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By using the resolvent integration technique introduced by Larsen and Habetler, the one-speed, isotropic 
scattering, neutron transport equation is treated in the infinite and semi-infinite media. It is seen that the 
results previously obtained by Case's "singular eigenfunction" approach are in agreement with those 
obtained by resolvent integration. 

I. INTRODUCTION 

The linear transport equation with c = 1 was treated 
by Shure and Natelson, 1 who used the Case singular 
eigenfunction approach. 2 Larsen and Habetler3 later 
rederived Case's formulas using a contour integration 
technique which was not subject to some of the criticism 
which had been levelled at Case's approach through the 
years, mainly that the derivations were in fact only 
heuristic arguments. However, Larsen and Habetler 
were unable to treat the conservative case, C = 1, but 
claimed (Ref. 3, p. 536) that the results for that speci­
fic case could be obtained by taking the limit c - 1 in 
their derivation for c"* 1. This contention has recently 
been attacked by Kaper, 4 and since Kaper's remarks 
seem to have merit, we present here the explicit analy­
sis, along the lines developed in Ref. 3, for the case 
c = 1. This case, incidentally, which corresponds to a 
critical half-space in neutron transport theory, has 
more physical significance in the context of radiative 
transport theory in stellar atmospheres, where it cor­
responds to a gray, conservative atmosphere in local 
thermodynamic equilbrium. (See Ref. 2, Sec. 10.5.) 

An alternative to the Larsen-Habetler analysis was 
independently developed by Hangelbroek, s who proved 
that for c < 1 the transport operator was similar to a 
self-adjoint operator, and so was able to apply von 
Neumann spectral theory. Lekkerkerker 6 has extended 
Hangelbroek's work to the case c = 1 by defining a 
suitable subspace of the original Hilbert space, on which 
the transport operator is similar to a self -adjoint 
operator, obtaining a spectral theorem for the restric­
tion of the transport operator to this subspace, and 
finally extending the results to the full space. 

Our technique, following Larsen-Habetler, was 
inspired by Lekkerkerker. Specifically, the Larsen­
Habetler technique fails for c = 1 because the transport 
operator, K-1 in their notation, is not invertible. How­
ever, a suitable restriction of K-1 is invertible, and the 
entire Larsen-Habetler method of analysis can be car­
ried out for this restriction. The extension of the results 
to the full space is then almost trivial. We feel that 
our analysis has some advantages over that of Ref. 6, 
in that it is considerably shorter and simpler, and in 
addition, is not restricted to a Hilbert space. Further­
more, the Larsen-Habetler technique appears to have 
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some real advantages over both the Case and 
Hangelbroek methods in the analysis of the multigroup 
transport equation,7,8 and it is pl~ned to use techniques 
similar to those reported here to attempt to extend the 
multigroup results, which are so far restricted to the 
subcritical medium (but see Ref. 9). 

II. THE RESOLVENT OPERATOR AND THE FULL 
RANGE EXPANSION 

As in Ref. 6, we consider the one speed transport 
equation with isotropic scattering for a conservative 
medium, c=l, Le., 

with 

(K-1j}(x,u) = (l/u)[j(x,u) -1 tj(x,u')du']. (lb) 
-1 

A solution of Eq. (1) is understood to be a differentiable 
function ;J;: ill. - Xp, p> 1, where Xp is the Banach space 
of functions j: [- 1,1] - <r satisfying 

Iltllp = (~: I uj(u) I p du PIp < 00, 

and the vector t/J(x) has been written t/J(x,u). The non­
homogeneous term q(x,u) is specified with (l/ll)q(x,lI) 
EXp. 

Equation (lb) defines a densely defined, closed, un­
bounded, noninvertible operator 1\1: Xp - Xp with do­
main D(1\l) ={JEXp Ij=ug, gEXp}' The choice of Xp­
norm has the result that the operator K-1 =u-1A cor­
responds, for p = 2, essentially to the product Au-1 of 
operators on L2 used by Kaper lO for a related problem 
in the kinetic theory of gases, rather than the product 
u-1A used by Lekkerkerker in Ref. 6. In fact, the 
unitary transformation U: X2 - L2 given by (U/!(u)=uj(u), 
transforms K-1 into U1\lU-1 =uu-1Au-1 =Au-1 • This 
avoids considerable difficulties encountered in Ref. 6; 
in particular, in our treatment, D(u-1 ) = D(1\l). 

