
CandyFactory: Cloud -Based Educational Game for Teaching
Fractions

Tiancheng Ying

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Science and Applications

Osman Balci, Chair

Denis Gracanin

Anderson H. Norton III

May 1, 2019

Blacksburg, Virginia

Keywords and phrases: Cloud software engineering, educational game, fractions, game-based

learning, mathematics education

CandyFactory: Cloud -Based Educational Game for Teaching
Fractions

Tiancheng Ying

ABSTRACT

Nowadays cross platform software development is more expensive than ever before in terms of

time and effort. Meantime with increasing number of personal devices, it is harder for local

applications to synchronize and connect to the Internet.

In terms of educational games, they can be divided into ñlocal educational gameò and ñweb

educational game.ò ñLocal gameò indicates the ones either on tablets, mobile devices or PC,

which is an application on the corresponding platform. This kind of game mostly does not have

backend support nor cross platform features such as the iPad version of CandyFactory. For one

specific game, if the developer wants it to run on iPad and Android tablets, they need to develop

two applications based on corresponding development framework, which is time and effort

consuming. ñWeb gameò indicates the ones on websites, which support cross platforms, but do

not have backend support. Usually they are pure JavaScript or flash games with no backend

recording the performances and the achievements.

Software development for each individual platform is time and effort consuming. In order to

achieve cross platform development, many programming languages and platforms like Java,

Python, and JVM appear. Among all the cross platform approaches, cloud-based software

development is the most universal solution to this problem. With web browsers built into every

operating system, cloud software can be compatible with almost any device. Moreover,

ñSoftware-as-a-Serviceò (SaaS) is becoming a new software engineering paradigm and cloud-

based software development is more popular because of its flexible scalability and cross platform

features.

In this thesis, we create a cloud-based educational game, CandyFactory, based on an iPad

version of CandyFactory, and add backend to it to record user performance as well as

achievements. Firstly, we re-develop the whole game from the iOS platform to the cloud-based

Java EE platform. Secondly, we add new features to improve the game play such as ruler

functionality and achievements animation. Thirdly, we add backend support to CandyFactory,

including user account creation, course creation and performance report generation. With this

functionality, teachers can monitor their studentsô performances and generate course reports.

Moreover, teachers can view a specific studentôs report in order to provide more specific and

effective help to their students. Lastly, with the advantages of cloud-based software development,

we can update the whole application at any time without forcing the user to reinstall the update

or re-download the game. With the hot update, the cloud-based CandyFactory is highly

maintainable.

The cloud-based CandyFactory runs on any computer that supports minimum 1024x768 screen

resolution. The computer could be iPads, Android or Microsoft tablets, Windows or Mac laptops

and desktops, and any other computer with a web browser. The advantages of cloud-based

educational games over local educational games and web educational games are: firstly, they

have cross platform features; secondly, they have backend data collection support; thirdly, they

are consistent even if users log in with different computers, their game record and history will

always be the same; lastly, the teacher can always keep track of his/her studentsô performance

and provide more specific help and feedback.

CandyFactory: Cloud -Based Educational Game for Teaching
Fractions

Tiancheng Ying

GENERAL AUDIENCE ABSTRACT

Providing services on the cloud has become universal. The term ñCloud-Basedò indicates that the

software application runs on a server computer and users access the application by using a web

browser anywhere and anytime.

This thesis presents a cloud-based educational game called CandyFactory to teach fractions. The

users can use CandyFactory under a web browser on an Internet-connected tablet, laptop, or

desktop computer with minimum 1024x768 screen resolution. Userôs game performance data is

recorded on the server computer regardless of which tablet, laptop, or desktop computer the user

uses to play the game.

Cloud-based CandyFactory has four kinds of users: Individual, Teacher, Student, Administrator.

Individual users can play the game to learn fractions as well as generate performance reports.

Teachers can create a course, automatically generate student accounts under a course, and

generate performance reports for individual students or for the whole class. Students can play the

game under the account provided by the teacher and view their performance reports.

Administrator is a built-in account user for maintaining the cloud-based software application.

By developing the cloud-based CandyFactory educational game, we provide the users a cross-

platform and cross-computers solution which helps the teachers and students learn fractions more

efficiently and effectively.

 v

ACKNOWLEDG MENTS

First and foremost, I would like to thank my advisor Dr. Osman Balci for his professional and

invaluable guidance. When I was having the hardest time, he gave me an opportunity to be

funded and learn Cloud Software Development. Also his hardworking and attitude towards

knowledge affects me a lot. When I was making decisions, it is him that analyzed the pros and

cons for me from my perspective. He is also the one who tells me family has the top priority. It is

my life time pleasure to have an advisor like him and to be his student, he is one of the most

important person in my life. Without his help, I could not complete my study in Computer

Science at Virginia Tech and could not be what I am now.

I am also very grateful to my committee members Dr. Anderson Norton and Dr. Denis Gracanin

for their professional guidance in my thesis.

Lastly, I am deeply thankful to my wife Jing Luo and my parents Fengbo Ying and Yu Chen. It

is my wife accompanied me through the darkest time in my life. It is my wife who gave up her

graduate study and came to the U.S. to build our dreams. It is my wife who I make decision with.

Along the way, it is my parents who did their best to support me studying abroad and give me

backups. Thank you for your love, support, encouragement, understanding, and sacrifices. Your

love and encouragement have been the most valuable thing in my life.

 vi

TABLE OF CONTENTS

ABSTRACT ... ii

GENERAL AUDIENCE ABSTRACT .. iv

ACKNOWLEDGMENTS .. v

LIST OF FIGURES .. ix

LIST OF ACROYNMS ... xi

Chapter 1: Problem Definition and Overview ... 1

1.1 Introduction .. 1

1.2 Statement of the Problem .. 1

1.3 Statement of the Objectives .. 2

1.4 Overview of the Thesis .. 2

1.5 Summary of Contributions .. 2

Chapter 2: CandyFactory iPad Version .. 4

2.1 Hardware and Software Requirements ... 4

2.2 Description of Levels .. 4

2.3 Game Mode Introduction ... 5
2.3.1 Tutori al Mode .. 5
2.3.2 Game Mode ... 7

2.4 Level Details .. 8
2.4.1 Level 1 ɀ Discrete Candy of Proper Fraction ... 9
2.4.2 Level 2 ɀ Continuous Candy of Unit Fraction .. 9
2.4.3 Level 3 ɀ Continuous Candy of Proper Fraction ... 10
2.4.4 Level 4 ɀ Continuous Candy of Improper Fraction ... 11
2.4.5 Level 5 ɀ Continuous Candy of Reverse Fraction .. 12

2.5 Scene Details ... 13
2.5.1 Scene 1 ɀ Candy Selection .. 14
2.5.2 Scene 2 ɀ Candy Partition ... 14
2.5.3 Scene 3 ɀ Candy Iteration ... 15
2.5.4 Scene 4 ɀ Candy Shipment ... 16

2.6 Shift Log .. 17

2.7 Achievements .. 18

2.8 Options .. 19

2.9 Interaction Techniques ... 20

Chapter 3: CandyFactory Architecture ... 21

3.1 Hardware and Software Development Environment ... 21

3.2 Architecture .. 21
3.2.1 Tier 1: Client ... 22

3.2.1.1 Providing Interactions ... 22
3.2.1.2 Providing Computational Resources ... 23

3.2.2 Tier 2: Web ... 23
3.2.3 Tier 3: Business .. 24
3.2.4 Tier 4: Data Mapping .. 25

 vii

3.2.5 Tier 5: Data Source .. 25

3.3 CandyFactory Components ... 26
3.3.1 Client Tier Components .. 26

3.3.1.1 Game .. 26
3.3.1.2 Achievement Processing ... 27

3.3.2 Web Tier Components ... 27
3.3.2.1 Template .. 27
3.3.2.2 User Account .. 27
3.3.2.3 Administrator .. 27
3.3.2.4 Individual ... 27
3.3.2.5 Student .. 28
3.3.2.6 Teacher ... 28

3.3.3 Business Tier Components .. 28
3.3.3.1 Entity Beans .. 28
3.3.3.2 Facade Beans .. 28
3.3.3.3 Controllers .. 28
3.3.3.4 Managers .. 29
3.3.3.5 Validators... 30
3.3.3.6 Global ... 30

3.3.4 Data Source Tier Components ... 30

3.4 Client-Server Communication Strategy ... 30

Chapter 4: CandyFactory Design ... 32

4.1 Functionality Design .. 32
4.1.1 Performance Metrics Design ... 32
4.1.2 Database Design ... 33
4.1.3 User Account Design ... 34
4.1.4 Achievement System Design ... 35

