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NOTATION 

3x3 matrix that depends on the 6's only; replace 
the 6's by a's for Eqs. 3.41 thru 3.45 only 

damping coefficients, i= 1, 2, 3 

inverse of the [A] matrix 

number of constraint equations or conditions 

rotational spring coefficients, i= 1, 2, 3 

see Eqs. 4.4 and 4.8 

3x1 vector that depends on the e's, the 6's, and the 

P's 

3x3 "stiffness" matrix 

Rayleigh's dissipation function 

force vectors of the system 

th 
mass moment of interia of the i member about its 
centroid 

translational spring coefficient 

Lagrangian of the system 

h 
length of the it member 

th member mass of the i 

number of degrees of freedom of the system 

number of rigid bars in the system 
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 applied loads, ji = 
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impulse loads, i = 

generalized coordinates of the system 

first time derivatives of the generalized coordinates 
qx of the system 
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V4] 

Ti+] 

MB 
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C4
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i+] 

{R} 

At 

second time derivatives of the generalized coordinates 
or of the system 

a generalized coordinate at the i+] time step 

first time derivative of 4] 

second time derivative of qi] 

see Eq. 4.9 

generalized forces of the system 

poste ron vectors corresponding to the force vectors 
j of the system 

function not dependent on q (see Eq. 4.9) 

R at the it] time step (see Eq. 4.10) 

3x1 vector (see Eq. 4.13) 

magnitude of the time step for the numerical 
integration procedure 

time 

kinetic energy of the system; period of vibration for 
Eq. 4.14 only 

kinetic energy of the jin member ; jth period, 
i1=1, 2, 3, for Eqs. 3.49, 3.50, 3.51, and 3.52 
only 

velocity of the mass center (centroid) of the jth 
member; see Eqs. 4.3 and 4.7 for different 
definition used in Chapter 4 only 

potential energy of the system 

horizontal position of any point along the bar 

vertical position of any point along the bar 

th 
initial angle of the i~ bar (radians) 

see Eqs. 4.2 and 4.4



{oJ} 

error tolerance (see Eq. 4.10) 

angle of the bar with the horizontal 

th 
angle (radians) of the i bar with the horizontal 

at any time t 

first time derivative of oF 

second time derivative of 8, 

3x1 "acceleration" vector 

time dependent change in the angle's value from its 
initial value a. ; 

first derivative of o 

second time derivative of >. 

3x1 "displacement" vector 

3x1 "acceleration" vector 

angular velocity of the jth member for Eq. 3.23 only; 
ith natural frequency, i= 1, 2, 3 
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CHAPTER 1 

INTRODUCTION 

This chapter contains the purpose and scope of this study. Also 

contained is a review of the current literature regarding the dynamic 

stability and buckling of arches. 

1.1 Purpose and Scope   

The primary purpose of this study is to determine stability 

boundaries (interaction curves) for a three degree of freedom, shallow 

arch model under multiple dynamic loads. The loads are either all 

step loads, or all impulse loads. 

To accomplish the purpose of this study, first the arch model 

is described. Then, the model's equations of motion are derived from 

Lagrange's equations of motion. Finally, the stability boundaries are 

shown as plots of the "failure" or buckling loads (non-dimensional). 

These loads are determined by comparing the results from the numerical 

integration of the model's non-dimensional nonlinear equations of 

motion to the buckling criteria used in this study. If the results 

exceed the buckling criteria, then the arch has "buckled" and the 

loads which produce those results are the "failure" or buckling loads. 

1.2 Literature Review: Dynamic Stability and Buckling of Arches 
  

A brief review of the current literature regarding the dynamic 

Stability and buckling of arches is presented.



a. Stability Criteria   

The dynamic stability of arches, with a search for practical 

and useful stability criteria, has been studied by many authors. 

One of the first studies was conducted by Hoff and Bruce [8], 

regarding laterally loaded flat arches. They presented a failure 

or buckling criterion based on the plot of the potential energy of 

the arch. Their criterion states that failure or buckling can occur 

only if the energy applied to the arch is sufficient to cause the 

motion of the arch on the energy plot to follow the "path of steepest 

decent," which takes the arch from a valley (stable equilibrium 

position), over a ridge, through a saddle point, to another valley. 

Their study includes results from both step and impulse loading. 

Next, Budiansky and Roth [4], in their study of clamped shallow 

Spherical shells, presented a stability criterion based on a response 

parameter, which is defined as the "ratio of the average downward 

deflection to the average value of the initial shell height." Their 

criterion states that, for step loads applied to "shell geometries 

for which axisymmetric, rather than unsymmetric, deformations control 

the buckling phenomenon," a “jump" in the response parameter occurs 

at the buckling load for a smal] increase in the load. This "“quali- 

tative criterion ... has a physically significant basis, and analogous 

criteria, based on the rapid change of response with loading para- 

meters, may be useful in other dynamic buckling problems." Finally, 

Hsu [11], in his study of elastic bodies with prescribed initial 

conditions subjected to impulsive loading, presented a rigorous



definition of dynamic stability, the necessary and sufficient 

Stability criteria, and a more practical sufficiency condition for 

stability. These concepts and criteria are based on the total energy 

of the initial state of the elastic bodies, and the total energy of 

the stable equilibrium positions of the elastic bodies. They are 

discussed in terms of trajectories in a functional phase space (con- 

tinuous system) or a phase space of finite dimension (discrete 

system). These concepts are similar to the Hoff and Bruce [8] 

criterion, but they are more general and rigorously derived. And, 

if care is taken, the Budiansky and Roth [4] criterion can be obtained 

from the above criteria. Also, the practical sufficiency condition 

for stability, as presented in the study, represents a lower bound 

for the determination of the failure or buckling loads. 

Using the above articles as a basis, many authors proceeded to 

determine stability criteria for specific problems. Hsu [12] studied 

the effects of the amplitudes of the higher harmonics in the arch 

shape, the initial thrust, and the stiffness of the elastic supports 

at the arch ends on the dynamic stability of shallow arches against 

Snap-through when subjected to impulsive loads. The results were 

“axpressed in terms of sufficiency regions of stability in a phase 

Space of infinite dimensions, which, in turn, lead to simple and 

practical energy criteria." Following this article, Hsu [13] studied 

the effects of timewise step loads on the dynamic stability of 

simply supported, shallow arches. He presented a general method 

to treat arches of arbitrary shape and loads of arbitrary spatial



distribution, specifically studying sinusoidal arches under sinusoidal 

loads, the effects of the second harmonics in the arch shape and in 

the load distribution, and sinusoidal arches subjected to uniform 

loads or concentrated and eccentric loads. The results were 

"expressed in the form of sufficiency conditions for stability and 

sufficiency conditions for instability," which represent lower and 

upper bounds, respectively, for the determination of the failure or 

buckling loads. As a generalization of the treatment given in 

ref. [12], Hsu [14] presented an exact and complete analysis which 

allows for the determination of all the possible equilibrium con- 

figurations and their dynamic stability character for an arch of 

arbitrary shape, with either simply-supported or clamped end con- 

ditions. "The results have immediate application to the snap-through 

stability of arches when subjected to impulsive loads or time-varying 

loads of finite duration." Finally, as an extension of ref. [13], 

Hsu, Kuo, and Plaut [15] studied the effects of timewise step loads 

on the dynamic stability of clamped shallow arches, specifically 

Studying "simple" clamped arches under "simple" loads, clamped 

sinusoidal arches under uniformly distributed loads, clamped parabolic 

arches under uniformly distributed loads and clamped sinusoidal arches 

under concentrated loads which may be located eccentrically. The 

results were expressed as separate sufficient conditions for stability 

and for instability. 

Authors other than Hsu have determined stability criteria for 

specific problems. Popelar and Abraham [30] studied the dynamic



Stability of a simply supported, shallow sinusoidal arch subjected 

to a nearly symmetric impulsive load. The results were expressed 

as upper and lower bounds for the critical initial velocity for 

Snap-through and the initial velocity necessary to parametrically 

excite the unsymmetric modes. These results were compared with 

the critical initial velocity obtained from direct numerical 

integration of the equations of motion. Cheung and Babcock [5] 

Studied the dynamic stability of clamped circular arches subjected 

to step loading. The results were expressed as upper and lower 

bounds for the critical step load. These results were determined 

by an energy approach presented in the study, and were compared to 

experimental results. Ovenshire and McIvor [27] studied the dynamic 

Stability of a shallow cylindrical shell subjected to an initial 

velocity distribution imparted by a nearly symmetric impulsive 

pressure. The results were expressed as a sufficient condition 

for stability. Also determined was that either immediate or 

delayed snap-through may occur, the latter caused by nonlinear 

coupling of the modes. Ovenshire and McIvor [28] also studied 

the dynamic stability of a shallow cylindrical shell with the 

supports elastically restrained against rotation subjected to 

impulsive loading. The results were expressed as a sufficient 

condition for stability. Finally, Johnson and McIvor [17] studied 

the effect of the spatial distribution of impulsive loads on the 

dynamic snap-through of a shallow circular arch. The results were 

expressed as a lower bound for the critical loads, and were compared



to the results from a numerical integration of the approximate 

equations of motion using the Budiansky and Roth [4] criterion. Also 

determined was that the lower bound was less conservative for finite- 

time (delayed) snap-through than for immediate snap-through. 

b. Buckling 

The dynamic buckling of arches, with a search for the buckling 

loads, has been studied by many authors. Humphreys [16] studied the 

dynamic buckling of a shallow circular arch subjected to initial- 

velocity (impulsive), step and rectangular-pulse loading. For step 

loading, a clear dynamic buckling point was observed in terms of a 

sudden change in the level of the response curve. For impulsive 

loading, there was no specific buckling load, but a critical region 

of increased response was observed. The response in the study was 

measured as the ratio of the average deflection to the average rise, 

similar to the Budiansky and Roth [4] criterion. 

lock [20] studied the dynamic buckling of a simply supported, 

Shallow sinusoidal arch subjected to a sinusoidally distributed step 

pressure load. The buckling loads were determined by the occurrence 

of a "jump" in the maximum absolute value of the displacement. These 

loads were compared to the buckling loads determined by an infini- 

tesimal stability analysis. Also determined in the study was that, 

for the nonlinear analysis, two types of snapping occurred, either 

direct (immediate) or indirect (time-delayed). The direct snapping 

occurred for the rapid application of the pressure load which 

induced sufficient displacement of the symmetric mode for an unstable



equilibrium configuration to be attained. The indirect snapping 

occurred for parametric excitation of the antisymmetric mode by the 

initial motion in the symmetric mode, which in turn interacts with the 

symmetric motion and initiates snapping. 

