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Neural Sequence Modeling for Domain-Specific Language Process-
ing: A Systematic Approach

Ming Zhu

(ABSTRACT)

In recent years, deep learning based sequence modeling (neural sequence modeling) tech-

niques have made substantial progress in many tasks, including information retrieval, ques-

tion answering, information extraction, machine translation, etc. Benefiting from the highly

scalable attention-based Transformer architecture and enormous open access online data,

large-scale pre-trained language models have shown great modeling and generalization ca-

pacity for sequential data. However, not all domains benefit equally from the rapid de-

velopment of neural sequence modeling. Domains like healthcare and software engineering

have vast amounts of sequential data containing rich knowledge, yet remain under-explored

due to a number of challenges: 1) the distribution of the sequences in specific domains is

different from the general domain; 2) the effective comprehension of domain-specific data

usually relies on domain knowledge; and 3) the labelled data is usually scarce and expen-

sive to get in domain-specific settings. In this thesis, we focus on the research problem of

applying neural sequence modeling methods to address both common and domain-specific

challenges from the healthcare and software engineering domains. We systematically inves-

tigate neural-based machine learning approaches to address the above challenges in three

research directions: 1) learning with long sequences, 2) learning from domain knowledge and

3) learning under limited supervision. Our work can also potentially benefit more domains

with large amounts of sequential data.



Neural Sequence Modeling for Domain-Specific Language Process-
ing: A Systematic Approach

Ming Zhu

(GENERAL AUDIENCE ABSTRACT)

In the last few years, computer programs that learn and understand human languages (an

area called machine learning for natural language processing) have significantly improved.

These advances are visible in various areas such as retrieving information, answering ques-

tions, extracting key details from texts, and translating between languages. A key to these

successes has been the use of a type of neural network structure known as a “Transformer”,

which can process and learn from lots of information found online. However, these suc-

cesses are not uniform across all areas. Two fields, healthcare and software engineering, still

present unique challenges despite having a wealth of information. Some of these challenges

include the different types of information in these fields, the need for specific expertise to

understand this information, and the shortage of labeled data, which is crucial for training

machine learning models. In this thesis, we focus on the use of machine learning for nat-

ural language processing methods to solve these challenges in the healthcare and software

engineering fields. Our research investigates learning with long documents, learning from

domain-specific expertise, and learning when there’s a shortage of labeled data. The insights

and techniques from our work could potentially be applied to other fields that also have a

lot of sequential data.
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Chapter 1

Introduction

1.1 Background

Machine learning for natural language processing (ML4NLP) has made substantial progress

over the last few years. The bag-of-words (BOW) [41] and TF-IDF [116] approaches were

introduced in the last century and have been used for comprehending natural language

(NL) sequences in a wide range of applications. To capture the directional dependency

in sequences, Recurrent Neural Networks (RNNs) [43] were introduced to leverage context

in sentences. Word2Vec [80] represents word semantics as distributional vectors learned

from the context, which was widely used as static pre-trained embeddings. In 2017, the

Transformer [127] model was introduced as a fully attention-based encoder-decoder model.

It has been the dominating architecture of language models since then. In 2018, BERT

[23] opened a new era of pre-training and fine-tuning for NLP. This learning paradigm has

been the most effective method since then and revolutionized many language tasks through

large-scale open domain self-supervised learning.

However, not all domains benefit equally from the rapid development of neural methods

for sequential data. Some domains remain under-explored despite having large amounts of

sequential data which contains rich knowledge. In the healthcare domain, there are many

online knowledge bases such as Patient.info, WebMD and Healthline that house hundreds of

thousands of topics and articles about biomedical information. In the software engineering

1
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domain, there are websites like GitHub and GeeksforGeeks that host millions of open source

codes in a number of programming languages. They can benefit a wide range of downstream

tasks and a large population of users, if effective neural methods can be applied to the

sequential data from these domains.

There are a number of challenges hindering the effective application of neural sequence

modeling methods to domain-specific languages.

• (1) Comprehension of domain-specific sequences. The distribution of the data

in specific domains is usually different from the general domain. For example, the

average sequence length, the vocabulary, and the distribution of information can vary

a lot across domains, which pose unique challenges for domain-specific language un-

derstanding.

• (2) Absence of Domain Knowledge. The effective comprehension of domain-

specific data usually relies on domain knowledge, which is not explicitly presented in

the sequences.

• (3) Lack of Labelled Data. Many successful methods heavily rely on labelled data,

while in domain-specific settings, labelled data are usually scarce and expensive to get.

Besides the common challenges across different domains, each domain also poses its

own unique challenges.

There is a collection of literature that seeks to address the above challenges. One line of

work focuses on large-scale pre-training with more data, more model parameters and longer

training time [14, 23, 71, 99]. It has achieved state-of-the-art results on many domain-specific

tasks and the performance improvement with respect to growing model sizes seems far from

saturation. However, large-scale pre-training results in model size growing exponentially

from ElMo’s [95] 94M parameters to Megatron-Turing’s [122] 530B, making the training

and inference expensive and inefficient. Another line of work focuses on leveraging pre-
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trained models to transfer knowledge from the general domain to specific domains [45, 114].

However, they face the new challenges of catastrophic forgetting [29, 59, 77] in training, and

distribution shift in evaluation.

1.2 Outline

In this thesis, we explore a systematic approach to apply neural sequence modeling methods

to domain-specific data for efficient and effective language understanding and generation.

Our work focuses on two specific domains, healthcare and software engineering, which both

contain rich sequential data and have a wide range of applications. We aim at addressing both

common and domain-specific challenges in these two domains. More specifically, we investi-

gate three research directions that play key roles in addressing the domain-specific language

learning challenges: i) learning with long sequences, ii) learning from domain knowledge and

iii) learning under limited supervision.

1.2.1 Part I: Learning with Long Sequences

This part delves into the critical challenges related to information retrieval and question-

answering with long sequences of data, particularly within the healthcare domain. The

proposed solutions focus on developing advanced neural architectures to efficiently process

and retrieve relevant information from these sequences.

Chapter 3. A Hierarchical Attention Retrieval Model for Healthcare Question

Answering [148]. The growth of the Web in recent years has resulted in the development

of various online platforms that provide healthcare information services. These platforms

contain large amounts of valuable information that could be beneficial for patients and other
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types of information-seeking users. However, navigating through such knowledge bases to

answer specific queries of healthcare consumers is a challenging task. A majority of such

queries might be non-factoid in nature, and hence, traditional keyword-based retrieval models

do not work well for such cases. Furthermore, in many scenarios, it might be desirable to get

a short answer that sufficiently answers the query, instead of a long document with only a

small amount of useful information. In this chapter, we propose a neural network model for

ranking documents for question answering in the healthcare domain. The proposed model

uses a deep attention mechanism at word, sentence, and document levels, for efficient retrieval

for both factoid and non-factoid queries, on documents of varied lengths. Specifically, the

word-level cross-attention allows the model to identify words that might be most relevant

for a query, and the hierarchical attention at sentence and document levels allows it to do

effective retrieval on both long and short documents. We also construct a new large-scale

healthcare question-answering dataset, which we use to evaluate our model. Experimental

evaluation results against several state-of-the-art baselines show that our model outperforms

the existing retrieval techniques.

Hypothesis:

• For document ranking with respect to queries, an algorithm that assigns different

weight to each sentence based on the query and context leads to better query-document

matching, as compared to treating all sentences with equal importance.

Research Questions:

1. What kind of neural architecture can capture the hierarchical relevance between the

query and each sentence of the document and the whole document?

2. Do the sentence-level attention weights reflect how likely a sentence is the answer to

the given query?
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3. How can the model capture the inter-sentence relationship among the answer spans of

the query in a document?

Chapter 4. Question Answering with Long Multiple-Span Answers [149]. An-

swering questions in many real-world applications often requires complex and precise infor-

mation excerpted from texts spanning across a long document. However, currently no such

annotated dataset is publicly available, which hinders the development of neural question-

answering (QA) systems. To this end, we present MASH-QA, a Multiple Answer Spans

Healthcare Question Answering dataset from the consumer health domain, where answers

may need to be excerpted from multiple, nonconsecutive parts of text spanned across a

long document. We also propose MultiCo, a neural architecture that is able to capture the

relevance among multiple answer spans, by using a query-based contextualized sentence se-

lection approach, for forming the answer to the given question. We also demonstrate that

conventional QA models are not suitable for this type of task and perform poorly in this

setting. Extensive experiments are conducted, and the experimental results confirm the pro-

posed model significantly outperforms the state-of-the-art QA models in this multi-span QA

setting.

Hypothesis:

• For questions where the answers span over non-consecutive sentences in a document,

an algorithm that simultaneously selects all relevant spans yields better answers to

queries than an algorithm that selects each sentence independently.

Research Questions:

1. How can the model capture the inter-sentence relationship among the answer spans of

the query in a document?

2. How important is the context in selecting the answer span given a query?
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3. How does multi-span answer selection method compare to single-span extraction meth-

ods in answering questions with single-span answers?

1.2.2 Part II: Learning from Domain Knowledge

In this part, we shift our focus to harnessing domain knowledge to enhance biomedical entity

linking and cross-lingual code intelligence. The studies in this part highlight the importance

of understanding and leveraging the intrinsic structures and latent properties within domain-

specific data.

Chapter 5. Latent Type Modeling for Biomedical Entity Linking [150]. Entity

linking is the task of linking mentions of named entities in natural language text, to entities

in a curated knowledge-base. This is of significant importance in the biomedical domain,

where it could be used to semantically annotate a large volume of clinical records and biomed-

ical literature, to standardized concepts described in an ontology such as Unified Medical

Language System (UMLS). We observe that with precise type information, entity disam-

biguation becomes a straightforward task. However, fine-grained type information is usually

not available in the biomedical domain. Thus, we propose LATTE, a LATent Type Entity

Linking model, that improves entity linking by modeling the latent fine-grained type infor-

mation about mentions and entities. Unlike previous methods that perform entity linking

directly between the mentions and the entities, LATTE jointly does entity disambiguation

and latent fine-grained type learning, without direct supervision. We evaluate our model on

two biomedical datasets: MedMentions, a large scale public dataset annotated with UMLS

concepts, and a de-identified corpus of dictated doctor’s notes that has been annotated with

International Classification of Diseases (ICD) concepts. Extensive experimental evaluation

shows our model achieves significant performance improvements over several state-of-the-art
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techniques.

Hypothesis:

• Modeling latent properties with the guidance of domain knowledge yields improved

results in biomedical entity linking, as compared to models that do not incorporate

domain knowledge.

Research Questions:

1. What kind of neural architecture can model the latent types of entity mentions and

candidates with the guidance of entity types?

2. How can the model learn from the entity type information in entity linking?

Chapter 6. A Machine Learning Benchmark for Cross-lingual Code Intelligence

[151]. Recent advances in machine learning have significantly improved the understanding

of source code data and achieved good performance on a number of downstream tasks. Open

source repositories like GitHub enable this process with rich unlabeled code data. However,

the lack of high quality labeled data has largely hindered the progress of several code related

tasks, such as program translation, summarization, synthesis, and code search. This chapter

introduces XLCoST , Cross-Lingual Code SnippeT dataset, a new benchmark dataset

for cross-lingual code intelligence. Our dataset contains fine-grained parallel data from 8

languages (7 commonly used programming languages and English), and supports 10 cross-

lingual code tasks. To the best of our knowledge, it is the largest parallel dataset for source

code both in terms of size and the number of languages. We also provide the performance

of several state-of-the-art baseline models for each task. We believe this new dataset can be

a valuable asset for the research community and facilitate the development and validation

of new methods for cross-lingual code intelligence.

Hypothesis:
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• Utilizing similar code comments across different programming languages to obtain fine-

grained parallel data will enhance the development and validation of machine learning

methods in this domain.

Research Questions:

1. How can we efficiently construct a benchmark dataset that covers a wide range of

programming languages and tasks?

2. How can the quality of the data be ensured in this dataset?

1.2.3 Part III: Learning under Limited Supervision

The final part of the thesis deals with the challenge of learning under limited supervision.

The core idea in this section is to demonstrate how one can leverage semi-supervised learning

techniques and multilingual pre-training to enhance program translation.

Chapter 7. Multilingual Code Snippets Training for Program Translation [152].

Program translation aims to translate source code from one programming language to an-

other. It is particularly useful in applications such as multiple-platform adaptation and

legacy code migration. Traditional rule-based program translation methods usually rely on

meticulous manual rule-crafting, which is costly both in terms of time and effort. Recently,

neural network based methods have been developed to address this problem. However, the

absence of high-quality parallel code data is one of the main bottlenecks which impedes

the development of program translation models. In this chapter, we introduce CoST , a new

multilingual Code Snippet Translation dataset that contains parallel data from 7 commonly

used programming languages. The dataset is parallel at the level of code snippets, which

provides much more fine-grained alignments between different languages than the existing

translation datasets. We also propose a new program translation model that leverages mul-
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tilingual snippet denoising auto-encoding and Multilingual Snippet Translation (MuST)

pre-training. Extensive experiments show that the multilingual snippet training is effec-

tive in improving program translation performance, especially for low-resource languages.

Moreover, our training method shows good generalizability and consistently improves the

translation performance of a number of baseline models. The proposed model outperforms

the baselines on both snippet-level and program-level translation, and achieves state-of-the-

art performance on the CodeXGLUE translation task.

Hypothesis:

• Performing multilingual pre-training with snippet-level parallel code data enhances

program-level translation performance, particularly for languages with low resource

availability.

Research Questions:

1. How can the model effectively learn from the snippet-level parallel data?

2. How should the pre-training tasks be designed to align with the translation task?

3. How does multilingual snippet training perform on low resource languages?

Chapter 8 Alignment-Enhancing Parallel Code Generation for Semi-Supervised

Code Translation. Code translation is the task of converting source code from one pro-

gramming language to another. Sufficient parallel code data is essential for neural code

translation models to learn the correct alignment across different languages. However, ex-

isting parallel code data is limited in quantity and supported languages. In this chapter,

we propose a semi-supervised code translation method, SPACoder, that leverages snippet

training, static analysis, and compilation to generate synthetic parallel code with enhanced

alignment in a scalable way, and improves code translation by curriculum learning based on

the alignment level of training instances. SPACoder can be generalized to multiple languages
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and various models with little overhead. Extensive experiments show that SPACoder signifi-

cantly improves code translation performance on C++, Java, Python, and C, outperforming

state-of-the-art baselines by wide margins in execution-based evaluation (CA@1). Notably,

we improve C translation by up to 43% with less than 150 annotated training instances.

Hypothesis:

• Curriculum learning on large amounts of noisy synthetic parallel code improves neural

code translation.

Research Questions:

1. How can large amounts of synthetic parallel code be generated in a cost-efficient man-

ner?

2. How can the alignment quality be improved in the synthetic parallel code?

3. How can the model effectively learn from the synthetic parallel code to improve neural

code translation?

1.3 Contributions

Through this thesis, we sought to address challenges in neural sequence modeling for domain-

specific language processing, focusing on the healthcare and software engineering domains.

The chapters encapsulated in this thesis, grouped into three significant research directions,

have led to new insights and advancements in the field.

Our initial studies in Part I revolved around efficiently retrieving and processing information

from long sequences in the healthcare domain. We presented an attention-based hierarchical

model, which demonstrated improved ranking for healthcare-related queries. We further

extended this work to handle questions with long multiple-span answers. Our findings in
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this section provide a roadmap for future work aimed at making healthcare information more

accessible to the public and advancing the field of information retrieval.

In Part II, we delved into the utilization of domain knowledge for improving biomedical

entity linking and cross-lingual code intelligence. By integrating latent type modeling, we

managed to enhance the biomedical entity linking task. Further, our cross-lingual code

intelligence benchmark has broadened the scope for development and evaluation of models

in the software engineering domain. These studies reflect the value of domain knowledge in

processing domain-specific data and inspire future work in this area.

Finally, in Part III, we tackled the challenge of learning under limited supervision for pro-

gramming languages. Through the multilingual snippet training and semi-supervised parallel

code generation, we showcased the significant potential of leveraging huge amount of unla-

beled code data for improving code generation tasks, particularly in code translation.

In conclusion, this thesis, through its various hypotheses and research questions, lays a

foundation for the systematic application of neural sequence modeling in domain-specific

language processing. We hope our findings and contributions will be instrumental in fur-

thering research in these areas and prove beneficial in an even broader range of domains

containing large volumes of sequential data.



Chapter 2

Review of Literature

2.1 Neural Information Retrieval

With the success of deep neural networks in learning feature representation of text data,

several neural ranking architectures have been proposed for text document search. Deep

Structured Semantic Model (DSSM) [48] uses a simple feed-forward network to learn the

semantic representation of queries and documents. It then computes the similarity between

their semantic representations using cosine similarity. Convolutional Deep Structured Se-

mantic Model (CDSSM) [121] uses convolutional layers on word trigram features, while the

model proposed in [88] uses the last state outputs of LSTM encoders as the query and doc-

ument features. Both these models then use cosine similarity between query and document

representations, to compute their relevance. In [47], the authors propose convolutional neu-

ral network models for semantic matching of documents. The Architecture-I (ARC-I) model

proposed in this work also uses a convolutional architecture to create document-level repre-

sentations of query and document, and then uses a feed-forward network to compute their

relevance. The InferSent Ranker [46] also uses a feed forward network to compute the rele-

vance between query and documents, by summing up their sentence embeddings. All these

methods use the document-level semantic representation of queries and documents, which is

basically a pooled representation of the words in the document. However, in the majority

of the cases in document retrieval, it is observed that the relevant text for a query is a very

12
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short piece of text from the document. Hence, matching the pooled representation of the

entire document with that of the query does not give very good results, as the representation

also contains features from other less relevant parts of the document.

To overcome the problems of document-level semantic-matching based IR models, several

interaction-based IR models have been proposed recently. In [38], the authors propose Deep

Relevance Matching Model (DRMM), that uses word count based interaction features be-

tween query and document words, while the Architecture-II (ARC-II) proposed in [47] uses

convolution operations to compute the interaction features. These features are then fed

to a deep feed-forward network for computing the relevance score. The models proposed

in [20, 135] use kernel pooling on interaction features to compute similarity scores, while

MatchPyramid [90] uses the dot product between query and document word vectors as their

interaction features, followed by convolutional layers to compute the relevance score. Other

methods that use word-level interaction features include Attention-based Neural Matching

Model (aNMM) [137], which uses attention over word embeddings, and [129], that uses cosine

or bilinear operation over Bi-LSTM features, to compute the interaction features. The Duet

model proposed in [82] combines both word-level interaction features, as well as document-

level semantic features, in a deep CNN architecture, to estimate the relevance. One common

limitation of all these models is that they do not utilize the inherent paragraph and sen-

tence level hierarchy in documents, and hence, they do not perform well in case of longer

documents.

2.1.1 Document Ranking

Document retrieval and ranking is a classical problem in the information retrieval com-

munity, which has attracted significant interest from researchers for many years. Early



14 CHAPTER 2. REVIEW OF LITERATURE

methods in informational retrieval were largely based on keyword-based query-document

matching [108, 115, 116]. With the advancement of machine learning algorithms, better

retrieval mechanisms have been proposed. Logistic Inference [34] used logistic regression

probabilities to determine the relevance between queries and documents. In [53], the au-

thors used a Support Vector Machine (SVM) based approach for retrieval, which allows the

retrieval system to be trained using the search engine click logs. Other traditional techniques

in information retrieval include boosting-based methods [30, 136]. TF-IDF based similarity

[104] and Okapi BM25 [109] are the most popularly used term-based techniques for docu-

ment search and ranking. However, such techniques usually do not perform well, when the

documents are longer [75], or have minimal exact word overlap with the query.

2.1.2 Passage Retrieval

Passage retrieval focuses on retrieving specific sections within documents relevant to a query.

In the past few years, transformer-based [127] models, particularly BERT [23] and its variants

[71, 125], have revolutionized the field with their ability to incorporate contextual information

in the representation of text. This has resulted in a range of innovative methodologies for

retrieval tasks, such as Dense Passage Retrieval (DPR) [57], which completely sidesteps

term-matching and utilizes BERT embeddings for both queries and documents to calculate

relevance. More recent developments have seen the incorporation of increasingly complex

retrieval models. The two-stage approach in REALM [40] is one such example, blending the

benefits of term-based and dense retrieval. Another area of focus is end-to-end trainable

models that incorporate retrieval as part of the training process [32, 68]. Open-domain

question answering [15] and the integration of retrieval and generation [50] have also been

explored. Passage retrieval remains a challenge due to the complexity and variability of

language, making it a vibrant area of ongoing research.
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2.1.3 Information Retrieval for Healthcare

Early works in the domain of information retrieval for medicine and healthcare used tradition

search methods such as TF-IDF [76] and BM25 [74]. MedQA [144] uses hierarchical clustering

along with TF-IDF for answering definitional questions asked by physicians. The question-

answering system proposed in [22] aimed at helping clinicians to search for treatments for any

disease. However, their system is tailored to answer one specific type of question, and cannot

be used to answer open-ended questions. As discussed in [67], physicians also often need to

use such systems, and they have limited time to browse through every returned document.

Hence, medical retrieval needs to be accurate, and should precisely serve the requirements

of the users. Retrieval in this domain is complex, attributed to the non-factoid nature

of queries, and longer documents. Hence, traditional IR techniques or semantic matching

algorithms do not work well on such datasets.

2.2 Neural Machine Comprehension

Earlier works in QA used similarity based models for classifying answers based on their

semantic similarity with the document [79, 145]. The public release of the SQuAD dataset

motivated the development of attention-based neural models [134]. DrQA Reader [15] uses

an RNN-based architecture, along with context-to-query attention, to compute the answer.