4.2 Implementation Design .. 37
4.2.1 Package Design ... 37
4.2.2 Class Design .. 37

4.2.2.1 Entity Beans .. 37
4.2.2.2 Façade Beans .. 38
4.2.2.3 Controllers .. 39
4.2.2.4 Managers .. 40

Chapter 5: CandyFactory Functionality .. 42

5.1 User Registration .. 42

5.2 User Login .. 43

5.3 Password Modification ... 44

5.4 Password Encryption .. 45

5.5 Game Play .. 45
5.5.1 Tutorial Mode .. 46

5.5.1.1 Scene 1 .. 47
5.5.1.2 Scene 2 .. 48
5.5.1.3 Scene 3 .. 49
5.5.1.4 Scene 4 .. 50

5.5.2 Game Mode ... 51
5.5.2.1 Continuous Candy Ruler ... 51
5.5.2.2 Animations .. 52
5.5.2.3 Achievement System .. 53
5.5.2.4 Game Performance Data Transmission .. 55

 viii

5.5.3 Shift Log ... 57
5.5.4 Options ... 58

5.6 Course Creation and Deletion .. 59

5.7 Student Account Creation and Deletion ... 61

5.8 Report Generation .. 64
5.8.1 Individual Report Generation... 64

5.8.1.1 Performance Report for Each Level ... 64
5.8.1.2 Performance of All Levels ... 66

5.8.2 Student Report Generation .. 66
5.8.3 Course Report Generation ... 66
5.8.4 6ÉÅ× 3ÐÅÃÉÆÉÃ 3ÔÕÄÅÎÔȭÓ 2ÅÐÏÒÔ 5ÎÄÅÒ #ÏÕÒÓÅ 2ÅÐÏÒÔ ... 68

5.9 Administrator Account ... 69

Chapter 6: CandyFactory Self-Evaluation .. 71

6.1 Acceptability ... 71

6.2 Challengeability ... 71

6.3 Clarity .. 72

6.4 Effectiveness .. 72

6.5 Engageability ... 72

6.6 Enjoyability ... 73

6.7 Interactivity .. 73

6.8 Localizability .. 73

6.9 Rewardability ... 74

6.10 Simplicity ... 74

6.11 Transformativeness ... 74

6.12 Usability .. 74

Chapter 7: Conclusions and Future Research .. 75

7.1 Conclusions .. 75

7.2 Future Research .. 75

REFERENCES ... 76

 ix

LIST OF FIGURES

Figure 1. iPad CandyFactory Tutorial Mode Level Selection ... 6
Figure 2. iPad CandyFactory Tutorial Mode Manager .. 7
Figure 3. iPad CandyFactory Game Mode Level Selection .. 8
Figure 4. Level 1 Candy Selection .. 9
Figure 5. Level 2 Candy Selection .. 10
Figure 6. Level 3 Candy Selection .. 11
Figure 7. Level 4 Whole Candy Bar Shorter Than Customer Order .. 12
Figure 8. Level 5 Reverse Fraction .. 13
Figure 9. Scene 1 Candy Selection .. 14
Figure 10. Scene 2 Candy Partition ... 15
Figure 11. Scene 3 Candy Iteration.. 16
Figure 12. Scene 4 Candy Shipment .. 17
Figure 13. CandyFactory Shift Log ... 18
Figure 14. CandyFactory Achievement Scene .. 19
Figure 15. CandyFactory Options Dialog .. 20
Figure 16: Cloud-Based CandyFactory Architecture ... 22
Figure 17: CandyFactory Components .. 26
Figure 18. Performance Metrics Design Table ... 33
Figure 19. Database ER Diagram .. 34
Figure 20.Achievement Bit Mapping Table ... 36
Figure 21. UML diagram of Entity Beans .. 38
Figure 22. UML Diagram of Facade Beans .. 39
Figure 23. UML Diagram of Controllers .. 40
Figure 24. UML Diagram of Managers .. 41
Figure 25. User Registration Interface ... 42
Figure 26. Password and Email Validator .. 43
Figure 27. Individual and Teacher Login Interface .. 43
Figure 28. Student Login Interface .. 44
Figure 29. Change Password Interfaces .. 45
Figure 30. User Account Information in Database Table ... 45
Figure 31. Cloud-based CandyFactory Welcome Page ... 46
Figure 32. Tutorial Mode Level Selection ... 47
Figure 33. Tutorial Mode Scene 1 .. 48
Figure 34. Tutorial Mode Scene 2 .. 49
Figure 35. Tutorial Mode Scene 3 .. 50
Figure 36. Tutorial Mode Scene 4 .. 51
Figure 37. Ruler of Continuous Candy Bar ... 52
Figure 38. Animation Example .. 53
Figure 39. Achievement of Specific User ... 54
Figure 40. Achievement Animation Reward ... 55
Figure 41. Performance Data in Database Table ... 56
Figure 42. Ship Scene of CandyFactory Game .. 56
Figure 43. CandyFactory Game Shift Log .. 58
Figure 44. Option Menu of CandyFactory Game .. 59
Figure 45. Course Creation Information Dialog ... 60
Figure 46. Course Successfully Created with Given Information ... 60
Figure 47. Course Deletion Confirmation Dialog .. 61
Figure 48. Input Student Number in the Course ... 62
Figure 49. Randomly Assigned Animal Profile Images ... 63
Figure 50. Student Deletion Dialog .. 63
Figure 51. Individual Report Interface .. 64
Figure 52. Export as Excel ... 65

 x

Figure 53. Export as PDF .. 65
Figure 54. Performance of All Levels .. 66
Figure 55. Course Report Interface ... 67
Figure 56. Select Student under Course Report .. 68
Figure 57. Show Selected Student's Performance Report ... 69
Figure 58. Administrator Account Page .. 69
Figure 59. List of User Accounts Created Interface .. 70
Figure 60. List of Courses Created Interface ... 70

 xi

LIST OF ACROYNMS

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

CDI Context-Dependency Injection

CSS Cascading Style Sheets

DEG Digital Educational Game

EJB Enterprise Java Bean

EL Expression Language

ERD Entity Relationship Design

GB Giga Bytes

HLA High Level Architecture

HTML HyperText Markup Language

IDE Integrated Development Environment

iOS Appleôs mobile Operating System

Java EE Java platform, Enterprise Edition

JDBC Java Database Connectivity

JSF JavaServer Faces

JSON JavaScript Object Notation

JS JavaScript

JQuery JQuery JavaScript framework

OOD Object Oriented Design

RAM Random Access Memory

RDBMS Relational Database Management System

SaaP Software as a Product

SaaS Software as a Service

SQL Structured Query Language

TCP/IP Transmission Control Protocol/Internet Protocol

UML Unified Modeling Language

URL Uniform Resource Locator

XML Extensible Markup Language

 1

Chapter 1: Problem Definition and Overview

1.1 Introduction

A Digital Educational Game (DEG) is a game created for the purpose of teaching a subject in

the form of software that runs on a computer such as desktop, laptop, handheld, or game console

[Aslan and Balci 2015]. Prensky [2007] indicates that DEG-based learning has four advantages:

it fits better with todayôs and the futureôs generations of learners, it is fun and motivating, it is

incredibly versatile and extremely effective.

CandyFactory Educational Game for iPad [Aslan, Norton, and Balci 2019; LTRG 2019] is an

educational game that supports more powerful conceptions of fractions. Also as a Balefire Labs

TopRated [Balefire Labs] application, CandyFactory leverages the actions of partitioning and

iterating candy bars to teach students different fractions intuitively with interactive operations

and animations. However, the CandyFactory iPad version can only be used on iPads. Those

schools that do not have iPads are left out of using the CandyFactory iPad version.

ñSoftware-as-a-Serviceò (SaaS) has become the software engineering paradigm of choice and

cloud-based software development is more popular because of its flexible scalability and cross

platform features. In the age of Internet, more software-based solutions are expected to be

available in the cloud, which enables the use of the software under a web browser on any

Internet-connected mobile device, laptop, or desktop computer.

In order to take advantage of both the CandyFactory iPad version and the features of cloud

software, in this thesis we design, architect and implement a Cloud-based CandyFactory. For the

CandyFactory game, we fully reproduce all the functionalities and features. Additionally, we

redesign several interaction techniques as well as add new features to enhance the game. For the

cloud end, we develop a robust system supporting account creation, class creation, student

creation, performance recording and performance report generation. With the features of cloud

software, Cloud-based CandyFactory can be played on any browser-supported platform and the

userôs data are synchronized through all the different devices. By just typing in the CandyFactory

URL, users are able to get their historical data and play the game anytime and anywhere, without

bothering installing the game in the Apple App Store [Apple App Store 2019].

1.2 Statement o f the Problem

The CandyFactory Educational Game for iPad [Aslan, Norton, and Balci 2019; LTRG 2019]

received the Top Rated award from Balefire Labs [Balefire Labs 2019]. However, teachers using

the iPad game in teaching fractions to middle school students have complained that (a) they are

unable to see how the students are performing in game-based learning, and (b) the students who

do not have an iPad at home cannot use it outside of school. Some teachers showed great interest

in using the app, but they could not because their schools do not have iPads for students to use.

 2

1.3 Statement of the Objectives

The research described herein aims to accomplish the following objectives:

1. Redevelop the CandyFactory Educational Game for iPad as a cloud-based software

application.

2. Enable anyone to play the CandyFactory educational game anywhere and anytime using a

web browser on any kind of Internet-connected tablet (e.g., iPad, Android tablet,

Microsoft Surface), laptop (e.g., Mac, Windows, Linux), or desktop (e.g., Mac,

Windows, Linux) computer with minimum 1024x768 screen resolution.

