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(ABSTRACT)

Low-level representations have proven to be good at certain kinds of adaptive
learning. High-level representations make effective use of existing knowledge and perform
inference well. To promote using both forms of representation cooperatively rather than
engaging in the perennial sectarian debate of supporting one paradigm at the expense of the
other, this thesis presents a prototype system demonstrating knowledge retention using
genetic algorithms and multiple levels of representation and learning. The prototype uses a
mid-level of representation and transformations upward and downward for retaining
domain-specific knowledge to bridge the gap between the high-level representation and
learning and the genetic algorithm level. The thesis begins with an overview of the work,
briefly introduces the principles of genetic algorithms, and states an illustrative domain.
Then it reviews related work and two supportive systems. After that, it gives a general
description of the prototype system's structure, three levels of representation, two
transformations, and three levels of learning. Next, it describes methods of implementing
the prototype system in some detail. Finally, it shows results with discussion, and points

out conclusions and future work.
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Chapter 1. Introduction

1.1. Overview

This thesis investigates methods for combining genetic algorithm learning with
traditional high-level inductive learning to retain domain-specific knowledge.

The power of an intelligent system lies in its knowledge. Much work has
concentrated on acquiring such knowledge. However, almost all work to date uses only
one level of representation -- either low-level representations such as binary strings, or
high-level representations such as logical rules. Low-level representations have proven to
be good at certain kinds of adaptive learning; high-level representations make effective use
of existing knowledge and perform inference well [Carbonell, 1989]. But a debate has
arisen between proponents of so-called subsymbolic representations and those of so-called
symbolic AI. We contend that this debate is based on a fundamental misapprehension.
Representation is always symbolic. The only real question is the level which the symbols
represent. The answer, then, is not to choose one level, but to teach our systems to use
them all cooperatively. This ability to combine multiple representation levels is particularly
important for systems that will function as autonomous agents, and so must combine
abilities such as vision and inference, a task that seems difficult if not impossible to do in
any other way.

A somewhat simpler instance that calls for multilayered representation techniques
can be found in a large class of design problems. Researchers in computing applications
such as simulation and computer-aided design procedures often face the challenge of
meeting time limits and performance/cost requirements, and develop the design by an

1terative process: running a simulation program, analyzing the results, and modifying the



inputs to the simulator. To find an optimum design, they need optimization techniques and
tools. Genetic algorithms turn out to be a good option (see section 1.2).

However, on the one hand, genetic algorithms do not explicitly take advantage of
and retain domain-specific knowledge during their exploration of the parameter space for a
solution. On the other hand, one major obstacle to a widened role for genetic algorithms
has been its foundation on unstructured problem representations, typically binary strings.
Although binary strings are theoretically tractable and form the basis of the theory
underlying genetic algorithms, such represeniations contrast sharply with the high-level
representations used in computing applications. When genetic algorithms are integrated
with simulators to perform optimization, the binary string is not a natural representation of
inputs to simulators. Also, if knowledge retained is represented by binary strings, it will
be hard to incorporate it with existing knowledge and high-level learning programs.

In this thesis, a prototype system is developed to address how to bridge low-level
genetic algorithm learning and traditional high-level inductive learning by using a mid-level
of representation and learning, and transformations upward and downward for retaining
domain-specific knowledge.

The rest of the thesis is organized as follows. The remainder of this chapter
introduces the principles of genetic algorithms and the illustrative application domain on
which the prototype system operates. Chapter 2 presents a brief review of previous related
work and two underlying systems on which the implementation of our prototype is based.
Chapter 3 provides a general architecture and implementation independent aspects of the
prototype system. Chapter 4 describes implementation of the prototype system in some
detail. Chapter 5 shows and discusses experimental results. Chapter 6 is devoted to

conclusions and future work.



1.2. What are Generic Algorithms?

Genetic algorithms (GA's) are adaptive generate-and-test search procedures derived
from principles of natural population genetics [DelJong, 1988] [Goldberg, 1989]
[Grefenstette, 1988] [Holland, 1975]. A skeleton of a simple genetic algorithm is shown
below.

procedure GA
begin
=0,
initialize P(z);
evaluate P(t),
while (not termination condition) do
begin
t=1+1;
select P(t) from P(t-1);
recombine P(z);
evaluate P(t);
end
end.