In most of the remainder, explicit x-dependence will 
not appear, as the transport operator K-1 is studied in 
Xp. This notation agrees, except for minor variations, 
with that of Refs. 3 and 2, Sec. 6.9. Note that the ex­
tension of the analysis of Ref. 3 to Xp for c"* 1 has been 
given in Ref. 11 for p> 1. While it appears that the 
forthcoming analysis could be carried out in XII that 
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would require substantial alteration of the technique. 12 

The essence of the Larsen-Habetler technique is to 
invert K- 1 to obtain K, calculate the resolvent (z1 - K)-r, 
and then integrate the resolvent along a contour sur­
rounding the spectrum of K. Application of the Cauchy 
theorem yields the so-called Case completeness 
theorem. This technique fails in the present case be­
cause K-1 is not invertible on its range. In fact, A=O is 
an eigenvalue of K-1 with eigenvector eo defined by 

eo(l,) = 1, -1 < 11 < 1. (2) 

Furthermore, 

K-1e1 = eo, (3a) 
where 

e1(u)=u, -1<u<1. (3b) 

We shall see that eo and e 1 span the A= 0 root linear 
manifold of K-1

• 

As explained in the Introduction, we now define a 
subspace Yp C Xp such that WI I Yp is invertible. To this 
end, define 

Yp={jExpl j'\.tij(u)du=O, i=I,2} 
-1 

and 
Ypa = Sp{eo, e1} 

Theorem 1: The direct sum decomposition Xp = Yp 
+ Ypo reduces K-1

• 

Proof: The linear functionals 

PI: f - i f uj(ll) dll , 
"1 

have the property 

p/(e)=oli' i,j=O,l. 
Hence, 

P:f- Pa(fleo + PI (/Je1 

(4a) 

(4b) 

is a continuous projection onto Ypa , and Yp is its topol­
ogical supplement. The computation p/(K-1/J = 0 for j 
E Yp follows immediately from Eq. (lb), and since 
PD(K-1) = Ypo CD(K-l), the subspaces are reducing" 

Theorem 2: K-1
1 Yp is invertible, and its bounded in­

verse K is given by 

Kg=ug-i r s3g (s)ds. 
-1 

Proof: Consider the equation 

W 1j=g with gt:: Yp. 

This may be written 

f-~ tj(s)ds=ug. 
• -1 

If the equation is multiplied by u2 and integrated over u 
from - 1 to 1, one obtains 

r j{s)ds= - 3 J 1 u3g(U)rlu, 
-1 -1 

and the result follows. 

Theorem 3: For zE([/[-I,I] andgE Yp , 

(z1 - K)-lg = Z ~ U {g -[l/2A(z)J fll [sg(s)/ s - z] rls} , 

where 

A(Z)=~ -~ l:(z/z-s)ds J 
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is the usual dispersion function2 for c = 1. 

Proof: The analysis of Ref. 3 can be followed to 

arrive at the result 11 [ J 
- 3 J 1 S3g (S) 

(z1-K) Ig=(l/z-u) g+" -1 s_:z rls 

x[.+{ ,~t dJ 1 
Then the identities 

u3
/ (z - u) = - 1/

2 - uz + uz2
/ (z - 11) 

=_u2 _llZ_Z2+Z3/(Z_u), 

can be used to simplify the two integrals in the expres­
sion, yielding the stated result. 

Note that this expression for the resolvent is identical 
to that obtained in Ref. 3, and so a great deal of the 
analysis given there can be taken as verbatim. 

The spectrum of K can be obtained immediately from 
the expression for the resolvent in Theorem 3: a(K) 
= [- 1,1]. Although A(z) - - 1/3z2 for large z, Cl (sg(s)/ 
s - z) ds - 1/ Z3 in the same limit, so the resolvent (z1 
- K)-1 converges to zero at infinity, reflecting of course 
the boundedness of K. Thus, 

1 = (1/21Ti) 1 (z1 - K)-l rlz, 
r 

where r is any closed contour surrounding the cut 
[-1,1]. 