3. Enable a teacher to create a class at a school, automatically generate student accounts in

that class, and provide the usernames and passwords for the students to use to play the

game.

4. Enable a teacher to automatically generate performance reports in game-based learning

either individually for each student or for the entire class.

1.4 Overview of the Thesis

This thesis is organized as follows: Chapter 2 describes the CandyFactory iPad version as

background and foundational work. Chapter 3 introduces Cloud-based CandyFactoryôs five tier

architecture. Chapter 4 describes CandyFactoryôs functionality design as well as implementation

design. All the Cloud-based CandyFactory functionalities and new features are introduced in

Chapter 5. Chapter 6 self-evaluates CandyFactory based on 12 software quality indicators.

Chapter 7 provides conclusions and plans for future work.

1.5 Summary of Contributions

The research contributions can be summarized as follows:

1. Redevelop the CandyFactory Educational Game for iPad as a cloud-based software

application.

2. Enable anyone to play the CandyFactory educational game anywhere and anytime using a

web browser on any kind of Internet-connected tablet, laptop, desktop computer with

minimum 1024x768 screen resolution.

3. Enable a teacher to create a class at a school, automatically generate student accounts in

that class, and provide the usernames and passwords for the students to use to play the

game.

4. Enable a teacher to automatically generate performance reports in game-based learning

either individually for each student or for the entire class.

5. Provide new features, such as achievements notification animation, to enhance the

CandyFactory game. Redesign the interaction techniques.

6. Allow CandyFactory to be updated, tested and deployed quickly without reinstallation or

any other operations done by the user and provide CandyFactory elastic scalability.

 3

7. Protect user confidential information by using industry encryption algorithm.

8. Provide synchronization upon different devices.

9. Optimize the data source storage space and operation time complexity.

10. Provide students with an easy-to-memorize account as well as attractive randomly

assigned profile image.

11. Enable an administrator to maintain the cloud-based software application.

 4

Chapter 2: CandyFactory iPad Version

ñOnly about 10% of the apps we have reviewed so far (of a total more than 3,800) have achieved

a grade of A or B. Congratulations on your app reaching this level of excellence!ò [Balefire

Labs], this is how Balefire Labs described the CandyFactory iPad version.

CandyFactory Educational Game for iPad [Aslan, Norton, and Balci 2019; LTRG 2019] is an

educational game that provides an effective approach for teaching fractions. By performing

operations such as selecting, slicing (partitioning), copying (iterating), and shipping candy bars,

students are able to intuitively learn fractions by manufacturing a whole candy bar into a

customer requested candy bar size.

2.1 Hardware and Soft ware Requirements

CandyFactory iPad version runs on all generations of iPad (1, 2, 3G, 4G), iPad Air, and iPad

Mini (1G, 2G) [Aslan, Norton, and Balci 2019; LTRG 2019].

2.2 Description of Levels

CandyFactory provides five levels of game play in increasing complexity. A tutorial mode

teaches how to play each level step by step by an animated CandyFactory Manager. The player

mode lets the students to explore and learn themselves by operating on different kinds of candy

bar.

The description of the five levels are as follows:

¶ Level 1: In this level, candies are discrete and the fractions are always proper fraction. In

this case, students can explore the proper fraction intuitively, and the discrete candies

make this level easier to measure.

¶ Level 2: In this level, candies are continuous and the fractions are always unit fraction.

Different from the previous level, this level increases the candyôs difficulty but decreases

the fraction difficulty. By doing this, we try to let the students understand how to measure

a continuous candy bar instead of a discrete one, meantime as the fraction is easier, we

can keep a smooth learning curve when the students explore and learn.

¶ Level 3: This level is like level 2, except the fractions can be any proper fraction. Student

should begin understanding from 1/m to n/m.

¶ Level 4: This level is like level 3, but the fractions can be any fractions including

improper fraction. In this case, students can learn improper fraction intuitively by slicing

and copying instead of pure theoretical concepts. Also based on the previous levels,

CandyFactory provides a very smooth learning curve for the students.

 5

¶ Level 5: This level does reverse operations to level 4. As a wrap up level, the student can

learn fractions from a different aspect thus give and test their whole understanding of all

kinds of fractions.

Through the five levels, students are able to gain a smooth, effective and efficient learning curve

on fractions.

2.3 Game Mode Introduction

CandyFactory iPad version provides two game modes: Tutorial Mode and Game Mode. In

Tutorial Mode, students are guided by a CandyFactory Manager to learn the game procedure and

game operations. In Game Mode, students are able to play the game themselves in order to learn

fractions efficiently and effectively.

2.3.1 Tutorial Mode

The Tutorial Mode contains five levels corresponding to each level in Game Mode. The

ñTUTORIAL MODEò on the top of the level selection page indicates that the player is in

Tutorial Mode (Figure 1). Players can select any level to start the tutorial mode, or choose to go

back to main menu.

 6

Figure 1. iPad CandyFactory Tutorial Mode Level Selection

Under each level, there is a CandyFactory Manager who explains how CandyFactory is played

and guides the user throughout the gameplay (Figure 2). With the guided hands-on tutorial, users

can learn how to play the game with selecting, slicing, copying and shipping the candy bars as

well as learn the basic interaction techniques CandyFactory provides, such as slice and drag-and-

drop.

 7

Figure 2. iPad CandyFactory Tutorial Mode Manager

During the Tutorial Mode, the timer is off so that users are not stressed under time constraint

while learning how to play the game. Also users can pause or quit the tutorial mode at any time

by clicking the pause button on the top right corner.

2.3.2 Game Mode

In the Game Mode, with the initial lock option in the ñOptionò menu, all the levels are locked

except the first level. Only when users pass the previous level will the next level be unlocked

(Figure 3).

 8

Figure 3. iPad CandyFactory Game Mode Level Selection

When users play each level for the first time, they are forced to pass the corresponding Tutorial

Mode (Figure 2) for the first game round. Only by passing the Tutorial Mode for the first time,

users will then be able to play by themselves.

CandyFactory iPad version allows the users to unlock all the levels under the ñOptionò menu,

thus the users have access to any of the five levels without passing the previous level.

The timer for the CandyFactory iPad version is three minutes, users can turn on and off the timer,

but unable to change the timerôs time. Also during Game Mode, some of the customer orders are

bonus orders, in this case by correctly finishing the order, the users can get bonus cash in the

game.

2.4 Level Details

In this section, we are going to introduce each levelôs details with figures to give a better

understanding of CandyFactory. In cloud-based CandyFactory, we reproduce all the

functionalities as well as enhance the core features on the cloud. By doing this, cloud-based

 9

CandyFactory not only inherits all the advantages of the iPad version CandyFactory, but also

introduces new cloud features and paradigms to make the whole system more powerful.

2.4.1 Level 1 ï Discrete Candy of Proper Fraction

In Level 1, all the candies are discrete and the fractions are proper fractions (Figure 4). With

discrete candies, users can easily count the number of the customer candies and the whole candy

bar. In this case, CandyFactory provides the user with a player friendly starting level, which can

help the user to be familiar with the game and learn the most basic fraction ï proper fraction.

Figure 4. Level 1 Candy Selection

2.4.2 Level 2 ï Continuous Candy of Unit Fraction

In Level 2, CandyFactory increases the candy barsô difficulty but decreases the fractionsô

difficulty in order to provide the user a smooth difficulty curve. In this level, all the customer

candy bars are continuous but the fractions are unit fraction, which means the fractions are

always 1/n (Figure 5).

 10

Figure 5. Level 2 Candy Selection

By offering this level, CandyFactory starts to introduce continuous concepts to the users,

meantime paves the way for the more advanced levels. From this level, users will operate on

continuous candy bars which are harder to count the length of. Thus users may need to use

external measuring tool to compare and produce the required length and fractions.

2.4.3 Level 3 ï Continuous Candy of Proper Fraction

After being familiar and comfortable with continuous candy bar, CandyFactory increases the

fractionsô difficulty by changing the unit fractions to proper fractions (Figure 6).

 11

Figure 6. Level 3 Candy Selection

After playing Level 2, the users have already been familiar with the continuous candy bar. By

playing Level 3, users can further learn proper fraction on continuous candy bar. With

measuring, selecting, copying and shipping the candy bars, users are able to learn proper

fractions intuitively and efficiently.

2.4.4 Level 4 ï Continuous Candy of Improper Fraction

For most students, proper fraction is intuitive and easy to understand, for example cutting a pizza

into 5 piece, 1 piece is 1/5. But understanding improper fraction can be hard, for example cutting

a pizza into 5 piece, then what is 6/5 of the pizza? CandyFactory, by providing Level 4, can help

students understand improper fraction intuitively as well. With customer orders, students are

going to slice on a shorter candy bar (Figure 7). By concatenating and iterating them one by one

to form the customer candy bar, students can have a very vivid situation where an improper

fraction will be used.

 12

Figure 7. Level 4 Whole Candy Bar Shorter Than Customer Order

By finishing Level 4, students have already learned proper fractions as well as improper fractions.

And through Level 1 to Level 4, CandyFactory provides a smooth difficulty curve, an effective

learning method and an efficient, intuitive way for teaching fractions.

