Introduction

Biomanufacturing is where science, nature, and business collide! Are you curious about how plants can make rocket fuel? Are you interested in how farming could help slow down climate change? There is an effort by businesses and schools to find naturally occurring ways to make the things we all use. These and many more careers are found in biomanufacturing.

Biomanufacturing 1.0 - Fermentation

Fermentation is a natural process where bacteria make new chemicals called enzymes. This happens all the time! It makes things like soy sauce, cheese, and wine. A great example is bread. A baker adds yeast to bread dough. Yeast is a type of bacteria that eats sugar and makes bubbles. Those bubbles help the bread rise!

Key terms

- **Antibiotic**: A medicine that kills or prevents the growth of pathogens
- **Enzyme**: A molecule that speeds up a chemical reaction
- **Biotechnology**: The application of biology to an industrial process

Figure 1. Freshly baked loaf of bread.
Bread baking by fancycrave1 freely available via Pixabay Content License.
Biomanufacturing 2.0 - Antibiotics

When cells find harmful bacteria, they make medicine called antibiotics. The process cells use to make antibiotics can be used by us to make medicine. A famous example of an antibiotic is penicillin. A doctor discovered penicillin when he forgot about an experiment and went on vacation. When he got back, the experiment was moldy. Instead of throwing it away, he wondered how the mold stopped the bacteria from growing.

Now we have antibiotics for all kinds of things. Our veterinarians give our dogs and cats antibiotics when they feel sick. Sometimes you might get antibiotics in a shot or pill from your doctor. Farmers give their cows antibiotics to keep them safe—all thanks to someone who forgot their homework.

Biomanufacturing 3.0 - Proteins

Large molecules like insulin and enzymes are more complicated than antibiotics. Until the 1970s, we couldn’t make them. Scientists tricked a type of bacteria called E. coli into making insulin. Insulin is a type of protein that we all make naturally. Sometimes, that process stops working, and people need insulin. This process helped to provide insulin to those who needed it. This method has been used to make other things, like medicine and farming enzymes. Have you ever seen a piece of an apple turn brown? Some scientists think they can make an enzyme to stop that from happening!

Biomanufacturing 4.0 - The future

The future of biomanufacturing is still being shaped by the scientists of today and tomorrow. We have yet to learn much about what the future will hold, but scientists are starting to explore some exciting problems. Can we use plants to make old ideas better? Can we grow chicken tenders in the lab? What will the future of medicine look like? All these questions still need answers. But, in the end, a new scientist will find a solution. To find those answers, our scientists must know about cybersecurity, biology, and agriculture—the next scientist maybe you.

Acknowledgements

This resource was developed by faculty and students at Virginia Tech:

David Smilnak, Ph.D. Student, Department of Agricultural, Leadership, and Community Education
Anne Brown, Assistant Professor, Department of Biochemistry
Laura Strawn, Associate Professor, Department of Food Science, and Technology
Jaylan Day, Undergraduate Student, Department of Chemistry
Madison Powell, Undergraduate Student, Department of Agricultural, Leadership, and Community Education
Emily Mullins, Undergraduate Student, Department of Agricultural, Leadership, and Community Education
Hannah Scherer, Associate Professor and Extension Specialist Teaching and Learning, Department of Agricultural, Leadership, and Community Education

This factsheet was partially created through the use of ChatGPT, a large language model artificial intelligence. ChatGPT was given reference material found in a ~12th grade reading level version, and prompted with, "convert to a 6th grade reading level" before additional edits from the authors.

This resource is presented on a template developed by Kindred Grey. How to cite this template:

Adapted by Kindred Grey from “Agricultural Cyberbiosecurity” by David Smilnak, Anne Brown, Joseph Simpson, Jaylan Day, and Hannah Scherer from https://doi.org/10.21061/cyberbiosecurity. CC BY-NC-SA 4.0. Includes Beaker by IYIKON, Computer by uzeir syarief, Factory by kareemov1000, Microscope by Ariyanto Deni, Poison by Muhammad Atiq, Science by Soremba, Scientist by Amethyst Studio, Test tubes by Blaise Sewell, and Tractor by Olivier Guin, all from the Noun Project (CC BY 4.0).

This project is an outreach effort of the Virginia Tech Center for Advanced Innovation in Agriculture. This work is supported, in part, through the CCI Southwest Virginia Node Cyberbiosecurity Seed Grant program and the USDA National Institute of Food and Agriculture, Women and Minorities in Science, Technology, Engineering, and Mathematics Fields (WAMS) Grants Program, award #2020-38503-31950.

VT
COLLEGE OF AGRICULTURE AND LIFE SCIENCES
CENTER FOR ADVANCED INNOVATION IN AGRICULTURE
VIRGINIA TECH
What is an Open Educational Resource?

What is an open educational resource?

The idea behind Open Educational Resources (OER) is simple but powerful—educational materials made freely and legally available on the Internet for anyone to reuse, revise, remix and redistribute. These digital materials have the potential to give people everywhere equal access to our collective knowledge and provide many more people around the world with access to quality education by making lectures, books, and curricula widely available on the Internet for little or no cost.

This definition of OER is provided by The William and Flora Hewlett Foundation.

How to access these templates

The main landing page for these resources is https://doi.org/10.21061/cyberbiosecurity.

This page includes a downloadable and editable Word document for the:

- Student fact sheet
- Student activity sheet
- Facilitator’s guide

Did you know that you can customize and share your version of this resource?

This resource is licensed with a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 license. This means you are free to copy, share, adapt, remix, transform, and build on the material for any primarily noncommercial purpose as long as you follow the terms of the license: https://creativecommons.org/licenses/by-nc-sa/4.0.

*Best practice is to list the title, author, source, and license.

How to cite this version