Since the Holder continuous functions are dense in 
Yp by an easy application of the Weierstrass theorem, 
if 

Hp = {jE Yp If is of class H*}, 

then Hp + Ypo is dense in Xp. It is also easy to see that 
Hp n D(K-1

) is dense in Yp. Here by "of class H*" is 
meant2

,13 that f is Holder continuous on the interior of 
[-1,1], Le., 

Ij(u) - j(u') I '" constx Iu -11' I", (l' > 0, 

and also that f near the endpoints b = ± 1 of the interval 
is a product of a function Holder continuous on [ - 1,1] 
and the function (II - b)B, {3 > - L The Larsen-Habetler 
analysis utilizes the pointwise evaluation of the boundary 
values of certain analytic functions of z in the domain 
of the resolvent (z1 - K)-l. For that reason it is neces­
sary to stay on the manifold Hp, and extend the final 
results as in Ref. 11. 

Alternatively, we may have chosen to "compute" on 
functions Holder continuous on the entire interval 
[ - 1,1], whence the Case transforms A(v), as well as 
A(V )A( 1'), would have vanished at the endpoints b [by 
virtue of the fact that A(V)/ N(v) - 0 at the boundaries; 
see Eq. (6)]. However, this would lead to no simplifica­
tion of the arguments. 

In this manner, the analysis of Ref. 3 yields results 
analogous to the case of c< 1; Le., for eachfc Hp 
there exists A E Xp of class H* satisfying: 

j(u)=fA(v)¢v(u)rlv, (6a) 
-1 

1 /1 A(v)=-( -) uj(1I)¢v(u)rlll, (6b) 
N v _1 
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where ¢v is the usual Case "singular eigenfunction" 
corresponding to c = 1; namely, 

¢v(u) = (v/2)P(I/v - u) + MA +(v) + A-(v)]6(v -u) (7) 

and 

N(v) = vA +(v )A-(v) 

converges to infinity at the endpoints ± 1. The notation 
is the same as that of Refs. 2, 3 and 11. In the language 
of Ref. 2, we would say that every IE Hp can be 
expanded in terms of the Case continuum eigenfunctions 
alone. 

To deal with IE Ypo , write 

I=iao-ia1 (8) 

where the factors ± i have b0en introduced to conform 
with standard notation. Multiplying Eq. (8) by 11 or u2 

and integrating, one finds 

aj =3t(-zd- j j(1l)dll. (9) 
-1 

Let ;\.(v) denote 

;\.(v) =MA+(v) + A-(v)]. 

We wish to show that the linear transformation 
F: I -;\.A defined by Eq. (6b) for Iof class H*, 

(F/!(v) = [;\.(v)/ N(v)] t uj(u)¢v(u) du, 
-1 

(10) 

extends to an isomorphism F: Yp - Xp. Define F': <jJ - I, 
the natural candidate for F-1

, by 

(F'<jJ)(U) = t [<jJ(v )/;\'(v )]¢v(u) dv 
-1 

for any <t of class H*. Equations (6a) and (6b) establish 
the relationship F' F= Ion Hp, which is dense in Yp. We 
must ascertain, however, that F' is a bounded transfor­
mation into Yp, or else the extension of F to all of Yp 
might no longer be invertible. Moreover, it is neces­
sary to prove that the range of F is dense in Xp in order 
to insure that the solution of a transport problem solved 
in terms of the transformed function A(v) will be the 
image under F of a vector in Xp. 14 

In Ref. 2 it is shown that if I is of class H*, then A 
will be of class H*, and hence so will ;\'(v)A(v). Further­
more, any A of class H* will yield a function Iof class 
H* via Eq. (6a), since 

j(1I)=;\.(u)A(u)+ip t[vA(v)/v-u]dv, (11) 
• -1 

and the boundary values of the Cauchy integral of a 
class H* function are also of class H* . 

In Ref. 11, the inequality 

t !1 1;\.(v)A(v)!Pdv""Mp t !uj(u)!Pdu, 
-1 -1 

(12) 

where Mp is a constant depending upon p, proves that 
ME Xp if IE Hp, and that F is a bounded transformation. 
Let 

1/: = {A E Xp! M E Xp of class H*}. 

Then the same argument used to derive Eq. (12) also 
yields 

1~ !uj(u)!Pdu""M;L~ !v<jJ(v)!Pdv, 
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for <jJ E H:, which implies that F is one -one on Hp. Com­
bining these remarks, we obtain bounded transforma­
tions F and F' on Yp and XP' respectively, with F' F= 1 
on Yp , and FF' =1 on Ran(F). 