2.4.5 Level 5 ï Continuous Candy of Reverse Fraction

Level 5 is a reverse level of Level 4. Through Level 1 to Level 4, students should have learned

proper and improper fractions on continuous candy bars. In this level, CandyFactory intends to

help students use fractions flexibly, thus introduces reverse fractions.

In this level, the student is given a wrong candy to recover it to a whole (Figure 8).

 13

Figure 8. Level 5 Reverse Fraction

By finishing this level, students can understand fractions from a different aspect. Compared to

previous levels, this level has a different play pattern: firstly, students can pick any of the candy

bars in the jar; secondly, since the picked candy is made by the factory worker by mistake,

students are required to correct it into a whole candy bar; thirdly, by partitioning and iterating,

students can finally correct that candy bar and deliver it to the customer. According to the game

process, this level makes CandyFactory game more fresh and attractive, therefore helps students

to learn fractions through play and fun.

2.5 Scene Details

CandyFactory iPad version has five levels. Each level contains four scenes and within each

scene, users can perform different actions to produce customer candy bars.

In this section, we are going to introduce each individual sceneôs details with an example of

Level 1.

 14

2.5.1 Scene 1 ï Candy Selection

In this scene, there are three candy jars on the top and a customer order at the bottom (Figure 9).

Users can click on any of the candy jars to select a candy bar in order to make the customer

candy. In Figure 9, in order to make a correct customer candy, users are supposed to select the

chocolate bar under the third candy jar.

Figure 9. Scene 1 Candy Selection

After selecting the candy bar, users can click on the green arrow to go to the next scene with the

selected candy bar.

2.5.2 Scene 2 ï Candy Partition

In this scene, users are required to slice the selected candy bar into units. There are nine slicing

numbers which users can choose from (Figure 10). By choosing a slicing number, there will be

dash lines indicate the slices. In Figure 10, the user select to slice the candy bar into 3 pieces, so

there are 2 dash lines on the candy bar.

 15

Figure 10. Scene 2 Candy Partition

After slicing the candy bar and getting the unit candy, users can click the right green arrow to go

to the next scene with the unit candy, or click the left green arrow to go to previous scene to redo

the candy selection.

2.5.3 Scene 3 ï Candy Iteration

In this scene, users are required to copy the unit candy several times to make the customer order.

Users can drag-and-drop the unit candy into the white box to concatenate them one by one

(Figure 11). Meantime, the green fraction will keep updating when the user modifying the candy

bar, to reflect the current fraction the manufactured candy represents.

 16

Figure 11. Scene 3 Candy Iteration

After copying the unit candy for several times, users can click the green arrow on the right to go

to the next scene, or click the left green arrow to redo the candy slicing.

2.5.4 Scene 4 ï Candy Shipment

In this scene, users are required to check whether the manufactured candy meets the customer

order. If so, users can click ñShipò button and drag the manufactured candy to ship it (Figure 12).

If the manufactured candy is not correct, users can click on the left green arrow to go back to

previous scenes to correct the manufactured candy.

 17

Figure 12. Scene 4 Candy Shipment

After shipping the manufactured candy, if time is not up, the user will start another round

immediately. With finishing one round, the manufactured candy and customer candy will be

recorded by the CandyFactory. Later when game is over, the stored gameplays will be displayed

in ñShift Logò.

2.6 Shift Log

Shift Log of CandyFactory shows the order history of one gameplay, it contains completed

orders, customer satisfaction, bonus earned, and performance summary (Figure 13).

 18

Figure 13. CandyFactory Shift Log

In the order results, Shift Log displays the customer order, the manufactured order and the whole

candy. By viewing the order results, users are able to review the orders and the fractions they

made. Also with displaying each orders time spent, users can compare their performance

roughly.

CandyFactory iPad version supports emailing the Shift Log page to either user themselves or

others. Besides this, there is no other way to store the gameplay history. As long as the user starts

a new gameplay, all the previous history will be lost.

2.7 Achievements

The Achievements page, as a reward mechanism, can record user achievements based on their

gameplay. There are fifteen achievement medals corresponding to fifteen rewards (Figure 13),

such as ñship 1 correct order in 30 seconds.ò

 19

Figure 14. CandyFactory Achievement Scene

After each gameplay, the iPad CandyFactory checks the performances of the orders, if certain

metrics are met, CandyFactory will light up and store the achievement medal in local storage.

One drawback of the iPad version CandyFactory is that -- the data is stored in local storage, as

long as you change device or reinstall the application, all the previous achievements will be lost.

This thesis will solve this problem by applying cloud software techniques to CandyFactory.

2.8 Options

The Options dialog allows users to change the game settings. There are three options the user can

change (Figure 15): turn on/off of the timer, lock/unlock all the levels in Game Mode, and reset

the player data. With these options, users can set the game as their needs.

 20

Figure 15. CandyFactory Options Dialog

2.9 Interaction Techniques

The interaction techniques iPad CandyFactory uses are listed as follows:

1. One finger tapping.

2. Two finger tapping.

3. Dragging and Dropping.

4. Swiping.

 21

Chapter 3: CandyFactory Architecture

Cloud-based CandyFactory is developed based on the Java EE client-server architecture. This

architecture consists of five tiers: Client Tier, Web Tier, Business Tier, Data Mapping Tier and

Data Source Tier [Balci 2019]. Each tier takes its own responsibility to guarantee that the cloud-

based CandyFactory is able to run efficiently and robustly.

3.1 Hardware and Software Development Environment

Cloud-based CandyFactory is built on the Java EE platform. We leverage many Java EE APIs

including JavaServer Faces (JSF), Expression Language (EL), Context and Dependency

Injection (CDI), Enterprise JavaBeans (EJBs), CDI-managed Beans, Java Persistence API (JPA)

and JPA Façade Beans. For the Client Tier, we build the game based on JQuery, XHTML and

CSS.

To meet the above environment requirements, Cloud-based CandyFactory is deployed on a

server computer which has the following hardware and software:

¶ Hardware Environment

o PowerEdge T330 server computer

o 64 GB RAM

o 480 GB solid state hard drive

¶ Software Environment

o CentOS Linus operating system

o MySQL relational database management system

o Java Development Kit 8

o GlassFish 4.1 application server

o JQuery JavaScript library (built inside CandyFactory)

With the hardware and software development environment on the server computer, Cloud-based

CandyFactory can be deployed and run correctly and smoothly.

3.2 Architecture

ñAn architecture is the fundamental organization of a system embodied in its components, their

relationships to each other, and to the environment, and the principles guiding its design and

evolution.ò [IEEE 2000] According to the five tiers of Java EE architecture, different tiers focus

on different tasks. For instance, the client tier focuses on CandyFactory game while the business

tier focuses on backend logic such as user account management. Figure 16 presents an

architectural overview of Cloud-based CandyFactory. The responsibilities of each tier are

discussed in the following sections.

 22

Figure 16: Cloud-Based CandyFactory Architecture

3.2.1 Tier 1: Client

The client tier consists of application clients that access a Java EE server remotely. Clients can

be a web browser, a standalone application, or other servers, and they run on a different machine

from the Java EE server [Oracle 2018]. Cloud-based CandyFactoryôs clients are web browsers on

any computer or server.

The client tier of Cloud-based CandyFactory provides the interactions between users and

CandyFactory. This tier has two main features: firstly, it provides interactions such as

CandyFactory game and user account managements; secondly, it provides computational

resources to relieve the remote serverôs workload.

3.2.1.1 Providing Interactions

In Cloud-based CandyFactory, there are two main interactions which the client tier provides:

user account management and CandyFactory game interactions.

For user account management interactions, the client tier provides users with easy

understandable user interfaces. With the navigation links and explanatory user interfaces, users

can interact with the whole system with ease. Also with the client tier, we are able to hide all the

complexity of the system behind it, and offer users with a self-explanatory and easy-to-operate

way to interact with Cloud-based CandyFactory.

 23

For CandyFactory game, it is fully built in this layer. The reasons we build CandyFactory game

fully in this tier are as follows:

1. JQuery and JavaScript are in this tier, we can build a more animated and powerful game

on top of JQuery and JavaScript.

2. Client tier is the nearest tier to the users. Thus by building CandyFactory game under this

tier, we can minimize the reaction time and maximize the efficiency and the speed of the

game. In this case, when users are playing the game, they will have zero latency since

this tier is on the usersô computers or servers.

According to above, we developed a zero latency, high speed, and well animated CandyFactory

game on client layer.

3.2.1.2 Providing Computational Resources

Cloud-based CandyFactory can support thousands of users to play CandyFactory, record their

performance, as well as generate performance reports. Thus the serverôs computational resources

and workload need to be carefully designed and handled. In this case, we delicately considered

how to balance the workload in order to keep from overloading the server.