BiDAF [120] uses bidirectional attention (query-to-context and context-to-query) for answer

span prediction. With the advancements in language modeling (LM) techniques such as

BERT [23] and XLNet [139], LM-based techniques have gained more popularity in recent

times.
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2.2.1 Question Answering Datasets

The WikiQA dataset [138] contains query-sentence pairs, and their relevance labels, based

on articles from Wikipedia. The SQuAD datasets [102, 103] consist of question-answer pairs

based on Wikipedia articles. The questions, however, are generally factoid, the answers are

short, and the context is a small paragraph. The Natural Questions dataset [62] provides

a more realistic setting, where the context is a full Wikipedia page, and the answer is a

short snippet from the article. Some of the questions also include a long answer. MS-

MARCO [87], SearchQA [24], and TriviaQA [54] contain questions and a short answer, and

the questions are supported by more than one context document, some of which might be

irrelevant to the question. CoQA [106] and NarrativeQA [60] are free-form QA datasets,

where the answer is a short, free-form text, not necessarily matching a snippet from the

context. ELI5 [26] is a long, free-form QA dataset, based on questions and answers from

Reddit forums. However, since the evidence documents are collected using web-search, only

65% of supporting documents contain the answer.

2.2.2 Question Answering Datasets in Healthcare

Recently, many QA datasets from the medical domain have also been proposed. MedQUAD

[1] and HealthQA [148] are consumer health QA datasets, that contain query-answer tu-

ples, and their relevance labels. emrQA [89] contains rule-based questions constructed from

medical records, while questions in CLiCR [123] are based on clinical report summaries.
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2.3 Neural Entity Linking

Neural entity linking has attracted significant interest from researchers for many years. Most

of the existing techniques in this domain can broadly be classified into three categories.

Context modeling approaches model the context of mentions and the candidate entities at

different levels of granularity to get the similarity between them. An example of such ap-

proaches is [28], which uses a set of vectors that include mention, mention context and the

document that mention appears in, and vectors from entity article title and document, to

compute the mention and entity representations, respectively. [39] also extensively makes

use of context information in the entity linking process. Type modeling approaches make

use of the entity types in the linking process. This is based on the observation that if the

entity types are known, entity linking performance can be improved significantly [101]. The

Relation Modeling approach models the latent relations between different mentions without

direct supervision [66]. These relations can be used as a measure of coherency of the linking

decisions, and can ultimately guide the entity linking process.

2.4 Neural Code Translation

2.4.1 Cross-Lingual Code Tasks

Cross-Lingual tasks in the code domain include Code Translation, Code Summarization,

Code Synthesis, and Code Search. CodeBERT [27] pre-trained a BERT [23] based encoder

on the source code, and then added a decoder to perform end-to-end training on code trans-

lation. CodeBERT is also used for Code Search tasks. PLBART [5] utilized an existing

natural language translation model, BART [68], and also pre-trained it with source code.

CodeTransformer [153] uses language agnostic features computed from the source code and
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its abstract syntax tree for code summarization. OpenAI’s Codex [16] framework makes use

of GPT [98] language models fine-tuned on publicly available code from GitHub for code

related downstream tasks. However, most of the models only explored a limited number of

languages, due to the scarcity of multilingual parallel data.

2.4.2 Parallel Code Data

CodeXGLUE [73] is a popular benchmark that includes 14 datasets for 10 code related

tasks. The tasks include clone detection, code translation, natural language code search,

etc. However, this benchmark does not contain datasets with parallel codes from more than

2 languages. CoST Zhu et al. [152] is a code translation dataset for 7 programming languages.

However, it is relatively small and only supports the translation task. AVATAR [6] presents

another parallel dataset for Java-Python translation. The authors collect multiple solutions

for problems scraped from competitive programming websites and then form n2 possible

combinations of parallel data. This is also constrained to only 2 languages. Project CodeNet

[96] has an abundance of parallel programs in a wide range of languages. However, the

programs are significantly different in logic and structure, thus the alignment is of low quality.

Transcoder [110] introduces a dataset that supports computational accuracy evaluation,

which is an execution-based evaluation metric. However, it does not provide pairwise data

for training.

2.4.3 Neural Program Translation

One line of work has directly applied recent advances in natural language processing (NLP)

to the programming language domain. Transcoder [110] combined cross-lingual masked

language modeling [63], denoising auto-encoding, and back-translation, and applied them to
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a source code setting. Another line of work incorporates the intrinsic features of programming

languages to improve translation performance. [17] modeled this problem as translating a

source tree into a target tree. GraphCodeBERT [37] improved upon CodeBERT [27] by

adding data-flow graphs extracted from source code, improving the model’s understanding

of the code structure. Some other works [13, 97, 142] also make use of abstract syntax trees

(ASTs) derived from the code. DOBF [112] added a de-obfuscation objective to the masked

language model pre-training to leverage the structural aspect of programming languages.



Part I

Learning with Long Sequences
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Chapter 3

A Hierarchical Attention Retrieval

Model for Healthcare Question

Answering

The growth of the Web in recent years has resulted in the development of various online plat-

forms that provide healthcare information services. These platforms contain large amounts

of valuable information that could be beneficial for patients and other types of information-

seeking users. However, navigating through such knowledgebases to answer specific queries

of healthcare consumers is a challenging task. Few retrieval models are focused on situations

where the queries are non-factoid. Furthermore, in many scenarios, it might be desirable to

get a short answer that sufficiently answers the query, instead of a long document with only

a small amount of useful information. In this chapter, we propose a neural network model for

ranking documents for question answering in the healthcare domain. The proposed model

uses a deep attention mechanism at word, sentence, and document levels, for efficient re-

trieval for both factoid and non-factoid queries, on documents of varied lengths. Specifically,

the word-level cross-attention allows the model to identify words that might be most relevant

for a query, and the hierarchical attention at sentence and document levels allows it to do

effective retrieval on both long and short documents. We also construct a new large-scale

healthcare question-answering dataset, which we use to evaluate our model. Experimental

21
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evaluation results against several state-of-the-art baselines show that our model outperforms

the existing retrieval techniques. This chapter is adapted from a paper [148] published in

The Web Conference in 2019, of which I am the first author and primary contributor.

3.1 Introduction

With the growth of the Web in recent years, a vast amount of health-related information is

now publicly available on the Internet. Many people use online health information platforms

such as WebMD1 and Patient2 to search for information regarding the symptoms, diseases,

or any other health-related information they are interested in. In addition to consumers,

often doctors and healthcare professionals need to look into knowledgebases that contain

detailed healthcare information about diseases, diagnoses, and procedures [35, 117]. Despite

the abundance of available information, it might be difficult for healthcare consumers to nav-

igate through these documents to get the required healthcare information. Hence, effective

retrieval techniques are required to allow consumers to efficiently use such platforms. Since

healthcare documents usually include several details about the disease such as its symptoms,

preventive measures, and common treatments, they are usually more elaborate, compared to

other factual documents, which describe well-known facts (e.g., population of a town, capi-

tal of a country, or any other entity), and are very specific in nature. Hence, in such cases,

it might be desirable to provide the consumers with a short piece of text that succinctly

answers their queries. Furthermore, many questions that users have about health-related

topics are very abstract and open-ended in nature, and hence traditional search methods do

not work well in such cases.

Prompted by the success of deep neural networks in language modeling, researchers have
1https://www.webmd.com/
2https://patient.info/

https://www.webmd.com/
https://patient.info/
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What would happen if I didn’t take antithyroid
medicines?
It is usually advisable to treat an overactive
thyroid gland (hyperthyroidism). Untreated
hyperthyroidism can cause significant prob-
lems with your heart and other organs. It
may also increase your risk of complications
should you become pregnant. However, in
many cases there are other treatment options.
That is, radioactive iodine or surgery may
be suitable options. See the separate leaflet
called Overactive Thyroid Gland (Hyperthy-
roidism) for details of these other treatment
options.

Figure 3.1: An example of a healthcare question, and its corresponding answer. The question
and answer do not have any overlapping words. The highlighted text corresponds to the most
relevant answer snippet from the document.

proposed several techniques that apply neural networks for effective information retrieval

[38, 82] and question answering [120, 131]. This has been facilitated primarily due to the

development of large training datasets such as TREC [128] and SQuAD [102]. However,

both these datasets are primarily composed of factoid queries / questions, and the answers

are generally short in length. Hence, systems trained on such datasets cannot perform well

in a setting where a large proportion of the queries are non-factoid and open-ended, and the

documents are relatively longer in length. Figure 3.1 shows an example of a typical question

that a consumer would have regarding antithyroid medicines, and its corresponding answer

paragraph, selected from the website Patient.info 3. This domain-specific problem provides

some unique challenges which require us to build a more comprehensive retrieval system.

• Minimal overlap between question and answer words: There is minimal or

no word overlap between the question and answer text. As there are no matching

terms, traditional keyword-based search mechanisms will not work for answering such
3https://patient.info/
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questions.

• Length of question and answer: The question is longer than a typical search

engine query. The answer is also typically longer than a sentence. Although, for

illustration purposes, we show a short paragraph, in many cases, the answer, as well as

the document containing it, might be even longer. Hence, neural semantic matching

algorithms will not be effective in such cases, as they are ideally designed for short

sentences. Therefore, an effective retrieval system would require a mechanism to deal

with documents of varied lengths.

• Non-factoid nature: The question is very open-ended in nature, and does not ask

for any specific factual details. However, a majority of the machine comprehension

models are trained on datasets like SQuAD, which are comprised of factoid QA pairs.

Such systems do not work well in a setting where the desired answer is more elaborate.

To overcome these problems, we propose HAR, a Hierarchical Attention Retrieval model

for retrieving documents for healthcare related queries. The proposed model uses a cross-

attention mechanism between the query and document words to discover the most important

words that are required to sufficiently answer the query. It then uses a hierarchical inner

attention, first over different words in a sentence, and then over different sentences in a

document, to successively select the document features that might be most relevant for

answering the query. Finally, it computes a similarity score of a document with the query,

that could be used to rank different documents in the corpus, given a query. The use

of hierarchical attention also enables it to find the most important sentences and words,

that could be important to answer a query, without the need of using an explicit machine

comprehension module. To evaluate the performance of our model, we construct a large scale

healthcare question answering dataset, using knowledge articles collected from the popular

health services website Patient.info. Although we use this model in the healthcare domain,
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where the questions are usually non-factoid in nature, and the documents are longer due

to the presence of detailed description about different medical procedures, our model can

be used in any other domain where the questions are open-ended, and the documents are

longer.

The rest of this chapter is organized as follows: In Section 3.2, we describe our proposed

neural retrieval model termed HAR, and provide the details about its architecture and the

training procedure, including the optimization for the HAR model. The details about the

data collection and annotation have been described in Section 3.3. In Section 3.4, we give

details about our experimental evaluation, and the metrics and baseline techniques used in

the evaluation process. Finally, Section 3.5 concludes the chapter, with possible directions

for future research.

3.2 The Proposed Model

In this section, we introduce our proposed Hierarchical Attention Retrieval (HAR) model,

which uses a deep attention mechanism for effective retrieval. The detailed architecture of

our model is shown in Fig. 3.2. HAR is a novel neural network model that uses two powerful

attention mechanisms to overcome the shortcomings of existing document retrieval models.

Given a query q, the model computes a relevance score ri with each candidate document di

in the document knowledgebase D. The different components of our model are described in

detail below.
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Figure 3.2: Architecture of the proposed HAR model.

3.2.1 Word Embeddings

The input layer in our model is an embedding lookup function which converts the query q and

document words into fixed K-dimensional word vectors using a lookup matrix E ∈ RV×K

of V pre-trained word embeddings such as GloVe [93] or Word2Vec [81]. Let {wq
t }mt=1 be the

words in q. Let l be the number of sentences in document d, and {wid
t }nt=1 be the words

in sentence i in d. This layer converts each of the words in q and d into the word vectors

{eqt}mt=1 and {eidt }nt=1, respectively. Here, m and n are the number of words in the query and

each of the document sentences, respectively.
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3.2.2 Encoder

We use two bidirectional RNN (Bi-RNN) [118] encoders to encode the inter-document sequen-

tial dependencies within query and documents words, respectively. This layer consists of two

RNN layers in different directions, whose output is concatenated to get the H-dimensional

contextual representation of each word. We split the documents into short sentences and

encode all the sentences in parallel. Long sentences are segmented into shorter ones. We

choose GRU [18] over vanilla-RNN or LSTM [43] because of its high performance and com-

putational efficiency. Since we encode the document by sentence, GRU performs equally

well as LSTM, because the encoder does not need to deal with very long sequences.

Query Encoder

The query encoder contains a simple Bi-GRU layer, which takes the query word embeddings

{eqt}mt=1 as the input, and outputs the contextual representation U q = {uq
t}mt=1 ∈ Rm×H .

uq
t = BiGRUQ(u

q
t−1, e

q
t ) (3.1)

Document Encoder

Since documents are usually longer than queries, we encode each sentence in the document

separately, using a sentence-level Bi-GRU encoder. Given a sentence i, this layer takes the

sentence word embeddings {eidt }nt=1 as the input, and returns the contextual word embeddings

U id = {uid
t }nt=1 ∈ Rn×H . After encoding each of the l sentences in the document through this

encoder, the new document representation is {U1d, .., U ld} ∈ Rl×n×H .
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uid
t = BiGRUD(u

id
t−1, e

id
t ) (3.2)

3.2.3 Cross Attention between Query and Document

This layer is used to fuse the information from query words into the document words. It

computes the relevance of each query word with respect to each word in the document.

As we use a hierarchical modeling for documents, this layer can compute the attention-

based embeddings of each word in sentence i in d with each word in the query q. We use

the cross attention mechanism proposed in [133, 143], as this method has been proven to

show superior performance in state-of-the-art reading comprehension systems. The attention

layer computes the relevance between each pair of query and document words, using their

contextual embeddings generated by the respective encoders. To calculate the relevance

of query words with respect to document words, and vice-versa, we use a bi-directional

attention mechanism [120], which is composed of document-to-query attention D2Q and

query-to-document attention Q2D. This is done by first computing a similarity matrix

S ∈ Rn×m, which is then normalized over each row and column, using a normalization

operation such as softmax. This generates normalized similarity matrices SD2Q ∈ Rn×m and

SQ2D ∈ Rn×m, respectively. Finally, the attention matrices AD2Q ∈ Rn×H and AQ2D ∈ Rn×H

can be computed as described below.

Let sxy ∈ R be an element of the similarity matrix S from row x and column y. Given

U id ∈ {U1d, .., U ld} and U q as inputs, the final output V id = {vidt }nt=1 ∈ {V 1d, .., V ld} of the

cross attention layer can be computed as follows:

sxy = wT
c · [uid

x ; u
q
y; u

id
x ⊙ uq

y] (3.3)
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SD2Q = softmaxrow(S) (3.4)

SQ2D = softmaxcol(S) (3.5)

AD2Q = SD2Q · U q (3.6)

AQ2D = SD2Q · SQ2D
T · U id (3.7)

V id = [U id;AD2Q;U
id ⊙ AD2Q;U

id ⊙ AQ2D] ∈ Rn×4H (3.8)

In the above equations, ; is the concatenation operation, ⊙ is element-wise multiplication, ·

is matrix multiplication, and wc ∈ R3H is a trainable weight vector.

3.2.4 Query Inner Attention

To encode variable length queries into a fixed size embedding, we use the self attention

mechanism proposed in [70]. The importance of different words varies from document to

document, and is dependent on the context in which they are used. This layer allows the

model to give higher priority to more important words while creating a pooled representa-

tion of the query. This ensures that the query representation contains features from more

significant words. Let A be the dimension of the pooled representation. Given query features

U q = {uq
t}mt=1 as the input, this layer generates a pooled representation of zq ∈ RH as follows:
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cqt = wT
q (tanh(Wqu

q
t )) (3.9)

αq
t =

exp(cqt )∑m
j=1 exp(c

q
j)

(3.10)

zq =
m∑
t=1

αq
tu

q
t (3.11)

3.2.5 Document Hierarchical Inner Attention

Since documents are longer in length, it is not necessary that the entire document is relevant

to a query. In fact, in most cases, it is observed that part of the document that is relevant

to a query is just a few sentences. Even inside each sentence, different words might have

varying relevance to the query. Furthermore, because of the varied lengths of documents,

a mechanism is required to get a fixed-dimensional representation of the document. Hence,

we use a two-level hierarchical inner attention (as proposed in [140]), to get the document

embedding.

Level-1: Attention over words in a sentence

The first level in our hierarchical attention encodes each sentence independently from other

sentences at word-level, resulting in a fixed-dimensional representation of each sentence. This

layer computes the importance of each word within the sentence, and then creates a pooled

representation of each sentence weighted by the attention weights. For each sentence i in

the document d, this layer takes the output vectors V id = {vidt }nt=1 ∈ Rn×4H from the cross

attention layer as the input, and returns a sentence vector xid ∈ R4H .
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cidt = wT
d1(tanh(Wd1v

id
t )) (3.12)

αid
t =

exp(cidt )∑n
j=1 exp(cidj )

(3.13)

xid =
n∑

t=1

αid
t v

id
t (3.14)

Level-2: Attention over sentences in a document

To ensure that sentences more relevant to the query are given higher importance while

computing the similarity score, we use a second inner attention to compute the document

representation. This layer takes the sentence embeddings {xd
i }li=1 as the input, and returns

a document vector yd ∈ R4H as the output.

bdi = wT
d2(tanh(Wd2x

id)) (3.15)

βd
i =

exp(bdi )∑l
j=1 exp(bdj )

(3.16)

yd =
l∑

j=1

βd
j x

jd (3.17)
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3.2.6 Score Computation

The final layer in our model computes the score between the query representation zq and

document representation yd. Since the dimension of yd is 4 times the dimension of zq, we

first pass yd through a feed-forward layer to compute yd ∈ RH . After this, we compute the

similarity vector p ∈ RH by performing element-wise multiplication of zq and yd. Finally,

we pass p through a feed-forward network to compute the final relevance score r ∈ R.

yd = wT
d3y

d + bd3 (3.18)

p = zq ⊙ yd (3.19)

r = wT
f p+ bf (3.20)

3.2.7 Optimization

Negative sampling

Many retrieval datasets, such as the ones created using user click-logs, only have the query-

document pairs, which serve as the positive data for the model. However, for the model

to have sufficient discriminative power to give a score to every document proportional to

their relevance with the query, the model also needs negative query-document pairs during

the training process. Hence, we do negative sampling to generate negative data samples of

query-document pairs for our model. For each query, the negative samples are composed of

the following:
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• Irrelevant negative samples: For the model to have a sufficient discriminative power

that is needed to distinguish documents at a high level, we sample negative documents

that have very low relevance to the query.

• Partially relevant negative samples: We define partially relevant negative documents

as those that might have some relevance to the query, either due to some overlapping

words, or because they are from the same topic, but do not contain the correct answer

for the query. As suggested in [130], having such samples in the training dataset gives

a higher discriminative power to the model, as compared to a model trained with

randomly sampled negative pairs.

Loss function

We use pairwise maximum margin loss [53] as the objective function to be minimized. Given

a query q, positive document dpos, and k negatively sampled documents {dneg1 , .., dnegk }, the

loss is given by:

L =
k∑

i=1

max(0,M − score(q, dpos) + score(q, dnegi )) (3.21)

Here, M is the margin, by which we want the score of positive query-document pair to exceed

that of a negative query-document pair.

3.3 HealthQA Dataset

We will now introduce the dataset created in this work to train and evaluate the proposed

HAR model. We call this dataset HealthQA. It consists of question and document pairs from

the healthcare domain. The details of this dataset are described below:
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Table 3.1: Statistics of the HealthQA dataset.

Number of articles 1,235
Number of documents (article sections) 7,355
Number of questions 7,517
Average length of questions (in words) 8.04
Average length of documents (in words) 233.4
Average number of sentences in documents 13.54
Average length of sentences (in words) 17.24

3.3.1 Knowledge Articles

To create the HealthQA dataset, we collected healthcare articles from the popular health-

services website Patient. We scraped all the articles from the Health Topics section of

Patient. The website contains articles from a diverse set of healthcare domains such as child

health, mental health, sexual health, details about treatments and medications, and several

other healthcare domains. The articles on this website are much more detailed, as compared

to other healthcare knowledgebases like MedlinePlus4. In total, we collected 1,235 health

articles, with each article having an average of 6 sections. As the sections themselves are very

long in these articles, we use each section as one document. Table 3.1 shows the statistics

of the HealthQA dataset.

Figure 3.3 shows the distribution of percentage of documents with respect to the length of

the documents (number of words). We can see that the proportion of documents with less

than 50 words is fractional ( 5%). The dataset contains a large number of documents with

100-200 words, and a high proportion of documents containing more than 200 words.

4https://medlineplus.gov/
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Figure 3.3: Percentage of documents vs. number of words.

3.3.2 Question-Answer Pair Generation

To create healthcare-related questions, we employed human workers from diverse age groups,

and from different countries. For the dataset to have a diverse set of questions and answers

that different people might have about healthcare, we hired six annotators, consisting of a

combination of freelancers, graduate and undergraduate students. To ensure high quality of

the dataset, and low error rates, we ensured that all the annotators had good English skills.

For each document, workers were instructed to create 1 to 3 questions that can be asked

using the information given in the documents. They were encouraged to use simple language

in the queries, so that the questions follow the style of those asked by a common person,

without any domain expertise in healthcare. All the generated questions also underwent

an additional round of cross validation by the author, and any query-document pairs with

errors or insufficient context were either corrected or discarded.

It was found that many articles on Patient have several subtitles, roughly one subtitle per

paragraph, and in most cases, these subtitles could be rephrased into valid questions. Some
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Figure 3.4: Percentage of questions by type.

of the titles have incomplete context, which can be made into a valid question by rephrasing

them. Hence, workers were also allowed to use the subtitles as questions, by rephrasing them

into valid questions.