Reed and Broyles [32] studied the dynamic buckling of an idealized 

structural mechanism. A step load was applied to the apex of the four 

bar linkage mechanism, and the initial lateral displacement produced 

a two-degree-of-freedom planar motion. A one-degree-of-freedom motion 

was produced by restraining the apex to vertical linear motion. The 

buckling loads for both motions were determined by using a combination 

of response parameter plots, energy plots, and phase plane plots, and 

did not vary significantly. 

Fulton and Barton [6] studied the symmetric and antisymmetric 

dynamic buckling of a simply supported, shallow arch subjected to 

uniformly distributed dynamic loadings. For symmetric buckling, under 

either an ideal impulse or a step load of finite or infinite duration, 

the buckling load was determined by a "jump" in the peak average 

displacement for a small increase in the load. For antisymmetric 

buckling, under an ideal impulse, the buckling load was determined 

by a significant growth in the antisymmetric response component. 

McIvor [22] questioned the above results for the impulsive loading, 

and compared the above results to the results obtained in ref. [27]. 

Sundararajan and Kumani [34] studied the dynamic buckling of a 

clamped shallow circular arch subjected to a timewise step concen- 

trated inclined load acting at an arbitrary point. The buckling



loads were determined when the value of the average deflection ratio 

became greater than unity. 

Rapp, Smith, and Simitses [31] studied the dynamic buckling of 

Shallow arches with nonuniform stiffness subjected to step, ideal 

impulse, and pulse loading. The buckling loads were determined by 

the characteristics of the total potential energy surface, as 

described in the study. 

Lo and Masur [19] presented an alternate approach to the analysis 

of the dynamic symmetric and antisymmetric buckling of shallow arches. 

The analysis consisted of converting the equations of motion to an 

integral-equation-finite-element system, and then numerically inte- 

grating the equations to determine the buckling loads. For symmetric 

buckling, the results agreed with those of Humphreys [16] and Fulton 

and Barton [6]. For antisymmetric buckling, the results agreed with 

those of Lock [20} and Fulton and Barton [6]. 

The results from two final articles must be mentioned. First, 

Lock [21] determined that if the load attains its steady value over 

a short duration of time, rather than instantaneously as for step 

‘ loads, the critical loads for ref. [20] increase. Secondly, Hegemier 

and Tzung [7] determined that, in the presence of velocity-dependent 

damping of any nonzero magnitude, no difference exists between the 

Static and dynamic buckling loads for arch rises above a certain 

magnitude for a simply supported, shallow sinusoidal arch subjected 

to a sinusoidally distributed step pressure load. Below the fore- 

going value of arch rise, buckling is governed entirely by symmetric 

buckling.



CHAPTER 2 

ARCH MODEL 

This chapter contains the description of the arch model and its 

parameters. Also contained is the procedure for the determination of 

the number of degrees of freedom for the arch model. 

2.1 Description of the Model and Its Parameters 
  

The arch model is shown in Fig. 2.1. From the figure, one can 

see that the model is comprised of four uniform rigid bars (Q), ‘OF 

G), @ ) connected at the joints ( [i]. [2], [3]. [4]. (5]) by 

frictionless pins. At each interior joint ( [2], [3]. fa]), there is 

a rotational spring, a dashpot, and an applied load. At the right 

hand exterior joint ( ), there is a linear spring. The model's 

parameters are described below. 

Each rigid bar has a length L. and a mass Mm.» where i= 1, 2, 3, 

or 4. The rotational springs, which have stiffnesses C., i=1, 2, 3, 

supply the moment resistance for the model. The dashpots, which have 

damping coefficients B.> i= 1, 2, 3, supply the viscous damping for 

the model. The translational spring, which has a stiffness K, 

supplies the compressibility for the model. The applied loads, which 

are time dependent and have magnitudes Pes i =1, 2, 3, are vertical 

and remain so throughout their application to the model. The angles 

Oa i= 1, 2, 3, 4,define the geometry or shape of the model. Also, 

these angles are the measure of the angular rotation for the centroids 

of the rigid bars [33]. The angles 6, and 65 are measured counter
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clockwise and the angles 83 and 6, are measured clockwise. When no 

loads are applied to the model, it is in the undeformed state, and 

thus, the angles 6. are equal to their initial values Oe. This is 

depicted in Fig. 2.1 by the dashed lines. 

2.2 Determination of the Number of Degrees of Freedom 
  

As stated earlier, the model is a three degree of freedom 

system. This was determined by examining the definition given by 

Wells [35], which states that the number of degrees of freedom is 

"the number of independent coordinates (not including time) required 

to specify completely the position of each and every ... component 

of the system." The four rigid bars, which are the components of 

the model (system), have their positions completely specified by their 

respective 6'S, as can be seen in Fig. 2.1. And it can also be seen in 

the figure that any one of the 0's can be determined from the other 

three 6's and thus is a combination of the other three 8's. For the 

given model (system), 84 is chosen to be specified by the other three 

6's, with the equation specifying 84 in terms of the other three 06's 

given in Appendix A-2. Therefore, for the given model (system), it 

has been shown that only three of the 8's are required to be specified 

to determine the position of all four rigid bars. 

As demonstrated above, one can just look at the figure of this 

model to determine its number of degrees of freedom. But there is a 

more systematic and rigorous approach which can be used to determine 

the number of degrees of freedom of this model (system) or any other 

rigid bar system. This approach is described below.
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The equation which determines the number of degrees of freedom 

for a system is given as 

n= 3N-c (2.1) 

where n is the number of degrees of freedom of the system, 3 is the 

number of degrees of freedom of a rigid bar, N is the number of rigid 

bars in the system, and c is the number of constraint equations or 

conditions. Three is the number of degrees of freedom of a rigid 

bar because, since the length of the bar is constant, specifying the 

horizontal position x and the vertical position y for any point along 

the bar and the angle e of the bar with the horizontal axis completely 

specifies the position of any other point along the bar. The con- 

straint equations or conditions for a rigid bar system are the joint 

compatibility conditions of the system. Thus, for our model (system), 

N equals 4, c equals 9, and the desired result of n equal 3 is given 

by Eq. 2.1 [23]. 

To obtain the value c equals 9 for our model (system), one must 

first choose the point at joint on bar @ to be the point at 

which x, y, and 6 will be specified for the bar. If this is done, 

One can see that x and y are defined by joint compatibility at joint 

i], and thus are not "degrees of freedom" for our model. Since the 

position of any point along the bar can now be specified, the position 

of the point at joint on bar @ is defined. If one now chooses 

the point at joint on bar 2) to be the point at which x, y, and 

6 will be specified for the bar, one can see that x and y will be
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-defined by joint compatibility at joint [2], and thus wil] not be 

“degrees of freedom" for our model. One can continue this process 

up to joint [5]. At that joint, no new bar is present, thus no new 

X, Y, and 6 are specified. But there is specified the joint com- 

patibility condition y equals 0. Thus, at joint [5], no new "degrees 

of freedom" are specified, but one constraint condition is specified. 

If one now counts two constraint conditions per joint for joints 

Oy, [2], [3]. and [4]. and one constraint conditon at joint [5]. 

then the desired result of c equal 9, as stated earlier, is given.



CHAPTER 3 

EQUATIONS OF MOTION 

This chapter contains the derivation of the model's equations 

of motion from Lagrange's equations of motion, prefaced by a brief 

description of Lagrange's equations. Also contained is the procedure 

for the non-dimensionalization of the model's equations of motion. 

Finally, the chapter contains the derivation of the linearized 

equations of motion for the model, which are used to determine the 

natural frequencies, periods, and mode shapes of the "linearized" 

model. 

3.1 Description of Lagrange's Equations of Motion 
  

Lagrange's equations of motion were developed to derive the 

equations of motion for dynamic problems. Their development was 

initiated by trying to extend the principle of virtual work, which 

1s used to derive the equilibrium equations for static problems, to 

dynamic problems. This was accomplished by the use of D'Alembert's 

principle. Although D'Alembert's principle "represents the most 

general formulation" [23] of dynamic problems and "enables one to 

treat dynamic problems as if they were statical" [23], "it is not 

very convenient for deriving the equations of motion" [23] because 

"the problems are formulated in terms of the position coordinates, 

which, in contrast with generalized coordinates, may not all be 

independent." Thus, from D'Alembert's principle, Lagrange's 

equations of motion, which are formulated in terms of the generalized 

coordinates, were developed. For an easy to read and understand 

14
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presentation of the complete details of the development of Lagrange's 

equations of motion, see Meirovitch [23]. 

Now, following the brief outline of their development, Lagrange's 

equations of motion are presented, having the form 

om oa, - 4a, -Q> ke, 2, c05 0 (3.1) 

where 

L=T-V (3.2) 

and 

QF al k= 1, 25.2050 (3.3) 

As can be seen, Eqs. 3.1 are a set of n simultaneous differential 

equations, where L is the Lagrangian of the system, q, are the 

generalized coordinates of the system, ay are the first time deriva- 

tives of the generalized coordinates qx of the system, Q. are the 

generalized forces of the system, and t is the time. In Eq. 3.2, T 

is the kinetic energy of the system, and V is the potential energy 

of the system. In Eq. 3.3, Fi are the force vectors of the system, 

and r; are the position vectors corresponding to the force vectors 

F; of the system. In all three equations, n is the number of 

generalized coordinates. By making use of all three equations 

listed above, the equations of motion for any holonomic system can 

be derived [23].
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Of course, Eqs. 3.1 are written for nonconservative systems, 

in which the forces of the system not derivable from a potential 

function, such as dissipative forces and time dependent forces, are 

included in the generalized forces Q of the system. Thus, the 

potential energy V of the system, given in Eq. 3.2, cannot contain 

any applied forces that are dependent on time. However, one exception 

to this condition is the applied forces that are step loads of con- 

stant magnitude, infinite duration, and applied to the system at 

time zero. Because of the nature of these forces, they are not 

actually dependent on time, and therefore can be included in the 

_ potential energy V of the system. For conservative systems, in 

which all the forces of the system are derivable from a potential 

function and thus are contained in the potential energy V of the 

system, Q equals 0. In this case, with 

Q. = Os k= 1, 2, ...5 Ns (3.4) 

Eqs. 3.1] become 

  

& aL _ oo = Q, k=], 2, eeeg NN. (3.5) 

3g, 4k 

Finally, as previously stated, all of the above is restricted 

to holonomic systems, which is the only type of system considered 

in this study. Because of this restriction, one obtains the very 

useful result that the number of generalized coordinates of the 

system equals the number of degrees of freedom of the system [18].
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Thus, the n of Eq. 2.1 equals the n of Eqs. 3.1, 3.2, 3.3, 3.4, 

and 3.5. 

For further information concerning the material presented here, 

see refs. [18, 23, 33, 35]. 