Considering the five tiers and their responsibilities, we decided to distribute appropriate

workload to the client tier to leverage more client tierôs computational resources. In order to do

so, we carefully designed the CandyFactory game: instead of frequently interacting with the

server to get the next sceneôs data, we keep all the intermediate data within the client tier. After

each game round, we assign achievements and performance calculation to the client tier and only

send the final processed results to the remote server. By doing this, we largely decrease the

serverôs workload and allow more users to play the game at the same time. Moreover, we

minimize the communication and data transmission time between the client tier and the remote

server. The only drawback of this approach is when the user closes the game in the middle of one

game round, the intermediate data of this game round will be lost. This drawback is trivial in

practice, if the user terminates the game round in the middle, the performance data will then be

useless. Therefore, distributing workload to the client tier allows more users to play

CandyFactory simultaneously and increases its scalability tremendously.

3.2.2 Tier 2: Web

The web tier contains JavaServer Faces (JSF), Expression Language (EL), and Contexts &

Dependency Injection (CDI). With these Java EE technologies, the web tier becomes crucial in

the whole architecture.

JavaServer Faces (JSF) plays an important role between the client tier and the business tier. It is

a medium for the client tier to pass data to the business tier. In Cloud-based CandyFactory, JSF

pages accept information from the user/client tier and then send them to the business tier through

Expression Language (EL). With the help of EL, JSF pages can set or receive the business tier

data in a very neat format.

 24

Expression Language (EL) provides a communication mechanism between the web tier and the

business tier. All the EL can be used within XHTML and JSF pages by annotating them with ñ#ò

or ñ$.ò With this technology, by hiding the complexity behind EL, JSF pages can ñdirectlyò

invoke the business tierôs methods and fields.

Context & Dependency Injection (CDI) is another very accessible technology frequently used in

this tier. With this technology, developers are able to get different references of objects by

annotating them with ñ@Inject.ò For example, in Cloud-based CandyFactory, a user bean is a

session-scoped object which lives through the userôs session. In order to get the user beanôs

reference in other session beans, we can use CDI to inject the user beanôs reference to other

session beans, thus obtaining the user beanôs properties or invoking its methods. Because of

CDIôs existence, Enterprise JavaBeans are able to be used effectively and efficiently.

3.2.3 Tier 3: Business

The business tier, as the most crucial tier, provides the most important functionalities of a Java

EE-based cloud software application. There are five main technologies in this tier: Enterprise

JavaBeans (EJBs), CDI-Managed Beans, Java Persistence API (JPA) Entity Beans, JPA Façade

Beans, and JAX-RS RESTful Services. In Cloud-based CandyFactory, we leverage the first four

technologies to develop the application.

Enterprise JavaBeans and Java Persistence API (JPA) provide services related to the data source

tier. With these two technologies, Cloud-based CandyFactory can store and retrieve data from

the data source neatly and efficiently. Since the entity beans are generated from the database

tables, Java EE introduces JPA Façade Beans in order to provide the developer with easier API.

This technology is designed on top of Façade Design Pattern [Schmidt and Douglas 2013], by

encapsulating all the complexity within the functions, the Façade Beans offer a very brief and

intuitive API to the developers. For example, in order to create a new record in database, firstly

developers need to connect to the database; secondly they need to get the persistence context and

the reference of the entity manager; finally, with the correct SQL statement, the developers can

create the new object in the database. Fortunately, these operations are all encapsulated within

Façade Beans. By encapsulating them, the Façade Beans provide an API which takes only the to-

be-created object. The above complex creation procedure is taken care of by the Façade Beans.

The CDI-Managed Beans offer the developers a new feature, with which they can inject a

managed bean into another by adding the ñ@ò annotation instead of recreating them. In Cloud-

based CandyFactory, we use this technology to get the logged in userôs information. By using

this technology, developers can save tons of time and effort when dealing with different

managed beans.

The business tier links the web tier and the data mapping tier. It receives data from the frontend,

applies application logics, then stores it into the database, and vise versa. As a result, this layer

plays a core role throughout the Java EE architecture and the whole Cloud-based CandyFactory.

 25

3.2.4 Tier 4: Data Mapping

The data mapping tier works as a connection tool between the business tier and the data source

tier. It includes Java Persistence API and Java Database Connectivity (JDBC). JDBC is a module

which executes SQL queries based on Java requests. In order to keep the application running, the

remote server must always have an active JDBC connection.

3.2.5 Tier 5: Data Source

The data source tier provides different representations of data. Java EE supports both relational

(e.g. MySQL) and non-relational (e.g. MongoDB) databases.

Cloud-based CandyFactory uses a relational database management system ï MySQL ï to be the

data source layer. For relational databases, they can efficiently store consistent and structured

data. However, relational databases lack horizontal data scalability. In Cloud-based

CandyFactory, the game performance data are highly mutable and unstructured while the other

data are consistent and structured. In order to achieve efficient data storage and retrieval while

maintaining the game performance dataôs scalability, we use a MySQL + JSON diagram to store

all the user information as well as the game data.

For consistent and structured user data such as user account information, we store them in

standard MySQL tables. Thus SQL queries can perform a secure and efficient way of modifying

the data in MySQL relational databases. As long as these kinds of information are designed, they

will not be changed on-the-go in the future. As a result, we use standard MySQL relational

database tables to store the user information.

For mutable and flexible data such as game performance information, we store them as serialized

JSON objects in the MySQL database. For example, for performance data such as ñcorrectnessò

and ñtime,ò instead of creating a MySQL table with columns ñcorrectnessò and ñtime,ò we wrap

them into a JSON object as ñcorrectness: trueò and ñtime: 10s.ò We then serialize the JSON

object as a string to store it into MySQL database. The column of the performance in MySQL

database can be the ñVARCHARò type. On top of this architecture, Cloud-based CandyFactory

is able to leverage the efficiency of standard SQL queries as well as the flexibility of mutable

JSON objects. Developers are always able to change the performance data attributes on-the-go

without regenerating the whole database table. For example, with the existing attributes

ñcorrectnessò and ñtime,ò we now want one more metric ï ñefficiencyò ï to measure the userôs

performance. We simply add the ñefficiencyò metric to the JSON object and modify the JSON

parser class to correctly parse it. Developers never need to either redesign and regenerate the

database nor delete all the old data to fit the new attributes.

By using MySQL relational database + JSON objects architecture, Cloud-based CandyFactory is

able to achieve fast efficient database query, high scalability, and easy data source maintenance.

 26

3.3 CandyFactory Components

Cloud-based CandyFactory contains several components in each tier, the components operate

collaboratively to ensure the entire cloud software application will run robustly and efficiently.

In this section, we introduce the components based on the CandyFactory tier architecture.

Figure 17: CandyFactory Components

3.3.1 Client Tier Components

The client tier contains all the game interactions as well as computational related components.

As introduced in 3.2.1.2, components under the client tier are designed and integrated with game

performance computational modules and an achievement system processing module.

3.3.1.1 Game

Game is the most important component throughout Cloud-based CandyFactory. This component

provides the gaming animations and interactions with users, which reproduces all the

functionalities and features of the iPad version of CandyFactory as well as delivers new features

in Cloud-based CandyFactory.

Game also provides the game performance related computational resources. Each roundôs

performance data is calculated, passed, and processed within the component. By passing the

parameters inside this component, Cloud-based CandyFactory can achieve faster performance

 27

data processing and better maintainability. As soon as the user finishes a game round, the on-the-

go processed performance data are packed as JSON objects and sent to the backend through a

hidden form.

3.3.1.2 Achievement Processing

Achievement Processing allows Cloud-based CandyFactory to handle binary representations of

the achievement medal list. The optimized algorithm of achievement processing is introduced in

5.5.2.3. In order to process binary representations, this layer firstly acquires the pre-processed

achievement data from the backend and stores it in the session map. After achievements are fully

loaded and processed by the achievement processing unit, the stored achievements data will be

read out from the session map and applied to the achievement web page.

3.3.2 Web Tier Components

The web Tier is composed of JSF pages, which are highly related to the components under this

tier. In this section, we introduce the components based on their functionalities.

3.3.2.1 Template

The template holds all of the consistent parts of the whole cloud software, such as the

applicationôs header and footer. It provides growl messages and session timeout functionality.

With the site template, all of the consistent modules are composed and organized within it. This

component greatly increases the applicationôs reusability.

3.3.2.2 User Account

The user account provides the account-related operations such as account creation and password

modification. With this component, users can modify their account intuitively.

3.3.2.3 Administrator

The administrator component allows the administrator of the application to monitor the whole

systemôs status, such as registered user accounts and courses created by teachers.

3.3.2.4 Individual

The individual component contains several smaller components. With the individual component,

users can view their performance data and generate individual game performance reports. As

long as the user type is individual, all the game performance data will be delivered and processed

by this component.

 28

3.3.2.5 Student

The student component contains several smaller components. With the student component,

students are able to view their performance details as well as generate studentsô game

performance reports. When the user type is student, all the game performance data will be

delivered to this component as well as the teacherôs components, thus processed by

corresponding components to get the final report.

3.3.2.6 Teacher

The teacher component allows teachers to create courses and students. Meanwhile, by accepting

data from the student component, the teacher component can generate course reports and even

redirect to an individual studentôs report. In this case, the teacher component allows the teachers

to keep track of each studentôs performance and provides individual students with more targeted

help.