Figure 3.4 shows the percentage of different types of questions in our dataset. The questions

with the type “How” and “Why” are mostly non-factoid in nature. Such questions are open-

ended, and require detailed answers. Although the questions with the type “What”, that

are generally factoid, have a large proportion in our dataset, after manual analysis, we found

that a large proportion of such questions are also non-factoid. Examples of such questions

include “What can I expect in the future concerning gaming disorder?”.
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3.4 Experimental Results

3.4.1 Evaluation Metrics

We compare the performance of HAR with various baseline techniques using the following

evaluation metrics:

• Recall@K: Recall@K for a query is defined as the ratio of the number of relevant

documents in the top-K retrieved documents, with respect to the total number of

relevant documents for that query. This is averaged over all the queries in the dataset.

Since, in our case, each query has only one groundtruth document, Recall@K denotes

the percentage of queries whose correct document was present in the top-K retrieved

documents.

Recall@K =
1

Qtest

Qtest∑
i=1

# relevant documents in top-K for query i

# total relevant documents for query i
(3.22)

• Mean Reciprocal Rank (MRR): The reciprocal rank is defined as the inverse of

the rank of the first correct document dpos for a given query. MRR is the mean of

the reciprocal rank for all the queries in the test set. Since we have only one correct

document for every query, MRR is well suited for our evaluation. As compared to

Recall@K, MRR also takes into account the ranking order in the evaluation.

MRR =
1

Qtest

Qtest∑
i=1

1

rank(dpos) of query i
(3.23)
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3.4.2 Baseline Methods

For performance comparison, we use the following state-of-the-art retrieval models as the

baselines:

• TF-IDF: This is the standard baseline for retrieval tasks, that uses TF-IDF repre-

sentation for both the query and document, and cosine similarity as the similarity

function.

• CDSSM [121]: It is an extension of DSSM, that uses a CNN-based model on letter

trigrams from query and document as input features, and then computes the cosine

similarity to calculate the relevance between query and document representations.

• ARC-II [47]: This model first computes the interaction feature vector between query

and document using CNN layers. It then computes the score for the query-document

interaction vector using a feed-forward network.

• MV-LSTM [129]: It is a neural semantic matching model that was proposed to find

semantic similarity between a pair of sentences. The model uses the word embed-

dings obtained by passing the sentences through a Bi-LSTM, and then computes an

interaction vector using cosine similarity, or a bilinear operation. It finally passes the

interaction vector through a feed-forward network to compute the similarity score. In

our implementation, we use cosine similarity to compute the interaction vector.

• DRMM [38]: It is a state-of-the-art neural ranking model that uses cosine similarity

between query and document word vectors to compute their similarity, and then com-

putes a histogram-like interaction vector by binning the cosine similarity scores into

pre-defined intervals. It then passes these features through a feed-forward network to

compute the scores.

• KNRM [135]: It is a neural ranking model that first computes cosine similarity

between each query word with each of the document words. It then performs kernel



3.4. EXPERIMENTAL RESULTS 39

pooling, followed by a feed-forward network to compute the relevance score.

• aNMM [137]: This model first computes an interaction matrix by computing the

cosine similarity between each of the query and document words. Similar to DRMM,

this model also performs binning to compute a fixed-dimensional interaction vector.

However, instead of using the counts of word-pairs that fall into a bin as its features,

this model uses the total sum of the similarity between those word pairs as the bin

features. It also uses an attention mechanism over the query word vectors, which is

then combined with the interaction vector to compute the final relevance scores.

• Duet [82]: It is a hybrid neural matching model that uses the word-level interac-

tion, and document-level similarity, in a deep CNN architecture, to compute similarity

between two documents.

• MatchPyramid [90]: This model computes pairwise dot product between query and

document word vectors to compute an interaction matrix. It then passes this matrix

through CNN layers with dynamic pooling to compute the similarity score.

3.4.3 Implementation Details

The dataset was split into three parts: train, validation, and test. The number of queries

in each split were 5274, 1109 and 1134 respectively. We implemented our model in Keras

[36], with TensorFlow [2] as the backend. The model was trained using Adadelta optimizer

[146], with an initial learning rate of 2.0. We used one Bi-GRU layer (one forward and

one backward), and each GRU layer had an output dimension of 150 units. The maximum

number of words in each query, and each document sentence was set to 15, and sentences

greater than 15 words were split into multiple sentences. The maximum number of sentences

in each document was set to 20. All the attention layers had a dimension of 300. We used

a feed-forward network with 3 layers to compute the final score from the similarity vector.
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Additionally, we used dropout of 0.2 after each layer. For each query, we had one positive

document, 3 partially relevant negative documents, and 6 non-relevant negative documents

in the experiments. For all the neural baselines, we used an open-source implementation

MatchZoo5. The TF-IDF baseline was implemented using the scikit-learn6 package.

We used GloVe [93] pre-trained word vectors with 300 dimensions. Since healthcare doc-

uments contain some medical words which cannot be found in GloVe, we used randomly

initialized embeddings for such out-of-vocabulary words. We experimented with training

GloVe word vectors on our document corpus, but it was found that the original pre-trained

GloVe outperformed our medical word embeddings. We hypothesize that it was due to the

fact that our corpus contained far less documents than those used in the original GloVe.

Also, it is observed that people usually do not use very complex medical words in their

queries, and hence, most of the queries were composed of words that were present in the

pre-trained GloVe.

3.4.4 Results

Quantitative comparison against state-of-the-art models.

Table 3.2 shows the performance of HAR against the baseline retrieval models on the

HealthQA dataset. For computing Recall@K, we set K as 1, 3, and 5. As we can see,

the results for HAR are consistently better than all other baselines, across all the metrics,

which can be attributed to its strong performance.

• Effect of long documents on model performance: We can observe from Table 3.2

that TF-IDF has very low performance on our dataset. With the exception of ARC-II,

5https://github.com/NTMC-Community/MatchZoo
6http://scikit-learn.org/stable/index.html
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Table 3.2: Comparison of HAR model with other baseline models on HealthQA dataset.

Model name MRR Recall@1 Recall@3 Recall@5
TF-IDF 60.60 36.58 81.74 96.91
CDSSM 64.46 44.27 81.34 93.42
ARC-II 50.37 29.85 61.86 78.54
MV-LSTM 75.15 58.88 90.26 97.39
DRMM 74.08 57.08 90.08 99.01
KNRM 70.97 54.91 84.04 94.14
aNMM 74.72 58.25 90.35 98.29
Duet 69.66 53.29 84.31 93.87
MatchPyramid 81.82 69.43 93.69 98.92
HAR 87.88 78.90 96.84 99.64

the performance of TF-IDF is consistently lower than all the other models. This can

be attributed to the non-factoid nature of our dataset where there is minimal overlap

between the question and answer words, as well as the long length of documents in the

corpus. Hence, a keyword-based method cannot perform well on such dataset, since its

performance largely depends on the word overlap between the query and the document.

In such cases, embedding-based methods yield better performance in general, as they

can correlate queries and documents based on their semantic representation.

• Document-representation based semantic similarity methods: One key ob-

servation from our results is that neural models that match the query with docu-

ments solely based on their document-level representations do not perform well on

the HealthQA dataset. CDSSM computes the representation of query and document

separately, and then computes the similarity between their vector representations. Al-

though using semantic representations can help in dealing with the problems that arise

where the queries do not have matching words with the documents, this concept only

works in problems such as sentence or paraphrase matching, where the lengths of both

the query and the documents being matched are similar. In case of retrieval, queries

are typically much shorter compared to the documents. Moreover, the actual part in



42
CHAPTER 3. A HIERARCHICAL ATTENTION RETRIEVAL MODEL FOR HEALTHCARE QUESTION

ANSWERING

the document that is relevant to the query is only a few words or sentences. Hence,

the vector representation of the document contains features from other parts of the

documents that are irrelevant to the query. This leads to the poor performance of such

models for retrieval tasks.

• Effect of word interactions: With the exception of ARC-II, other baselines such

as MV-LSTM, DRMM, KNRM, aNMM, Duet, and MatchPyramid use some form of

embedding-based pair-wise keyword interaction in the feature representation of the

query-document pair. This results in their better performance compared to other

baselines. Using word-level interaction features based on their vector representation

allows the models to deal with the problems faced by traditional methods such as TF-

IDF. However, by computing interaction in the early stages of the model, these models

do not have any mechanism to incorporate the underlying structure of the query and

document in the interaction feature generation or scoring process. This leads to their

poor performance in a setting where the documents are longer in length.

By using a cross attention mechanism between the query and document, HAR is able to

model the interaction features between the query and document words, while retaining the

overall semantic meaning of the document sentences. The self attention mechanism then

facilitates focussing on sentences and words in the document that are most relevant to the

query. This mechanism helps HAR to achieve the highest performance compared to all

other baseline methods. Most importantly, HAR achieves a considerably higher MRR and

Recall@1 compared to all other methods. This implies that, in most of the cases, our model is

able to rank the correct document with the highest score, demonstrating a higher reliability

of HAR.

In Figure 3.5, we show the performance of HAR and other baseline methods on each of the

question types given in Figure 3.4. Although questions of the type “what” are relatively
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Figure 3.5: Performance of HAR and baseline methods on different types of questions.

easier to answer (as they contain many factoid questions), our model outperforms other

baselines on these questions. We can also see that HAR gives high performance on question

types “how” and “why”, which are non-factoid in nature, and difficult for a retrieval system.

The performance of HAR is consistently higher than the baselines across all other question

categories as well.
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Qualitative results

For qualitative evaluation of the performance of HAR, we show an example of a question, and

the retrieved document, obtained by MatchPyramid and HAR, in Figure 3.6. We compare

with MatchPyramid, since it is the strongest baseline among all the other methods. The

question shown here is about “the effect of wisdom tooth removal on brushing”. Although

the document returned by MatchPyramid is relevant to the topic, which is wisdom teeth

removal, it is not the one that can correctly answer the query. MatchPyramid computes

interaction features at an early stage in the model. It does not retain the original query and

document, and computes scores solely based on the interaction features. Due to this, the

main intent of the question can sometimes be lost, as shown in the example here. By using

a powerful attention mechanism, HAR has the ability to discriminate between two similar

documents, based on the intent of the query. Hence, HAR is able to retrieve the correct

document for the question.

Figure 3.6: An example of a question and its answer retrieved by MatchPyramid (left) and
HAR (right).
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Using HAR for answer extraction

As mentioned earlier, an added advantage of using the hierarchical attention mechanism

is that it allows the model to discover the most probable answer snippet from the long

document. This can be done by comparing the attention weights of different sentences in

level-1 of hierarchical inner attention over documents. Since sentences with high attention

weights have more contribution towards generating the document representation, they are

likely to be more relevant to the query, as compared to sentences with low attention weights.

In Figure 3.7, we illustrate how the attention weights can be used to extract the most probable

answer from the document. We show one question, and its corresponding highest-ranked

document. The self attention weights over the query words are highlighted in blue, while

the self attention weights at sentence level (level-1) of the document hierarchical attention

are shown in red.

The question shown in Figure 3.7 is about Alopecia Areata, which is a condition that leads

to hair loss in many people, mainly because the immune system of a person starts attack-

ing the hair follicles. The question asks about the diagnosis procedure for this condition,

demonstrated by the use of the word test. Since diagnosis is the main intent of this question,

the feature representation uses highest attention weight for the word test, followed by other

words that are useful in the question. The document here has the highest attention weight

for the first sentence, that contains the answer to this question. Other highlighted sentences

in the document are those which can provide additional information supporting the answer

for this question.
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Figure 3.7: An example of a question and its answer document with highlightings based on
the attention weights. The attention weights for the question are obtained from the query
self attention, and those for the document are obtained from level-2 self attention.

3.4.5 Performance Analysis

Effect of attention mechanism

To quantitatively evaluate the effect of various components used in our HAR on the model

performance, we compare the performance of HAR against its two variants. These are

described below:

• HAR without cross attention: To evaluate the effect of using the cross attention

mechanism on model performance, we evaluate the performance of a variant of HAR

that does not use cross attention between query and document words. This model uses

an inner attention over query words, and a hierarchical inner attention over document

words and sentences. By removing the cross attention, the model is not able to use the

interaction features between query and document word vectors in the scoring process.

We refer to this model as HAR-WCA.
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• HAR without cross and hierarchical attention: This is an even simpler version

of HAR that neither uses cross attention between query and document words, nor

the hierarchical inner attention in the document. This model uses a similar encoder

as HAR for query and document, and then uses only one level of inner attention to

get the query and document representations. It then computes the scores between

these vectors similar to the scoring process used in HAR. It does not incorporate the

underlying document structure in the scoring process due to the removal of hierarchical

attention. We refer to this model as HAR-simple.

Model name MRR Recall@1 Recall@3 Recall@5
HAR-simple 82.139 69.883 94.770 99.008
HAR-WCA 83.667 72.047 95.942 99.369
HAR 87.877 78.900 96.844 99.639

Table 3.3: Performance comparison of HAR and its variants.

Table 3.3 shows the performance comparison of HAR with two of its variants. The perfor-

mance of both HAR-WCA and HAR-simple is worse than the full model. We believe that

since HAR-simple uses a single long encoder for documents, it is not able to embed the

contextual dependencies in the encoded embeddings. Also, it does not use cross attention,

thereby ignoring the keyword-interaction features. The performance of HAR-WCA is slightly

better than that of HAR-simple. Since each sentence sequence is much smaller than the full

document, the encoded representation is able to embed the context of the sentence in each

word.

Hyperparameter sensitivity and model convergence

As mentioned earlier, by splitting the documents into short sentences and using the hierar-

chical attention mechanism, HAR does not need to deal with long sequences. This allows

the model to be achieve high performance using computationally efficient GRU, which can
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Figure 3.8: MRR convergence with training epochs.

effectively model short sequences. We also find that by using GRU, the model is able to con-

verge quickly, as compared to a model that uses LSTM. We also evaluated the performance

of HAR by varying different parameters of our model, such as the number of GRU hidden

units and the number of feed-forward layers. We find that these parameters only have a

marginal impact (∼1% MAP reduction) on the performance of our model. In Figure 3.8, we

show the convergence of HAR and other baselines over training epochs. We show the MRR

of different models on test queries, as the number of training epochs increase. We can see

that HAR converges faster as compared to other baselines, demonstrating a better learning

ability of our model.
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3.5 Conclusion

In this chapter, we proposed a novel deep neural network architecture to rank documents for

healthcare related queries. The model uses a combination of powerful attention mechanisms

to develop a robust retrieval system. The attention mechanisms also enables the model to

discover highly probable answer snippets from the documents, without the need for using

a computationally expensive machine comprehension module. The model has been care-

fully designed by considering the special characteristics of question-answering in healthcare

domain, such as the open-ended nature of queries, and longer document length.

To evaluate the proposed HAR model, we constructed a novel consumer-oriented healthcare

question answering dataset, HealthQA. This dataset is comprised of questions regarding

consumer healthcare topics. We evaluated our proposed model on this dataset, against

several state-of-the-art baseline techniques. Our experimental results show that our model

outperforms these techniques by a wide margin. We also show how our model can potentially

be used to extract the most probable answer snippets from the highly-ranked documents,

which can be explored further in future work. We hope that our proposed model will be useful

for both healthcare and information retrieval communities, to make healthcare information

more accessible to the people.



Chapter 4

Question Answering with Long

Multiple-Span Answers

Answering questions in many real-world applications often requires complex and precise in-

formation excerpted from texts spanned across a long document. However, currently no such

annotated dataset is publicly available, which hinders the development of neural question-

answering (QA) systems. To this end, we present MASH-QA1, a Multiple Answer Spans

Healthcare Question Answering dataset from the consumer health domain, where answers

may need to be excerpted from multiple, nonconsecutive parts of text spanned across a

long document. We also propose MultiCo, a neural architecture that is able to capture the

relevance among multiple answer spans, by using a query-based contextualized sentence se-

lection approach, for forming the answer to the given question. We also demonstrate that

conventional QA models are not suitable for this type of task and perform poorly in this

setting. Extensive experiments are conducted, and the experimental results confirm the

proposed model significantly outperforms the state-of-the-art QA models in this multi-span

QA setting. This chapter is adapted from a paper [149] published in the Findings of the

Association for Computational Linguistics: EMNLP 2020, of which I am the first author

and primary contributor.

1Code: https://github.com/mingzhu0527/MASHQA

50
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What are tips for managing my bipolar disorder?
Along with seeing your doctor and therapist and tak-
ing your medicines, simple daily habits can make a
difference. Start with these strategies. (22 words
truncated) Pay attention to your sleep. This is espe-
cially important for people with bipolar disorder...
(178 words truncated) Eat well. There’s no specific
diet... (29 words truncated) Focus on the basics: Favor
fruits, vegetables, lean protein, and whole grains. And
cut down on fat, salt, and sugar. Tame stress. (81
words truncated) You can also listen to music or spend
time with positive people who are good company. (73
words truncated) Limit caffeine. It can keep you up at
night and possibly affect your mood. (47 words trun-
cated) Avoid alcohol and drugs. They can affect how
your medications work. (118 words truncated)

Figure 4.1: An example of a question and its corresponding answer (highlighted) from
MASH-QA. The answer consists of multiple sentences from the context. All the highlighted
sentences will form the comprehensive answer. The context here is 632 words long, so we
truncate a few portions of it.

4.1 Introduction

Developing neural networks for question answering (QA) has become an important and fast-

growing area of research in the NLP community. Interest in this area is largely driven by the

importance and effectiveness of such systems in virtual assistants and search engines. Driven

by the development of large-scale datasets such as SQuAD [102, 103], most of the work in

this domain focuses on the task of machine reading comprehension, where the objective is

to find a single short answer span—typically ranging from a few words to one sentence in

length—given a question and a paragraph context [120, 134]. Natural Questions [62] makes

machine reading comprehension more challenging by providing questions with long contexts.

This makes it more suitable for training a typical QA system, which extracts answers from

long documents returned by a search engine.
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Existing QA datasets mainly consist of questions with short answers—typically ranging from

a few words to a sentence—from the context document. Even though the Natural Questions

dataset [62] provided paragraph-length answers for certain questions, these long answers are

generally the paragraphs that contain the short answers, making most of the information

supplemental (not critical) in nature. Moreover, because of the open-ended nature of many

questions, the final comprehensive, succinct and correct answers may need to be extracted

from multiple spans or sentences from the document. This problem is exacerbated when

several spans that contain the answer are not in the vicinity of each other. Especially, this

is often the case in domains such as healthcare, where people seek information regarding

their specific health conditions, and the precise answer for their queries usually comes from

multiple sections or spans of a document.

In this work, we introduce MASH-QA, a large-scale dataset for question-answering, with

many answers coming from multiple spans within a long document. MASH-QA is based

on questions and knowledge articles from the consumer health domain, where the questions

are generally non-factoid in nature and cannot be answered using just a few words. Fig.

4.1 shows an example question, and its corresponding context and answer from our dataset,

which poses several unique challenges. First, the contexts are comprehensive healthcare

articles, which can typically contain tens of paragraphs and hundreds of lines. Context of

such length is challenging for existing neural QA models. Second, the answers are typically

several sentences long, while current span extraction models usually predict very short spans.

Another challenge in this setting is raised from the fact that answers can consist of multiple

sentences from nonconsecutive parts of a document, which can often be many sentences or

even paragraphs apart. This results in sparsely-scattered patterns of semantic relevance

in the context with respect to the query. This means that even if the answer comes from

different parts of the document, which might be surrounded by texts that have limited
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relevance to the question, different answer snippets have some form of semantic relevance

with each other, and are centered around the same topic as the question. Although our

dataset is from the healthcare domain, we believe that this problem setting can be generalized

to other domains, where the questions typically require long and detailed answers.

Previous research in question answering (QA) leveraged similarity models to select answers

according to their semantic resemblance to the text [79, 145]. With the release of the SQuAD

dataset, attention-driven neural models [15, 120, 134] were developed for extractive ques-

tion answering. Recent advances in language modeling strategies, notably BERT [23] and

XLNet [139], have seen language modeling-based methods rise to prominence in the current

landscape. Considering the previous work and the challenges presented, we formulate our

question-answering task as a sentence selection task, which should also model the semantic

relevance existing between different answer sentences, even when they are not adjacent to

each other in the context. Hence, we also propose MultiCo, a novel neural architecture that

can address the challenges discussed above. Our model utilizes XLNet [139], which incorpo-

rates Transformer-XL units [21] to give semantic representations that capture the long-range

dependencies existing in the long document context. We also use a sparsified attention mech-

anism, to ensure that the representations of sparsely scattered answer units are compactly

aligned with each other. The main contributions of this chapter can be summarized as

follows:

• We present a practical and challenging QA task, where the answers can consist of

sentences from multiple spans of the long context. We introduce a new dataset called

MASH-QA from the consumer health domain, that encompasses the challenges en-

countered in this task.

• We propose MultiCo, a novel neural model that deals with the long context problem,

and is able to identify the sentences spanned across the document for forming the
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answer. MultiCo adapts a query-based contextualized sentence selection approach,

combined with a sparse self-attention mechanism.

• Extensive experiments are conducted to evaluate the proposed model on multiple

datasets including MASH-QA and WikiQA. Our experimental results confirm that our

approach outperforms state-of-the-art machine reading comprehension and semantic

matching models.

To the best of our knowledge, this is the first work that introduces the QA setting with

multiple discontinuous answer spans from a long document.

4.2 MASH-QA Dataset

4.2.1 Dataset Description

Since we focus on the task of multi-span question-answering from long documents, our dataset

consists of (question, context, [answer sentences]) tuples. Each tuple consists of a natural

language question, which can be answered using one or more sentences from the context.