3.2 Derivation of the Model's Equations of Motion 

In section 2.2 it was determined that the model used in this 

Study has 3 degrees of freedom, which were chosen to be 815 85s and 

83. Because the model is holonomic, as stated in section 3.1, it has 

3 generalized coordinates, which will be chosen to be the same as 

the 3 degrees of freedom, namely 812 955 and 83. Thus, from sections 

2.2 and 3.1, it has been determined that for Eqs. 3.1 thru 3.5 

n= 3, (3.6) 

and that 

qy = Oy» (3.7) 

do = 855 (3.8) 

G3 = 9: (3.9) 

Now, the derivation of the model's equations of motion from 

Lagrange's equations of motion can begin by applying Eqs. 3.2, 3.6, 

3.7, 3.8, and 3.9 to Eqs. 3.1. The result is a set of 3 simultaneous 

differential equations, which are 

a(T-V) | a(T-V) 2 - > (3.10) 
08, 38, ] 

d_ 
dt
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d a(T-V) — a{T-V) _ f (3.11) 
dt : 06 2° ° 

085 2 

dt 56 96. 3° ° 

3 

If these equations are expanded, knowing that the potential energy 

V of the system contains no 6, terms, they become 

d oT oT OV ap oo et fT =, (3.13) 
dt 08, 304 904 ] 

d oT oT ov _ fo 2 - 2 + & =Q,, (3.14) 

d oT oT aV _ 
apo UCU COUT Q.. (3.15) 
dt a8, 28. 38 3 

In the above equations, the potential energy V of the system 

contains the applied toads Pi Pas and P3, even though they are time 

dependent, because they are considered to be step loads for this 

model. (For further discussion, see section 3.1.) However, even 

if the applied loads Pas Pos and Py are not step loads, they could 

be included in the potential energy V of the system as long as they 

are not functions of the by If this is the case, then the applied 

loads P >» and P. would not affect the first term in Eqs. 3.10, 1? Pe 3 
3.11, and 3.12, and the results from including these loads in the 

potential energy V of the system or in the generalized forces Or of 

the system will be the same.
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Since the applied loads Pos Pos and P. are included in the 

potential energy V of the system, only the dissipative forces are 

included in the generalized forces Q of the system. To represent 

these dissipative forces, Rayleigh's dissipation function: F will be 

used, resulting in the generalized forces Q of the systen having the 

form [23] 

1° - Fe 

% =~ Fa 

03 = = Fa 

(3.16) 

(3.17) 

(3.18) 

Applying these equations to Eqs. 3.13, 3.14, and 3.15, and rearranging 

terms yields 

dot 
dt a8, 

g 2b 
36 

& 2b 
td 

3 

ov OF OL 
38, + 30, =0, (3.19) 

] 1 

oV oF 
= (Ut CUCU COO (3.20) 
085 985 

ov oF —— + = =0. (3.21) 
804 993 

In the above equations, T is the kinetic energy of the system, 

V is the potential energy of the system, and F is Rayleigh's dissi- 

pation function of the system. 

form yields 

Expressing these terms in equation
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Ts 5 (3.22) 

where 

1 
T. “9 Mv. #5 Tia, 5 (3.23) 

+ 3p [ag + ay) - (03 + 0,)1° 

+5 ey E(ag ~ a3) - (04 - 05)1° 

41 5 K [L, cos 6, + Ly cos 65 + L3 cos 6, 

+ Ly COS 8, - Ly cos a, - Lo COS OG 

- L, COS a - La cos aug]? 

- Py [L, sin a, - Ly sin 64] (3.24) 

- Po LL, sin a, + Ly sin Oo 

- Ly sin 84 - L» sin Oo] 

- Po [L, sin a, + L. sin Oy - L. Sin 3 

- Ly Sin 8, - Lo sin 86 

+ L. sin 63] 

and
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_ ] e . 2 ] e ° 2 

F = 7 By (0) - 62)" + 7 Bo (63 + 89) 
(3.25) 

Ll, (rye 
* 7 Bg (84 - 63). 

th 
In Eq. 3.23, T. is the kinetic energy of the i° member, Va is the 

velocity of the mass center (centroid) of the jth member , I. is the 

th member about its centroid, and 

th 

mass moment of inertia of the i 

w. 1S the angular velocity of the i” member. ‘ 

Finally, applying Eqs. 3.22, 3.23, 3.24, and 3.25 to Eqs. 3.19, 

3.20, and 3.21, rearranging terms, and expressing in matrix form 

yields 

[A] {6} = {D3 , (3.26) 

where [A] is a 3 x 3 matrix that depends on the 6's only, {e} isa 

3.x 1 "acceleration" vector with ay Bos and 84 as its members, and 

{D} is a 3 x 1 vector that depends on the @'s, the 8's, and the P's. 

Eq. 3.26 represents the model's equations of motion, which are non- 

linear, and which will be used to determine the dynamic buckling loads 

of the model. 

For further details of Eqs. 3.23, 3.24, and 3.25, their partial 

derivatives, which are needed for use in Eqs. 3.19, 3.20, and 3.21, 

and the expressions for the terms in Eq. 3.26, see Appendix A-2. 

3.3 Non-Dimensionalization of the Model's Equations of Motion 
  

Non-dimensionalization of the model's equations of motion is 

performed so that the numerical solution procedure, which is applied 

to the model's equations of motion, will not be involved with units
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(lb, ft, sec, etc.) in the terms of Eq. 3.26. The non-dimension- 

alization is to be performed with respect to the model's My» Ly» 

and K parameters. To accomplish this, all of the model's parameters 

are modified according to the following equations, which were derived 

so that all of the terms of Eq. 3.26 are non-dimensional. The 

equations are 

L,=1- Ly (3.27) 

my merleo, (3.28) 
1 

K=] = + (3.29) 

Lj Ler i=2,3,4, (3.30) 

m. 
My mp? 1a oe 3 (3.31) 

P 
Pa RL? i=l, 2, 3 5 (3.32) 

C, C.=-—5,. 171,23, (3.33) 
KL, 

B B,=—5 . i=1,2,3> (3.34) 
Ly vk, 

and 

t = i t , (3.35) 

where the left hand side of the equations represents the model's non- 

dimensional parameters, and the right hand side of the equations 

represents the model's dimensional parameters.
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In Eqs. 3.27 and 3.35, it can be easily seen that there has 

been no change of symbols between the dimensional and non-dimensional] 

form of the model's parameters. This is done so that both the model's 

dimensional and non-dimensional equations of motion have the same 

form, thus requiring the model's equations of motion to be written 

only once. Although this might create some confusion with regard to 

distinguishing between the two forms in the remaining sections of 

this study, it is hoped that this has been avoided by carefully 

documenting the particular form of the parameters and equations 

being used. Thus, the non-dimensionalization of the model's 

equations of motion is accomplished by applying Eqs. 3.27 thru 

3.35 to Eq. 3.26. 

Finally, it must be stated that if the model's equations of 

motion are to be non-dimensionalized with respect to dimensional 

parameters of the model other than My > Ly> and K, then relationships 

Similar to Eqs. 3.27 thru 3.35 must be derived. These relationships 

can then be applied to Eq. 3.26 to accomplish the non-dimensional - 

ization of the model's equations of motion. 

3.4 Derivation of the Model's Linearized Equations of Motion 

In this section, the model's linear equations of motion are 

derived from the model's nonlinear equations of motion. The 

derivation procedure applies to both the dimensional and non- 

dimensional form of the model's nonlinear equations of motion. 

Also, for the parabolic arch (see Table 5.1), the natural
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frequencies, periods, and mode shapes are calculated from the model's 

non-dimensional linear equations of motion. 

a. Linearized Equations of Motion 
  

The model's nonlinear equations of motion are to be linearized 

about the model's initial state. This means that the definition 

1=1, 2, 3, 4 (3.36) 

must be used, where o; (t) is the time dependent change in the angle's 

value from its initial value Os - It is assumed that o. represents 

a small angle value, so that the equations 

COS $.= 1 (3.37) 

and 

sin b= 4 (3.38) 

can be used. Also, from Eq. 3.36, the equations 

6. (t)= $6, (t), i-1, 23,4 (3.39) 

and 

8, (t) (3.40) ul 

a
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result. Now, with the use of Eqs. 3.36 thru 3.40, the linearization 

of Eq. 3.26 can begin. 

The first step in the linearization procedure is to delete all 

of the Bas Bis and P. terms in Eq. 3.26. The reason for this is 

Eq. 3.39 and the fact that only the undamped free vibration form of
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the model's linearized equations of motion is of interest in this 

study. After the above has been accomplished, Eq. 3.40 is applied to 

the {6} vector. This results in the {8} vector becoming the {$} 

vector with by bos and 3 as its members. Next, Eqs. 3.36, 3.37, 

and 3.38 are applied to the [A] matrix. However, because the [A] 

matrix is multiplied by the {4} vector, all of the o; terms must be 

deleted in order to avoid the nonlinear terms which occur when the 

b. terms are multiplied by the 6, terms. The result is the same as 

if 6; were replaced by Ot instead of using Eq. 3.36. Thus, the 

linearized [A] matrix is the nonlinear [A] matrix with 8. replaced 

by Os. Finally, Eqs. 3.36, 3.37, and 3.38 are applied to the {D} 

vector. This results in the {D} vector becoming [DD] {¢} where 

[DD] is a 3 x 3 "stiffness" matrix and {o} is a 3 x 1 "displacement" 

vector with b> bo> and 3 as its members. Therefore, after the 

linearization procedure has been applied to the model's nonlinear 

equations of motion, the model's linear equations of motion have 

the form 

[A] {6} = [DD] {¢} (3.41) 

where all the terms are as defined above. 

b. Natural Frequencies and Periods 

The natural frequencies w of the model's non-dimensional linear 

equations of motion for the parabolic arch (see Table 5.1) are found 

by writing Eq. 3.41] in the form
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[A] {¢} - [DD] {6} = 0. (3.42) 

Using the substitution 

{9} = - wf {9} (3.43) 

tn Eq. 3.42 and rearranging terms yields 

(Lop) + u* [A]) {9} = 0. (3.44) 

As can be seen, this is the characteristic-value or eigenvalue 

problem of the system. For a nontrivial solution of Eq. 3.44 to 

exist, the equation 

det ([DD] + w° [A]) = 0 (3.45) 

must be satisfied. Eq. 3.45 is called the characteristic equation 

of the system, which is a cubic polynomial in we with 3 real roots. 

Solving for these roots and taking their square roots yields 

w, = 0.36848 , (3.46) 

wo = 0.15605 , (3.47) 

wz = 0.07487 , (3.48) 

which are the natural frequencies of the model's non-dimensional 

linear equations of motion for the parabolic arch. (Note: for the 

numerical calculations, C. = 0.001, i= 1, 2, 3 was used.) 

The periods T for the parabolic arch are determined from
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T=, G=1,2,3, (3.49) 

which relates the periods to the natural frequencies. Using Eqs. 