A direct computation shows F' <jJ EC Yp for I/J E H:. For 
example, 

Po(F'J!) = J)vl/J(v)/;\.(v)]P l~ (u 2 /v - u) du dv 

+ t[<jJ(v)/A(v)]v2 ;\.(v)dv 
-1 

=0, 

since 

P F(u 2/v-u)du=-2v;\.(vl. 
-1 

Thus, to prove Ran(F) is dense in XP' suppose A E H: 
and 

(13) 

Defining 

n(z)=tA(v)v/(v-z)dv, (14) 
-1 

expanding Eq. (13) as in Eq. (11), and using the Plemelj 
formulas with Eq. (14), yields 

(1/27Til[n+(u) - n-(u)];\.(u) + i[n+(u) + n-(u)](u/2) = O. 

With the substitution 

u = (1/1Ti)[A+(u) - A-(u)], 

and Eq. (10), this becomes 

(1/27Ti)(n+A+ - n° A") = 0, -1 < 11 < 1. 

If J(z) is defined by 

J(z) = n(z)A(z), 

(15) 

then Eq. (15) proves that J is an entire function. But 
A(oO)=n(oO)=O, so by Liouville's Theorem, J=O, which 
proves A(v) = O. Hence FF' =1 and F' = F-I • Using the 
denSity of Hp and H: in Yp and XP' the transformations 
in Eqs. (6a) and (6b) may be extended by continuity to 
all of Xp. 

The above results can be summarized in Theorem 4. 

Theorem 4: Let IE Xp. Then I has an eigenfunction 
expansion of the form 

I=iao-ialu+ tA(v)¢v(u)dv, (16) 
-1 

where a j are given by Eq. (9), A(v) is given by Eq. (6b), 
and ¢v is the Case singular eigenfunction defined in Eq . 
(7). The linear transformation F:I- M is an 
isomorphism F: Yp - Xp. 

III. HALF RANGE EXPANSION 

Let X~ be the Banach space of functions f [0, 1] - C 
with 

11J11; = [t ! uj(u)!p duJ1lp < 00. 
o 

The object for the half range theory is to find an opera­
tor E: X; - Xp with certain analyticity properties given 
below. Then the full range expansion of EI will cor­
respond to the "half range expansion" of I (cf. Ref. 3, 
Sec. 4). It will in fact be necessary to restr ict E to a 
subspace Y; eX; such that E! Y; will have its range in 
Yo' Then the expansion of (E! Y;)Iwill give the half 
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range "continuum modes," while the discrete modes 
can be separately treated. 

We require the operator E to have the properties: 

(i) (zI - K)-1 Ef analytic in z for all Rez < 0, fEy;,. 

(ii) Pa(E/J == ° for all fE Y;, 

(iii) P I(E/J = ° for all fE X~. 

The first proper guarantees that the expansion of Ef 
contains only eigenfunctions CPv with v> 0; the second 
and third guarantee that EfE Yp; while the third also in­
sures that the discrete coefficient a 1 of Ef vanishes. 

Before the subspace Y; may be specified explicitly, 
let us recall some properties of the dispersion function 
A. The Wiener-Hopf factorization of A(z) provides a 
function X(z), analytic for Rez < 0, such that 

X(z)X( - z) =' 3A(z). 

Moreover, 

X(z) = t [y(u)/u - z] dU, 
o 

where 

11 X-(u) 
y(u)==2 A-(u)' 

Now we may define Y~ C X; by 

Y; = {jE X; f Y(J-L)f(J-L) d J-L = O}. 

(17) 

(18a) 

(lSb) 

By analogy with transport in absorbing media, we are 
led to study the transformation E: X; - X P' defined on 
fE X; of class H* by 

l
' 1 3 fl sj(s)ds 
--- u<O, 

(E/J(u)== X(u) 2 0 X(-s)(s -u)' 

j(u), u>O. 

(19) 

Since X(u) is analytic and bounded away from zero for 
u < 0, we see from the Holder inequality that E extends 
to a bounded operator from X~ to Xp. 

Property (iii) is verified by Theorem 5. 

Theorem 5: For allfEX~, PI(E/J="0. 

Proof: From Eq. (19), 

3 sj(s) u du f
Ill 0 

u(E/J(u) du = f uj(u) du + '2 i ds X( - s) f X(u)(s - u) 
-1 0 0 -1 

for f of class H*. Changing variable from u to - u in 
the second term above and utilizing equations (lSc) and 
(lSa), the identity 

t y(u) dll = 1, 
o 

and the continuity of E, the result follows. 

Next we shall see that property (ii) is satisfied. 