Context here is a long document, a typical web article with multiple paragraphs. Each

answer consists of several sentences, which can either belong to one single span, or multiple

spans from the context document. Since questions in our dataset can have multiple sentences

that form the answer, we provide the index of all correct answer sentences with each tuple.

We refer to the single-span answer subset of our dataset as MASH-QA-S, and the multi-span

answer subset as MASH-QA-M. Some of the basic statistics of our dataset are shown in Table

4.1.
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MASH-QA MASH-QA-S MASH-QA-M
# Contexts 5,577 4,674 4,788
# QA pairs 34,927 15,293 19,634
# Train QA 28,649 12,437 16,212
# Dev QA 3,081 1,405 1,676
# Test QA 3,197 1,451 1,746

Table 4.1: Basic statistics of MASH-QA dataset.

Dataset #QA Context
Source

QA
Type

Answer
Span

Context
Length

Answer
Length

G
en

er
ic WikiQA 3K Wikipedia Extractive Single 238.4 11

SQuAD-1.1 108K Wikipedia Extractive Single 117.2 3.1
Natural
Questions

307K Wikipedia Extractive Single 7320.3 85.2
(long)

ELI5 270K Web Search Abstractive Multiple 857.6 130.6

H
ea

lth
ca

re CLiCR 105K Clinical Reports Abstractive Single 1385.4 2.7
emrQA 400K Medical Records Extractive Single 955.4 10.2
MedQUAD 47K Health articles Ranking Single N/A 123.9
HealthQA 8K Health articles Ranking Single N/A 233.4
MASH-QA 35K Health articles Extractive Multiple 696.1 59.6

Table 4.2: Comparison of MASH-QA dataset with other Question Answering datasets.

4.2.2 Data Collection and Processing

Our dataset consists of consumer healthcare queries sourced from the popular health website

WebMD2. The website contains articles from a diverse set of domains related to consumer

healthcare. Each healthcare section on the website also consists of questions related to com-

mon healthcare problems faced by people. The answers to these queries consist of sentences

or paragraphs from the article associated with the relevant healthcare condition. These an-

swers have been curated by healthcare experts, and can accurately answer the corresponding

query. Because of the nature of the domain, correctness of the answer is especially impor-

tant, as in domains such as healthcare, an incorrect answer to a consumer can have dire

consequences.

2https://www.webmd.com/

https://www.webmd.com/
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Starts With Percentage Example

What 46.09 What are the symptoms of gastritis?
What are tips for treating acne?

How 31.03 How can I prevent blisters?
How does exercise help stress?

Can, Is, Are 11.01 Can I prevent sinusitis?
Do, Does Is scalp psoriasis common?

When 3.65 When do I need eye protection?
When is flu season in the U.S.?

Why 2.05 Why do we have tears?
Why do I need dental exams?

Table 4.3: Common question types and their examples from the MASH-QA dataset.

For each question, we first split the answer into sentences. We also split each of the con-

text documents into the constituent sentences. Next, for every answer, we map each of

its sentences to the corresponding sentence from the context. We notice that some of the

answer sentences have been manually edited by the healthcare experts who answered the

question. In such cases, we select a set of candidate sentences from the context that are

similar to the answer sentence using TF-IDF match, and then manually select the sentence

that corresponds to the answer.

4.2.3 Dataset Characteristics

A comparison of our dataset with other QA datasets from general and healthcare domains is

shown in Table 4.2. Table 4.3 shows some of the common question types from our dataset.

We discuss some of the key observations below.

Answers with Multiple Spans A key characteristic of our dataset is that, for many ques-

tions, the answers are obtained using information from multiple, discontinuous spans from

the document, making the task more challenging in nature. The existing multi-document or

multi-span QA datasets are abstractive in nature, and the support documents were curated
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using automatic techniques, such as web search. Because of this nature, the answer is not

guaranteed to be found in the context, and the documents are often noisy, with limited rele-

vance to the question. In contrast, our dataset contains multi-span answers that are curated

by experts, which ensures that the different answer spans have information that is required

to answer the question. Moreover, for a domain such as healthcare, we believe the extractive

setting is ideal, since abstractive answers can introduce unpredicted errors resulting from

answer generation.

Comprehensive and Compact Answers The answers in our dataset are generally com-

prehensive, and all the sentences in an answer contribute information that is important to

answer the question. In existing datasets with long answers, a majority of the information

in the long answer is supplemental in nature. Natural Questions, for example, provides a

short answer for the question, and a long answer that was created by selecting the entire

paragraph containing the short answer. The answers in our dataset, on the other hand, have

multiple sentences, each of which contains a unique piece of information about the subject in

the query. We believe that comprehensiveness and compactness of answers are vital in the

healthcare domain, since answers with missing information can potentially mislead people,

while answers with extra information can be overwhelming.

Question Types A majority of the questions in our dataset are non-factoid and open-

ended in nature, and seek for detailed information about the health condition. A significant

proportion of the questions are “How” type, and such questions generally tend to be open-

ended. Although questions starting with “What” generally ask for specific facts, we find

that many of these questions, such as the ones shown in Table 4.3, are in fact open-ended,

and require long answers. Our dataset also contains many “Yes/No” type questions, which

often require explanations.
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4.3 The Proposed MultiCo Model

Figure 4.2: Architecture of the proposed MultiCo model.

Given a query and a document, the goal of our MultiCo model is to select the sentences that

can accurately answer the query. An intuitive way to solve this problem would be to use a

text matching model that takes the query and a sentence as the input, and predicts their

relevance. However, as shown later, this approach does not capture the overall context of the

sentences. Therefore, in our problem setting, where multiple sentences from a document can

belong to the answer, it gives poor results. Hence, our proposed approach uses the concept

of query-based contextualized sentence selection from the document.
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4.3.1 Problem Formulation

Given a query Q and a context document D = {s1, .., sn}, where si refers to the ith sentence

in the document, the objective of our model is to classify each sentence si as relevant or

not for the given query, conditioned on other sentences present in the document. Let ci ∈

{0, 1} be the relevance label that depicts whether sentence si belongs to the answer or not.

Mathematically, we want to model the probability P (si = ci|Q,D) for i ∈ {1, .., n}.

4.3.2 Model Architecture

Figure 4.2 shows the architecture of our proposed model. The main components of our model

are described in detail below:

Query and Context Encoder To encode the query and the long document context,

we use XLNet [139] as the encoder. One of the main advantages of XLNet is that it is

based on the Transformer-XL framework [21], which is specifically designed to deal with

long documents. This makes it an ideal choice in our setting, as it can effectively encode the

long context. Moreover, using a large pre-trained language model also allows us to obtain

high quality token representations.

In our model, we first tokenize the query and each context sentence, and then pad each

sentence up to a pre-defined maximum sentence length m. Let {X1, .., Xn} represent the

sentences, where Xi = {xij}mj=1 represents the tokens in sentence si, and let Q = {qj}mj=1

represent the query. Following [139], we concatenate a [CLS] token to the query, and a [SEP]

token at the end of the last sentence. The encoded representations can be obtained by the

equation below:
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U1; ..;Un,u[SEP ],Uq,u[CLS] = XLNet(X1; ..;Xn, [SEP ], Q, [CLS]) (4.1)

Sentence Embeddings To obtain a fixed dimensional vector for each sentence si, we use

self-attention [69] over the encoded representations Ui obtained in the previous step, to get

the intermediate sentence embedding ṽi.

hij = wa tanh(Wauij)

αij = softmax
j

(hij) ṽi =
m∑
j=1

αijuij

(4.2)

Here, α represents attention weights. Next, to add the overall context and query represen-

tations to the sentence representation, we concatenate the embedding of the [CLS] token

returned by XLNet, to get the final sentence vector vi = [ṽi;u[CLS]].

Sparsified Inter-Sentence Attention The multi-span nature of answers in our dataset

requires us to have a mechanism to link the different answer sentences with each other.

Moreover, the number of relevant sentences in the context is much less than the total number

of sentences in the context. Hence, we use a sparsified inter-sentence attention layer based

on α-entmax (α = 1.5) [19, 94] to introduce sparsity.

gij = wb tanh(Wb[vi;vj]),

βij = α-entmax
j

(gij) zi =
n∑

j=1

βi,jvj

(4.3)



4.3. THE PROPOSED MULTICO MODEL 61

βij here represents attention weights of sentence i with respect to sentence j. For any given

sentence, α-entmax above gives sparse attention weights over other sentences in the context.

This makes the final representation only conditional on a small number of other sentences

with similar semantic nature, and zeroes out the effect of other sentences, unlike the standard

softmax. For any given vector g, it can be calculated as follows.

α-entmax(g) = ReLU[(α− 1)g − τ1]
1/α−1 (4.4)

Here, τ is the threshold, which can be computed as per Peters et al. [94]. As we can see, the

function will give a zero probability for all values of g ≤ 1/(α−1), hence resulting in a sparse

probability distribution.

Answer Classifier After computing the representation of each sentence with respect to

the query and the overall context, we pass the sentence vector zi through a multi-layer dense

network, followed by softmax, to get the final answer probability distribution ŷi.

ŷi = softmax(Woutzi + bout) (4.5)

4.3.3 Optimization

Since we model the question-answering task as a sentence classification task, we use binary

cross entropy as the loss function to train our model. Let yi be the true binary labels for

sentence si. The loss for each sentence can be computed as follows:

L = −
∑

j∈{0,1}

yij log(ŷij) (4.6)
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4.4 Experiments

4.4.1 Implementation Details

We implemented our model in TensorFlow [2]. The model was trained using the Adam

optimizer [58], with a learning rate of 2× 10−5. The maximum length for query and context

sentences was set to 32 tokens, and the maximum number of sentences in one segment was

set to 13. For longer contexts, we split them into multiple segments of 13 sentences each,

and append the query to each segment. We used a pre-trained version of XLNet (24 layers,

340M parameters), and allow only the top 12 layers to be trainable, as previous research [51]

suggests that the semantic features are learned mainly by the top layers. All the experiments

were run on servers with single Tesla K80 GPU on each.

4.4.2 Performance against Answer Sentence Classification Based

Methods

In our first set of experiments, we would like to observe the performance of our model

(which computes the probability of a sentence being part of the answer conditioning on

both the query and the full context) comparing to pairwise models (which only use the

query and the sentence under consideration) that classify the query-sentence as relevant or

not using semantic matching. As suggested earlier, this is an intuitive way to solve the

sentence classification task. Hence, for this task, we compare the performance of our model

against other semantic matching baselines, that predict the relevance label for each sentence

individually, given the (query, sentence) pair as the input.
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Baselines and Evaluation Metrics We compare our model against various semantic

matching models for this task. The semantic matching models which are used for our exper-

iments were based on BERT [23], RoBERTa [71], and XLNet [139]. For all these models,

we use the standard 24-layer pre-trained versions of their LARGE models, and fine-tune

them to do semantic matching on (query, sentence) pairs. We also use TANDA [33], which

utilizes a BERT-based architecture to answer questions using a pairwise (query, sentence)

classification approach, as a baseline model.

We evaluate all the models on two levels: Sentence-level evaluation computes the Precision,

Recall, and F1-score based on the predicted label (relevant or not) of each sentence. This

set of metrics will reward a model, even if the answer is partially correct. We also evaluate

Answer-level Exact Match (EM), which computes the percentage of answers, whose predicted

label matches the true label, for all the sentences in the answer. This will help us evaluate

if the model can get the entire answer correct.

Sentence Answer
Model name Precision Recall F1 Exact Match

TANDA 56.48 16.42 25.44 8.95
BERT 56.18 16.25 25.21 8.89

RoBERTa 57.70 19.06 28.65 9.40
XLNet 56.05 19.73 29.19 9.09
MultiCo 58.16 55.90 57.00 22.05

Table 4.4: Comparison of MultiCo with other baseline Classification models on MASH-QA
dataset.

Results on MASH-QA As we can see from the results in Table 4.4, MultiCo significantly

outperforms the classification baselines on the MASH-QA dataset, on both the sentence-level

and answer-level metrics. Since we model the sentence conditional on both the query and

other sentences in the context, our model can take into account the semantic dependencies

that exist between multiple sentences in a document, and their relationship with the query.
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Other techniques only use the query and the sentence under consideration, and do not

take into account the association between different answer sentences, which leads to lower

performance.

Model name Precision Recall F1
TANDA 68.47 45.00 54.31
BERT 48.10 56.32 51.89

RoBERTa 56.23 53.92 55.05
XLNet 48.54 51.19 49.83
MultiCo 56.79 56.92 56.86

Table 4.5: Comparison of MultiCo with other baseline classification models on WikiQA
dataset.

Results on other QA datasets We also evaluate the performance of our proposed model

on other QA datasets, to observe its generalizability to other settings. Since there are no

existing datasets that contain multi-span answers, the only dataset that can resemble our

problem setting is WikiQA. Here, we only calculate the sentence-level metrics, as most of

the answers in WikiQA contain only one sentence. The results presented in Table 4.5 show

that our model outperforms all other baselines. A paired t-test indicates that our model

outperforms RoBERTa with more than 95% confidence level (experimented with 5 different

random seeds). The baselines have a better performance on WikiQA as compared to MASH-

QA, which can be attributed to two factors: shorter context length, and fewer sentences per

answer. Because of this, the techniques used in our model to handle these factors have

minimal effect. Nonetheless, our model still outperforms the baselines, which shows that our

technique can be generalized to other QA settings as well.
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4.4.3 Performance against Span Extraction Based Methods

In this setup, we show the comparison of our proposed model with other span extraction

based methods. This setup allows us to evaluate how the sentence selection/classification

approach performs in contrast to approaches that predict the start and end indices of the

answer span. Since such methods are designed only to predict a single start and end index,

the applicability of such approaches is only limited to cases where the answer can only have

one span from the context. Hence, for this setup, we only use the subset MASH-QA-S of

our dataset that contains questions with single span answers.

Baselines and Evaluation Metrics We use the following baseline techniques in this

experiment task: DrQA Reader [15] uses an RNN-based architecture, along with context-

to-query attention, to compute the answer. BiDAF [120] uses bidirectional attention (query-

to-context and context-to-query) for answer span prediction. We also use the QA versions

of BERT, SpanBERT [55], and XLNet, as the baselines. For the former three models, we

use the standard pre-trained versions of LARGE models, and fine-tune them on our dataset.

Since our objective here is to predict the answer span for the single answer, we use F1 and

Exact Match (EM) as the evaluation metrics. F1 measures the overlap between the predicted

and the true answers, and EM measures the percentage of overall predicted answers that

exactly match the true answer.

Results The results for the span prediction task on single-span MASH-QA are shown in

Table 4.6. As we can see, MultiCo outperforms all the other baselines by a wide margin. This

can be attributed to the fact that most of the QA models proposed so far in the literature are

mainly focused on the extractive QA datasets with short answers, that typically range up

to a few words. The answers in MASH-QA on the other hand, are longer, making the task
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Model name F1 Exact Match
DrQA Reader 18.92 1.82

BiDAF 23.19 2.42
BERT 27.93 3.95

SpanBERT 30.61 5.62
XLNet 56.46 22.78
MultiCo 64.94 29.49

Table 4.6: Comparison of MultiCo with other baseline Question Answering models on
MASH-QA-S dataset.

more challenging. For long answers, where the minimum answer unit is a sentence, models

trained with sentence-level objective are likely to perform better than those with word-level

objectives.

4.4.4 Qualitative Results

For qualitative analysis, we analyze the effect of using sparse attention on the model perfor-

mance. In Fig. 4.3, we plot the heatmap of the attention weights obtained from the sparse

attention layer, for two query-context pairs from our dataset. The first example here contains

an answer with four consecutive sentences. As we can see, the attention weights for these

sentences are high with respect to each other, and zeroed out with respect to non-answer

sentences. Similarly, non-answer sentences only attend to other non-answer sentences. A

similar trend is observed in the other example, that contains four answer sentences from two

non-consecutive spans.

The answers obtained from the baseline BERT model using the two QA approaches are also

shown. Using the span extraction approach, BERT gives an incorrect short answer, while

with the pairwise query-sentence classification approach, it only predicts one answer sentence

correctly. We observe that these answers have been selected based on superficial cues. By

linking semantically similar sentences, the sparse attention ultimately helps to link the query
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Figure 4.3: Heatmap of attention weights from the inter-sentence attention layer for two QA
pairs. The matrices show the attention weights of each sentence with respect to every other
sentence from the context. The high values of diagonal elements represent the weight of a
sentence with respect to itself. Answers from BERT are shown on the right.

with answer sentences that have limited similarity with the query, but are similar to other

answer sentences.

4.5 Conclusion

We proposed a novel form of question-answering, where answers to a question are obtained

using multiple spans from a long document. To support this task, we introduce MASH-QA, a

novel and challenging QA dataset from the consumer health domain. MASH-QA consists of

questions that can be answered using information from multiple spans from the document.

To motivate further research in multi-span QA, we also propose a novel QA architecture

called MultiCo, that uses query-based contextualized sentence selection approach for finding
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multi-span answers from long documents. By using a sentence-selection based objective, our

model outperforms the existing state-of-the-art QA models by a wide margin.
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Chapter 5

Latent Type Modeling for Biomedical

Entity Linking

Entity linking is the task of linking mentions of named entities in natural language text,

to entities in a curated knowledge-base. This is of significant importance in the biomedical

domain, where it could be used to semantically annotate a large volume of clinical records

and biomedical literature, to standardized concepts described in an ontology such as the

Unified Medical Language System (UMLS). We observe that with precise type information,

entity disambiguation becomes a straightforward task. However, fine-grained type infor-

mation is usually not available in the biomedical domain. Thus, we propose LATTE, a

LATent Type Entity Linking model, that improves entity linking by modeling the latent

fine-grained type information about mentions and entities. Unlike previous methods that

perform entity linking directly between the mentions and the entities, LATTE jointly does

entity disambiguation, and latent fine-grained type learning, without direct supervision. We

evaluate our model on two biomedical datasets: MedMentions, a large scale public dataset

annotated with UMLS concepts, and a de-identified corpus of dictated doctor’s notes that

has been annotated with ICD concepts. Extensive experimental evaluation shows our model

achieves significant performance improvements over several state-of-the-art techniques. This

chapter is adapted from a paper [150] published in the Proceedings of the AAAI Conference

on Artificial Intelligence in 2020, of which I am the first author and primary contributor.

70
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5.1 Introduction

With the advancements in the healthcare domain, we have witnessed a considerable increase

in the amount of biomedical text, including electronic health records, biomedical literature

and clinical trial reports [105]. To successfully utilize the wealth of knowledge contained in

these records, it is critical to have automated semantic indexing techniques. Entity linking

refers to the process of automatically linking mentions of entities in raw text, to a standard-

ized list of entities in a knowledge-base. This process typically requires two steps. First,

all the mentions of entities in the raw text are annotated using a standard Named Entity

Recognition (NER) technique [64]. Next, the extracted mentions are linked to the corre-

sponding entities in the entity disambiguation stage. Although a significant amount of work

has been done in the domain of entity linking for text found on the web, where the objec-

tive is to link the mentions to standard knowledge-bases such as Freebase [12], most of the

techniques cannot be directly transferred to the biomedical domain, which poses a number

of new challenges to the entity linking problem.

Biomedical entity linking is the task of linking mentions in biomedical text, such as clinical

notes, or biomedical literature, to medical entities in a standard ontology such as Unified

Medical Language System (UMLS) [11]. In the healthcare domain, accurate entity disam-

biguation is crucial to the understanding of biomedical context. Many distinct biomedical

concepts can have very similar mentions, and failure in disambiguation will lead to incorrect

interpretation of the entire context. This will introduce huge risks in medical-related deci-

sion making. Moreover, biomedical entity linking can be useful in many other applications,

which require automatic indexing of the text. For instance, it can be used by healthcare

providers to automatically link the medical records of patients to different medical entities,

which can then be used for downstream tasks such as diagnosis/medication decision making,

population and health analytics [10], predictive modeling [52], medical information retrieval,
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Figure 5.1: An example of biomedical entity linking. Phrase shown in red is the extracted
mention, the orange boxes refer to the top candidate entities retrieved from the biomedical
knowledge-base, and the green box is the ground truth entity for this mention. This example
is selected from the MedMentions dataset.

information extraction [44], and question answering [141].

Entity linking on biomedical text differs from that on other general domains of text, such

as web documents, in many ways. Consider the example in Figure 5.1, where cardiovascular

disorders is a mention of the entity Cardiovascular Diseases, and others are the top candidate

entities retrieved from UMLS.

• First, the mentions can be ambiguous. In this example, almost all the other candidates

have words that exactly match those in the mention. If we only use surface level

features, it will be hard to link the mention to the correct entity. This requires the

model to have a good semantic understanding of the mention and its context.

• Second, the candidates can be confusingly similar, not only in surface, but also in

semantic meaning. In many cases, additional information is required, such as fine-

grained types, to distinguish the correct entity.
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• Another challenge in medical entity linking is that the mentions and the context are

usually longer in length compared to in the general domain. This makes the traditional

entity linking techniques less effective on medical text.

• Finally, medical text contains many domain specific terms as well as abbreviations

and typos. Thus, many terms cannot be found in standard pre-trained embeddings

such as GloVe [93], and it makes neural models less effective due to a large number of

out-of-vocabulary words.

Figure 5.2: Examples of biomedical entity linking with type information.

A key observation in the process of entity linking is that if we have the fine-grained types of

mentions in the raw text, and types of entities in the knowledge-base, entity disambiguation

becomes much easier. For example, in Figure 5.2(a), each candidate entity has a different

semantic type from the UMLS Semantic Network [78]. If we can infer the correct mention
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type, which in this case most likely is Disease or Syndrome, we can make the correct linking

decision with no further effort. However, the type information in the biomedical domain is

not always available, and the available ones are usually far from fine-grained.