During a given iteration ¢, called a generation, the genetic algorithm maintains a

population P(t) of structures :
Pt) = < xI1(¢), x2(0), ... , xN(t) >,

which are chosen from the domain of an objective function £ Each structure xi(t), also
called an individual, is simply a binary string of length L. Generally, each xi(z) represents
a vector of parameters for the function f{xi(z)), but the semantics associated with the vector
are unknown to the GA. The initial population P(0) is usually chosen at random. Each
structure xi(t) is evaluated by computing f{xi(t)). The term trial is often used for each such

evaluation. This provides a measure of fitness of the evaluated structure for the given



problem. When each structure in the population has been evaluated, a new populaﬁon of
structures is formed in two steps.

First, structures in the current population are selected to reproduce on the basis of
their relative fitness. That is, the selection algorithm chooses structures for replication by a
stochastic procedure that ensures that the expected number of offspring associated with a
given structure xi(t) is f{xi(t))/u(P(t)), where f{xi(t)) is the observed performance of xi(t)
and p(P(t)) is the average performance of all structures in the population. That is,
structures that perform well may be chosen several times for replication and structures that
perform poorly may not be chosen at all. In the absence of any other mechanisms, this
selective pressure would cause the best-performing structures in the initial population to
occupy a larger and larger proportion of the population over time.

Next, the selected structures are recombined using idealized genetic operators to
form a new set of structures for evaluation. One of the most important genetic operator is
crossover, which combines the features of two parent structures to form two similar
offspring. Crossover operates by swapping corresponding segments of a string
representation of the parents. For example, let

x1=100:01010

x2=010:10100
and suppose that the crossover point has been chosen as indicated by the location of the
colon. The resulting structures would be

yI =100: 10100

y2=010:01010
Crossover serves two complementary search functions. First, it provides new points for
further testing within the schemas already present in the population. In the above example,

both x/ and y/ are representatives of the schema 100#####, where the # means don't care.



Thus, by evaluating y!, the GA gathers further information about this schema. Second,
crossover introduces representatives of new schemas into the population. In the above
example, y2 is a representative of the schema #1001###, which is not represented by either
parent. If this schema represents a high-performance area of the search space, the
evaluation of y2 will lead to further exploration in this part of the search space.

However, in generating new structures for testing, the crossover operator draws
only on the information present in the structures of the current population. If specific
information is missing, due to storage limitations or loss incurred during the selection
process of a previous iteration, or because of gaps in the initial population, then crossover
may be unable to produce new structures that contain it. A mutation operator that arbitrarily
alters one or more components of a selected structure provides the means for introducing
new information into the population. Its presence ensures that all points in the search space
can be reached.

Termination may be triggered by finding an acceptable approximate solution to f{x),
by fixing the total number of evaluations, or by some other application dependent criterion.

The basic concepts of GA's were developed by Holland and his students. GA's
have been applied to various problems, including numerical function optimization, adaptive
control system design, and artificial intelligence task domains [Goldberg, 1989].
Theoretical considerations concerning the allocation of trials to schemas [Holland, 1975]
show that genetic techniques provide a highly efficient heuristic for information gathering
in complex search spaces. A number of experimental studies [Grefenstette et al., 1991]
have shown that GA's exhibit impressive efficiency in practice. While classical gradient
search techniques are more efficient for problems that satisfy tight constraints (e.g.,
continuity, low dimensionality, etc.), GA's consistently outperform both gradient

techniques and various forms of random search on more difficult (and more common)



problems, such as optimizations involving discontinuous, noisy, and high dimensional

objective functions.

1.3. Illustrative Domain

The prototype of knowledge retention described in this thesis operates on a
simplified domain of multicomputer network systems for medical image archival and
retrieval [Persons et al., 1990]. Such networks basically have five types of components:
token rings, bridges, servers, workstations, and controllers. Hereafter, we called these
systems zask systems. A simple configuration of a task system is shown in Figure 1 (a).
The functionality of each component and the parameters which identify a component are
briefly described as follows.

