Introduction

Have you ever considered a job as a drone pilot? Do you enjoy turning your house into a smart home? Have you supposed to protect the data and programs involved with both? Now, have you ever considered paring that with farming? It might sound funny at first, but agriculture is quickly becoming very high-tech. Farmers aren’t just planting crops or tending to their cows. Now they use drone-mounted thermal cameras to see how healthy crops are, GPS trackers to keep tabs on cows, and phone apps to drive tractors. All this is being done to make farming cost-effective and more environmentally friendly.

Key terms

- **Big Data**: Data sets that are increasingly large and complex, in which we can find helpful trends that would not be otherwise apparent.
- **Data Literacy**: The ability to read, work with, analyze, and communicate measures or records in context.
- **Internet of Things**: The connectivity between different computers/sensors/products/processes via the internet.
- **Phishing Scam**: A type of online scam that targets consumers by sending them an e-mail that appears to be from a well-known source – an internet service provider, a bank, or a mortgage company.
- **Ransomware**: A type of malicious software designed to block access to a computer system until a sum of money is paid.
History of Precision Agriculture

Precision agriculture gets its name from farmers trying to be “precise” with what they do on the farm. This includes using resources like water or driving tractors. Precision agriculture can involve making changes by hand in its most basic form. But people started to look for ways to make this easier. This is why drones and robots do much of this work now. While using robots and drones for this work might seem like a new idea, it began in the 1980s. The first drone was used in agriculture in the 1980s to spray rice paddies.

Modern Precision Agriculture

Since the 1980s, **precision agriculture** has become more high-tech. Since the first agricultural drone, researchers have created many more ways to automate farming. Farmers do not even need to be in the tractor anymore! Instead, tractors, computers, and sensors all talk to each other, helping farmers to make decisions. So, some farmers can use their phones to check the sensors, decide, and tell the tractor where to go.

![Autonomous Tractor](https://via.placeholder.com/150)

Figure 2. An autonomous tractor produced by John Deere. "Our Future" by adamthelibrarian is licensed under [CC BY-NC-SA 2.0](https://creativecommons.org/licenses/by-nc-sa/2.0/).

Connection to Cyberbiosecurity

With all this technology, there are a lot of good things as well as some risks. When you are online, you must be careful with what sites you visit and who you talk to. Farmers have the same issue now. Farmers today must be cautious with the data they create, their internet connection, and software updates. They must be careful to keep themselves safe and our food safe! This overlap between security, agriculture, and technology is called **cyberbiosecurity**. Cyberbiosecurity is quickly becoming a large part of agriculture. The more technology our farmers use, the more critical cyberbiosecurity will become.

This resource was developed by faculty and students at Virginia Tech:

David Smilnak, Ph.D. Student, Department of Agricultural, Leadership, and Community Education
Shannon Bradley, Graduate Student, Department of Entomology
Madison Powell, Undergraduate Student, Department of Agricultural, Leadership, and Community Education
Emily Mullins, Undergraduate Student, Department of Agricultural, Leadership, and Community Education
Hannah Scherer, Associate Professor and Extension Specialist Teaching and Learning, Department of Agricultural, Leadership, and Community Education

This factsheet was partially created through the use of ChatGPT, a large language model artificial Intelligence. ChatGPT was given reference material found in a ~12th grade reading level version, and prompted with, "convert to a 6th grade reading level" before additional edits from the authors.

This resource is presented on a template developed by Kindred Grey. How to cite this template:

Adapted by Kindred Grey from “Agricultural Cyberbiosecurity” by David Smilnak, Anne Brown, Joseph Simpson, Jaylan Day, and Hannah Scherer from https://doi.org/10.21061/cyberbiosecurity. CC BY-NC-SA 4.0. Includes Beaker by IYIKON, Computer by uzeir syarief, Factory by kareemov1000, Microscope by Ariyanto Deni, Poison by Muhammad Atig, Science by Soremba, Scientist by Amethyst Studio, Test tubes by Blaise Sewell, and Tractor by Olivier Guin, all from the Noun Project (CC BY 4.0).

This project is an outreach effort of the Virginia Tech Center for Advanced Innovation in Agriculture. This work is supported, in part, through the CCI Southwest Virginia Node Cyberbiosecurity Seed Grant program and the USDA National Institute of Food and Agriculture, Women and Minorities in Science, Technology, Engineering, and Mathematics Fields (WAMS) Grants Program, award #2020-38503-31950.
What is an Open Educational Resource?

What is an open educational resource?

The idea behind Open Educational Resources (OER) is simple but powerful — educational materials made freely and legally available on the Internet for anyone to reuse, revise, remix and redistribute. These digital materials have the potential to give people everywhere equal access to our collective knowledge and provide many more people around the world with access to quality education by making lectures, books, and curricula widely available on the Internet for little or no cost.

This definition of OER is provided by The William and Flora Hewlett Foundation.

How to access these templates

The main landing page for these resources is https://doi.org/10.21061/cyberbiosecurity.

This page includes a downloadable and editable Word document for the:

- Student fact sheet
- Student activity sheet
- Facilitator’s guide

Did you know that you can customize and share your version of this resource?

This resource is licensed with a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license. This means you are free to copy, share, adapt, remix, transform, and build on the material for any primarily noncommercial purpose as long as you follow the terms of the license: https://creativecommons.org/licenses/by-nc-sa/4.0.

*Best practice is to list the title, author, source, and license.

How to cite this version