Taking into account all these challenges, in this work, we propose LATTE (Latent Type

Entity Linking model), a novel neural network based model for entity linking in the biomed-

ical text. LATTE introduces the concept of latent-type modeling for entities and their

mentions. The latent types refer to the implicit attributes of each entity. To guide the train-

ing process, we also use the coarse-grained known entity types as auxiliary supervision. To

further enable our model to link the mentions with the entities from the knowledge-base, we

use an attention-based mechanism, that equips the model to rank different candidate entities

for a given mention, based on their semantic representations. We evaluate the performance

of our model using a large scale entity linking dataset from the biomedical domain and a

de-identified corpus of doctor’s notes, against several state-of-the-art baselines.

The rest of this chapter is organized as follows: In Section 5.2, we describe our proposed

model along with the details about the optimization and training process. In Section 5.3, we

give the details about our experimental results including the evaluation metrics and baseline

models. Finally, Section 5.4 concludes the chapter with possible directions for future work.

5.2 The Proposed Model

5.2.1 Motivation

We already showed in Section 5.1 that with precise entity type information (Figure 5.2(a)),

entity disambiguation becomes a straightforward task. However, such detailed information is

not usually available. For example, in the UMLS Semantic Network [78], there are only 127
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types in total, while UMLS has about 900,000 unique entities [11]. In general, most known

types are far from fine-grained. Furthermore, manually labeling all the entities for precise

types requires a significant amount of resources and can be a daunting task. Therefore, we

are motivated to model the latent fine-grained types for all the entities in the knowledge-base

without direct supervision.

Latent Fine-grained Types: We argue that fine-grained types do exist. For example, the

entities Type 2 Diabetes Mellitus and Parkinson Disease both have the semantic type Disease

or Syndrome, but the former is a metabolic disorder, while the latter is a nervous system

disorder. In this case, the finer-grained type can be the body system where the disease

occurs. Similarly, in Figure 5.2(b), for mention long bone fractures, all the candidates share

the same semantic type Finding, yet they still have different intrinsic attributes which can

be used to distinguish them from others. Here we see the intrinsic attributes as finer-grained

types for each entity. Moreover, since there is no fixed set of fine-grained types, we do not

have ground truth labels for them. This motivates us to model the fine-grained types as

latent variables, and we model them using different constraints.

Binary Pairwise Relation Constraint: One constraint is the binary pairwise relation

between mention and each candidate entity. Specifically, if one candidate is the ground

truth entity for a given mention, the relation between them is labeled as 1; otherwise 0.

We can learn the latent types from this pairwise information, as a mention and its ground

truth candidate should share the same latent type distribution. Alternatively, we can see

the pairwise relation label as a similarity measure between the mention and the candidates,

and we can infer how similar the latent types of a mention and a candidate are from this

similarity measure.



76 CHAPTER 5. LATENT TYPE MODELING FOR BIOMEDICAL ENTITY LINKING

Type Hierarchy Constraint: Additionally, we can make use of the coarse-grained known

types. Note that (1) known types can be of any kind and not necessarily semantic types

from the UMLS Semantic Networks; (2) regardless of the number of known types, we con-

sider them as coarse-grained, as we can always model finer-grained types. The known types

are usually generic in nature, and they can be further divided into sub-types. We can view

these sub-types as the previously mentioned latent fine-grained types. Thus we introduce a

hierarchy in the types: the known types are the top-level nodes in the hierarchy, and the

latent fine-grained types are the low-level nodes. Therefore, we can supervise on the known

types to model the latent types.

Multi-tasking of Entity Linking and Type Classification: To model the latent

types with both the Binary Pairwise Relation Constraint and the Type Hierarchy Con-

straint, we simultaneously optimize for both entity linking and type classification in our

model. The entity linking module uses attention mechanism to obtain a similarity score

between a mention-candidate pair, and is supervised on the pairwise relation labels. The

type classification module consists of two type classifiers: one for mention, and the other for

candidates. Both classifiers are supervised on the known type labels, and the weights are

shared between them. The similarity of the two output latent type distributions is used as

another mention-candidate similarity score. This score is combined with the previous score

to obtain the final similarity score. By jointly optimizing the two tasks, we expect the entity

linking performance to improve.
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5.2.2 Problem Statement

Given a mention phrase (mention with context) p from a text in the biomedical domain,

and a set of candidate entities C = {c1, .., cl } from a knowledge-base, the model computes

a relevance score rp,c for each entity in C, based on its relevance with the mention.

Figure 5.3: The overall architecture of the proposed LATTE model for biomedical entity
linking. Table (a) shows part of the UMLS Semantic Types, which we use as the known
types. Table (b) shows the type information of the mention and candidates in the given
example.

5.2.3 Model Architecture

Various components of our model are described in detail below. The overall architecture of

the model is illustrated in Figure 5.3. For all notations, we use the superscripts p and c for

mention and candidate sequences respectively, where m and n denote their corresponding

sequence lengths.
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Embedding Layer: The first layer in our model is the embedding layer. This layer takes

as input the word tokens {wp
i }mi=1 and {wc

i}ni=1 for the mention and the candidate sequences

respectively, and returns the embedding vectors {epi }mi=1 and {eci}ni=1 for each word token.

To overcome the problem of out-of-vocabulary words, we use a combination of word and

character embeddings. First, the character embeddings for each character in a word are con-

catenated and passed through a convolutional neural network. The resultant vector is then

concatenated with the word embedding, obtained from pre-trained embeddings like GloVe

[93] to get the word representation.

Encoder: To get a contextual representation of the words, we use a multi-layer Bidirectional

LSTM [43] encoder for both the mention and the candidate sequences. This layer takes the

word representations from the embedding layer as the input, and returns the contextual

representations {up
i }mi=1 and {uc

i}ni=1 of words in the two sequences. The resultant vectors

have the contextual information from both the backward and the forward context encoded

in them.

−→
up
i =
−−−−→
LSTM(

−→
up

i−1, e
p
i )

←−
up
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←−−−−
LSTM(

←−
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i ]

(5.1)

Cross-Attention Layer: This layer computes the interaction between the mention and

the candidate vectors. It takes their encoded representations as the input, and computes

the relevance between each pair of the mention and candidate word vectors, generated by

the encoder layer. We use a bidirectional attention mechanism, as proposed in [120], for this

layer. Specifically, we first compute the similarity matrix S ∈ Rm×n between {up
i }mi=1 and
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{uc
i}ni=1. Each element sij of this matrix is calculated as follows:

sij = wT
a ·[uc

i ; u
p
j ; u

c
i ⊙ up

j ] (5.2)

After this, we compute the mention-to-candidate attention Sα, and candidate-to-mention

attention Sβ as

Sα = softmax
row

(S),

S̄β = softmax
col

(S), and Sβ = Sα · S̄βT .
(5.3)

Finally, attended vectors {xj}nj=1 can be computed as

aαj =
∑
i

sαiju
c
i , aβj =

∑
i

sβiju
p
i ,

xj = [up
j ; a

α
j ;u

p
j ⊙ aαj ; u

c
j ⊙ aβj ].

(5.4)

All the attended vectors from the cross-attention layer are then concatenated to form X =

[x1, .., xn], and fed into a multi-layer feed-forward network, to obtain the attention-based

relevance score f between the two sequences,

f = ReLU(wf ·X + bf ). (5.5)

Latent Type Similarity: This layer takes the output states of the encoder layer, and then

concatenates them to form a fixed-dimensional vector up = [up
1; ..; u

p
m] for the mention, and

uc = [uc
1; ..; u

c
n] for the candidate. The two vectors are then passed through feed-forward

layers, followed by a softmax layer to obtain two probability distributions over k latent

types. It then computes the similarity g between the two distributions of the mention and
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the candidate using a standard distance metric like cosine similarity:

vp = wl · up + bl, v̂p = softmax(vp),

vc = wl · uc + bl, v̂c = softmax(vc),

g =
v̂p · v̂c
||v̂p|| ||v̂c||

.

(5.6)

Known Type Classifier: To incorporate the known type information and to indirectly

supervise the latent type modeling, we introduce the known type classifier, which is trained

to predict the entity types of both the mention and candidate vectors. It takes the encoded

representations vp and vc of the latent types, and then uses a feed-forward network with

Rectifier Linear Unit (ReLU) activation, to predict their known types yp and yc, respectively.

yp = ReLU(wk · vp + bk)

yc = ReLU(wk · vc + bk)

(5.7)

Ranking Layer: After computing the interaction score f , and the latent type similarity

g, we use the ranking layer to obtain the relevance score between the mention and the

candidate sequences. This module performs a weighted-combination of the two relevance

scores, to compute the final relevance score r.

r = wf
r · f + wg

r · g (5.8)

Here, wf
r and wg

r are learnable weights.
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Dataset Statistics Train Valid Test

Med
Mentions

#Documents 2,635 878 879
#Mentions 210,891 71,013 70,364
#Entities 25,640 12,586 12,402

3DNotes
#Documents 2,133 525 745
#Mentions 22,266 5,373 8,065
#Entities 2,026 1,030 1,209

Table 5.1: Statistics of the datasets used. Note that the “#Entities” refers to the number of
unique entities.

5.2.4 Optimization

Our model incorporates two objectives, one for the type prediction, and another for candi-

date scoring. We jointly optimize these two objectives during our training process.

Type Classification loss: To incorporate the knowledge about the known categorical types

into the semantic representation of mentions and the entities, we minimize the categorical

cross-entropy loss. Given the known type y ∈ {yp, yc} of a mention or a candidate, and its

predicted type distribution ŷ, the loss is calculated as follows:

Ltype = −
K∑
j=1

yj log(ŷj) (5.9)

Mention-Candidate Ranking loss: For a given mention, we want to ensure that the

correct candidate cpos gets a higher score compared to the incorrect candidates cneg. Hence,

we use max-margin loss as the objective function for this task. Given the final scores rp,cpos

and rp,cneg of p with respect to cpos and cneg respectively, the ranking loss is calculated as

follows:
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Lrank = max{0,M − rp,cpos + rp,cneg} (5.10)

5.3 Experimental Results

5.3.1 Datasets

We use two datasets to evaluate the performance of the proposed model. MedMentions

[83] contains 4392 abstracts from PubMed, with biomedical entities annotated with UMLS

concepts. It also contains up to 127 semantic types for each entity from the UMLS Semantic

Network [78], which we use for the known type classification. We use a de-identified corpus of

dictated doctor’s notes, which we refer to as 3DNotes. It is annotated with problem entities

related to signs, symptoms and diseases. These entities are mapped to the 10th version

of International Statistical Classification of Diseases and related health problems (ICD-10),

which is part of UMLS. The annotation guidelines are similar to the i2b2 challenge guidelines

for the problem entity [126]. We use the top categories in the ICD-10 hierarchy as the known

types. For both datasets, we take 5 words before and after a mention as the mention context.

5.3.2 Candidate Generation

For MedMentions, we follow the approach of candidate generation described in [84]. We

take only the top 9 most similar entities (excluding the ground truth entity) as the negative

candidates. In addition, the ground truth entity will be considered as the positive candidate,

thus forming a set of 10 candidates for each mention. For 3DNotes, we use a similar approach

to generate candidates from ICD-10.
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5.3.3 Evaluation Metrics

To evaluate the proposed model, we measure its performance against the baseline techniques

using Precision@1 (the precision when only one entity is retrieved) and Mean Average Pre-

cision (MAP). These metrics were chosen considering the fact that our problem setup is a

ranking problem. Note that, in our case, since each mention has only one correct candidate

entity, Precision@1 is also equivalent to Recall@1.

5.3.4 Implementation Details

We implemented our model and all other baselines in PyTorch [92]. The model was trained

using the Adam optimizer [58], with a learning rate of 10−4. We used GloVe embeddings

with 300 dimensions as the input word vectors, and the output dimension of the character

CNN was 512, making each word a 812-dimensional vector. The encoders used two Bi-LSTM

layers, where the output dimension of each individual LSTM layer was 512. The number

of latent types, k, is set to 2048. The hyperparameter values were obtained based on the

experimental results on the validation set.

5.3.5 Baselines

For the quantitative evaluation of the proposed LATTE model, we use the following state-

of-the-art baseline methods for comparison.

• TF-IDF: This is a standard baseline for NLP tasks. Here, we use character level n-grams

as the terms, with n ∈ {1, 2, 3, 4, 5} and cosine-similarity for obtaining the candidate

scores.

• ARC-I [47]: This is a semantic matching model that uses CNN layers to compute the
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representation of the source and the candidate sequence, and then uses a feed-forward

network to compute their similarity.

• ARC-II [47]: This is an extension of ARC-I, which instead computes the interaction

feature vector between the two sequences using CNN layers.

• MV-LSTM [129]: It is a neural semantic matching model that uses Bi-LSTM as encoder

for both mention and candidate, and then computes an interaction vector using cosine

similarity or a bilinear operation.

• MatchPyramid [90]: This model computes pair-wise dot product between mention and

candidate to get an interaction matrix. The matrix is then passed through CNN layers

with dynamic pooling to compute the similarity score.

• KNRM [135]: This is a neural ranking model which first computes the cosine similar-

ity between each query word and document words. It then performs kernel pooling to

compute the relevance score.

• Duet [82]: It is a hybrid neural matching model that uses the word-level interaction and

document-level similarity in a deep CNN architecture, to compute the similarity score.

• Conv-KNRM [20]: This model is an extension of KNRM, which instead uses convolu-

tional layers to get n-gram representations of mention and candidates.

5.3.6 Results

Quantitative Results

Table 5.2 shows the performance of LATTE against the state-of-the-art baselines. On Med-

Mentions, LATTE outperforms the baselines by a wide margin. On 3DNotes, paired t-tests

indicate that LATTE outperforms the strongest baseline with confidence level of 90% (ex-

perimented with 5 different random seeds).
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MedMentions 3DNotes
Model name P@1 MAP P@1 MAP
TF-IDF 61.39 67.74 56.89 69.45
ARC-I 71.50 81.78 84.73 90.35
ARC-II 72.56 82.36 86.12 91.38
KNRM 74.92 83.47 84.32 90.04
Duet 76.19 84.92 86.11 91.19
MatchPyramid 78.15 86.31 85.97 91.32
MV-LSTM 80.26 87.58 87.90 92.44
Conv-KNRM 83.08 89.34 86.92 92.08
LATTE-NKT 86.09 91.27 86.40 91.09
LATTE 88.46 92.81 87.98 92.49

Table 5.2: Comparison of LATTE with other baseline models on MedMentions and 3DNotes
dataset. LATTE-NKT is trained without the supervision of known types classification. P@1
is short for Precision@1.

Effect of using interaction-based method: We can observe that TF-IDF and ARC-I,

which compute the semantic representations of the mention and the candidate sequences

independently, have lower performance as compared to all the other baselines. LATTE, as

well as other models, uses some form of interaction-based semantic representation of the

two sequences. The interaction mechanism can model the pairwise relevance between the

words from the two sequences, and hence, can uncover the relationship between them more

effectively.

Type modeling for entity linking: LATTE-NKT is a version of our model without known

type modeling. In terms of architecture, LATTE-NKT do not have the known type encoders

and type classifiers. We can see that all the other baselines, including LATTE-NKT, have

lower performance than the full LATTE model. This shows that multi-tasking with type

classification has strong positive effect on entity linking. Moreover, supervision on the known

types guides the latent type modeling, which also contributes to the superior performance

of LATTE.

Performance on datasets with different distributions: MedMentions is from PubMed
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articles, which are more scholarly; 3DNotes is from dictated doctor’s notes, which makes

it colloquial in nature. The different distributions of the two datasets are also reflected in

the out-of-vocabulary (OOV) words rate. Using GloVe embeddings, 3DNotes has 10.46%

OOV words, while MedMentions has 58.34%. When the OOV rate is high, 1) character

embeddings can help mitigate this problem as they capture the lexical similarity among the

words. 2) type information provides an extra link between a mention and the corresponding

entity, which is beyond lexical and semantic matching. This explains why LATTE performs

better on MedMentions than 3DNotes. Since typical biomedical datasets tend to have a high

OOV rate, we expect that the performance of LATTE on MedMentions can be generalized

to that on other biomedical datasets.

Figure 5.4: Examples of entity linking result comparison between LATTE and a state-of-the-
art baseline model (Conv-KNRM). Note that the red words are the mentions, and the green
boxes are ground truth known types and candidates. (a) When candidates have different
types, information of the correct mention type makes entity linking straightforward. LATTE
learns how to classify mention types while doing entity linking. (b) When the mention
or candidate words are out-of-vocabulary, measuring mention-candidate similarity becomes
much harder. Character encoding and type classification mitigate this problem. (c) When
candidates have the same type, LATTE is still capable of distinguishing the correct candidate
from others.

Ablation Analysis

To study the effect of different components used in our model architecture, on the overall

model performance, we also compare the performance of LATTE against its different variants
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MedMentions 3DNotes
Model name P@1 MAP P@1 MAP
LATTE_base 80.02 86.94 84.08 90.15
LATTE_base+LT 86.09 91.27 86.40 91.09
LATTE_base+KT 87.73 92.33 87.80 92.66
LATTE 88.46 92.81 87.98 92.49

Table 5.3: Performance comparison of LATTE and its variants on MedMentions and 3DNotes
Datasets.

(see Table 5.3).

• LATTE_base: This is the simplest variant of our model, which only contains the

word embedding layer, encoder, the element-wise dot product as the similarity measure,

and a feed-forward network to get a similarity score.

• LT: This module includes the latent type encoder, softmax and the distribution sim-

ilarity measure. From this step, character embedding is included and the mention-

candidate interaction is switched to cross-attention.

• KT: This module consists of the two known type classifiers, for mention and candidate

respectively, depicted as the Known Type Classification layer in Figure 5.3. Note that

during test, we do not have the known type labels.

As shown in Table 5.3, introducing latent type modeling with cross-attention boosts Preci-

sion@1 on MedMentions and 3DNotes by 6.07% and 2.32% respectively, which shows that

matching mention and candidates have similar latent type distribution, and modeling this

similarity improves the entity linking task. It also shows that the cross-attention mechanism

is strong in capturing the semantic similarity between mention and candidates. Instead, if

we add the known type supervision, there are 7.71% and 3.72% gains in Precision@1 with

respect to the two datasets. This shows that multi-tasking with known type classification

has strong positive effect on the entity linking task. Finally, adding latent type modeling

along with know type classification further improves the Precision@1. This proves that the
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hierarchical type modeling improves the entity linking task.

Qualitative Analysis

The example in Figure 5.4(a) is a common case in biomedical domain, where the mention

is an abbreviated form of the entity name. Such cases are challenging for traditional text

matching methods since the abbreviation has very few common features with the complete

name. Moreover, biomedical terms usually appear at a much lower frequency, and hence it

is hard for models to learn the mapping through training. LATTE overcomes this problem

by exploiting the type information. Although the mention may have a lower frequency,

each type has a large number of samples to train the type classifiers. Therefore our model

can classify the mention type with higher confidence. If the candidates have different types,

entity linking decisions can be made with the knowledge of the type classification result. Note

that, instead of direct usage, the type classification result is incorporated in the similarity

computation. Figure 5.4(b) shows the case when the mention has OOV words. OOV words

problem is a major challenge in the biomedical domain. Many biomedical terms do not have

pre-trained word embeddings, without which the text matching becomes clueless. This is

also why the retrieved result of the baseline model is incorrect. The character encoding and

type matching in LATTE address this problem effectively. Figure 5.4(c) shows that when the

candidates have the same type, LATTE can successfully distinguish the correct entity from

other candidates. This is because: 1) the cross-attention mechanism is powerful in matching

the mention and candidates text and 2) as discussed in previous sections, the latent types

can be different even when the candidates share the same known type. Therefore the latent

type modeling of LATTE works effectively in this case.
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5.4 Conclusion

We proposed a novel methodology, which models the latent type of mentions and entities,

to improve the biomedical entity linking task. We incorporate this methodology in LATTE,

a novel neural architecture that jointly performs fine-grained type learning and entity dis-

ambiguation. To the best of our knowledge, this is the first work to propose the idea of

latent type modeling and apply it to biomedical entity linking. Our extensive set of exper-

imental results shows that latent type modeling improves entity linking performance, and

outperforms state-of-the-art baseline models. The idea of latent type modeling can be useful

to a wider range of tasks, such as in other text matching tasks, and other non-biomedical

domains. These can be possible directions for future work.



Chapter 6

A Machine Learning Benchmark for

Cross-lingual Code Intelligence

Recent advances in machine learning have significantly improved the understanding of source

code data and achieved good performance on a number of downstream tasks. Open source

repositories like GitHub enable this process with rich unlabeled code data. However, the

lack of high quality labeled data has largely hindered the progress of several code related

tasks, such as program translation, summarization, synthesis, and code search. This chapter

introduces XLCoST , Cross-Lingual Code SnippeT dataset, a new benchmark dataset

for cross-lingual code intelligence. Our dataset contains fine-grained parallel data from 8

languages (7 commonly used programming languages and English), and supports 10 cross-

lingual code tasks. To the best of our knowledge, it is the largest parallel dataset for source

code both in terms of size and the number of languages. We also provide the performance of

several state-of-the-art baseline models for each task. We believe this new dataset can be a

valuable asset for the research community and facilitate the development and validation of

new methods for cross-lingual code intelligence1. This chapter is adapted from a paper [151]

accepted in the Deep Learning for Code (DL4C) workshop in ICLR 2023, of which I am the

first author and primary contributor.