* A token ring connects servers, workstations, or controllers for communication
among these components. Parameters are: (1) ring name; and (2) ring type, e.g.,
4Mbps IEEE802.5 (default).

* A bridge interconnects two token ring LANs. Parameters are: (1) bridge name; (2)
bridge type, e.g., FDDI split bridge (default); and (3) two ring names, which are at
each end of the bridge.

* A server is a dedicated system for image archival and retrieval, without any
capabilities for interactive users. Parameters are: (1) server name; (2) server type,
e.g., System/36 optical storage system (default); and (3) ring name, on which the
server is attached.

* A workstation has capabilities for interactive users. A workload is assigned to each
workstation in the network. A workstation user can request a controller/server to

archive images which are generated from modalities (e.g., CT units), or can request



a controller/server to retrieve images for clinical review of images. Parameters are:

(1) workstation name; (2) workstation type, e.g., IAU (default); and (3) ring name,

on which the workstation is attached.

* A controller orchestrates the network flow. Only one controller is allowed in the
network system. It provides overall system management, communication control,

and database management functions for image indexes. Parameters are: (1)

controller name; (2) controller type, e.g., AS/400 (default); and (3) ring name, on

which the controller is attached. |

The information about a system configuration is contained in the values of the
above parameters. A daily workload to each workstation can be represented by a 4-tuple:

<start-time, duration, #-of-requests, amount-of-images>,

which means that the workstation starts to work at starz-time, continues work for duration
hours, and sends out #-of-requests requests to retrieve or archive a total of amount-of-
images images in megabytes. Typical workload constraints are: (1) starr-time cannot be
earlier than 7 am or later than 2 pm; (2) duration ranges from 1 to 8 hours; (3) #-of-requests
ranges from 4 to 32; and (4) amount-of-images ranges from 10 to 150 megabytes. For
example, workloads of six workstations in the configuration Figure 1 (a) is shown in
Figure 1 (b).

One optimization problem in this domain is as follows: given a task system
configuration and constraints, what is a near-maximum workload for each workstation
without causing bottlenecks in the system (i.e., determine if the worst response time and
average response time are within a certain range)? The focus of this thesis is not on how to
solve this optimization problem, but on how to retain knowledge by multiple levels of

representation and learning during and after a search for a near-optimal solution.



Workstation1

Workstation2

Serverl WorkstationS

Bridgel
Ringl Ring2

Controller

|

Server3

Workstation3 Workstation4  Workstation6 Server2
(@
Workload . Amount-of-
Workstation Start-time Duration (hr) | #-of-requests images (mb)
wi 7 8 32 150
w2 8 7 28 120
W3 9 6 24 100
W4 9 6 24 100
W5 8 7 28 120
W6 7 8 32 150
(b)

Figure 1. A simple configuration of a task system and its workload



Chapter 2. Background

2.1. Previous Work

This section gives a brief review of the previous related work which has partially
inspired the current work [Powell et al., 1989] [Zhou, 1990] [Grefenstette el al., 1990] or
been used in it [Mitchell, 1982].

Powell et al. [1989] developed an interleaved expert system and genetic algorithm
model to take advantage of domain-specific knowledge to improve efficiency. The model
starts from a single design point, uses a rule based expert system for maximum efficiency
gain, applies specialized control methods to augment the expert system, and finally uses
genetic algorithms to supplement knowledge, to avoid constraints, and to escape local
optima. But this hybrid model does not address knowledge retention.

Zhou [1990] developed a rule-based, cumulative learning system called CSM
(Classifier System with Memory), tested in a robot navigation domain. Classifier systems
are a special class of rule-based systems [Holland, 1986]. Like conventional production
systems, knowledge is stored in rules in the If-Then form. Unlike conventional production
systems, each rule represents its performance by a real number, called strength. The rules
interact with each other through a message list and are stored in a temporary knowledge
base, i.e., a population. A set of detectors relays external information to the system in the
form of messages. The detector messages may trigger eligible rules that in turn generate
new messages. A set of effectors takes the message generated by the rules and performs
corresponding actions.