3.3.3 Business Tier Components

Components in the business tier largely determine the main logic of the Cloud-based

CandyFactory. They accept data from the frontend, process them, and store them into the

database. With retrieving the data, they read out data from database, reformat them, and render

them to the frontend. Therefore, Cloud-based CandyFactory largely depends on this tierôs

components to run correctly.

3.3.3.1 Entity Beans

Entity Beans are the most basic components of this tier. They are the representations of the

objects corresponding to data tables in the database. According to Object Oriented Design

(OOD), Entity Beans are the objects that are manipulated by upper layersô classes.

3.3.3.2 Facade Beans

Façade Beans provide an easy way to operate the database. According to Schmidt and Douglasôs

paper ñFaçade Design Patternò [2013], façade beans offer easier-to-operate APIs such as the

ñcreateò function by encapsulating the database operation complexity inside the façade beans. By

doing this, façade beans play a sub-bottom layer role throughout the business tier.

3.3.3.3 Controllers

Controllers are top level components in this layer. They leverage the façade beans with EJB

technology as well as CDI Injections to implement the complex logic of the system. For

example, the user controller is in charge of user creation, user type checking, user account

password changing, etc. There are other controllers to take responsibility for manipulating the

 29

logic in different directions. By separating them into different controllers, Cloud-based

CandyFactory is able to achieve lower coupling and higher cohesion [Eder and Johann 1994].

3.3.3.4 Managers

Managers group all of the components with more advanced and complex functionalities though

they are not as strict as Controllers. Managers correspond to the Entity Beans but not as strictly

as the Controllers as described in 3.3.3.3. By leveraging different Entity Beans, Façade Beans,

and Controllers, Managers are able to implement very powerful logic and functionalities. This

subsection introduces some Managers in more detail.

The login manager handles all the login logic. After receiving the login information from the

frontend, the login manager first checks the user type and delivers the information to different

branches. For students, the login manager obtains the course entity based on the input course ID

and then checks whether the username and password are correct. For individuals and teachers,

the login manager checks whether the username exists in the database. If yes, it checks whether

the input user type is the same as the user type in the database. If yes, the login manager will

hash the password using SHA-1 [Eastlake 2001] to check whether the password is correct. If all

the information can be matched, the user will be logged in by the login manager.

The achievements manager handles the usersô achievements. When the user clicks on the

ñAchievementsò button in the game, the achievements manager will first read out all of the

performance data under the user. Secondly, the achievements manager uses the binary ñorò to

integrate all the records to get the final achievement integer. Finally, it will redirect the user to

the achievement page while sending the processed achievement data to the frontend.

The report managers helps to generate the game performance report. Briefly, by retrieve all the

records under users, teachers or courses, the report manager calculates the averages based on the

hierarchical data, to generate the final report. In this component, complex data table connections

are performed and handled to get the correct data rows. With the grouped data, the averages of

the performance metrics can finally be correctly calculated.

The performance renderer renders the preformatted and calculated data.

The data exporter customizes the exportation format of the game report as well as performance

data. For example, we can customize the output PDFôs font size and weight in the data exporter.

Also we can add detailed information such as author to the output PDF by modifying this

component.

The performance parser manager is a JSON parser tool class. It handles all the JSON parsing

tasks. Since the performance data is stored in JSON format in MySQL database, it has very good

flexibility and mutability. When developers want to add new metrics into the performance JSON

format on-the-go, by modifying this component, we can read the old data as well as the new data

without redesigning the database nor clean-washing the database. So this component handles the

mutable JSON format and provide an object to other classes.

 30

3.3.3.5 Validators

The validators provide functions which can check the usersô inputsô correctness. There are four

validators in this component ï email validator, password validator, username validator, and zip

code validator. When users create their accounts, these validators are applied to validate the user

input, therefore to protect the whole application from wrong inputs or corruptions.

3.3.3.6 Global

The global contains all the tool components such as password encryption and growl message

display components. Every class in the application has access to this component and is able to

invoke the tool functions in the global component.

3.3.4 Data Source Tier Components

The two components in this tier is MySQL tables and JSON performance data. JSON

performance data is a column of MySQL table, which increases the whole data sourceôs

mutability. Developers can add performance metrics at any time without redesigning or

recreating the whole database.

3.4 Client -Server Communication Strategy

Cloud-based CandyFactory has two main client-server communication strategies:

communication between JSF pages and backend beans and communication between JavaScript

and backend beans.

For JSF pages and backend beans communication, Java EE provides Expression Language (EL)

to set and get values or invoke functions of backend beans.

For JavaScript and backend beans communication, the strategy is more complex since Java EE

doesnôt provide technologies nor APIs to support this feature.

To send data from JavaScript to backend beans, JavaScript uses hidden forms and remote

commands to submit the data package: firstly, JavaScript packs the data corresponding to the

submit formôs attributes; secondly, JavaScript invokes the remote command to send the data to

backend beans. Within the hidden form, it sets the backend beanôs property using EL, thus

achieves communicating from JavaScript to backend beans.

To send data from backend beans to JavaScript, the communication strategy is as follows:

1. In JSF page, we add on-click listener to invoke a JavaScript function to accept a backend

beanôs property by using EL.

2. When the element is clicked, backend beanôs properties are passed into the JavaScript

function.

 31

3. After JavaScript function accepted the backend beanôs properties, since the JavaScript is

not guaranteed to be fully loaded, for safety reason, JavaScript has to store the backend

beanôs properties in its session map.

4. As soon as the JavaScript is fully loaded, we retrieve the stored backend beanôs property

from the session map.

Using this strategy, Cloud-based CandyFactory allows JavaScript to communicate with backend

beans as well as to transmit data.

 32

Chapter 4: CandyFactory Design

Cloud-based CandyFactoryôs design is based on Object Oriented Design (OOD), which is a

paradigm based on the concept of encapsulation, inheritance, and polymorphism. In OOD,

everything is object. With OOD paradigm, Cloud-based CandyFactory is able to be implemented

in a more reusable, maintainable, and scalable way.

Unified Modeling Language (UML) is a standard language for specifying, visualizing,

constructing, and documenting the artifacts of software system [Tutorials Point 2019]. It

provides abundant notations for representing the design of software development.

Entity Relationship Diagram (ERD) is a type of chart that indicates how entities are related to

each other. It is usually used for database table design.

In this chapter, we introduce the design of Cloud-based CandyFactory based on OOD, UML, and

ERD, which includs functionality design and implementation design.

4.1 Functionality Design

Functionality design plays an important role before implementation. In this section, we introduce

the design of performance metrics, database, user accounts, and achievement system.

4.1.1 Performance Metrics Design

Performance recording and analyzing are key features of Cloud-based CandyFactory.

Considering all the performance data we can get from the frontend game, we decided to record

and store the following metrics for further study (Figure 18):

¶ Date & Time: The date and time when is the game round started.

¶ Ordered Fraction: The fraction of customer order.

¶ Manufactured Fraction: The fraction of candy made by the user.

¶ Whole Candy Size: The whole candy size in the candy jar.

¶ Most Efficient: Can the user produce the right candy bar with the minimum operations.

¶ Order Result: Whether the customer order is correctly manufactured.

¶ Completion Time: The total completion time of the game round.

¶ Bonus Earned: How much bonus does the user earn.

¶ Number of Backs: How many times does the user click on the back arrow to go to the

previous stage to make corrections.

¶ Get Candy: The time spent to select the right candy bar.

¶ Slice Candy: The time spent to slice the candy bar.

¶ Copy: The time spent to copy the unit candy.

¶ Measure: The time spent to check and measure the manufactured candy bar and customer

order.

 33

Figure 18. Performance Metrics Design Table

By recording these metrics, we can know ñwhich is the most difficult scene for the studentsò,

ñwhether the order is made most efficientlyò, ñare the students doing better by playing more

timesò, etc. Thus with these metrics, teachers are able to understand the studentsô learning

process better and provide more targeted help to each individual student.

4.1.2 Database Design

Database tables are designed based on Entity Relationship Diagram (ERD). For user types, we

designed two tables for different user types: individual, teachers, and administrators are stored

under the User table; students are stored under the Student table. Because of student accountôs

particularity, we separate them from the other user types. Considering of protecting studentsô

privacy and decreasing operation complexity, student accounts only have an integer username

and a 6 digitsô password, which differs from other users. Hence, we separate it into another table.

Students and teachers are linked by the courses. To get a student under a teacher, firstly, we get

all the courses created by the teacher; secondly, we get the student number under each course;

finally, we sum up all the student numbers of each course to get the total student number of the

teacher.

The performance data is separated into two tables: user performance data and student

performance data. Each of them has a column to store the JSON string of the game performance.

By using both relational database and JSON, Cloud-based CandyFactory allows developers to

modify the performance data without redesigning or recreating the database tables.

 34

Figure 19. Database ER Diagram

4.1.3 User Account Design

Cloud-based CandyFactory has four types of user accounts: administrator, individual, teacher ,

and student. In this section we introduce each design based on their features.

Administrator account is a built-in reserved account. With hard-coded username and password,

this account has access to the applicationôs global data such as viewing created accountsô

information. There are two reasons for hard-coding it instead of storing it in the database. First,

hard-code within the application can prevent others from knowing its username. Second,

developers wonôt need to create an administrator account every time the database is recreated.