3.46, 3.47, and 3.48 in Eq. 3.49 yields 

Ty = 17.05163 , (3.50) 

Ts = 40.26392 , (3.51) 

T3 = 83.92127 , (3.52) 

which are the non-dimensional periods of the system [24]. 

c. Mode Shapes 

The mode shapes describe the time independent relationships 

between the displacement parameters 12 b0> b35 and oy for the 3 

different undamped free vibration states (modes) that are defined 

_ by thetr natural frequencies W. and their corresponding periods T.. 

To determine the relationships between the o's , replace the w in 

Eq. 3.44 by its corresponding numerical value and solve for b» 

and 3 in terms of oy: (Note: dq can be given in terms of oy by 

using the relationship between 84 and 61> 85s and 8. given in 

Appendix A-2 and Eq. 3.36.) This is done for all 3 natural 

frequencies W, with the results being 

  

‘\ 

4 4) 

bo 2.62780 oy 

P= (3.53) b, 1.81157 4, 

bq J 1.84480 4
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for Eq. 3.46, 

( >) ( ?y \ 

bo -]1.93399 oe 
4 _ 4 ( (3.54) 

3 -] .94383 oy 

> 1.01018 @ 
L 4 L 1 

for Eq. 3.47, and 

1 ( , 

b5 -0.96223 oy 
4 rp = 4 (3.55) 

b3 0.96388 ie 

L o4 J L -0.99352 e 

for Eq. 3.48. Eqs. 3.53, 3.54, and 3.55 represent the non-dimensional 

mode shapes of the system [24].



CHAPTER 4 

SOLUTION TECHNIQUES 

This chapter contains a brief review of the current literature 

regarding the direct numerical integration techniques that are 

presently available and being used. Also contained is the description 

of the particular procedure used in this study, and the reasons for 

its use. 

4.1 Direct Numerical Integration Techniques 
  

A brief review of the current literature regarding direct 

numerical integration techniques is necessary because presently 

many techniques are available for use. These techniques include both 

implicit methods and explicit methods [3], each of which has its own 

particular advantages and disadvantages. Because of this, a decision 

on which particular method to use in this study was made according to 

the conclusions drawn from the results of the articles listed below. 

Bathe and Wilson [2] "present a systematic and fundamental pro- 

cedure for the stability and accuracy analysis of direct integration 

methods and apply the techniques to the Newmark, the Houbolt and 

the Wilson 8 method." They found that for linear problems, “the 

Newmark method with 6 = > and a = zis most accurate and only gives 

period elongations." This method also "retained the response of the 

high frequency components." 

Nickell [26] analyzed "several alternative methods for carrying 

out the step-by-step integration of the equations of motion of a 

29
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(linear) structural system" for "forced structural vibration" 

problems, which are "dominated by low frequency components of the 

response." Although the Newmark method has been found to become 

unstable for some problems, it has been determined that in most cases 

this can be avoided by the proper selection of the size of the time 

step used. Thus, his conclusion is that "from all evidence, then, 

it would seem that the trapezoidal, or Newmark, operator is the most 

attractive operator for both linear and nonlinear problems." 

Adeli, Gere, and Weaver [1] investigated "several competitive and 

widely-used numerical integration techniques in order to determine 

which is the most efficient technique for nonlinear dynamic analysis 

of structures modeled by finite elements." Three implicit and three 

explicit methods were investigated. "The accuracy, stability, and 

efficiency of the methods were examined by comparing the results for 

a plane stress sample problem." The results were that "among the 

three explicit methods, it was concluded that the central difference 

predictor is the best," and that among "the three implicit approaches, 

the Park stiffly-stable method was found to be somewhat better than 

the Newmark-Beta method.... For large time steps, the results for 

the Newmark-Beta method with 6 = 7 and y= 5 tend to be unstable." 

Although the three articles described above are just a small 

sample from the current literature on the subject of direct numerical 

integration techniques, it is felt that they represent the general 

results. For further discussion, see Horne [10].
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4.2 Solution Method   

In this section, the equations and procedures used in the 

Newnark-Beta method, which is the numerical integration technique 

used for the numerical integration of the model's non-dimensional 

nonlinear equations of motion, are described. Also, the reasons 

for the selection of the Newmark-Beta method and the accuracy of this 

method are described. 

a. Description of the Method Used 

The Newmark-Beta method, with 8 = rp has been selected as the 

  

numerical integration technique for use in this study. The basis 

of the Newmark-Beta method is the equations 

4a 7 4G TD dua Ot (4.1) 

_ a 2 

where 

_ ° 1 oe - 

and 

do = q, +4, at + (4-8) G, at? . (4.4) 

In the above equations, q represents one of the generalized 

coordinates, q represents the first time derivative of q, q repre- 

sents the second time derivative of q, At represents the magnitude 

of the time step for the integration procedure, and the subscript i 

h 
represents the it time step [1, 2, 3, 9, 25, 26]. Thus, for
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 Bp = 

45+] 

Ti+] 
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» Eqs. 4.1, 4.2, 4.3, and 4.4 become 

] ee 

Vi + 2 4] Ab > 
u 

1s 42 
4) + F447 Ab > i 

] 
57 4 +745 At > 

1 e oe 2 

4, +4; b+ 79; At: (4.8) 

The procedure used in the Newmark-Beta method is listed below, 

and applies only to the equations that are in the form or can be 

written in the form 

q=R (4.9) 

where R is not a function of q. The steps of the procedure are: 

1) initialize the quantities q. qo? q5° V 

2) 

0° and dy 

for each generalized coordinate q; 

for each time step: 

a) 

b) 

assume q.,, 

coordinate q; 

= q; for each generalized 

compute q.,, and q.,, 

each generalized coordinate q; 

from Eqs. 4.5 and 4.6 for 

compute R in Eq. 4.9 for each generalized 

coordinate q; 

test equilibrium of Eq. 4.9 for each generalized 

coordinate q by checking if
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is satisfied, where | | means absolute value and « 

is a very smal] number. If Eq. 4.10 is satisfied 

for all of the generalized coordinates, go to 2e. 

If Eq. 4.10 is not satisfied for all of the 

for the generalized coordinates, let q. = R 
i+] i+] 

generalized coordinates not satisfying Eq. 4.10, 

but do not alter Qs] for the generalized coordinates 

satisfying Eq. 4.10, and then go to 2b and repeat; 

e) calculate v. a4] and diay from Eqs. 4.7 and 4.8 [9]. 

As stated above, the Newmark-Beta method applies only to equations 

written in the form of Eq. 4.9. Thus, Eq. 3.26 must be written in the 

form of Eq. 4.9. To accomplish this, let 

[B] = [Aq"! (4.11) 

where it is assumed that the inverse of the [A] matrix exists. 

Applying Eq. 4.11 to Eq. 3.26 and rearranging terms yields 

{8} = [B] {D} (4.12) 

which can be written as 

fe} = {R} ; (4.13) 

where {R} is a 3 x 1 vector. Thus, Eq. 4.13 represents a form of 

the model's non-dimensional nonlinear equations of motion which can
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be numerically integrated by using the Newmark-Beta method described 

above. 

b. Reasons for the Selection of the Method Used 

The Newmark-Beta method was selected to numerically integrate 

the model's non-dimensional nonlinear equations of motion for three 

main reasons. 

The first reason for the selection is, based on the discussion 

of section 4.1, that the Newmark-Beta method is one of the best, 

if not the best, method used for numerical integration of linear and 

nonlinear equations. Even though some researchers have found that 

the method tends to be unstable for some nonlinear problems [26], 

most conclude that if the stability of the method can be guaranteed 

or proved for a problem, then it is still one of the best methods 

available [26]. 

The second reason for the selection is that the equations and 

procedures used in the Newmark-Beta method are easy to program. 

Since the user can program the method, more freedom is given in the 

selection of the particular programming procedures used. Also, since 

the user writes the algorithm for the method, it will be easier to 

check for errors, make changes, and follow the logic, than if a 

"canned" routine written by someone else is used. 

Finally, the last reason for the selection is that, for our 

model, the Newmark-Beta method requires from 5 to 10 times less 

execution time than a Hamming predictor-corrector (SSP) method, with 

essentially no difference in the results obtained from the use of
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the two methods. This was determined from a comparison of the two 

methods on a limited basis. 

One additional influence for the selection is that the author 

prefers the Newmark-Beta method over the other methods because he 

is more familiar and more confident with this method. 

c. Accuracy 

In the previous section, four reasons were presented for using 

the Newmark-Beta method to numerically integrate the model's non- 

dimensional nonlinear equations of motion. But as stated earlier, 

the Newmark-Beta method has been determined to be unstable for some 

nonlinear problems. Thus, it must be determined whether or not the 

method is stable for our model. If the method is determined to be 

unstable, then the reasons stated in the previous section for its 

use are invalid. 

It has been determined that for linear problems, the Newmark- 

Beta method, 8 = re is unconditionally stable, and converges if the 

equation 

< 0.318 (4.14) 

a
 c

t 

is satisfied, where At is the magnitude of the time step used, and 

T is the magnitude of the smallest period of the linear problem. 

Thus Eq. 4.14 can be used to determine the "critical" time step 

magnitude for which the convergence of the method is guaranteed for 

linear problems [3, 9, 25]. Also, it has been suggested that the 

usual time step magnitude used in the method should be approximately



36 

1s t 35 of the smallest period of the system. Therefore, if Eq. 4.14 

is applied to the smallest period calculated for the parabolic arch 

from the model's non-dimensional linear equations of motion, the 

critical time step magnitude is determined to be 5.4. The usual 

time step magnitude for the parabolic arch, as calculated from the 

criteria described above, is between 0.9 and 1.1. 

Now the periods and "critical" time step magnitude for the 

parabolic arch, determined from the model's non-dimensional nonlinear 

equations of motion, will be examined. When a time step magnitude of 

1.0 is used in the Newmark-Beta method, it is determined that for low 

loads, there exists two different periods of magnitude 18 and 48 for 

the system. If these periods are compared to Eqs. 3.50 and 3.51, then 

it can be seen that the two lowest periods determined for the linear 

and nonlinear equations of motion are similar. Also, from numerical 

Studies, it was determined that the "critical" time step magnitude 

to "guarantee" convergence for the nonlinear equations of motion is 

5.4. As can be seen, this is equal to the "critical" time step 

magnitude for the linear equations of motion. 