Genetic algorithms act as the main learning algorithm in these classifier systems.
The classifier system model provides a promising approach toward the development of

general purpose learning systems [Goldberg, 1989]. However, the problem of
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forgetfulness in current classifier systems jeopardizes their ability to improve their
performance incrementally over an extended period of time. In response to this problem,
CSM preserves problem solving expertise and tailors it to fit new situations. CSM is
concerned with the transfer of learned knowledge within a domain, and the improvements
of its learning performance in the long run. But since in CSM or other classifier systems a
population consists of If-Then rules, the methods employed by CSM cannot be directly
applied to genetic algorithms in optimization, where each individual in a population is a
candidate solution for a problem. |

Grefenstette et al. [1990] designed a system for learning control strategies with
genetic algorithms, called SAMUEL (Strategy Acquisition Method Using Empirical
Learning). In a major departure from previous genetic learning systems, SAMUEL learns
rules expressed in a restricted high level rule language. But corresponding high level
genetic operators for that language have been adapted from basic genetic algorithms, and
the methods are only suitable for classifier-like systems.

Mitchell [1982] presents one of the widely studied methods for symbolic learning,
called candidate elimination algorithm, which induces a general concept description from
instances. Given a set of training data and a language in which the desired concept must be
expressed (which defines the space of possible generalizations that concept learning will
search), Mitchell defines a version space to be the set of all concept descriptions within the
given language which are consistent with the training instances. Mitchell noted that the
generality of concepts imposes a partial order that allows efficient representation of the
version space by the boundary sets S and G, representing the most specific and most
general concept definitions in the space. The version space contains all concepts at least as
general as some element in § and at least specific as some element in G. Given a new

instance, some of the concept definitions in the version space for past data may not classify
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it correctly. The candidate elimination algorithm manipulates the boundary-set
representation of a version space to create boundary sets that represent a new version space
consistent with all previous instances plus the new one. The unknown concept is
determined when the version space has only one element, which in the boundary-set
representation is when the S- and G-sets have the same single element. But this method

has a precondition, which is that the training instances are supplied by a teacher.

2.2. SNePS and OOGA

Two underlying systems, SNePS and OOGA, which form an environment for our
prototype system, are briefly described here.

SNePS (the Semantic Network Processing System) [Shapiro and Group, 1989]
[Shapiro and Martins, 1989] is a system for building, using, and retrieving from
propositional semantic networks. It has been implemented in Common LISP.

A semantic network is a labeled direct graph in which nodes represent concepts, arc
labels represent binary relations, and an arc labeled R going from node n to node m
represents that the concept represented by n, bears the relation represented by R, to the
concept represented by m. SNePS is called a propositional semantic network because
propositions themselves are treated explicitly as concepts, i.e., every proposition
represented in the network is represented by a node, not by an arc. Whenever information
is added to the network, it is added in the form of a node with arcs emanating from it to
other nodes. Each concept represented in the network is represented by a unique node.

SNePS has four basic sub-systems and a user language: the core of SNePS, SNIP,
SNeBR, SNaLPS, and SNePSUL. The core of SNePS is a system for building nodes in
the network, retrieving nodes that have a certain pattern of connectivity to other nodes, and

performing certain housekeeping tasks, such as dumping a network to a file or loading a
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network from a file. SNIP, the SNePS Inference Package, interprets certain nodes as
representing reasoning rules, called deduction rules. SNIP supports a variety of specially
designed propositional connectives and quantifiers, and performs a kind forward/backward
bi-directional inference. SNeBR, the SNePS Belief Revision system, recognizes when a
contradiction exists in the network, and interacts with the user whenever it detects that the
user is operating in a contradictory belief space. SNaLPS, the SNePS Natural Language
Processing System, consists of a morphological analyzer/synthesizer, and a Generalized
Augmented Transition Network (GATN) gfammar interpreter/compiler. Using these
facilities, we can write natural language interfaces for SNePS. SNePSUL, the SNePS user
language, is a Lispish language, which is usually entered at the top-level SNePSUL read-
eval-print loop, but can also be called from LISP code or from GATN arcs.