Considering of these two reasons, we decided to hard-code it within the application.

Individual accounts are designed for individual users. They only care about their own gameplay

performance. Therefore, for this type of account, we require them to input more detailed

information when registering.

Teacher accounts have more functionalities. First, they need to sign up with more detailed

information. Second, they are able to create courses. Third, they can create student accounts

under each course. Finally, they can generate reports for students and courses. Since the teacher-

student interaction through Cloud-based CandyFactory is the core feature of this application, we

designed the most functionalities under teacher accounts.

 35

Student accounts have a different account creation mechanism. Considering of the studentsô

privacy and account creationôs complexity, we decided to let teachers create their student

accounts. For simplicity, all the student accounts under certain course are randomly generated by

the system. The account has one integer username and a six-digit password. The username is

accumulated from one, thus we can keep the usernameôs complexity as low as possible. Here we

design a gap filling technique: if a teacher creates 100 students, the usernames are from 1 to 100;

then the teacher deletes the students from 10-20; with new studentsô coming, the teacher creates

another 20 students, the usernames will first fill all the gap between 10 and 20, then increase

based on 100. By using the gap filling technique, we can save the usernamesô space. Therefore,

keep the username integer as small as possible. Cloud-based CandyFactory also offers a new

feature to increase the attraction of the game ï we assign each student with a random animal

profile image to make their accounts special and intuitive. By using hash set in the backend, we

are able to avoid duplicates to the max extent. With this new feature, teachers can easily

remember which studentôs account belongs to whom according to the animal profile images.

4.1.4 Achievement System Design

Based on the iPad CandyFactory, cloud-based CandyFactory develops a more complicated but

attractive achievement system. Since in the iPad version, CandyFactory only needs to store the

current userôs achievements locally, the mechanism is much easier. For cloud-based

CandyFactory, we need to store achievements under each corresponding user. We are also

required to identify the achievements after each play round and merge them with the specific

userôs existing achievements (Figure 39).

To do this efficiently, we came up with an optimization algorithm to store and retrieve the

achievements efficiently.

Cloud-based CandyFactory has 5 levels, each level contains 15 achievement medals. The total

medal number is 5 * 15 = 75. Storing the 75 medals intentionally can be storage consuming,

since each user needs 75 medal field in the database. Thus, we came up with using Binary String

to store the medals. For example, for level one, ñ100000000000000ò indicates that this user

achieved the first medal. Using Binary String can largely reduce the space when storing

achievements under a certain user. In this case, after each gameplay, the frontend game can

retrieve this userôs previous achievement string, add new achievements and then store it back to

the database. By using this approach, our cloud-based CandyFactory can store any achievements

under their user accounts.

Although the above algorithm greatly saves the space, but three drawbacks still exist:

1. Although string saves space compared to individual fields, it is still space consuming:

each user has 75 medals, which represented by 75 characters of a string, consuming 150-

byte space. With user number increasing, this storage increases dramatically.

2. The read and write from the database are time consuming: frontend sends a request to

backend asking for previous achievement string; backend does a query on the database to

get the string; backend sends the string back to frontend; frontend adds new achievements

to the string; frontend sends the new achievement string to backend; backend stores it

into database; frontend starts a new game round. The whole communication between

 36

frontend and backend is extremely time consuming, as it requires back-and-forth data

retrieving and storing.

3. Adding new achievement strings to existing achievement string is time consuming. For

example, the previous achievement string is ñ1000ò and new achieved achievement string

is ñ1011ò. In order to union them together, we need to compare every character in the

string to union them. The time complexity is O(n).

Due to the above drawbacks, we optimized the algorithm even more to make it efficient, fast and

small. The optimizations are as follows:

1. Instead of using Binary String, we use ñbinary bitò to store the medals. Since one integer

has 4 bytes, which is 32 bits and we only have 15 medals per level. Therefore, one integer

is enough for storing one levelôs achievements. For example, ñmedal 1ò is represented by

ñ0000 0001ò which is integer ñ1ò; ñmedal 2ò is represented by ñ0000 0010ò which is

integer ñ2ò. In this case, each levelôs medals can be represented by a single integer, which

is 4 bytes. The total five levels have 20 bytes. The final mapping table is shown in Figure

20.

2. For communication between the frontend and the backend, instead of reading and writing

each time, we only write each roundôs achievements integer along with other

performance data into the database. This is as fast as without this functionality. The only

time we read these data is when the user clicks on ñAchievementò button. In this case, we

leverage ñlazy retrievalò of the achievements to greatly increase the speed.

3. Adding new achievements to the previous records is a lot faster compared to the above

Binary String approach. Since we can use ñBit Orò to union all the achievement integers.

The time complexity for this is O(1).

Figure 20.Achievement Bit Mapping Table

 37

The comparison of the original design and the optimized design shows as follows:

¶ Space:

o Original ï 150 bytes per user

o Optimized ï 20 bytes per user

¶ Time:

o Original ï O(n) union time complexity

o Optimized ï O(1) union time complexity

¶ Frontend and Backend Interaction:

o Original ï 6 one-way data transmission

o Optimized ï 2 one-way data transmission

4.2 Implementation Design

In this section, we introduce class design and package design based on UML language. The

classes and packages are designed based on OOD paradigm such that they obey the three design

principles: encapsulation, inheritance, and polymorphism.

4.2.1 Package Design

There are six main packages in the Cloud-based CandyFactory: EntityBeans, FaçadeBeans,

Controllers, Managers, Globals, and Validators. Hierarchically, the calling chain is ñEntityBeans

ă FaçadeBeans ă Controllers ă Managersò, while Globals and Validators are standalone

packages.

EntityBeans package holds all the entities representing the database tables. FaçadeBeans holds

all the facades which provide easier API to controllers. Controllers and Managers handle the

main logic of the backend by leveraging the lower level packages. Globals and Validators

provide global tool classes as well as validation classes.

By designing the package, all the classes are more organized. Hence, the application meets high

cohesion and low coupling paradigm.

4.2.2 Class Design

Class design is a crucial part before implementation. With good design, modules can be more

reusable and maintainable. In this section, we introduce the class design based on UML

diagrams.

4.2.2.1 Entity Beans

The EntityBeans diagram (Figure 21) shows seven classes and their relationships. Each class has

its data fields and methods. The relationships of the classes are represented as lines in the chart.

 38

Figure 21. UML diagram of Entity Beans

User class have three types of users. For individuals, they are related to UserPerformanceData

by userPk. For teachers, they are related to courses. Course is related to students. Each student

has his/her own performance, thus StudentPerformanceData is related to Student.

4.2.2.2 Façade Beans

Façade beansô UML diagrams show in Figure 22. All the façade beans are derived from Abstract

Façade, which provides basic database persistence operations.

 39

Figure 22. UML Diagram of Facade Beans

4.2.2.3 Controllers

Controllers UML diagram shows in Figure 23.

 40

Figure 23. UML Diagram of Controllers

4.2.2.4 Managers

Managers UML diagram shows in Figure 24. Since managers handle most of the main logics, the

classes inside it have more complex relationships. By handling the relationships properly, Cloud-

based CandyFactory is able to run correctly and robustly.

 41

Figure 24. UML Diagram of Managers

 42

Chapter 5: CandyFactory Functionality

This chapter describes the functionality of CandyFactory. There are three user types: teacher,

student, and individual. Student and individual types perform almost the same functionalities;

teacher type performs a different set of functionalities. The following sections presents

functionalities for these user types.

5.1 User Registration

A regular user can register to be a teacher or an individual. An individual type of user can play

game and generate report for each level. A teacher can create classes and students, and generate

class reports and individual student reports. A user needs to provide the following required

information: user type which includes ñIndividualò and ñTeacherò, username, password, confirm

password, email, security question, and security answer (Figure 25). The username needs to

contain 6 to 32 characters with capital letter, lowercase letter, number or special character. The

password needs to contain 8 to 32 characters with at least 1 capital letter, 1 lowercase letter, 1

number, and 1 special characters. The email must meet a valid email format. If not, the

registration page gives an email format error (Figure 26). The security question is chosen from a

list, which is used for password modification.

Figure 25. User Registration Interface

 43

Figure 26. Password and Email Validator

5.2 User Login

The user login functionality contains user type, username, and password. With different user

types, the login pageôs UI is not the same. For student type, student needs to enter his/her course

id in order to be located (Figure 28). For teacher and individual type, only the username and

password are needed (Figure 27).

Figure 27. Individual and Teacher Login Interface

 44

Figure 28. Student Login Interface

5.3 Password Modification

The password modification functionality contains three steps. Firstly, the user needs to input the

logged in username. Secondly, the user needs to answer the security question of the logged in

account. The security question is defined in user registration process. Lastly, the user needs to

input the new password and confirm password. (Figure 29)

 45

Figure 29. Change Password Interfaces

5.4 Password Encryption

CandyFactory has a very secure mechanism to protect the userôs confidential information. For

the userôs password, in order to protect it from either malwares or CandyFactory developers and

administrators, we use an industry standard encryption technique to encrypt all the passwords.