Thus, by comparison of the periods and the "critical" time step 

magnitudes, there is determined to be little difference between the 

model's linear and nonlinear non-dimensional equations of motion 

(at least for low loads). Therefore, the author believes that by 

using a time step magnitude of 1.0 in the Newmark-Beta method, the 

numerical integration of the model's non-dimensional nonlinear 

equations of motion is "guaranteed" to be "stable" and "convergent".
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Two final comments must be made at this point. The first comment 

is that the error tolerance « in Eq. 4.10 was specified to be 1.0 x 

“le for all of the above work. This number was selected arbitrarily. 10 

Thus, for a different value of e, the results may differ slightly from 

those presented above. The last comment is that even though the above 

work was done for the parabolic arch, the general result that a time 

step magnitude of 1.0 used in the Newmark-Beta method will "guarantee" 

the "stability" and the "convergence" of the numerical integration of 

the model's non-dimensional nonlinear equations of motion should also 

apply for an eccentric arch, because the periods and "critical" time 

step magnitudes of the two arch types should not differ greatly.



CHAPTER 5 

RESULTS 

This chapter contains the results (interaction curves) for five 

problems, prefaced by an introduction explaining how the results are 

determined. All of the values listed in this chapter are non- 

dimensional quantities. 

5.1 Introduction 

In this study, the results for each type of loading, either 

step or impulse, are determined for two different initial shallow 

arch geometries or shapes, parabolic and eccentric. The parabolic 

arch is characterized by bars of equal lengths and equal masses, 

and by equal rotational springs. It is also symmetric, with Ot 

equal to 2.0 On « The eccentric arch is characterized by bar @ 

being 2.5% less in both length and mass than the other bars, but 

with equal rotational springs. It is not symmetric, but Oty equals 

2.0 Oo and Oo equals Og. The values of the parameters, for both 

the parabolic arch and the eccentric arch, are listed in Table 5.1. 

The interaction curves for the problems studied are determined 

by plotting the buckling loads as points in a two dimensional load 

Space, and drawing a "Smooth" curve through those points. The 

buckling loads are determined for the four "principal" axes, Pris 

P Pas and P = Pas and the eighteen rays which divide the four 2° 

"principal" planes. The four "principal" planes and the rays in those 

planes are shown in Figs. 5.1, 5.2, 5.3, and 5.4. For information 

38
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regarding interaction curves for static problems, see Plaut [29] and 

Welton [36]. 

The buckling loads are those loads for which the results obtained 

from the numerical integration of the model's non-dimensional non- 

linear equations of motion exceed the buckling criterion. For this 

study, it has been decided that the arch has buckled when the values 

of both 0, and 64 are Simultaneously less than zero. Thus, the 

buckling criterion states that, if the values of both 8, and Oy are 

never negative simultaneously, then the arch has not buckled. 

All of the buckling loads are determined to three digits, with 

the digits being determined from left to right. Thus, for example, 

if a buckling load has a value 245, first the 2 is determined, 

secondly the 4 is determined, and finally the 5 is determined. This 

procedure is used to determine the buckling loads because it requires 

from 3 to 30 times less execution time than incremental loading, 

incrementing the third (right most) digit by 1 beginning with zero 

load. 

The numerical integration of the model's non-dimensional non- 

linear equations of motion is performed for a non-dimensional time 

of 300.0, which represents approximately 3 times the longest non- 

dimensional period of the linearized model as given by Eq. 3.52. 

Johnson and McIvor [17] determined that the use of 3 times the 

longest period as the duration of time for the numerical integration 

of the equations of motion to be performed is sufficient, with no 

effect on the buckling loads obtained for increased time. Refs.
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[6, 16, 19, 20] also use 3 times the longest period as the duration 

of time for the numerical integration of the equations of motion to 

be performed, although it is not specifically stated. The linearized 

period is used because, as stated in section 4.2.c, the linear and non- 

linear models do not differ considerably. 

Finally, it must be repeated that all of the values listed in 

this chapter are non-dimensional quantities.
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TABLE 5.1 

Non-Dimensional Values of the Model's 

Parameters for the Parabolic and Eccentric Arches 

  

  

Parameter Parabolic Eccentric 

Oy 0.30 0.30 

Oo 0.15 0.15 

Ot 0.15 0.15 

Oy 0.30 0.30794 

m, 1.0 1.0 

m5 1.0 1.0 

M3 1.0 1.0 

M4 1.0 0.975 

L 1.0 1.0 

Lo 1.0 1.0 

L3 1.0 1.0 

Ly 1.0 0.975 

C, 0.001 0.00] 

C, 0.001 0.001] 

Cy 0.001 0.001 
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FIGURE 5.1: Rays in the Po vs. Py Plane



(or Pp 

axis 

9) 

  

43 

a Ray 8 

5.0273 Ray 7 

  
Ray 6 

2.4142 

  
| | Ray 5 

1 

  

P, (or P) axis 
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5.2 Step Loads 

All of the loads for the three problems discussed below are step 

loads of infinite duration applied at time zero. Also, all of the 

initial velocities for the three problems discussed below are set 

equal to zero. 

a. Parabolic Arch with Damping 

In this problem, the interaction curves are determined for a 

parabolic shallow arch with velocity dependent damping. 

The value of the damping used in this problem is B. = 0.001, 

i= 1, 2, 3. 

The buckling loads are listed in Table 5.2, and the interaction 

curves are presented in Figs. 5.5, 5.6, 5.7, and 5.8. 

The Po vs. P, and the Po vs. P. interaction curves, given in 

Figs. 5.5 and 5.6, respectively, are convex toward the origin. The 

Po vs. P, = P, interaction curve, given in Fig. 5.7, is concave toward 

the origin. The P, vs. P3 interaction curve is bounded (from above) 

by and can be approximated by the straight lines connecting the 

buckling load on the P, axis to the buckling load on the P, = P. 

axis and the buckling load on the P. axis to the buckling load on 

the P, = P, axis. 

After buckling, the arch does not remain in the buckled region, 

but snaps back to the unbuckled region, with the motion oscillating 

between the two regions. The final shape of the arch for the given 

buckling loads is not determined in this study.
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Finally, the change in the value of the buckling loads due to the 

use of different durations of time for the numerical integration is 

determined for a limited number of the buckling loads. For a duration 

of 200.0, the values of the buckling loads increase by up to 20% of 

the values listed in Table 5.2. For a duration of 400.0, the values 

of the buckling loads decrease by less than 1% of the values listed 

in Table 5.2. This verifies that the chosen duration of 300.0 for 

the numerical integration is appropriate.



Non-Dimensional Buckling Loads for a 

Parabolic Arch with Damping Under Step Loads 
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TABLE 5.2 

  

  

ha oa 34 
Axis or Ray (x 10 °) (x 10 °) (x 10 °) 

P, axis 5.46 0.0 0.0 

Po axis 0.0 9.48 0.0 

Ps axis 0.0 0.0 5.47 

P,=P, axis 5.33 0.0 5.33 

ray | 4.26 1.76 0.0 

ray 2 3.29 3.29 0.0 

ray 3 2.61 5.21 0.0 

ray 4 1.34 6.74 0.0 

ray 5 0.0 1.77 4.27 

ray 6 0.0 3.29 3.29 

ray 7 0.0 5.2] 2.16 

ray 8 0.0 6.74 1.34 

ray 9 5.00 2.07 5.00 

ray 10 4.50 4.50 4.50 

ray 1] 2.87 6.93 2.87 

ray 12 1.65 8.30 1.65 

ray 13 1.07 0.0 5.39 

ray 14 2.22 0.0 5.37 

ray 15 3.59 0.0 5.38 

ray 16 5.39 0.0 3.60 

ray 17 5.36 0.0 2.22 

ray 18 5.43 0.0 1.08 

 



  
FIGURE 5.5: 
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(x 1077) 

Py VS. Py Interaction Curve for a Parabolic 

Arch with Damping Under Step Loads
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FIGURE 5.6: Po VS. Py Interaction Curve for a Parabolic 

Arch with Damping Under Step Loads
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FIGURE 5.7: Po VS. P, = Pa Interaction Curve for a 

Parabolic Arch with Damping Under Step Loads
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FIGURE 5.8: P, VS. Pe Interaction Curve for a Parabolic 

Arch with Damping Under Step Loads
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b. Parabolic Arch without Damping 

In this problem, the interaction curves are determined for a 

parabolic shallow arch with no velocity dependent damping. 

The buckling loads are listed in Table 5.3, and the interaction 

curves are presented in Figs. 5.9, 5.10, 5.11, and 5.12. 

The Po vs. P, and the Po VS. P. interaction curves, given in 

Figs. 5.9 and 5.10, respectively, can be approximated by a straight 

line connecting the buckling load on the Po axis to the buckling 

load on the Py axis and the buckling load on the Po axis to the 

buckling load on the Ps axis, respectively. The Po vs. P, = Ps 

interaction curve, given in Fig. 5.11, is concave toward the origin. 

The P, vs. Ps interaction curve can be approximated by the straight 

lines connecting the buckling load on the P, axis to the buckling 

load on the Py = Pa axis and the buckling load on the Pa axis to the 

buckling load on the P. = Ps axis. 

After buckling, the arch does not remain in the buckled region, 

but snaps back to the unbuckled region, with the motion oscillating 

between the two regions. 

The buckling load on the Po axis "bounces". "Bouncing of the 

buckling loads,” as pertains to this study, is defined as the 

existence of loads larger than the buckling loads for which the 

arch does not buckle. This means that, as the loads increase, the 

arch buckles for some value, then does not buckle for a slightly 

higher value, and then buckles again for still a higher value. This 

cycle is repeated a number of times until a value is reached where
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the arch buckles for all higher values. This phenomenon has also been 

found in the study by Johnson and McIvor [17]. 

The buckling loads of this problem are less than the static 

buckling loads determined by Welton [36] for the same parabolic arch, 

except for rays 10, 11, and 12. (See Fig. 5.11.) Also, the inter- 

action curves of this problem do not have the same shape as the static 

interaction curves determined by Welton [36] for the same parabolic 

arch. 

Finally, the change in the values of the buckling loads due to 

the use of different durations of time for the numerical integration 

is determined for a limited number of the buckling loads. For a 

duration of 200.0, the values of the buckling loads increase by up to 

20% of the values listed in Table 5.3. For a duration of 400.0, the 

values of the buckling loads decrease by less than 5% of the values 

listed in Table 5.3. This verifies that the chosen duration of 300.0 

for the numerical integration is appropriate.