1https://github.com/reddy-lab-code-research/XLCoST
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Table 6.1: Comparison against other parallel code datasets (Py - Python, JS - JavaScript).
Column “Size” refers to the number of parallel data pairs. *This number is for single pro-
grams, not pairs.

Dataset Alignment Task Labelling Size Languages
CodeNet Program Multiple Solutions to the same problem 13.9M* 55 programming languages
AVATAR Program Translation Solutions to the same problem 57,414 Java, Py
CodeXGLUE Method Multiple Matching function names 11,800 Java, C#
CoST Snippet Translation Matching code comments 132,046 C++, Java, Py, C#, JS, PHP, C
XLCoST Snippet Multiple Matching code comments 1,002,296 C++, Java, Py, C#, JS, PHP, C, English

6.1 Introduction

Recent advances in machine learning have benefited a number of code related tasks, such

as code translation, code summarization, and code synthesis. Open-source code repository

websites like Github provide an enormous amount of source code data, which enables the

training of large-scale programming language models such as CodeBERT [27], PLBART

[5], TransCoder [111] and CodeT5 [132]. These extensively pre-trained models have shown

superior performance on benchmark datasets like CodeXGLUE [73].

Although open-source code data is abundant in quantity, it has several disadvantages when

being used as training data for code-related models. First, most of the available code data is

unlabeled. For tasks like Code Translation, Code Summarization, and Code Synthesis, high

quality parallel data is critical for model training. However, it is difficult to mine parallel

data from open-source projects. Second, labeled data is usually small in size. For example,

the code translation data introduced in [152] only has around 70 programs for testing and

50 programs for validation. Due to the small size of evaluation data, the models trained

on this dataset may not be thoroughly evaluated. Moreover, the available labeled datasets

usually only cover a limited number of languages. For example, the Code Translation dataset

in CodeXGLUE only covers 2 languages, Java and C#. Because of the scarcity of labeled

data in some programming languages, code tasks in some low-resource languages remain

unexplored.
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In this chapter, we introduce XLCoST , a machine learning benchmark dataset that con-

tains fine-grained parallel data in 7 commonly used programming languages (C++, Java,

Python, C#, Javascript, PHP, C), and natural language (English). The data is parallel

across 7 languages, at both code snippet level and program level. This means that, given

a program in one language, the dataset contains the same program in up to 6 other pro-

gramming languages. Each program is divided into several code snippets, and programs

in all the languages are aligned at the snippet level. Moreover, each of the snippets is ac-

companied with a comment, and the comment for a particular snippet is the same across

all the languages. Table 6.1 presents a comparative analysis of XLCoST in terms of the

number of available parallel data samples against other widely used parallel code datasets.

The dataset contains around 1 million parallel snippets and 123K parallel programs in total,

which is significantly larger than many available parallel code datasets. We believe that this

dataset is a valuable asset for the research community and can potentially benefit a number

of code-related research problems.

To further facilitate the development and evaluation of models with a focus on source code, we

also introduce 10 different cross-lingual tasks. These tasks can be divided into two categories:

Generation and Retrieval. The generation tasks include Code Translation (Code-to-Code),

Code Summarization (Code-to-Text), and Code Synthesis (Text-to-Code); the retrieval tasks

include NL (Natural Language) Code Search and XL (Cross-Lingual) Code Search. Each

task is at both snippet and program level.

To evaluate how challenging the tasks are with the proposed dataset, we run experiments

on all the 10 tasks with a number of state-of-the-art baseline models. We also conduct

an empirical study to understand how the model design relates with the performance on

different tasks with XLCoST dataset. The primary contributions of this chapter are as

follows:
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• We introduce a new dataset which is parallel across 8 languages (7 programming lan-

guages and English) at both snippet level and program level. To the best of our

knowledge, it is the largest parallel dataset for source code in both size and number

of languages.

• We formulate 10 different cross-lingual tasks to facilitate the development and evalu-

ation of models in this domain.

• We run experiments for all the 10 tasks on the proposed dataset with a number of

state-of-the-art baseline models and provide insights about model design for the new

challenges.

6.2 The XLCoST dataset

The data for XLCoST was collected from GeeksForGeeks2, which is a website that houses

thousands of data structures and algorithm problems along with solutions in up to 7 different

programming languages: C++, Java, Python, C#, Javascript, PHP, and C. According to

GeeksForGeeks, the solution programs for the same problem follow the same structure, down

to the variable names. This results in the programs being semantically consistent across the

different languages. In most cases, the programs for the same problem share the same set

of comments in the same order, which indicates that they are parallel to the snippet level.

This is where the fine-grained alignment in XLCoST comes from.

6.2.1 Definitions

Problems: The problems are mostly about data structures and algorithms, as they are

mainly designed for tutoring and coding interview preparation. Each problem has programs
2https://www.geeksforgeeks.org/
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Figure 6.1: An illustration of the data and the tasks. The first column is the Problem
Description; each cell in the second column is a Comment; each cell from the third column
is a code Snippet. The combination of all the code snippets in a column is a Program
(truncated due to space limitation). The arrows show the input and output data for each
task. Solid lines are for generation tasks and dashed lines are for retrieval tasks. Note that
the Program Synthesis task uses both Problem Description and Comments as input.

as solutions in up to 7 programming languages.

Programs: A program is a solution to a problem in a specific programming language. Each

problem in this dataset may contain up to 7 programs (one for each language). The pro-

grams for the same problem share similar logic and structure.

Snippets: The code between two consecutive comments in a program is termed as a snippet

(code before the first comment and after the last comment are also included). On an average,

each program contains 8.81 snippets.

Description: Each problem also has a short description, for example, “Maximum Consec-

utive Increasing Path Length in Binary Tree.”

Comments: The comments in each program in this dataset. The programs are well com-

mented and each program has an average of around 9 comments.
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Table 6.2: The train-valid-test split and basic statistics of XLCoST data. SN - Snippets;
PR - Program.

Snippet-level Program-level
Split C++ Java Py C# JS PHP C Total C++ Java Py C# JS PHP C Total
train 93847 91089 81207 87583 70649 18027 3763 446165 9797 9623 9263 9345 8590 3087 463 50168
valid 4432 4460 3946 4436 3829 930 350 22383 492 494 472 491 475 158 60 2642
test 8118 8154 7293 8013 7033 1682 250 40543 909 911 887 899 886 308 51 4851
total 106K 104K 92K 100K 82K 21K 4363 509K 11198 11028 10622 10735 9951 3553 574 57661

Stats C++ Java Py C# JS PHP C Avg. C++ Java Py C# JS PHP C Avg.
#lines 3.41 3.71 2.41 3.82 3.23 4 4.05 3.37 32.45 34.93 20.54 35.64 26.47 23.23 31.5 29.71
#code tokens 21.52 24.1 21.63 23.06 22.52 28.14 25.37 22.83 205 227.1 188.5 215.3 184.6 163.5 198 202
#text tokens 8.25 8.14 7.97 8.23 7.96 8.45 9.67 8.15 10.68 10.67 10.75 10.7 10.87 9.91 8.19 10.66
#SN/PR – – – – – – – – 9.52 9.42 8.51 9.33 8.2 5.81 7.77 8.81

6.2.2 Data Characteristics

The final dataset consists of 11,265 programming problems. As shown in Table 6.2, there are

57,661 unique programs. Each program consists of 8.81 snippets on average, which results

in 509,091 snippets.

Multilingual: The dataset contains parallel data in 8 languages (7 commonly used pro-

gramming languages and English).

Parallel: The dataset contains 4 types of parallel data: snippet-to-snippet, program-to-

program, snippet-to-comment, program-to-problem (and comments), which further enables

10 different tasks.

Finely-aligned: The data is parallel at both snippet level and program level. To the best

of our knowledge, this dataset is the finest-aligned among parallel code datasets.

Large: It is the largest parallel dataset for source code in terms of both size and number of

languages.

Simple: Each program in this dataset is standalone without dependency on other programs.

It ensures that the complexity of the tasks is controllable.
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6.2.3 Data Collection and Processing

The data was scraped from different sub-pages of the GeeksForGeeks website. A majority of

the problems on this site fall under two categories - Data Structures and Algorithms. The

IP policies and regulations for GeeksForGeeks were carefully followed and we confirm that

no data privacy policy was violated when collecting the data.

After collecting the data, we first removed duplicate problems, as some problems might be

presented in multiple subcategories. Then we extracted problem description and solution

programs in each available language from the page. Each program was sliced into code snip-

pets by splitting at the comments, after which the comments and docstrings were removed

from the programs. Any personal information such as the name of the code’s contributor,

was also removed from both the comments and the codes at this time. Eventually, we get 4

types of information from one page: 1) Problem Description; 2) Parallel programs in different

languages; 3) Code Snippets; 4) Code Comments.

Data Alignment

The snippet-level alignment was done by matching comments in the solution programs (for

the same problem) across different languages. As mentioned earlier, GeeksForGeeks pro-

grams follow a standard template, because of which the comments in different language

programs (for the same problem) align parallelly in most cases. This yields parallel snippets

that have the same functionality across different languages.

Misalignment detection: In some cases, the comments in different solution programs

are not aligned. The misalignment can come from different numbers of comments, and

the differences in the comment content. This is usually due to some solution program

not strictly following the guidelines and templates. For solution programs with the same
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number of comments, we evaluate the alignment by calculating the average similarity score

of each pair of comments in the two programs (using Python difflib.SequenceMatcher3). If

the average score is below a certain threshold (80% in our case), it would be categorized

as misalignment and manual checking would be needed. Solution programs with different

number of comments were automatically categorized as misaligned and sent for manual

checking.

Manual checking and aligning: Manual checking was performed by two of the authors

with good knowledge of programming languages and their functionalities. Based on the

differences in number of comments, the misaligned programs were split into the following

categories:

Category 0: The programs have the same number of comments. The type of misalignment

usually only is due to different wording in the comments and can be easily fixed.

Category k: The difference in number of comments is k. When k < 3, extra comments

needed to be discarded in some cases and code from these comments was moved to appropri-

ate snippets to preserve the alignment with other languages. In some cases, there were also

missing comments which had to be added along with the moving of the appropriate code

block as in the previous case. When k >= 3, the programs will be discarded.

Data Splitting

Since the parallel programs are within each problem, splitting the data at problem level can

naturally avoid data leakage. However, during the data processing, we noticed that some

problems are very similar. For example, ”Check if a large number is divisible by 3 or not”

and ”Check whether a large number is divisible by 53 or not”. If one problem goes to the

training set and the other goes to the test set, it can lead to potential data leakage and bias.
3https://docs.python.org/3/library/difflib.html
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Table 6.3: An overview of the tasks. All the tasks have pairwise data at both snippet-
level and program-level in 7 programming languages: C++, Java, Python, C#, Javascript,
PHP, and C. The tasks can be divided into two categories: generation and retrieval. The
generation tasks include Code Translation, Code Summarization and Code Synthesis; the
retrieval tasks include NL (natural language) Code Search and XL (Cross-Lingual) Code
Search.

Category Task Data Description

Generation

Code
Translation
(Code-to-Code)

Snippet Translation 872K/47K/83K Translate code snippet across programming languages

Program Translation 106K/6K/11K Translate program across programming languages
Code
Summarization
(Code-to-Text)

Snippet Summarization 446K/22K/41K Generate comment for given code snippet

Program Summarization 50K/3K/5K Generate problem description for given program

Code Synthesis
(Text-to-Code)

Snippet Synthesis 446K/22K/41K Generate code snippet giving comment

Program Synthesis 50K/3K/5K Generate program from problem and comments

Retrieval

NL Code Search Comment-to-Snippet Search 446K/22K/41K Retrieve code snippet for given comment

Problem-to-Program Search 50K/3K/5K Retrieve program for given problem description

XL Code Search
Snippet-to-Snippet Search 872K/47K/83K Retrieve snippets in other languages for given snippet

Program-to-Program Search 106K/6K/11K Retrieve programs in other languages for given snippet

To address this concern, we first clustered all the similar problems into groups, and made

the split at the group-level. In this way, we can ensure that similar problems go to the same

split. To do so, we first calculate the similarity score (using Python difflib.SequenceMatcher)

between every two pairs of problem descriptions, and group all the problems using various

similarity score thresholds (60%-80%) based on length of the descriptions. The final split

ratio in the data is around 85-5-10 for train-validation-test sets.

6.3 Code Tasks

The tasks can be divided into two categories: generation and retrieval. The generation tasks

include Code Translation, Code Summarization, and Code Synthesis. The retrieval tasks

include NL (natural language) Code Search and XL (Cross-Lingual) Code Search. All the

tasks are at both snippet-level and program-level. Figure 6.1 shows the input and output
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data for each of the tasks. Table 6.3 summarizes all the tasks introduced and some aggregate

data statistics corresponding to each task.

Code Translation (Code-to-Code): Code Translation is the problem of converting source

code from one programming language to another. Efficient and accurate code translation

is valuable in scenarios like legacy code migration, software platform adaptation, etc. The

XLCoST dataset provides parallel data in 7 common programming languages, supporting

translation for 42 language pairs at both snippet and program level.

Code Summarization (Code-to-Text): The objective of the Code Summarization task

is to generate natural language descriptions of the code that is given as input. We perform

this task under two settings: generating snippet level summary by leveraging the comment-

snippet pairings, and generating problem level summary using the problem description and

program code pairings. Applications of this task include increasing the comprehensibility of

uncommented or unfamiliar code to first time viewers and making it easier to collaborate as

well as educate.

Code Synthesis (Text-to-Code): The Code Synthesis task focuses on generating source

code from text inputs. It includes Snippet Synthesis and Program Synthesis. We use the

comment of each code snippet as input to generate the code snippet for the Snippet Synthesis

task, since they are of similar length (as shown in Table 6.2). However, programs are usually

much longer (avg. 202 tokens) than problem descriptions (avg. 11 tokens). To generate

programs, it is necessary that the input text is detailed and informative. Therefore, we use

a combination of problem description and step-by-step comments as input to generate the

entire program. Since the programs in XLCoST are well commented (9 comments/snippets

per program on average) this ensures that the models have enough information to synthesize

the whole program.
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Code Search: The NL (Natural Language) Code Search in this chapter refers to using

text input to retrieve relevant code. The snippet and program level task use Comment and

Problem Description as query, respectively. XL (Cross-lingual) Code Search is the task of

retrieving code that performs similar functions in multiple other languages given a piece of

code in one particular language. Unlike NL code search, using code as queries to search for

similarly functioning code in a multilingual setting is a relatively unexplored task. This task

also includes both snippet and program level. To account for multiple correct answers, we

use a modified MRR (Mean Reciprocal Rank) for evaluation.

6.4 Experiments

All the baselines were initialized with the pretrained weights and default configuration (in-

cluding hyper-parameters) released by the corresponding original authors of the works. We

changed the source and target sequence lengths to align with the dataset based on the task.

The models were trained using 4 RTX 8000 GPUs with 48GB memory on each GPU. The

code for training and evaluation is released in the GitHub repository of the dataset.

6.4.1 Evaluation Metrics and Baselines

We use the following metrics to evaluate different tasks proposed in this work: (i) BLEU

[91] score to evaluate code-to-text generation tasks;, (ii) BLEU and CodeBLEU4 [107] to

evaluate code-to-code and text-to code generation tasks, and (iii) Mean Reciprocal Rank

(MRR) to evaluate retrieval tasks.

We use the following models/methods for our comparison:

4We extended the CodeBLEU metric to support C and C++. Related code is released in the GitHub
repo.
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Naive Copy [73] directly copies the input source code as the output, which shows how

similar two programming languages are. It is only used for translation tasks.

RoBERTa [71] is a robustly optimized version of BERT pretrained on huge natural lan-

guage corpora. We use it only for retrieval tasks.

CodeBERT [27] uses the BERT [23] architecture pretrained on CodeSearchNet [49] data.

We use the encoder-only version for retrieval tasks and encoder-decoder version (the decoder

is randomly initialized) for generation tasks.

PLBART [5] is initialized with mBART [72] and further pretrained on a large-collection of

Java and Python functions and natural language descriptions from Github and StackOver-

flow with denoising auto-encoding objective.

CodeT5 [132] employs the T5 [100] architecture and is pretrained on corpora of 8 program-

ming languages (Java, Python, C#, JS, PHP, C, Ruby, Go) with identifier-aware objective.

6.4.2 Result Analysis

Table 6.4 shows the performance of baseline models for Code Translation, Code Synthesis,

Code Summarization, and Code Search tasks.

Effect of Sequence-to-Sequence Pretraining: In Table 6.4, on average, CodeBERT

performs significantly worse than PLBART and CodeT5 on almost all the generation tasks

(refer to the first three sections of the table). Different from PLBART and CodeT5, which

are both encoder-decoder models pretrained with sequence-to-sequence objectives, only the

encoder in CodeBERT is pretrained, and the decoder weights are randomly initialized for

sequence-to-sequence tasks. Experimental results show that the encoder-decoder architecture

and sequence-to-sequence pretraining are better aligned with generation tasks and thus can

potentially achieve superior performance.
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Table 6.4: From top to bottom, the table contains results for Code Translation, Code Syn-
thesis, Code Summarization, and Code Search at the snippet-level and program-level.

Snippet-level Program-level
CodeBLEU Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

C++

Naive Copy – 64.56 34.79 63.19 53.16 42.56 84.2 – 57.36 17.68 58.02 53.16 18.97 75.91
CodeBERT – 84.94 74.55 84.99 82.79 68.56 45.46 – 74.73 24.96 76.35 72.95 50.4 21.84
PLBART – 83.85 74.89 84.57 83.19 68.62 83.95 – 75.26 70.13 78.01 61.85 67.01 72.59
CodeT5 – 86.35 76.28 85.85 84.31 69.87 90.45 – 80.03 71.56 81.73 79.48 70.44 85.67

Java

Naive Copy 70.85 – 35 78.43 57.81 42.49 69.74 64.25 – 39.87 72.68 57.81 42.51 62.48
CodeBERT 87.27 – 58.39 92.26 84.63 67.26 39.94 79.36 – 8.51 84.43 76.02 51.42 21.22
PLBART 87.31 – 58.3 90.78 85.42 67.44 72.47 81.41 – 66.29 83.34 80.14 67.12 63.37
CodeT5 88.26 – 74.59 92.56 86.22 69.02 82.78 84.26 – 69.57 87.79 80.67 69.44 78.78

Python

Naive Copy 39.22 31.89 – 31.79 38.34 36.02 37.79 37.47 29.78 – 27.59 38.42 35.48 35.66
CodeBERT 80.46 58.5 – 54.72 57.38 65.14 10.7 68.87 28.22 – 17.8 23.65 49.3 18.32
PLBART 80.15 74.15 – 73.5 73.2 66.12 62.15 74.38 67.8 – 66.03 69.3 64.85 29.05
CodeT5 81.56 78.61 – 78.89 77.76 67.54 68.67 78.85 73.15 – 73.35 71.8 67.5 56.35

C#

Naive Copy 69.78 78.71 34.77 – 57.85 42.53 66.73 64 73.63 40.09 – 57.79 42.96 60.87
CodeBERT 86.96 90.15 56.92 – 84.38 67.18 40.43 78.52 82.25 10.82 – 75.46 51.76 21.63
PLBART 84.98 6.27 69.82 – 85.02 67.3 75.74 80.17 81.37 67.02 – 79.81 67.12 57.6
CodeT5 88.06 91.69 73.85 – 85.95 68.97 81.09 83.59 85.7 69.52 – 80.5 69.63 77.35

JS

Naive Copy 60.82 59.25 38.84 64.27 – 41.56 55.84 53.81 51.77 42.31 54.86 – 42.11 49.04
CodeBERT 84.38 84.42 52.57 84.74 – 66.66 33.29 75.43 72.33 9.19 75.47 – 52.08 19.79
PLBART 84.45 84.9 69.29 85.05 – 67.09 72.65 80.19 76.96 64.18 78.51 – 67.24 67.7
CodeT5 85.06 85.48 73.15 85.96 – 68.42 80.49 82.14 79.91 68.42 81.77 – 68.76 74.57

PHP

Naive Copy 36.33 35.61 24.62 36.67 35.55 – 35.95 34.62 31.33 25.68 32.81 32.26 – 33.45
CodeBERT 82.58 81.57 69.29 80.96 79.94 – 28.45 50.13 46.81 16.92 49.75 48.12 – 22.19
PLBART 83.87 81.66 71.17 78 82.94 – 57.39 79.4 72.77 61.26 74.16 44.26 – 56.23
CodeT5 86.33 85.12 73.22 84.56 83.56 – 79.3 85.55 82.09 72.26 83.79 81.72 – 65.86

C

Naive Copy 83.93 65.46 38.49 63.05 55.55 41.85 – 78.4 59.41 20.2 59.83 53.54 19.75 –
CodeBERT 45.84 39.69 13.55 39.71 29.85 38.88 – 21.7 21.27 21.1 19.5 15.64 31.71 –
PLBART 82.53 72.35 49.16 75.78 75.05 60.86 – 78.42 13.45 5.53 45.15 31.47 25.17 –
CodeT5 90.26 81.81 63.81 83.05 79.73 66.32 – 88.17 76.12 56.32 80.2 76.5 64.28 –

CodeBLEU Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

Code
Synthesis

CodeBERT 22.7 25.53 12.26 23.44 23.87 36.47 10.63 26.51 31.14 24.5 33.37 29.09 39.84 18.08
PLBART 34.89 32.23 4.62 29.36 29.63 37.56 22.88 44.09 41.55 33.77 40.7 38.33 43.01 6.72
CodeT5 35.48 33.51 21.1 30.64 29.99 36.37 21.93 45.18 42.73 35.02 43.6 38.66 45.02 34.88

BLEU Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

Code
Summarization

CodeBERT 14.4 13.13 3.96 14.07 11.81 11.25 5.84 7.68 5.47 2.04 7.58 7.67 7.5 6.64
PLBART 14.77 13.76 8 14.37 10.93 9.07 7.5 7.65 6.35 4.86 9.23 6.78 6.03 4.14
CodeT5 17.36 16.69 10.76 17.44 14.34 13.42 6.63 9.62 8.82 6.32 7.75 8.23 10.5 12.84

MRR Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C

NL Code
Search

RoBERTa 25.77 25.85 27.08 25.64 26.78 33.47 36.14 51.47 50.4 48.98 52.24 50.05 62.01 56.34
CodeBERT 29.77 29.41 30.94 29.08 31.2 38.75 41.56 59.13 56.07 57.97 56.65 54.37 65.13 47.13

XL Code
Search

RoBERTa 41.73 41.25 36.16 41.18 43.17 41.17 37.1 48.28 47.66 46.11 46.4 47.6 43.76 40.15
CodeBERT 42.11 41.71 36.98 41.52 43.41 41.09 37.87 48.71 48.33 47.24 47.96 47.66 44.02 40.43
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Table 6.5: Transfer learning from Snippet-Level training for Program Translation task on
low resource language C. ST - Snippet Transfer.