Firstly, we generate a random 24-bits salt. Secondly, based on the salt and the userôs password,

we generate a binary hash using PBKDF2 [Wikipedia 2019] method. Lastly, we append ñsha1:ò,

the pre-defined iteration number, hash size, salt, and binary hash together to get the final hash

string of the userôs password. In this case, nobody can get the password based on the data stored

in the MySQL database. Figure 30 shows the data stored in MySQL database. For the password

field, we only store the encrypted passwordôs hash instead of the real password. Therefore, we

ensure the security of the userôs confidential information.

Figure 30. User Account Information in Database Table

5.5 Game Play

Cloud-based CandyFactory strongly support different kinds of fractions. By selecting, measuring,

slicing, and copying of the candies, students learn the fractions by intuitively produce the

manufactured candy. With the achievement system, students can be encouraged to attain better

performance, thus to learn faster with more fun. CandyFactory game levels are introduced in

Description of Levels on the iPad version.

 46

Cloud-based CandyFactory game, based on the iPad version, adds new features and animations.

Also with the backendôs support, cloud-based CandyFactory is more powerful from all aspects

(Figure 31).

Figure 31. Cloud-based CandyFactory Welcome Page

5.5.1 Tutorial Mode

The tutorial mode contains five levels. Each level corresponds to a level in gameplay mode. In

the level selection page (Figure 32), users can choose any level to learn how to play the game.

The title ñTo Learn How To Playò indicates the tutorial mode. During tutorial mode, the timer is

off, customer satisfaction is not calculated, and no data are collected. Consequently, this mode is

a pure learning mode.

 47

Figure 32. Tutorial Mode Level Selection

5.5.1.1 Scene 1

Tutorial mode Scene 1 teaches users to learn how to play CandyFactory with discrete candies

(Figure 33). In this scene, the Candy Manager teaches users basic componentsô functionalities,

such as clock, satisfaction bar, and pause button. Also in this scene, the Candy Manager guides

users to choose proper candy type to manufacture on, in order to fulfill customer orders (Figure

33). The Candy Managerôs guidance is implemented established on JQuery animation. With the

animations, the guidance is more clear and intuitive.

 48

Figure 33. Tutorial Mode Scene 1

5.5.1.2 Scene 2

This scene is partition scene. Users are supposed to slice the whole candy into partitions in order

to iterate and copy to make the customer candy. In this scene, an animated arrow floats back-

and-forth to indicate the partition the user can make. Also with the Candy Managerôs explanation

dialog, the user can easily find out what he/she is supposed to do (Figure 34). After selecting a

partition, the Candy Manager will guide the user to the next scene.

 49

Figure 34. Tutorial Mode Scene 2

5.5.1.3 Scene 3

Scene 3 is iteration scene. Users are supposed to drag-and-drop the unit candy to iterate n times

in order to form customer candy. With the animated instruction arrow and Candy Manager, users

can easily learn how to iteratively copy and delete the unit candy (Figure 35).

 50

Figure 35. Tutorial Mode Scene 3

5.5.1.4 Scene 4

Scene 4 is measurement and shipment scene. With an animated ruler, users can measure the

length of manufactured candy bar and customer order to compare whether they fulfill the

customerôs request. With back-up arrow, users can go to previous scenes anytime to modify the

candy bar to meet the customer order. After measurement, users can ship the order to the

customer and one game round is finished (Figure 36).

 51

Figure 36. Tutorial Mode Scene 4

5.5.2 Game Mode

The game mode provides fun games to the users with attractive animations, timing, and

achievement system. Based on the iPad version of CandyFactory, we add several new features to

the game to provide better game experience and learning efficiency. The overall gaming process

has been introduced in Tutorial Mode, thus in this section, we emphasize on the new features

which the iPad version does not have.

5.5.2.1 Continuous Candy Ruler

In cloud-based CandyFactory, we add an adaptive ruler to the continuous candy bar to help the

users identify the length of the candy bar. For different size of continuous candy bar, users may

face difficulty measuring its length. Most users just eye balling the length, which makes it hard

to fulfill the customerôs orders. Moreover, the candy measuring method is not a part of the factor

to accelerate the learning rate. Consequently, we decide to add a ruler to help the users identify

 52

the length of the candy bar (Figure 37). Each small grid on the ruler represents a millimeter while

a big grid represents a centimeter.

Figure 37. Ruler of Continuous Candy Bar

5.5.2.2 Animations

Based on the iPad CandyFactory, we add new animations to make this game more fun and

attractive, such as achievement medal animation and shipment animation. As Figure 38 shown

below, after each game round, users can get bonus and achievements. With the bonus and

achievements animation, users are encouraged to achieve better performance. Also with

reproducing the iPad CandyFactoryôs animations, we keep and improve the attractiveness to

make users, especially students, to learn through fun better.

 53

Figure 38. Animation Example

5.5.2.3 Achievement System

Based on the iPad CandyFactory, cloud-based CandyFactory develops a more complicated but

attractive achievement system. Since in the iPad version, CandyFactory only needs to store the

current userôs achievements locally, thus the mechanism is much easier. For cloud-based

CandyFactory, we need to store achievements under each corresponding user. We also need to

identify the achievements after each play round and then merge with the specific userôs existing

achievements (Figure 39).

In order to do this efficiently, we come up with an optimization algorithm to store and retrieve

the achievements introduces in Achievement System Design.

 54

Figure 39. Achievement of Specific User

Also along with the achievement system, we provide the frontend with very attractive

achievements animations. After each round, as long as the user has new achievement, the

achievement medals will flow from left to right, to encourage the users to play better (Figure 40).

Using the reward system, cloud based CandyFactory activates the usersô learning passion and

accelerates the usersô learning process. Therefore, users are able to learn fractions through

playing the game.

 55

Figure 40. Achievement Animation Reward

5.5.2.4 Game Performance Data Transmission

Game performance transmission is a key feature of cloud-based CandyFactory. It is used to

record user performance, generate user performance report, and generate course report. Thus,

transmitting and storing them properly are very important.

Since the performance data format is flexible and tends to change, instead of using standard

MySQL data table to store them, we use JSON to represent the performance as a flexible string

to store in MySQL database. By using MySQLôs standard storage plus JSONôs flexible storage,

cloud-based CandyFactory can retrieve and store standard data, such as account information, as

well as mutable data, such as game performance data, efficiently. When requirement changes in

the future, we can modify the performance JSON format to match the new requirement without

redesigning all the MySQL database table (Figure 41).

 56

Figure 41. Performance Data in Database Table

After each game round (Figure 42), when the user clicks on ñShipò button, the frontend

JavaScript packs the performance data into a JSON object, then use a hidden form to send it to

the backend. The backend, after receiving the JSON object, stores it as a JSON string into the

database under the corresponding user. This process only contains JSON encoding.

Figure 42. Ship Scene of CandyFactory Game

 57

5.5.3 Shift Log

Shift log shows the final result of a whole gameplay of a user in a well-formatted animated way.

In the shift log, users can know how are their customer satisfaction, bonus earned, performance

overall, and each of the detailed orders. With the customer satisfactionôs animation, users can see

each game roundôs customer satisfactionôs changes. Finally, after the animation is over, the result

customer satisfaction is displayed (Figure 43).

The customer satisfaction is calculated by user points. When a user ships a correct order, the user

points are increased by 50. Otherwise, the user points are decreased by 50. With a mapping

algorithm inside the frontend, we calculate the final customer satisfaction of each game round

and show the animation as well as store the satisfactions.

When game is over, the frontend JavaScript packs individual round of game data into JSON and

store it into session map. After redirecting to shift log page, the shift log retrieves the JSON

package from session map and parse the JSON array into readable data then transform it into

more a intuitive animated format, which is shown in Figure 43.

Using this mechanism, for shift log display, the frontend doesnôt have any interaction with the

backend, which dramatically increases the displayôs speed and efficiency. Also by leveraging

this mechanism, with the calculation and data transmission within the frontend, we largely save

the serverôs calculation and storage resources. Thus we achieve large scale deployment of the

whole system.

 58

Figure 43. CandyFactory Game Shift Log

5.5.4 Options

Options provides users abilities to choose the timer from three to nine minutes (Figure 44). Also

we allow users to turn off the timer while playing the game. With this functionality, the pace

users want to play their game is up to them. This options can only be applied to Game Mode.

The Tutorial Modeôs timer is always off.

 59

Figure 44. Option Menu of CandyFactory Game

5.6 Course Creation and Deletion

Course creation feature is provided to teachers, which allows them to create courses of different

classes. In the course panel, after clicking on the create course button, a creation dialog shows

up. By filling ñCourse Nameò, ñSchool Nameò, and ñGrade Levelò, teachers are able to create

courses for their classes (Figure 45). ñCourse Nameò cannot be empty, since it is a vital

information of the course. ñSchool Nameò is optional, which can protect the privacy if the

teacher does not want to fill this field. ñGrade Levelò is a slide menu contains Grad one to Grad

twelve.

 60

Figure 45. Course Creation Information Dialog

After clicking on the ñCreateò button, a course is created with the given information (Figure 46).

Figure 46. Course Successfully Created with Given Information