Theorem 6: For allfEX;, 

PI (E/J =" ~ f y(u) j(u) du. 
o 

Hence, if fE Y;, then EfE Yp. 

Proof: As in the proof of Theorem 5, we compute 
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(20) 

+~ i 1 

sj(s) dsfl u
2

du 
2 X(-s) X(u)(s -u) . 

o 01 

The change of variable u - -u along with Eq. (l8b) re­
duces this to 

1>2(E/J(U) du J: I1l2j(U) du +~ 1 ;ts1) ds £1 ~~~; du. 

Finally, writing u/(s + II) = 1 - sirs + u) and using Eq. 
(lSa), we obtain the desired expression for Pa(E/J. 

This result, along with Theorem 5, proves that Ef 
E Hp if fE Y; and is of class H*, since the Cauchy in­
tegral in Eq. (19) preserves HOlder continuity. 

Let Y;o denote the subspace of X; spanned by e~(u) = 1, 
u E [0, 1]. As a corollary of Theorem 6, we obtain 

Corollary 1: 

X; =" Y; + PPO' reduces E. 

Proof: From equation (18) we obtain 

X(u)=t t sds/X(-s)(s -u), (21) 

and thus compute 

(Ee~)(u) =' eo(u). 

Defining the bounded linear functional 
1 

p~:f- J y(u)j(u)du, 
o 

and the projection 

pl:f - p~C/)e~, 

the identity equation (20) and Theorem 6 prove the 
reduction. 

The remaining property of E to be confirmed is given 
by the following theorem. 

Theorem 7: (zI - K)-I(E/J(u) is analytic in z for Rez 
< 0, fE Y;. 

Proof: Analyticity is assured except for a possible 
branch cut [ - 1,0]. However, using Theorem 3 and Eq. 
(19), and applying Eqs. (17) and (18), yields for u < 0, 
after some rearranging, 

(zI - K)-I(E/J(u) =' (1/ z _ u){~ 1 dt y(t) 

x j(t) [X(u)~t -u) - X(z)~t - z) ] }. 

From this, the analyticity along [ - 1, 0] can be 
concluded. 

The expansion of a function fE X; is accomplished by 
applying the full range expansion of Sec. II to Ef. In 
particular, let p" represent the "projection" onto Yp 
along Y;o, P" = (I - P)E. Then 

(E/J(u) = ~ao + P"fi.u) , 

since a
1 

= ° by Theorem 5. The expansion of P"f is 
made as in Eq. (16), while ao can be calculated from 
Theorem 6. Thus, 
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(22a) 

with 
1 

A(v)= [vjy(v)N(v)] fa j(u)y(u)¢)u) du (22b) 

and 

1 II ao= 2 J y(u)j(u)du/ y(u)du. 
o 0 

(22c) 

The solution of the half range neutron transport 
equation at c = 1 may now be carried out as described 
in Refs. 3 and 11. The eigenfunction expansions devel­
oped here are used to choose ao and A(v) to satisfy the 
boundary conditions at x = ° and x - 00, and the full 
solution is expressed in the form 

<p(u)=tao+ tA(v)¢v(u)exp(-x/v)dV. 

For details, see the references cited. 

IV. SOLUTION OF THE MI LNE PROBLEM 

We seek the solution <PM(X,U), of the homogeneous 
transport equation in a half space subject to the 
conditions 

(23a) 

and 

<PM(x,u)-h, (23b) 

as x - 00. The Milne problem is solved by 

<PM(x,u)=tao+t(x-u)+ tA(v)¢v(u)exp(-x/v)dv, (24) 
o 

where 

z = - ao= - t uy(u)du/ t y(u) du (25) 
o 0 ° 

is the so-called "extrapolated endpoint," and 

A(v) = [vjy(v)N(v)H t u¢v(u)y(u) duo (26) 
o 

It is trivial to verify that the first two terms of equation 
(24) do indeed satisfy Eq. (1), and sincell 

wy= t(l/ v )A(v )¢v(u) dv, 
° for allfE y~, that the third term does also. The coeffi-

cient ao has been determined by setting x=O, multiply­
ing both sides of equation (24) by y(u), integrating over 
u, and using the boundary condition (23a), as well as 
Theorem 6 to conclude that the integral does not con-
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tribute. Similarly, to solve for A(v), imposing the 
boundary condition (23a) and using the fact that ao E Y;o, 
one obtains expression (26). 
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