Model C-C++ C-Java C-Py C-C# C-JS C-PHP C++-C Java-C Py-C C#-C JS-C PHP-C
CodeBERT 21.67 21.27 21.1 19.48 15.68 31.71 21.87 21.27 18.32 21.57 19.79 22.19
CodeBERT+ST 38.85 37.55 19.79 33.52 27.1 37.61 31.99 30.52 24.07 34.16 29.67 28.35
PLBART 78.42 13.43 5.53 45.14 31.42 25.17 72.61 63.4 29.01 57.6 67.71 56.15
PLBART+ST 81.1 70.78 44.26 72.68 73.27 60.71 79.72 77.3 47.48 74.09 72.6 64.64
CodeT5 88.17 76.15 56.3 80.2 76.42 64.28 85.67 78.76 56.44 77.38 74.56 65.8
CodeT5+ST 89.06 79.04 62.61 80.53 78.59 68.31 88.96 82.08 60.97 80.93 79.58 77.58

Table 6.6: Top compilation errors in each target language (Javascript not included).

Language Top-3 Compilation Errors in Each Target Language
C++ expected ‘}’ at end of input stray ‘#’ in program ‘define’ does not name a type
Java ’;’ expected not a statement unclosed character literal
Python SyntaxError: invalid syntax SyntaxError: unexpected EOF

while parsing
IndentationError: expected an
indented block

C# Too many characters in character
literal

Unexpected symbol ‘end-of-file’ Newline in constant

PHP Syntax error, unexpected ’}’,ex-
pecting EOF..

Syntax error, unexpected ’)’.. Syntax error, unexpected EOF
on line 1

C expected declaration or state-
ment at end of input

expected ‘=’,‘,’,‘;’,‘asm’ ... be-
fore ‘)’ token

expected statement before ‘)’
token

Effect of Pretraining on Specific Languages: CodeBERT is pretrained on CodeSearch-

Net, which contains data from 6 programming languages, Java, Python, Javascript, PHP,

Ruby, and Go. PLBART is pretrained on Java and Python from GitHub data. CodeT5 is

trained on the 6 languages from CodeSearchNet and additionally on C and C#. In Table

6.4, CodeT5 consistently outperforms the other two models for almost all generation tasks.

When the source or target language is C, CodeT5 outperforms the other two by a wide

margin. Pre-training on specific languages can potentially benefit the generation tasks with

these languages as either input or output.

Performance on Low-Resource Languages: In Table 6.4, most models performs signifi-

cantly worse on C compared to other languages, both when C is source or target language, in

almost all the tasks (except for Code Search). As shown in Table 6.2, C has the least number

of samples for all the tasks. It shows that tasks in low-resource languages are potentially

more challenging.
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Effect of Transfer Learning from Snippet-level Training: From Table 6.4, first sec-

tion, we noticed that models perform significantly better at snippet-level than program-level

on most language pairs in the translation task. This is because: 1) Snippets are much

shorter than programs. As shown in Table 6.2, the average length of snippets is 1/7 of the

programs. 2) Snippet data is much more than program data. As shown in Table 6.3, the

amount of pairwise snippet data is 8 times larger than of program data. Motivated by this,

we employ transfer learning from snippet-level training to improve the Program Translation

performance on the low-resource language C. Table 6.5 shows the performance of each model

with and without the transfer learning. For example, CodeBERT is trained only on program

data; “CodeBERT + ST” (ST is short for Snippet Transfer) model is first trained on the

snippet data, and then on program data. All the models’ performance improves by a wide

margin on all the language pairs after snippet-level transfer learning, both when C is the

source or target language.

Top Compilation Errors in Generated Programs: Table 6.6 shows the top compilation

error types from compiling the generated programs from the Program Translation task. We

aggregated the results of generated programs from all the baselines by the target language,

because: 1) the top error types of each baseline are very similar and 2) the space is limited.

From this table, we can see that the top error types are mostly syntactic errors, such as

bracket mismatch (C++, PHP, C), indentation mismatch (Python), missing ’;’ (Java). This

indicates that the models need improvement in capturing the structure of the programs.

6.4.3 Limitations and Future Work

From our analysis of the results, we can conclude that Sequence-to-Sequence pretraining

tasks, multilingual pretraining data, and Snippet-level Transfer Learning can potentially
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improve the performance on multiple tasks and low resource languages. This is an important

insight for the design and development of future models in this domain. A good code

generation model should also be able to learn and preserve the structure of the code since the

current models mostly make syntactic errors in generation. However, since the data we used

is collected from the GeeksforGeeks website, it may not perfectly represent the complexity

and variability of real-world software translation tasks. The difference in context, project

size, and coding standards in real-world software projects may pose additional challenges

not fully captured in the current dataset. For the evaluation of code generation tasks, we

use CodeBLEU as metric, which evaluates the code syntax and semantics along with n-

gram matching (as in BLEU). However, the evaluation can be further improved by using

test cases. Automated test case generation can be explored in future work. The tasks we

introduce aim to rigorously evaluate code models with the parallel data from the dataset.

Therefore, not all the tasks have practical applications in real-world, especially the snippet-

level tasks. One future direction is to make use of the comments and snippets to iteratively

generate programs.

6.5 Conclusion

In this chapter, we introduce a new dataset which is parallel across 8 languages (7 program-

ming languages and 1 natural language) at both snippet level and program level. To the

best of our knoweldge, it is the largest parallel dataset for source code in terms of both size

and number of languages. We also introduce 10 different cross-lingual tasks to facilitate the

development and evaluation of models in this domain. Moreover, we run experiments for all

the 10 tasks on the proposed dataset with a number of state-of-the-art baseline models and

provided insights about model design for the new challenges. We believe that this dataset
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will be of significant value to the research community and can potentially benefit a number

of code-related research problems.
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Chapter 7

Multilingual Code Snippets Training

for Program Translation

Program translation aims to translate source code from one programming language to an-

other. It is particularly useful in applications such as multiple-platform adaptation and

legacy code migration. Traditional rule-based program translation methods usually rely on

meticulous manual rule-crafting, which is costly both in terms of time and effort. Recently,

neural network based methods have been developed to address this problem. However, the

absence of high-quality parallel code data is one of the main bottlenecks which impedes

the development of program translation models. In this chapter, we introduce CoST , a new

multilingual Code Snippet Translation dataset that contains parallel data from 7 commonly

used programming languages. The dataset is parallel at the level of code snippets, which

provides much more fine-grained alignments between different languages than the existing

translation datasets. We also propose a new program translation model that leverages mul-

tilingual snippet denoising auto-encoding and Multilingual Snippet Translation (MuST)

pre-training. Extensive experiments show that the multilingual snippet training is effec-

tive in improving program translation performance, especially for low-resource languages.

Moreover, our training method shows good generalizability and consistently improves the

translation performance of a number of baseline models. The proposed model outperforms

the baselines on both snippet-level and program-level translation, and achieves state-of-the-

108
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Figure 7.1: An example of a program and code snippets in different languages from our CoST
dataset. Each column is one program (truncated) in a specific language. Each cell is one
snippet. The snippets are aligned by matching the code comments in different languages.
We show only four languages due to space constraints. All the remaining languages are
shown in the Appendix.

art performance on CodeXGLUE translation task. The code, data, and appendix for this

work can be found at https://github.com/reddy-lab-code-research/MuST-CoST. This chap-

ter is adapted from a paper [152] published in the Proceedings of the AAAI Conference on

Artificial Intelligence in 2022, of which I am the first author and primary contributor.

7.1 Introduction

Program Translation is the problem of converting source code from one programming lan-

guage to another. Different from computer compilers which translate high-level programming

languages to lower-level machine code, it mainly focuses on translation between high-level

programming languages. Efficient and accurate program translation is of enormous value in

a variety of scenarios, such as: 1) Migrating legacy code to another language. For instance,

many industries spend several hundreds of millions of dollars to convert code written in older

programming languages (such as FORTRAN and COBOL) to newer ones (such as Java and

C++) [110]. 2) Adapting software to different operating systems and platforms. For instance,

for an Android application to run on iOS and Web browsers, it needs to be re-developed
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in Objective-C and Javascript. Traditional rule-based program translation usually relies on

meticulous manual rule-crafting, which requires expertise in both programming languages,

and requires an enormous amount of time and resources.

In recent years, deep learning based methods have been employed to address this problem.

The success of transformer-based models [127] in natural language processing (NLP) has

motivated researchers to utilize them for programming languages. A few recent works based

on neural machine translation (NMT) have been applied to this task and achieved some

impressive results [5, 110]. One of the important requirements for NMT models is the

availability of high-quality parallel data for model training. Such data is even more critical

for the program translation problem since it requires the generated code to be logically precise

as well. However, existing code translation datasets have significant limitations. Most of the

commonly used datasets [17, 56, 73, 85, 86] only contain two languages (Java and C#), and

the alignment comes from mining similar function names from open source projects. Github

has a huge number of open-source repositories in several languages. However, the data is

not parallel and cannot be used for supervised translation. Project CodeNet [96] and Google

Code Jam1 datasets contain solutions submitted to coding problems in multiple programming

languages. However, given that the alignment comes from solutions to the same problems,

they are aligned at the task level. Since programs that solve the same problem can have a

high diversity in terms of variable names, method design and logical flow, these datasets are

not ideal to train program translation models. This especially becomes a bottleneck in case

of low resource languages, since models for those languages cannot be trained using limited

data with high variance in distribution.

The scarcity of high quality parallel data has become a bottleneck in program translation

research. In this chapter, we introduce CoST (Code Snippet Translation), a new dataset

1https://codingcompetitions.withgoogle.com/codejam/archive
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that consists of parallel source code snippets from 7 common programming languages: C++,

Java, Python, C#, Javascript, PHP, and C. It contains parallel data at multiple levels, first

at the snippet level, and then at the program level, for every pair of languages. To the best

of our knowledge, CoST is the only dataset that provides snippet-level alignment for the

seven commonly used programming languages. This dataset is not only a great resource to

the program translation research community, but also serves as a new benchmark to evaluate

the program translation models for up to 42 (7 by 6) programming language pairs at both

snippet-level and program-level. In addition to supporting pairwise training, many samples

in our dataset contain equivalent code snippets across multiple languages, thus supporting

the development of multilingual program translation methods. An example of a program

and its snippets in multiple languages is shown in Figure 7.1.

To demonstrate the effectiveness of using finely-grained alignment from code snippets for

program translation, we propose a multilingual program translation model that leverages

the similarity between different programming languages and the snippet level alignment of

the dataset. Our experimental results show that the proposed model outperforms a number

of baseline models on most of the 42 language pairs, on both snippet-level and program-level

translation. The improvements are especially significant in case of low resource languages,

that greatly benefit from the multilingual training. We also achieved state-of-the-art per-

formance on the CodeXGLUE [73] translation task. Moreover, our multilingual snippet

translation (MuST) pre-training also shows good generalizability across different models.

Extensive experiments show that it consistently improves the performance of multiple mod-

els on the translation of all the language pairs. In summary, the contributions of this chapter

are listed below:

• We introduce CoST , a new dataset that consists of both snippet-level and program

level parallel data from 7 programming languages. Our dataset can be used to train
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Dataset Alignment Labeling Size (pairwise) Languages

Google Code Jam Program Solutions to the same problem 2,430,000* 20 programming languages
Project CodeNet Program Solutions to the same problem 13,916,828* 55 programming languages
Tree-to-tree Dataset1 Method Compiler translation 20,000 CoffeeScript, JavaScript
Tree-to-tree Dataset2 Method Matching function names 16,996 Java, C#
Phrase-Based
Dataset Method Matching function names 21,821 Java, C#

CodeXGLUE Method Matching function names 13,300 Java, C#

CoST Dataset Snippet Matching code comments 132,046 C++, Java, Py, C#, JS, PHP, C

Table 7.1: Comparison between our dataset and other existing source code translation
datasets. Tree-to-tree Dataset (1 and 2) are from [17]. Phrase-Based Dataset is from [56].
* The numbers given in these cases are those of single program samples, and not paired
programs. Py is short for Python.

C++ Java Python C# Javascript PHP C
C++ – 13929 11930 13326 7596 3165 2188
Java 1497 – 11713 13905 7729 3194 2135
Python 1419 1417 – 11404 7165 3123 1779
C# 1442 1495 1383 – 7601 3192 2123
Javascript 996 1009 962 994 – 2917 1232
PHP 548 552 545 552 512 – 700
C 267 281 263 273 196 135 –

Table 7.2: The numbers of pairwise data in each language-pair. The upper triangle (in
normal font) shows the number of parallel code snippets, and the lower triangle (in bold
font) shows the number of parallel programs.

program translation models for up to 42 programming language pairs.

• We provide a new benchmark to evaluate program translation model on 42 program-

ming language pairs. Extensive experiments demonstrate that models which achieve

the best performance on some languages can do much worse on certain other languages.

• We propose a multilingual program translation model that leverages the similarity be-

tween different programming languages and the snippet level alignment of the dataset.

The proposed model outperforms a number of baseline models and achieves state-of-

the-art performance on the CodeXGLUE translation task.

• The MuST training method in our model has good generalizability and consistently

improves the performance of several other models on program translation.
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7.2 The Code Snippets Translation (CoST ) Dataset

The Code Snippets Translation (CoST ) dataset consists of programs from 7 different lan-

guages: C, C++, C#, Python, Java, Javascript, and PHP, spanning across 1625 program-

ming problems. The detailed statistics about the CoST dataset are highlighted in Table 7.2.

We define certain terms used in the context of this chapter as follows:

• Programs: These refer to the complete code solution in a specific language to a

particular problem or task.

• Snippet/Code snippet: Each program may consist of one or more snippets which

are in parallel to appropriate code snippets in other languages.

7.2.1 Data Collection and Processing

Our data was collected from the GeeksForGeeks website. The platform has a plethora of

problem statements and solutions to those problems in up to 7 programming languages (C,

C++, C#, Python, Java, Javascript, PHP). The platform also ensures that its contributors

stick to a template in terms of the comments used in their programs and the code correspond-

ing to those comments. By using the template, we could obtain a one-to-one correspondence

between the code snippets in one language to those in other languages. In effect, this gives

us a good number of parallel instances of code which can then be effectively used for code-to-

code translation. However, there were a number of cases where this template did not work

as anticipated. These cases include missing snippets, differences in functionality among lan-

guages resulting in vastly different program structures, and misaligned cells. To remedy

this issue, we manually verified the code to identify different instances of non-compliance,

and either modify the alignment or discard the example in extreme cases. Few of the URLs

scraped from different pages sometimes pointed to the same program, thus resulting in dupli-
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cate files. A duplication detection program was used to identify these duplicates and remove

them.

7.2.2 Dataset Comparisons and Characteristics

As shown in Table 7.1, many of the existing source code translation datasets such as [17, 73]

consisting of pairwise samples at the method level collect their samples from very similar

publicly available repositories. However, they only have parallel data in two languages: Java

and C#. Moreover, their mapping is at the method level, and there are relatively fewer

method pairs available. Other datasets such as Google Code Jam (GCJ) and CodeNet [96]

have an abundance of problem statements along with solutions, spanning over a wide range

of languages. However, these datasets suffer from quality issues. For instance, in CodeNet,

only about half of the problems are rated by the online judges to be an accepted solution

to the problem. This leads to almost half the dataset having wrong solutions, which makes

these erroneous samples unusable for the translation task. In contrast, our dataset contains

programs which have been manually verified to ensure correctness at program and snippet

levels, thereby resulting in higher quality and less noise.

A major drawback of the existing datasets is that the samples are aligned at program level,

which implies less supervised alignment. Since program level alignment is based on programs

doing similar tasks and achieving similar results on test cases, there is a significant amount of

variation between the programs in multiple languages, due to differences in terms of method

and variable names, as well as the logic flow. The granularity in our case is at the snippet

level, which provides more supervision in contrast to the method level or program level

mapping that exists in previous datasets. Moreover, the code snippets in our dataset are

consistent in terms of variable and method names, and the programs in each language follow
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similar logic flow.

7.3 The Proposed Method

Figure 7.2: The training paradigm of the proposed MuST-PT model. We first train the
model with multilingual snippet denoising auto-encoding, which helps the model to learn
the similarity between different languages. Then we apply multilingual snippet translation
(MuST) training to leverage the snippet-level alignment to increase the accuracy of program-
level translation. Finally, we fine-tune the model on the program translation task to bridge
the distribution gap between snippet and program data. Lang_s and Lang_t refers to source
and target language, respectively. At each step of the training, the model takes both the
code and the programming language as inputs.

7.3.1 Problem Formulation

Consider L = {l1, .., lk} as the set of all languages, where li denotes a programming language.

Given a program X in language li, the objective of program translation is to generate a
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program Y in the target language lj. We represent a program consisting of m snippets as

X = {x1, ...,xm}, where xi = (x1, ..., xn) denotes a snippet with n tokens. We further denote

the monolingual snippet dataset in language li as Dmono
li

, and the bilingual snippet dataset

for languages li and lj as Dbi
li,lj

.

7.3.2 Model Architecture

Given the sequence-to-sequence nature of the program translation problem, our model draws

inspiration from the Transformer model [127], which has been shown to have state-of-the-art

performance on many language generation tasks. The encoder-decoder based transformer

model serves as the base model for our translation task. The model consists of an encoder

E and a decoder G with parameters θE and θG, respectively, that are augmented to support

code from multiple languages. This is done by using a unique identifier αli for each language.

Given the input token embeddings x = (x1, ..., xn), we add the language identifier to each

token, such that (x1 + αli , ..., xn + αli) serves as the input to the encoder. The encoder

representations z = E(x, αli) are then fed to the decoder along with the target language

identifier αlj to generate output snippet tokens y = G(z, αlj).

7.3.3 Model Initialization

We initialize the model parameters with the pre-trained weights of the DOBF model [112].

DOBF is a Transformer-based model trained with masked language modeling (MLM) and

code deobfusctation objectives on Python and Java files from the GitHub public dataset

available on Google BigQuery. The MLM objective helps the model to learn representations

by leveraging the left and right contexts. The deobfusctation objective guides the model to

recover the original class, function, and variable names from obfuscated code, which is a more



7.3. THE PROPOSED METHOD 117

difficult task and requires a deeper understanding of the code, thereby providing a better

learning signal to the model. By initializing our model with the weights of a sequence-to-

sequence model pre-trained on source code, we can leverage its knowledge about the syntax

and structure of the specific programming languages.

7.3.4 Multilingual Snippet Denoising Auto-Encoding

To train the model to perform translation on different language pairs, we first need to

familiarize the model with all the 7 languages. Although the model is initialized with pre-

trained weights from DOBF, the weights were learned from only two languages, Python and

Java. Therefore, the model has no knowledge about other languages (C++, C#, Javascript,

PHP, C). To address this issue, we first train the model with Denoising Auto-Encoding

(DAE) objective [65] on snippets from all the languages. There are several advantages of

doing this pre-training task. First, the sequence-to-sequence nature of DAE enables the

model to decode all the languages, which is necessary for the translation task. Second, by

sharing the same encoder and decoder across all the languages, all the languages are mapped

into the same latent space. This helps the model to learn the similarities between different

languages, which can be useful in the translation of low-resource languages. Third, the DAE

only requires monolingual data, which is much more accessible than pairwise data. We use

the same set of noise functions as TransCoder [110], which includes random word shuffle,

random word dropout, and random span masking. Considering C as the noise model (non-

learnable in this case), and x as the input sampled from Dmono
li

, the DAE objective can be

written as:

LDAE(θE, θG) =
∑
li∈L

Ex∼Dmono
li

,x̃∼C(x)[− log pG(x|E(x̃, αli), αli)] (7.1)
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7.3.5 Multilingual Snippet Translation (MuST)

In many language generation tasks, the performance goes down significantly as the length of

input sequences increases. This is a common problem in sequence-to-sequence models due to

the difficulty of capturing long-distance dependencies. Since source code programs usually

contain at least tens of lines, achieving acceptable performance from translation models can

be challenging. In order to alleviate this problem, we use code snippets translation as a pre-

training method to improve the accuracy of program translation. Since the code snippets

are much shorter than programs, they provide a fine-grained supervision to the translation

model, and thus can help to address the problem of reduced performance for longer inputs.