Non-Dimensional Buckling Loads for a 
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TABLE 5.3 

Parabolic Arch without Damping Under Step Loads 

  

  

ly Peg P34 
Axis or Ray (x 10 °) (x 10 *) (x 10 *) 

Ps axis 5.32 0.0 0.0 

Po axis 0.0 8.78 0.0 

Pe axis 0.0 0.0 5.33 

P»=P, axis 5.15 0.0 5.15 

ray 1 4.17 1.73 0.0 

ray 2 3.22 3.22 0.0 

ray 3 2.12 5.12 0.0 

ray 4 1.32 6.64 0.0 

ray 5 0.0 1.73 4.17 

ray 6 0.0 3.22 3.22 

ray 7 0.0 5.12 2.12 

ray 8 0.0 6.64 1.32 

ray 9 4.85 2.01 4.85 

ray 10 4.4] 4.4] 4.4] 

ray 11 2.80 6.76 2.80 

ray 12 1.60 8.04 1.60 

ray 13 1.05 0.0 5.27 

ray 14 2.17 0.0 5.24 

ray 15 3.50 0.0 5.24 

ray 16 5.24 0.0 3.50 

ray 17 5.24. 0.0 2.17 

ray 18 5.28 0.0 1.05 
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8.0 + — — — — Static Case [36] 
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FIGURE 5.9: Po VS. P, Interaction Curve for a Parabolic 

Arch without Damping Under Step Loads
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Po VS. P3 Interaction Curve for a Parabolic 

Arch without Damping Under Step Loads
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— — — — Static Case [36] 

    
FIGURE 5.11: Po VS. Py = P. Interaction Curve for a Parabolic 

Arch without Damping Under Step Loads
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— — — — Static Case [36] 
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FIGURE 5.12: P, VS. Pa Interaction Curve for a Parabolic 

Arch without Damping Under Step Loads
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c. Eccentric Arch without Damping 
  

In this problem, the interaction curves are determined for an 

eccentric shallow arch with no velocity dependent damping. 

The buckling loads are listed in Table 5.4, and the interaction 

curves are presented in Figs. 5.13, 5.14, 5.15, and 5.16. 

The Po vs. P. interaction curve, given in Fig. 5.13, iS convex 

toward the origin. The Po VS. Pa interaction curve, given in Fig. 

5.14, can be approximated by a straight line connecting the buckling 

load on the Po axis to the buckling load on the P. axis. The Po vs. 

P = P. interaction curve, given in Fig. 5.15, is concave toward the 

origin. The P, vs. P. interaction curve, given in Fig. 5.16, can be 

approximated by the straight lines connecting the buckling load on 

the P axis to the buckling load on the P. = Py axis and the buckling 

load on the P. axis to the buckling load on the P = P, axis. 

After buckling, the arch does not remain in the buckled region, 

but snaps back to the unbuckled region, with the motion oscillating 

between the two regions. 

The buckling load on the Po axis "bounces." Also, the buckling 

loads to the right of and near to the P, = P. axis of the P, vs. P2 

interaction curve "bounce." 

The buckling loads of this problem are less than the static 

buckling loads determined by Welton [36] for the same eccentric 

arch, except for rays 10, 11, and 12. (See Fig. 5.15.) Also, the 

interaction curves of this problem, except for the P, vs. Ps inter -
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action curve, have a shape similar to the static interaction curves 

determined by Welton [36] for the same eccentric arch. 

Finally, the change in the values of the buckling loads due to 

the use of different durations of time for the numerical integration 

1s determined for a limited number of the buckling loads. For a 

duration of 200.0, the values of the buckling loads increase by up 

to 20% of the values listed in Table 5.4. For a duration of 400.0, 

the values of the buckling loads decrease by less than 3% of the 

values listed in Table 5.4. This verifies that the chosen duration 

of 300.0 for the numerical integration is appropriate.



Non-Dimensional Buckling Loads for an 

62 

TABLE 5.4 

Eccentric Arch without Damping Under Step Loads 

  

  

Axis or Ray (x 107") (x 107") (x 1077) 

Py axis 5.32 0.0 0.0 

Po axis 0.0 9.15 0.0 

Ps axis 0.0 0.0 5.55 

Pi =P, axis 5.19 0.0 5.19 

ray | 4.16 1.72 0.0 

ray 2 3.2] 3.2] 0. 

ray 3 2.11 5.09 0. 

ray 4 1.31 6.59 0. 

ray 5 0.0 1.79 4,33 

ray 6 0.0 3.34 3.34 

ray 7 0. 5.29 2.19 

ray 8 0.0 6.84 1.36 

ray 9 4.78 1.98 4.78 

ray 10 4.02 4.02 4.02 

ray 1] 2.63 6.35 2.63 

ray 12 1.60 8.04 1.60 

ray 13 1.09 0.0 5.48 

ray 14 2.26 0.0 5.46 

ray 15 3.65 0.0 5.46 

ray 16 5.25 0.0 3.5] 

ray 17 5.24 0.0 2.17 

ray 18 5.28 0.0 1.05 
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— — — — Static Case [36] 

  

FIGURE 5.13: 

  vy
 

Po VS. Py Interaction Curve for an Eccentric 

Arch without Damping Under Step Loads
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FIGURE 5.14: Py VS. Py Interaction Curve for an Eccentric 

Arch without Damping Under Step Loads
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10.0 4 

   — — — — Static Case [36] 

    
  

FIGURE 5.15: Po VS. P, = Pa Interaction Curve for an Eccentric 

Arch without Damping Under Step Loads
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— — — — Static Case [36] 

  

    
    

FIGURE 5.16: P, vs. Pa Interaction Curve for an Eccentric 

Arch without Damping Under Step Loads
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9.3 Impulse Loads 

All of the loads for the two problems discussed below are 

impulse loads, which impart initial velocities to the arch. The 

relationships between the impulse loads and the initial velocities 

are derived and listed in Appendix A-3. Thus, the numerical 

integration of the model's nondimensional nonlinear equations of 

motion is performed for no loads, but with the initial velocities 

imparted by the impulse loads. 

a. Parabolic Arch without Damping 
  

In this problem, the interaction curves are determined for a 

parabolic shallow arch with no velocity dependent damping. 

The buckling loads are listed in Table 5.5, and the interaction 

curves are presented in Figs. 5.17, 5.18, 5.19, and 5.20. 

All of the interaction curves, given in Figs. 5.17, 5.18, 5.19, 

and 5.20, are concave toward the origin. 

After buckling, the arch does not remain in the buckled region, 

but snaps back to the unbuckled region, with the motion oscillating 

between the two regions. 

All of the buckling loads, except those for rays 16, 17, and 18 

of the P, vs. P, interaction curve, "bounce." The "bouncing" of the 

buckling loads does not appear until the last of the three digits of 

the buckling loads is determined. Because of this, the buckling loads 

listed in Table 5.5 are not the lowest buckling loads. Limited study, 

using incremental loading, shows that the value of the lowest buckling 

loads may be up to, if not more than, 5% less than the values listed
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in Table 5.5. The lowest buckling loads are not determined in this 

study, due to a lack of time. (See section 6.2.) 

Finally, limited study, using incremental loading and a 

duration of time of 400.0 for the numerical integration, shows that 

the values of the buckling loads decrease by up to 5% of the values 

listed in Table 5.5. Thus, for incremental loading, there is little 

difference in the values of the buckling loads obtained by using 

either a duration of 300.0 or 400.0. This verifies that the chosen 

duration of 300.0 for the numerical integration is appropriate.



Non-Dimensional Buckling Loads for a 

69 

TABLE 5.5 

Parabolic Arch without Damping Under Impulse Loads 

  

  

I 2 2 3 
Axis or Ray (x 10 “) (x 10 “) (x 10“) 

P, axis 2.37 0.0 0.0 
Po axis 0.0 2.33 0.0 

P3 axis 0.0 0.0 2.36 

Py=P 3 axis 1.51 0.0 1.5] 

ray J 2.52 1.04 0.0 

ray 2 2.0] 2.01 0.0 

ray 3 1.05 2.53 0.0 

ray 4 0.53 2.66 0.0 

ray 5 0.0 1.01 2.43 

ray 6 0.0 1.85 1.85 

ray 7 QO. 2.49 1.03 

ray 8 0. 2.51 0.50 

ray 9 1.55 0.64 1.55 

ray 10 1.61 1.61 1.6) 

ray 11 1.04 2.5] 1.04 

ray 12 0.52 2.6] 0.52 

ray 13 0,43 0.0 2.17 

ray 14 0.89 0.0 2.14 

ray 15 1.28 0.0 1.91 

ray 16 1.95 0.0 1.30 

ray 17 2.15 0.0 0.89 

ray 18 2.31 0.0 0.46 
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Arch without Damping Under Impulse Loads
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b. Eccentric Arch without Damping 
  

In this problem, the interaction curves are determined for an 

eccentric shallow arch with no velocity dependent damping. 

The buckling loads are listed in Table 5.6, and the interaction 

curves are presented in Figs. 5.21, 5.22, 5.23, and 5.24. 

All of the interaction curves, given in Figs. 5.21, 5.22, 5.23, 

and 5.24, are concave toward the origin. 

After buckling, the arch does not remain in the buckled region, 

but snaps back to the unbuckled region, with the motion oscillating 

between the two regions. 

All of the buckling loads, except those for rays 16, 17, and 18 

of the P, vs. P. interaction curve, "bounce." The "bouncing" of the 

buckling loads does not appear until the last of the three digits 

of the buckling loads is determined. Because of this, the buckling 

loads listed in Table 5.6 are not the lowest buckling loads. Limited 

study, using incremental loading, shows that the value of the lowest 

buckling loads may be up to, if not more than, 8% less than the 

values listed in Table 5.6. The lowest buckling loads are not 

determined in this study, due to a lack of time. (See section 6.2.) 

Finally, limited study, using incremental loading and a 

duration of time of 400.0 for the numerical integration, shows that 

the values of the buckling loads decrease by up to 14% of the values 

listed in Table 5.6. Thus, for incremental loading, there is 

approximately a 6% decrease in the values of the buckling loads
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obtained by using a duration of 400.0 instead of a duration of 

300.0. This verifies that the chosen duration of 300.0 for the 

numerical integration is appropriate.
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TABLE 5.6 

Non-Dimensional Buckling Loads for an 

Eccentric Arch without Damping Under Impulse Loads 

  

  

i o9 3 9 
Axis or Ray (x 10 °) (x 10 “) (x 10 “) 

P, axis 2.35 0.0 0.0 

Po axis 0.0 2.39 0.0 

Pa axis 0.0 0.0 2.4] 

Pi=P4 axis 1.55 0.0 7.55 

ray | 2.52 1.04 0. 

ray 2 1.96 1.96 0.0 

ray 3 1.12 2./0 0.0 

ray 4 0.50 2.5] 0. 

ray 5 0.0 1.00 2.4] 

ray 6 0.0 1.95 1.95 

ray 7 0.0 2.56 1.06 

ray 8 0.0 2./7 0.55 

ray 9 1.65 0.68 1.65 

ray 10 1.7] 1.7] 1.71 

ray 11 1.04 2.5] 1.04 

ray 12 0.51 2.56 0.51 

ray 13 0.46 0.0 2.31 

ray 14 0.92 0.0 2.21 

ray 15 1.38 0.0 2.07 

ray 16 1.96 0.0 1.31 

ray 17 2.15 0.0 0.89 

ray 18 2.3] 0.0 0.46 
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FIGURE 5.21: P, VS. Py Interaction Curve for an Eccentric 

Arch without Damping Under Impulse Loads
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FIGURE 5.22: P. vs. Ps Interaction Curve for an Eccentric 

Arch without Damping Under Impulse Loads
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Po VS. P = P, Interaction Curve for an Eccentric 

Arch without Damping Under Impulse Loads
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Py VS. Ps Interaction Curve for an Eccentric 

Arch without Damping Under Impulse Loads



CHAPTER 6 

SUMMARY 

This chapter contains the conclusions of this study, which are 

drawn from the results presented. Also contained are the suggestions 

for further study, which are prompted by the results and conclusions 

of this study. 

