresponding to the impulse force vectors
F; of the system, and n, T, q;, and dk are as defined in section 3.1.
Now, applying Egs. 3.6, 3.7, 3.8, and 3.9 to Eqs. A-3.1, A-3.2,
and A-3.3, and remembering that there is no generalized momentum

before the impulse loads are applied, yields a set of 3 simultaneous

equations, which are

@
—

=q (A-3.4)

Q
Do
—
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T ., , | (A-3.5)
392
5L -q, . (A-3.6)

In the above equations, T is given by Eq. 3.22, and

Qy = - (Py + Py + P3) Ly cos ey , (A-3.7)
Qz = - (P2 + P3) L2 cos 62 s (A-3-8)
Q3 = P; Lgcos 6; . (A-3.9)

Finally, applying Egs. 3.22, A-3.7, A-3.8, and A-3.9 to Egs.
A-3.4, A-3.5, and A-3.6, rearranging terms, and expressing in matrix

form yields
[A] (6} = [D] P} |, (A-3.10)

where [A] is a 3 x 3 matrix given in Eq. 3.26 (and Appendix A-2),
{6} s a 3 x 1 "velocity" vector with é1, é2’ and é3 as its members,
[D] is a 3 x 3 matrix given below, and {P} is a3 x 1 "impulse load"

vector with 51, 52, and 53 as its members. The terms of the [D]

matrix are
D-I-I = D-lz = D'l3 = —L'I COS G-I ’ (A'3-]])
DZ] = D31 = D32 = 0 Y (A_3-]2)
Dzz = D23 = "L2 COosS 82 s (A"3-]3)
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D33 = L3 cos 65 . (A-3.14)

For our model, the impulse loads are applied at time zero, and
thus impart initial velocities to the model. Because of this, all of
the 6's in the [A] and [D] matrices should be replaced by a's, since
0 equals a, at time zero.

i
To non-dimensionalize Eq. A-3.10, apply Egs. 3.27 thru 3.35 and

P.=— 1, i=1,2,3 , (A-3.15)

where the left hand side of Eq. A-3.15 represents the non-dimensional
impulse loads, and the right hand side of Eq. A-3.15 represents the

model's dimensional parameters and impulse loads.
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USER'S GUIDE

The computer code, which is listed after this user's guide, is
written in the WATFIV computer language, and consists of four
sections. The first section, the main program, reads in and writes
out all of the program's controlling parameters, and calls all of
' the subroutines so that the numerical integration of the model's
equations of motion can be performed. The second section, subroutine
EQCONS, reads in and writes out all of the model's parameters, and
calculates all of the constants in the [A] matrix and {D} vector
of Eq. 3.26. The third section, subroutine NMBETA, performs the
numerical integration of the model's equations of motion using the
procedure described in section 4.2.c of this study. Finally, the
last section, subroutine FITZEQ, calculates the {R} vector of
Eq. 4.13, and also calculates the initial velocities for the impulse
loads using the equations listed in Appendix A-3.

The order of the input data and the format for the punching of

the input data onto the data cards is listed below.

Cards

1 NPROTY
(15)

repeat the following cards NPROTY times

2 XM1, XM2, XM3, XM4
(4D10.7)

3 XL1, XL2, XL3, XL4
(4D10.7)
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1
to

11+ICOUNT
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ALPHA1, ALPHA2, ALPHA3, ALPHA4
(4D10.7)

c1, €2, C3, XK
(4D10.7)

B1, B2, B3
(3010.7)

A, B, C, D
(4D10.6)

EPSILO, DELTIM, TIMMAX
(D8.5, 2D8.3)

ICOUNT
(15)

LDUMMY, NOPT
(11, 8X, I1)

P1, P2, P3
(3D10.7)

The definitions of the input parameters listed above are listed

below.

Parameter

NPROTY

XMi
XLi
ALPHA1
Ci

XK

Bi

Definition
number of problem types to be run at one time, each
problem type having different model parameter values
and/or initial conditions
mass of bar i, i =1, 2, 3, 4
length of bar i, i=1, 2, 3, 4
initial angle of bar i, i=1, 2, 3, 4
rotational spring coefficient i, i =1, 2, 3

translational spring coefficient

damping coefficient i, i=1, 2, 3



A, B,C,D
EPSILO
DELTIM
TIMMAX

ICOUNT

LDTYOP

NOPT

P1, P2, P3
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initial velocity of bars 1, 2, 3, 4, respectively
error tolerance for use in the Newmark-Beta Method
time step used in the Newmark-Beta Method

maximum time for which the Newmark-Beta method
will be used on a problem

number of problems for each problem type to be
run at one time

describes the loading; 0 - step; 1 - impulse
(read in under LDUMMY)

describes how the output will be printed; 1 - all
time steps will be printed; 2 - every five time
steps will be printed; 3 - only the failure step
will be printed

loads P,, P2, P3, respectively (P}, P2, p

respectively for impulse problems 3’
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DETERMINATION OF INTERACTION CURVES
FOR THE STABILITY OF A THREE DEGREE OF FREEDOM,
SHALLOW ARCH MODEL UNDER MULTIPLE DYNAMIC LOADS

by
Jay M. Fitzgerald

(ABSTRACT)

The primary purpose of this study is to determine stability
boundaries (interaction curves) for a three degree of freedom, shallow
arch model under multiple dynamic loads. The model consists of four
rigid bars connected by frictionless pins, with rotational springs
and dashpots at the three interior joints, and a translational spring
at the right hand exterior joint. Three independent loads (P1, P2’

P3) are applied to the model, one at each of the three interior
joints.

The model's equations of motion, which are derived from Lagrange's
equations of motion, are numerically integrated, using the Newmark-Beta
method (B = 1/4), to determine the buckling loads. The buckling loads
are those loads for which the buckling criterion, the end bars simul-
taneously below the horizontal, is satisfied.

The interaction curves and buckling loads are determined for a
parabolic arch with damping under step loads, a parabolic arch without
damping under step loads, an eccentric arch without damping under step

loads, a parabolic arch without damping under impulse Toads, and an