OOGA (the Object-Oriented Genetic Algorithm) [Grefenstette et al., 1991] [Davis,
1991] is an object-oriented genetic algorithm system. It is implemented in Common LISP
with the CLOS extension [Keene, 1989], which makes it easier to allow genetic algorithms
work together with SNePS. OOGA has been designed for use in genetic algorithm
experimentation. Every principal component of a genetic algorithm is an object in OOGA.
Replacement of one component by another merely needs to create an object of the desired
type and to place it in the appropriate slot. The highly modular OOGA architecture makes it

easy to define and use a variety of genetic algorithms techniques for our own purposes.
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Chapter 3. General Description of Prototype

3.1. Structure of the Prototype

A prototype system is designed to investigate methods of combining low-level
genetic algorithm learning and traditional high-level inductive learning for retaining domain-
specific knowledge. The prototype currently operates on the application domain given in
section 1.3. The structure of the prototype consists of ten modules and a knowledge base
shown in Figure 2 (a) and (b), where LM-Transformation means the transformation from a
low-level representation of candidate solutions to a mid-level representation of the candidate
solutions, and MH-Transformation means the transformation from a mid-level
representation of accumulated information to a high-level representation of rule instances.

The main algorithm of the prototype is outlined as follows.

begin

1. In-User-Interface Module. Read a task system configuration and constraints in a
limited subset of English, and build background knowledge into the knowledge
base.

2. Initialization Module. Give a GA parameter setting (e.g., population size,
individual string length, crossover rate, and mutation rate), and initialize the
first population randomly (each individual in the population is a vector of
workloads for workstations in the task system).

3. for each individual in the current population, begin

3.a. LM-Transformation Module. Convert a low-level representation of the

individual to a mid-level representation of the individual, assisted by the
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background knowledge in the knowledge base, and temporarily add this
mid-level representation into the knowledge base.

3.b. Simulation Module. Use the mid-level representation of the individual,
i.e., the configuration and workload of the task system, as an input,
simulate the performance of the task system, and output an evaluation as
a fitness measureof the individual.

3.c. Accumulation Module. Check if the fitness is the same, better, or worse
than the best or the worst fitness of individuals among the previous
generations. If not, erase the mid-level representation of this individual
from the knowledge base. Otherwise, add the fitness with the mid-level
representation of the individual into the knowledge base.

end

4. Termination Module. Check the termination condition. If the condition is not
satisfied, then invoke Genetic-Operation Module (step 5), else invoke MH-
Transformation Module (step 6).

5. Genetic-Operation Module. Do genetic reproduction and recombination on the
current population, produce a new generation, then return to step 3.

6. MH-Transformation Module. Analyze good and bad individuals saved in the
knowledge base, and convert them from a mid-level representation to a high-
level representation of positive and negative rule instances.

7. Generalization Module. Generalize the positive and negative high-level rule
instances, and produce a rule.

8. Our-User-Interface Module. Generate an English text to express the solution and
rule.

end

14
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Figure 2 (a). A structure of the prototype: algorithm
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In this prototype, knowledge retention is achieved by using three levels of
representation, two transformations, and three levels of learning, which are described in the

following two sections.

3.2. Three Levels of Representation and Transformations

The three levels of representation used in this prototype are a low-level
representation for candidate solutions; a mid-level representation for the candidate
solutions, background knowledge, and accumulated information; and a high-level
representation for rule instances.

The low-level representation is in the form of strings over the binary alphabet

V= {0, 1},

which code parameters that control a task system's behavior. These binary strings, i.e.,
individuals, are accessed by genetic algorithms and by the LM-Transformation module, and
are treated as representations of candidate solutions for an optimization problem. For the
problem given in section 1.3, a key set of parameters is identified, which is a set of 4-
tuples. Each element in the 4-tuple is a parameter. The set size is the number of
workstations in a task system; each element in each 4-tuple is a workload parameter for a
workstation. The length of the strings depends on the ranges of these parameters and the
set size. For example, a coded binary string for a workload on the task system shown in
Figure 1 (a) can be:

"011011011111 001011011101 011011011111

001011011101 011011011111 001011011101".
The string length is 12 * 6 = 72, where 12 is the substring length for a 4-tuple (see section

4.2) and 6 is the number of workstations in the task system configuration.

17










































































































































































































