6.1 Conclusions 

The conclusions drawn from the results of this study are 

enumerated and listed below. 

1. For step loads with no damping, a comparison between the 

parabolic arch and the eccentric arch shows that the shapes 

of the Po vs. P. and Po VS. P, = Py interaction curves are 

similar, while the shapes of the Po Vs. P, and P. VS. P. 

interaction curves differ slightly. Also, a comparison 

between the values of the buckling loads (Tables 5.3 and 

5.4) shows that they differ only slightly. 

For impulse loads with no damping, a comparison between the 

parabolic arch and the eccentric arch shows that the shapes 

of the Py VS. P. and P. VS. P, = P. interaction curves are 

similar, while the shapes of the P. VS. P, and P, vs. P. 

interaction curves differ slightly. Also, a comparison 

between the values of the buckling loads (Tables 5.5 and 5.6) 

shows that they differ only slightly. 

8]
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For the parabolic arch with no damping, a comparison between 

the step loads and the impulse loads shows that the shapes of 

the interaction curves are completely dissimilar, except that the 

Po vs. Py = P3 and P. vs. P, = Ps interaction curves are concave 

toward the origin. 

For the eccentric arch with no damping, a comparison between 

the step loads and the impulse loads shows that the shapes of 

the interaction curves are completely dissimilar, except that the 

Po Vs. Ps = Po and Py vs. P, = Py interaction curves are concave 

toward the origin. 

For the parabolic arch, a comparison between the static case [36] 

and the dynamic case (step loads with no damping) shows that the 

Shapes of the interaction curves differ slightly. Also, a com- 

parison between the values of the buckling loads shows that the 

static buckling loads are larger than the dynamic buckling loads 

by 25% or less along an axis or ray, except for rays 10, 11, and 

12 (Fig. 5.11), where the dynamic buckling loads are larger than 

the static buckling loads by 12% or less along a ray. 

For the eccentric arch, a comparison between the static case [36] 

and the dynamic case (step loads with no damping) shows that the 

shapes of the interaction curves differ slightly. Also, a com- 

parison between the values of the buckling loads shows that 

the static buckling loads are larger than the dynamic buckling 

loads by 25% or less along an axis or ray, except for rays 10, 

11, and 12 (Fig. 5.15), where the dynamic buckling loads are
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larger than the static buckling loads by 7% or less along a 

ray. 

For the parabolic arch under step loads, a comparison between 

damping and no damping shows that the shapes of the Po Vs. P, = 

P, and P. vs. P. interaction curves are similar, while the 

shapes of the P. vs. P, and Po VS. Pe interaction curves differ 

Slightly. Also, a comparison between the values of the buckling 

loads (Tables 5.2 and 5.3) shows that they differ only slightly, 

with the damping producing larger loads. 

For both the parabolic and eccentric arches with no damping under 

impulse loads, the values of the buckling loads (Tables 5.5 and 

5.6) are unreliable because of the "bouncing" phenomenon in com- 

bination with the loading procedure used. (See sections 5.2.b 

and 5.1.) 

6.2 Suggestions for Further Study 
  

The suggestions for further study prompted by the results and 

conclusions of this study are enumerated and listed below. 

1. For the parabolic arch with no damping under impulse loads, 

use incremental loading (incrementing the third digit by 1 from 

zero) to determine reliable values of the buckling Joads and the 

extent of the "bouncing." 

Because there was little difference between the parabolic arch 

and the eccentric arch for both step and impulse loads with no 

damping, increase the amount of eccentricity (shorten bar ®)
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for the eccentric arch and determine if the shapes of the inter- 

action curves are affected. 

Increase the height of the parabolic arch (increase the value of 

a) and determine if the shapes of the interaction curves are 

affected. Also for the parabolic arch, vary the ratio of Oa to 

Oo for constant height and determine if the shapes of the inter- 

action curves are affected. 

For the parabolic arch under impulse loads, apply damping to 

determine if the "bouncing" can be either eliminated or reduced. 

Compare the results from the Newmark-Beta method to the results 

from a Runge-Kutta method, a Gear variable order method, or other 

methods to verify that the Newmark-Beta method is the most accurate 

for least execution time. (This was not done in this study because 

the two methods mentioned above were not available for use.)
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EQUATIONS OF MOTION 

Definitions 

Ly sin 8 + Lo sin 85 = L3 sin 83 + Ly sin 04 

L L L 

  

  

@4 = sin”! try sin 6, + r, sin O5 - rin 03] 

8 = aS a cos 6, + 3, COS 8, 3 6. cos 64] 

84 = — 0 a cos 8, + i, COS 85 - 2, COS 84 

- rb,’ sin 6, - 2 8,” sin 6, + 12 i’ sin 6, 

- 2 

9]



——_—— 

Definitions 

a. 
36 . 

1 304 

24 
36 : 

2 885 

aa 
36 . 

ea ld 
30, dt 

884 Ld 
385 t 

ofa dd 
984 t 

92 

La cos 8a 

- L. cos 83 

La cos 84 

mace - Mg Sin 84 

28, La 1 cos 84 

lL, cos 6, , 
+ —~ —————_ 6, sin 9 

La (cos 84)° 4 4 

a4 = - ‘24 sin 82 
%6, La 2 cos 64 

l, cos 6 
2 2 : . 

+ —— ———_——;~ 6, sin 80 
La (cos 6,)° 4 4 

cay 13 5, 50% 
08 Ly 3 cos 84 

L, cos 6 
3 3 : . 

- — ———_s 8, sin 0 
La (cos 0,)° 4 4
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Kinetic Energy and Its Derivatives 
  

Definitions 

(note: refer to Eqs. 3.19 thru 3.23, pp. 19-20) 

_d _ VF at '.) ; i=1, 2, 3, 4 
j i 

v =4 (5), G=1,2,3,4 
Yj dt Yj 

2. 2 2 _ 
Ve = Ve + Vy. 5 7= 1, 2, 3, 4 

i i 

1. eum. L.? i=1,2,3,4 

  

OT 

qd ty -F +h +g ak 2 dt t 
06. 06.
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Member 1] 

Ly 
xy => cos 8, 

Ly 
y, = 5 sin 8, 

Ly . 

Ly . 
y, => 6, cos 8 

  

1-H 2h Lg 
38) 985 384 

oT 
d ] ] 2° 
deel sm hy 

] 

oT oT 
d ] d 15. 
ar fd a tc = 0
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Member 2 

Lo 
= Ly cos 8, + z cos 85 

Lo 
L, sin 85 + 3 sin 85 

. ; Lo . 
= “Ly 0, sin 8) - 7 95 sin 85 

. Lo . 
Ly 8, cos 8, + 7 99 cos 85 

= 0 

oT 
24_ 2 

[Ie my Ly 
084 

+2 ms Ly Lo 8, COS (6, - 65) 
2 2 122 ] 2 

“2... 

] . . 
- 5 My L Lo 8, 85 sin (6, - 65)
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d 2. _ | . 

°9 

] 2-2: 

+4m, Ly by 6, 85 sin (8, - 65) 
2-271 72-1 2 1 2 

2° 
+ 3M be % 

oT 
d 2 
abv! =°
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Member 3 

Ly 
x, = Ly cos 6 + Lo cos 85 + 3 COs 84 

L3 
3 

ty . e e L, s 

"xX, = - L, 0, sin 84 - Lo 85 sin 85 > 63 sin 83 

. : L, . 
Vy = Ly 8, cos 8 + Lo 85 cos 85 - 7 93 cos 84 

3 

T, = my bo? 65% + my Ly Lan 6 6, cos (0, - 6.) 
3 2 371 ] 3 71 72 °1 72 ] 2 

1 * e 

- 7M, Ly L. 8, 83 cos (6, + 63) 

] 222 ] os 

] 2:2 
+emz lz” 

aT 4 e . . 
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2 3 173 “1 *3 ] 3 
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— 1 e * . 

3, 5M Ly Lz 1 8 sin (6, + 63) 

+ 5 Mma LoL, 8, 6, sin (85 + 63) 

oT d 3 _ 2 oe ee 
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+ mq Ly Ly 85° sin (8, - 65) 
3 “1 72 ~2 1 2 

| 2 8 oo, 

tim, Ly Le 89° sin (6, + 6) 
2 3 1°73 °3 ] 3 

4.373 . 

2 
© 2. 
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+ mg bo” 8% 

ton, Ly ba 89° sin (05 + 6.) 
2 3 72°73 °3 2 3 
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a Ww 
3 
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3 
Ww 
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Ly L, 6, cos (6, + 63) 

L, 8,% sin (0, + 6.) 
3°) ] 3 

Lz 8, %% sin (8, + 83) 

L; 85 COS (0, + 63) 

~2 . 
L, 85 sin (8, + 03) 

Lo L. 8, 8. sin (8, + 83)
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Member 4 

L 
Ly cos 8, + Lo cos 85 + L. cos 83 + 5 cos 84 

L 
Ly Sin 84 + Lo sin 85 - Ls Sin 84 - x sin 84 

L 
° . ° . . . 4 . . 

~ Ly 8, sin 8, - Lo 85 sin 84 - Ly 84 sin 84 - x 9% sin Oy 

L _ . . . 4. 
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Derivatives of the Potential Energy 

V 
30, - Cy [(o, - Oo) - (6, - 85) ] 

= C3 (ag - a5) - (84 > 93)] 5 

- K [Ly cos 6, + L, cos 0. 

+ L2 cos 63 + La cos 6, 

- Ly COS a, - Lo COS a 

- Ly COS a, - Ly cos og] 

08, 

+ (P, + Py + P) L; cos 8, 

385 =  [(a, - ay) - (8, - 85)] 

- Cy [(a, + dn ) - (6, + 05) ] 

284 
- Cy [ag - 03) - (0, - °3)] 58, 

- K [L, cos 6, + Ly COS 6, 

+ L. cos 63 + Ly cos 04 

- L, cos a, - La cos og] 

084 
[L, sin 6, + Ly 36, 91" 04] 

+ (P., + Pa ) Lo COS 85



110 

Bay 7 ~ C2 Lag + a9) ~ (83 + 69) 
30, 

+ C3 [Cag - a3) - (6, - 63)] [1 - 304) 

-K [L, cos 6, + Lo cos 8, 

+ Ly cos 6, + Ly COS 6, 

- Ly COS ay - Ly COS a5 

- L, COS a, - La cos og J 

- Ps Ly cos 8.
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Derivatives of Rayleigh's Dissipation Function 
  

oF 

96 

+ Bo [8, + bo] 

Bo [8. + 05] 

96 
(4-1) 
36
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Definitions 

TA = cos On 

L L L 
_ | 1e2.. 2e2.. 322... 

4 4 4 

L L L 
1 1: 2° 3s 2 

Tc = —~ [F 6, cos 6, + 7 6, COS 8, - 7~ 8, COs 864] 
TAS La ] ] Ly 2 2 La 3 3 

L L L 
1: 2: 3. _1 22... 

tT, st 6, + cr, si" 5 - c, si" 6] = TA 94 Sin &%
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[A] matrix 

44 2 
Ay, = Eg m tm +mg t+ ml 1, 

Ly cos 8 

+m Ly [- 2 cos @4 COs (6, * 64) 

La cos 8 984 

3. cos 84 28, 

L 96 
- 7 cos (0, + 4) —4 

084 

  

Ly cos 84 

+ mg by Le a cos 6, °° (0, + 84) 

. bq cos 85 804 

3 cos 8, 26, 

L 36 
- 7 cos (65 + 4) —4 
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_ Ly cos 84 384 

3 

  

cos 84 26, 

L 26 
+ 5 cos (0, - 8) —4y 
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. Ly cos 85 38, 

30 
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- 7 cos (0, + 64) —4y 

26 
2 

_ ] Ang = -{[5 m, + ma J L, L3} cos (8, + 83) 
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3 i= 2 cos 6, °° (05 + 84) 
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3 cos 6 . 
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{D} vector 

- 1 . 
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85 sin (6, - 8) 

-(t3 m +m,] L, Lo} > 
2.3 4- "1 73 
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[TB + TC] 
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+ K [L, cos 8, + L, cos 0, + L, cos 6, 

+ La cos 84 - L, cos a, = Lo COS ay 

- L; COS ao - Ly cos a4] . 
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+ K [L, cos 6, + Lo cos 65 + Ly COS 6, 
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- Lz cos a, - Ly cos a4 J . 

08n 
[L, sin 05 + Ly 30, Si" 04] 

(P, + P3) Ly COS 85 

* By (8) - 8%) 

By (63 + 85) 
36 . . 4 - 8, (8, - 63) —+ 
984
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- ] . D, = -{[5 m, + my J Ly L3} 

-2 . 
6," sin (0, + 83) 

8° sin (8, + 64) 

| . 

36 
[-6,° —4] 1 384 

+ [a my Ly Lg] sin (05 + 64) - 

[-8,2 —4 
2 98 

3 

+ [5 my Ly La] sin (0, - 84) ° 

36 
[-8,° + 6,° —4 

4 3 36 
3 

+ [> my L, Lyd cos (05 - 64) 

[-TB - TC] 

36 
- fam, £27 [—* (1B + TC)] 

34 “4 36 
3 

+ 

Co [las + a9) - (65 + 5) ] 

084 

- C, [lay - a9) - (0, - 04) ] [1 - 304!
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+ K [L, cos 6, + L, cos 05 + L3 COS 64 

+ La COS Oy - Ly COS a, - Lo COS a» 

- L. COS a, - Ly cos a ] . 

. of a 
LL, sin 6, + Ly 36, $m 04] 

+ Py L. cos 84 

- By (83 + 85) 

904 Bg, - 8.) 7284-9 
3 (84 - 93) 8, ]
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INITIAL VELOCITIES FOR IMPULSE LOADS 

The initial velocities, by. Bo. and 84, imparted to the model 
A 

by the impulse loads, Pas Pos and Pas (applied at joints [2]. [3], 

and (4}. respectively, ) are derived from the equation 

AP, = Q. ; k=1, 2, ..., Nn 5 (A-3.1) 

where 

tte 

AP, = lim al (A-3.2) 
e>Q 3g) t 

and 

A Po os ar 
Q, = © Fz. + — . A-3.3 

As can be seen, Eqs. A-3.1 are a set of n simultaneous equations, 

where Ap, are the changes in the generalized momenta Py of the system, 

and Q, are the general ized impulses of the system. In Eqs. A-3.1, 

A-~3.2, and A-3.3, Fi are the impulse force vectors of the system, 

"5 are the position vectors corresponding to the impulse force vectors 

F of the system, and n, T, qe and qy are as defined in section 3.1. 

Now, applying Eqs. 3.6, 3.7, 3.8, and 3.9 to Eqs. A-3.1, A-3.2, 

and A-3.3, and remembering that there is no generalized momentum 

before the impulse loads are applied, yields a set of 3 simultaneous 

equations, which are 

oT —=G > (A-3.4) 
084 
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aT -q , (A-3.5) 
305 

aT -q,. (A-3.6) 

In the above equations, T is given by Eq. 3.22, and 

Q, = = (P, + i) + Ps) Ly cos 8, 5 (A-3.7) 

Qo = - (Po + P3) Lo cos & , (A-3.8) 

Q, =P, Ll, cos 6, . (A-3.9) 

Finally, applying Eqs. 3.22, A-3.7, A-3.8, and A-3.9 to Eqs. 

A-3.4, A-3.5, and A-3.6, rearranging terms, and expressing in matrix 

form yields 

[A] (6) = [D] {P} , (A-3.10) 

where [A] is a 3 x 3 matrix given in Eq. 3.26 (and Appendix A-2), 

{6} is a3 x1 "velocity" vector with by Bo and 64 as its members, 

[D] is a 3 x 3 matrix given below, and {P} isa3x1] "impulse load" 

vector with Pe Pos and P. as its members. The terms of the [D] 

matrix are 

Da, = Dio = D, 3 = “Ly cos 81 9 (A-3.11) 

Doy = D3 = Deo = 0 , (A-3.12) 

Doo = Do3 = ~Lo cos 7) 9 (A-3.13)
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D3 = Ly cos 6 . {(A-3.14) 

For our model, the impulse loads are applied at time zero, and 

thus impart initial velocities to the model. Because of this, all of 

the e's in the [A] and [D] matrices should be replaced by a's, since 

8, equals oe at time zero. 

To non-dimensionalize Eq. A-3.10, apply Eqs. 3.27 thru 3.35 and 

po=— | j4+=1,2,3 ; (A-3.15) 

where the left hand side of Eq. A-3.15 represents the non-dimensional 

impulse loads, and the right hand side of Eq. A-3.15 represents the 

model's dimensional parameters and impulse loads.
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USER'S GUIDE 

The computer code, which is listed after this user's guide, is 

written in the WATFIV computer language, and consists of four 

sections. The first section, the main program, reads in and writes 

out all of the program's controlling parameters, and calls all of 

. the subroutines so that the numerical integration of the model's 

equations of motion can be performed. The second section, subroutine 

EQCONS, reads in and writes out all of the model's parameters, and 

calculates all of the constants in the [A] matrix and {D} vector 

of Eq. 3.26. The third section, subroutine NMBETA, performs the 

numerical integration of the model's equations of motion using the 

procedure described in section 4.2.c of this study. Finally, the 

last section, subroutine FITZEQ, calculates the {R} vector of 

Fq. 4.13, and also calculates the initial velocities for the impulse 

loads using the equations listed in Appendix A-3. 

The order of the input data and the format for the punching of 

the input data onto the data cards is listed below. 

Cards 

1 NPROTY 
(15) 

repeat the following cards NPROTY times 

2 XM1, XM2, XM3, XM4 
(4010.7) 

3 XL], XL2, XL3, XL4 
(4010.7) 
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11 
to 
11+ICOUNT 

128 

ALPHA], ALPHA2, ALPHA3, ALPHA4 
(4010.7) 

Cl, C2, C3, XK 
(4010.7) 

Bl, B2, B3 
(3D10.7) 

A, B, C, D 
(4010.6) 

EPSILO, DELTIM, TIMMAX 
(D8.5, 2D8.3) 

ICOUNT 
(15) 

LDUMMY, NOPT 
(I1, 8X, I1) 

Pl, P2, P3 
(3D10.7) 

The definitions of the input parameters listed above are listed 

below. 

Parameter 

NPROTY 

XMi 

XLi 

ALPHA? 

Ci 

XK 

Bi 

Definition 

number of problem types to be run at one time, each 
problem type having different model parameter values 
and/or initial conditions 

mass of bar i, i= 1, 2, 3, 4 

length of bar i, i= 1, 2, 3, 4 

initial angle of bar i, i=1, 2, 3, 4 

rotational spring coefficient i, i= 1, 2, 3 

translational spring coefficient 

damping coefficient i, i= 1, 2, 3



A, B, C, D 

EPSILO 

DELTIM 

TIMMAX 

TCOUNT 

LDTYOP 

NOPT 

Pl, P2, P3 

129 

initial velocity of bars 1, 2, 3, 4, respectively 

error tolerance for use in the Newmark-Beta Method 

time step used in the Newmark-Beta Method 

maximum time for which the Newmark-Beta method 
will be used on a problem 

number of problems for each problem type to be 
run at one time 

describes the loading; O - step; 1 - impulse 
(read in under LDUMMY) 

describes how the output will be printed; 1 - all 
time steps will be printed; 2 - every five time 
steps will be printed; 3 - only the failure step 
will be printed 

loads P,, Pos Ps respectively my Pos P 
respectively for impulse problems 3



COMPUTER CODE LISTING 
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DETERMINATION OF INTERACTION CURVES 

FOR THE STABILITY OF A THREE DEGREE OF FREEDOM, 

SHALLOW ARCH MODEL UNDER MULTIPLE DYNAMIC LOADS 

by 

Jay M. Fitzgerald 

(ABSTRACT) 

The primary purpose of this study is to determine stability 

boundaries (interaction curves) for a three degree of freedom, shallow 

arch model under multiple dynamic loads. The model consists of four 

rigid bars connected by frictionless pins, with rotational springs 

and dashpots at the three interior joints, and a translational spring 

at the right hand exterior joint. Three independent loads (P) 5 Pos 

P3) are applied to the model, one at each of the three interior 

joints. 

The model's equations of motion, which are derived from Lagrange's 

equations of motion, are numerically integrated, using the Newmark-Beta 

method (g = 1/4), to determine the buckling loads. The buckling loads 

are those loads for which the buckling criterion, the end bars simul- 

taneously below the horizontal, is satisfied. 

The interaction curves and buckling loads are determined for a 

parabolic arch with damping under step loads, a parabolic arch without 

damping under step loads, an eccentric arch without damping under step 

loads, a parabolic arch without damping under impulse loads, and an