Another problem encountered by many existing models is that program translation datasets

are usually not balanced in size for all the languages. Some languages may have much

less parallel data than others. For example, in the CoST dataset, there are 13K snippet

pairs for Java and C++, but only 700 pairs for C and PHP. Less parallel training data

can significantly affect the translation performance on low-resource languages. Therefore,

in addition to snippet translation, we propose to leverage the multilingual training to im-

prove the performance on low-resource languages. In CoST dataset, one code snippet may

have corresponding snippets in multiple languages. Moreover, some languages are naturally

similar in syntax, such as C++-C, Java-C, and Java-C#. This motivates us to use other

languages to improve the translation of low resource languages, e.g. using C++-PHP and

Java-PHP data to improve the translation of C-PHP. For a snippet pair (x, y) ∈ Dbi
li,lj

, the

objective function for this task can be written as:

LM(θE, θG) =
∑

li,lj∈L

E(x,y)∼Dbi
li,lj

[− log pG(y|E(x, αli), αlj)] (7.2)



7.3. THE PROPOSED METHOD 119

L = LM + λLDAE (7.3)

The overall training objective of our model is given above. Here, λ is a hyper-parameter

that represents the weight of DAE loss. After the multilingual snippet DAE and MuST

pre-training, the model is capable of translating code snippets across all the 42 language

pairs. However, because of the difference in length between code snippets and programs,

the model cannot directly be used for program translation. Therefore, we further fine-tune

the model on the program pairs from our dataset. We adopt a similar multilingual training

strategy on the program-level pairwise data. The overall training process is illustrated in

Fig. 7.2. We refer to the model as MuST-PT, which is short for the Multilingual Snippet

Training for Program Translation model.

7.3.6 Implementation Details

In our model, the encoder and decoder consist of 12 and 6 transformer layers, respectively.

The transformer units have a model dimension of 768, and 12 attention heads. The weight

of the multilingual snippet DAE objective λ was set to 1.0 in the beginning, and decayed

to 0.1 linearly in 30K steps, and then to 0 in 100K steps. The DOBF model we used for

initializing our model is dobf_plus_denoising.pth, which can be found on the corresponding

GitHub repository. Most of the settings during training were the same as DOBF [112]. Float

16 operations were used to speed up the training. The model was trained using the Adam

optimizer [58] with a learning rate of 0.0001, and the same learning rate scheduler was used

from the Transformer [127]. We used a batch size of 128 on all the 42 language pairs. The

batches of different languages pairs were sent to the model alternatively during training.

The model was trained with 4 RTX 8000 GPUs with 48GB memory on each GPU.
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7.4 Experiments

7.4.1 Datasets

The datasets used for the experimental evaluation are below:

• CoST , Snippets Dataset We used the monolingual snippets to do the multilingual

snippet DAE training, and the pairwise snippets to do the multilingual snippet trans-

lation (MuST) training. The train-validation-test data is split at the problem level, to

ensure no overlapping snippets between the splits in any of the languages.

• CoST , Programs Dataset We used the pairwise program data to fine-tune the model

for program translation.

• CodeXGLUE Translation Dataset CodeXGLUE stands for General Language Un-

derstanding Evaluation benchmark for code. It has 10 source code related tasks, and

code to code translation is one of them. We used the translation dataset (Java-C#)

from CodeXGLUE for evaluation.

7.4.2 Evaluation Metrics

• BLEU Given an input code sample, we use BLEU [91] score to evaluate the n-gram

overlap between the generated and the ground-truth target code.

• CodeBLEU CodeBLEU [107] is for automatic evaluation of code synthesis. Besides

n-gram match as in BLEU, it also evaluates the code syntax via abstract syntax trees

(AST) and code semantics via data-flow.
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7.4.3 Baseline Methods

• Naive Copy Naive Copy [73] directly copies the input source code as the translation

output. This baseline shows how similar two programming languages are.

• Transformer The sequence-to-sequence transformer model [127] was originally de-

signed for translation problem. We use it as a baseline to see how well a transformer

model performs without any pre-training on source code corpus.

• CodeBERT CodeBERT [27] uses the BERT architecture pre-trained on source code

corpus.

• DOBF DOBF [112] is the model from which the weights are used to initialize our

model. It is pre-trained on Java and Python.

• TransCoder TransCoder [111] is an unsupervised program translation model pre-

trained on Java, Python, and C++. We did not include TransCoder in Table 7.4

because it does not support input languages other than the ones it was pre-trained

on (for languages other than the languages it was pre-trained on, we observe that the

model’s performance does not increase over training, indicating that the model does

not support these languages.).

Due to space limitations, we did not include some baselines (PLBART, GraphCodeBERT,

RoBERTa(code) [71], PBSMT [147]) from the CodeXGLUE translation task in other exper-

iments.

7.4.4 Results Analysis

Translation Performance on Snippets Table 7.4 shows the translation performance of

our model and the baseline models on all the 42 language pairs. Every model is evaluated

on both the snippets dataset and the program dataset. The left part of the Table shows the
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Java-C# C#-Java
Method BLEU CodeBLEU BLEU CodeBLEU
Naive copy 18.54 - 18.69 -
PBSMT 43.53 42.71 40.06 43.48

Transformer 55.84 63.74 50.47 61.59
RoBERTa(code) 77.46 83.07 71.99 80.18

CodeBERT 79.92 85.1 72.14 79.41
GraphCodeBERT 80.58 - 72.64 -

PLBART 83.02 87.92 78.35 85.27
MuST-PT 87.37 86.82 85.25 86.09

Table 7.3: Results on the CodeXGLUE translation task. Our model achieves state-of-the-
art performance on BLEU score of C#-Java and both BLEU and CodeBLEU on Java-C#.

BLEU score of each model on the snippets dataset. We can see that our model outperforms

the baseline models, with significant performance gains on low resource languages like PHP

and C. This shows that the multilingual training in both DAE and MuST is helpful in

improving low-resource language translation.

Translation Performance on Programs The right part of Table 7.4 shows the BLEU

score of each model on the program dataset. We can see that almost all the baseline models

have much worse performance on programs than snippets. This can be attributed to the

more challenging nature of program-level translation due to longer sequence length compared

to snippets, and less training data than snippet level. However, our model’s performance

does not drop by much on program-level compared to snippet level. This shows that the

MuST pre-training improves the program translation performance.

Translation Performance on CodeXGLUE We also evaluated our model on the CodeXGLUE

translation task. Table 7.3 shows the BLEU and CodeBLEU of our model compared to the

models on the CodeXGLUE translation task leaderboard. Our model achieved state-of-the-

art performance on BLEU score of both Java-C# and C#-Java, and high CodeBLEU score

on C#-Java conversion. This indicates that the DAE and MuST training in our model is
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Snippet-level Program-level
Lang Model C++ Java Py C# JS PHP C C++ Java Py C# JS PHP C
C++ Naive Copy – 68.87 35.03 69.54 57.71 37.7 87.73 – 66.57 36.58 67.22 55.24 36.27 84.86

Transformer – 68.74 57.17 70.61 63.26 60.94 68.57 – 43.93 33.9 45.32 39.02 35.93 25.06
CodeBERT – 71.61 60.28 72.31 72.4 70.42 61.29 – 53.47 38.37 63.01 46.6 46.18 22.25
DOBF – 79.83 68.61 81.74 79.24 77.91 68.09 – 29.06 18.5 29.14 22.25 27.47 27.05
MuST-PT – 80.27 71.2 82.98 81.01 83.29 87.55 – 79.15 64.1 81.15 68.85 71.18 84.2

Java Naive Copy 68.75 – 33.8 77.9 58.58 33.6 70.22 66.53 – 34.56 77.15 56.52 32.14 67.54
Transformer 74.42 – 53.98 84.27 69.16 58.5 46.18 44.38 – 31.22 47.34 39.06 38.26 25.36
CodeBERT 73.19 – 59.04 85.12 76.79 7.24 50.33 65.48 – 38.7 85.46 55.92 47.12 32.98
DOBF 80.83 – 64.75 89.73 79.89 66.94 59.32 28.34 – 18.08 27.6 20.2 27.05 26.12
MuST-PT 85.23 – 70.06 90.13 81.87 80.39 81.16 84.28 – 61.12 89.93 69.53 69.83 78.71

Py Naive Copy 35.02 33.53 – 35.11 41.71 23.57 35.29 36.58 34.27 – 35.69 40.85 22.48 36.53
Transformer 60.5 58.13 – 60.9 55.59 55.07 39.37 37.42 38.15 – 36.91 38.39 39.01 19.99
CodeBERT 65.04 61.79 – 63.84 62.43 62.6 45.09 43.96 41.35 – 46.4 47.28 44.38 46.4
DOBF 68.73 67.91 – 69.46 68.07 67.8 34.21 21.49 23.45 – 21.82 20.32 26.53 13.02
MuST-PT 75.37 70.89 – 72.35 70.46 75.49 70.64 66.16 64.57 – 63.23 66.47 70.9 58.7

C# Naive Copy 69.5 78.05 35.16 – 60.23 35.43 70.65 67.16 77.23 35.76 – 58.4 33.57 67.9
Transformer 75.68 84.19 58.64 – 66.97 60.57 45.18 42.65 45.6 32.64 – 39.66 38.47 25.01
CodeBERT 74.73 82.16 59.74 – 77.12 67.48 49.64 67.17 82.45 41.1 – 51.09 48.62 34.33
DOBF 81.77 86.73 67.96 – 80.26 15.94 28.35 26.97 29.17 19.71 – 19.34 27.05 19.11
MuST-PT 85.34 85.8 71.11 – 82.74 81.64 81.12 84.72 87.76 62.03 – 70 70.66 78.78

JS Naive Copy 57.67 57.99 41.73 60.04 – 32.56 57.6 55.11 55.74 40.9 58.1 – 29.77 53.89
Transformer 65.06 65.31 56.92 64.55 – 61.87 37.34 39.8 39.6 34.3 41.72 – 37.65 19.78
CodeBERT 68.76 71.66 58.13 72.87 – 66.35 37.08 49.51 48.91 46.27 51.55 – 47.95 24.37
DOBF 78.56 76.94 64.92 75.5 – 75.53 52.32 26.47 25.93 21.77 21.43 – 26.73 18.68
MuST-PT 78.95 78.03 66.47 78.91 – 78.69 78.54 73.01 73.39 63.88 73.32 – 76.44 70.2

PHP Naive Copy 37.66 33.65 23.6 35.41 32.66 – 37.46 36.24 32.17 22.54 33.56 29.97 – 35.73
Transformer 58.47 56.06 51.45 56.27 56.43 – 29.29 33.78 35.67 31.52 37.54 37.07 – 20.11
CodeBERT 65.08 60.84 54.59 63.77 63.92 – 29.75 40.43 37.64 33.01 41.33 41.31 – 18.63
DOBF 68.18 65.84 63.45 70.14 63.21 – 23.78 26.69 26.28 19.91 23.52 20.63 – 18.31
MuST-PT 79.41 76.42 69.34 77.96 77.64 – 76.67 70.04 67.3 63.97 70.34 73.54 – 67.88

C Naive Copy 87.63 70.29 35.37 70.62 57.74 37.45 – 84.75 67.56 36.61 67.88 54.17 35.75 –
Transformer 68.63 45.42 36.4 44.38 35.37 31.03 – 29.54 30.73 24.62 31.28 24.55 24.83 –
CodeBERT 64.18 51.1 36.48 49.81 33.75 28.85 – 27.96 35.29 22.05 32.82 21.73 25.19 –
DOBF 76.85 64.73 53.1 45.11 30.87 22.22 – 16.84 23.23 17.64 23.96 20.38 25.7 –
MuST-PT 88.58 79.24 66.49 80.68 80.35 82.94 – 84.92 76.84 55.71 78.39 66.13 70.62 –

Table 7.4: BLEU scores of baseline and the proposed MuST-PT model on all the 42 language
pairs on both CoST snippet and program datasets. Note that only multilingual DAE and
MuST were applied for snippet-level translation. We did program-level fine-tuning for MuST-
PT only for program-level translation.
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Model Java-
Py

Py-
Java

Java-
C++

C++-
Java

Java-
C#

C#-
Java

Py-
C++

C++-
Py

Py-
C#

C#-
Py

C++-
C#

C#-
C++

Naive Copy 34.56 34.27 66.53 66.57 77.15 77.23 36.58 36.58 35.69 35.76 67.22 67.16

Transformer 31.22 38.15 44.38 43.93 47.34 45.6 37.42 33.9 36.91 32.64 45.32 42.65
Transformer+MuST 40.9 43.97 58.35 54.61 73.7 71.68 42.86 39.06 43.42 42.34 57.84 57.49

CodeBERT 38.7 41.35 65.48 53.47 85.46 82.45 43.96 38.37 46.4 41.1 63.01 67.17
CodeBERT+MuST 55.5 57.66 81.09 78.69 90.47 86.76 58.91 55.98 59.13 55.45 79.05 81.54

TransCoder 24.98 21.98 30.09 30.42 44.85 29.4 23.03 23.52 40.4 18.81 41.91 25.3
TransCoder+MuST 60.73 65.53 87.09 81.64 91.74 27.7 68.7 62.92 66.52 16.88 82.4 29.44

Table 7.5: Multilingual Snippet Translation (MuST) training consistently improves the
performance (measured by BLEU scores) of the baseline models on the CoST program
translation dataset. This shows that the MuST pre-training method can be generalized to
other models and benefit their translation performance.

effective on other program translation datasets.

Generalizability of MuST Training We combine some of the baselines with MuST train-

ing to see if the method is generalizable to more models. Table 7.5 shows the results of each

baseline before and after MuST training. We can see that all the three baselines get sig-

nificant improvement after MuST training, indicating that MuST is not only effective in

our model setting, but also benefits other models. This demonstrates that MuST has good

generalizability and can potentially benefit other program translation models.

7.5 Conclusion and Future Work

Scarcity of high quality parallel data has become the bottleneck of program translation

research. In this chapter, we introduced a new multilingual code translation dataset CoST ,

with snippet-level parallel data across 7 programming languages. Our dataset provides fine-

grained supervision for the translation of 42 language pairs. We also propose a new program

translation model that leverages multilingual snippet denoising auto-encoding (DAE) and

multilingual snippet translation (MuST) pre-training. Our extensive set of experiments show
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that DAE and MuST are effective in improving program translation performance, especially

for low-resource languages. We also achived state-of-the-art performance on CodeXGLUE

translation task. The MuST training also shows good generalizability and improves the

translation performance of a number of baseline models.

Looking forward, there are several avenues for potential future research stemming from

this work. Firstly, the snippet-level parallel data in CoST can be utilized to facilitate

more sophisticated pre-training approaches. As the dataset contains seven programming

languages, research could be conducted into how to more effectively leverage the multilingual

aspect of the data, possibly by exploring language-agnostic features and representations of

code. Second, the MuST pre-training approach has shown promising results in program

translation tasks. Future work could investigate its applicability to other code-related tasks,

such as code summarization, comment generation, and text-to-code generation. Exploring

the use of MuST with different model architectures or modifying the MuST pre-training

tasks to better align with these new tasks could also be beneficial.
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Chapter 8

Alignment-Enhancing Parallel Code

Generation for Semi-Supervised Code

Translation

Code translation is the task of converting source code from one programming language to

another. Sufficient parallel code data is essential for neural code translation models to learn

the correct alignment across different languages. However, existing parallel code data is

limited in quantity and supported languages. In this chapter, we propose a semi-supervised

code translation method, SPACoder, that leverages snippet training, static analysis, and

compilation to generate synthetic parallel code with enhanced alignment in a scalable way,

and improves code translation by curriculum learning based on the alignment level of training

instances. SPACoder can be generalized to multiple languages and various models with little

overhead. Extensive experiments show that SPACoder significantly improves code transla-

tion performance on C++, Java, Python, and C, outperforming state-of-the-art baselines by

wide margins in execution-based evaluation (CA@1). Notably, we improve C translation by

up to 43% with less than 150 annotated training instances.

126
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8.1 Introduction

Code translation is the task of converting source code written in one programming language

(PL) to another. This process is valuable for migrating existing code to other languages,

and can significantly reduce legacy code maintenance costs and new platform development.

Traditional methods for code translation are usually rule-based, which require high expertise

in multiple programming languages and considerable manual effort. Benefiting from recent

machine learning advances, data-driven methods have shown promising results in automated

code translation [17, 111, 113, 152]. Similar to neural machine translation, neural code

translation usually relies on parallel code data for sequence-to-sequence (seq2seq) training.

Parallel code data refers to pairs of code snippets from different programming languages

that are functionally equivalent and bug-free. Sufficient parallel code data is essential for

training models to learn the correct alignment of data structures, APIs, and grammatical

rules across different languages. However, existing parallel code data is limited in quantity

and supported languages [6, 17, 56, 73, 85, 86, 152].

To reduce the dependence on parallel code data, one line of work follows the “pre-training -

fine-tuning” approach [5, 31, 112, 132]. Large-scale online code repositories such as GitHub,

introduce a vast amount of open source code data. These methods pre-train large lan-

guage models (LLMs) on open source code with self-supervised learning techniques to gain

general knowledge about programming languages, and then fine-tune them on small spe-

cialized datasets to perform downstream tasks. Nevertheless, pre-training tasks such as

masked language modeling (MLM) [23, 27, 37] are usually quite different from the down-

stream tasks such as code translation, and the performance on the latter is limited by

the discrepancy. Another line of work takes an unsupervised learning approach for code

translation. Established techniques from unsupervised neural machine translation (NMT)

[8, 9, 65], such as back-translation and denoising auto-encoding, can be applied to code data
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Figure 8.1: An example of the “Shallow Translation” problem, with the Java function shown
in the first column as input, the C++ translations from baseline method TransCoder-ST
and our proposed method SPACoder (with CodeT5 as generator). The highlighted parts
show that TransCoder-ST’s translation directly copied types, data structures and statements
from the input Java code, which are non-existent or grammatically incorrect in the target
language C++, while SPACoder was able to correctly convert them in the corresponding
C++ grammar.

effectively, achieving good performance on code translation without relying on any parallel

data [4, 7, 25, 61, 111, 124]. However, unsupervised learning introduces significant noise

in the training process, which is particularly harmful to code generation tasks that require

precision. Moreover, without training on sufficient parallel code, the self-supervised and

unsupervised models can potentially learn incorrect mappings of syntax and data structures

from one language to another. For example, they might directly copy tokens and statements

from the source language when generating in the target language, or translate the input code

token by token and ignore the grammatical rules of the target language. We refer to this

issue as “shallow translation”. Figure 8.1 illustrates an example of shallow translation.

Considering the limitations of existing methods, we argue it is crucial to generate high-

quality and well-aligned parallel code data in a scalable way. However, there exist several

challenges in parallel code generation. Programming languages follow rigorous grammati-

cal rules, while neural code generation relies on probabilistic decoding, which is prone to

variance and noise. The alignment between programming languages also requires high pre-
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cision and small changes can cause errors or unexpected behavior in run-time. Moreover, it

is challenging to generate parallel code for different languages and types of programs in a

cost-efficient way, which hinders parallel code generation at scale. In this chapter, we pro-

pose a novel code translation method leveraging Semi-supervised Parallel code generation

with enhanced cross-lingual Alignment (SPACoder). We first generate synthetic parallel

code with varying levels of alignment and quality by leveraging snippet training, static code

analysis, and compilation. We then train the code translation model on the synthetic and

annotated parallel code in a curriculum based on the alignment level, noise level, and quan-

tity of each type of data. Compared to existing methods, SPACoder has several advantages.

The grammatical correctness of the synthetic parallel code is improved by filtering by compi-

lation, which effectively removes buggy hypotheses. The alignment in the synthetic parallel

code is enhanced by using a generator trained on snippet-level aligned data and filtering the

generated code by matching key information with the input code. Moreover, our method can

be applied to different languages and types of programs with little overhead, which enables

parallel code synthesis at scale. Extensive experiments show that the synthetic parallel code

significantly improves the performance of code translation for multiple languages, and is

particularly effective for low-resource language.

Our contributions can be summarized as follows: (1) We propose a novel semi-supervised

code translation method, SPACoder, that leverages snippet training, static analysis, and

compilation to generate synthetic parallel code with enhanced alignment in a scalable way,

and improves code translation by curriculum learning based on the alignment level, noise

level, and quantity of training instances. SPACoder can be generalized to multiple lan-

guages and various models with little overhead. (2) We introduce a curriculum-based train-

ing approach, where the code translation model is trained on both synthetic parallel code

and annotated parallel code, considering the alignment level, noise level, and quantity of
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each type of data. We demonstrate that curriculum learning improves the code translation

model’s performance and enhances alignment across different languages, resulting in more

precise translations. (3) We evaluate SPACoder with two different underlying models and

over 1 million synthetic parallel code pairs across 4 languages, split into different datasets by

the level of quality and alignment. Extensive experiments show that SPACoder successfully

improves code translation performance by up to 30% on C++, Java, and Python, outper-

forming state-of-the-art baselines on translation between Python and C++ by 5.7%, C++

and Python by 6%, and Python and Java by 8% in execution-based evaluation (CA@1).

Notably, our method improves C translations by up to 43% with less than 150 annotated

training instances.

8.2 Related Work

Parallel Code Data Parallel code data refers to code pairs from different programming

languages that are functionally equivalent and bug-free. One type of existing datasets is

characterized by relatively high alignment but is limited in size and supported languages.

For example, CodeXGLUE [73] constructed a Java – C# translation dataset by matching

function names from open-source repositories. MuST-PT [152] introduced a program trans-

lation dataset CoST, with snippet-level alignment that supports 7 programming languages.

CoST was collected from coding tutorial website GeeksforGeeks1, where each coding prob-

lem is provided with solutions in up to 7 languages, and the solutions have similar structure

and code comments. AVATAR [6] only supports the translation between Java and Python.

Another type of dataset is usually significantly larger in size and supports a wider range of

languages, but the alignment quality is low. They are usually collected from competitive

1https://www.geeksforgeeks.org/
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online code judgments. Given a coding problem, users can submit their own solutions in

various supported languages and get judged based on online tests. The user-contributed

solutions to the same problems are collected as parallel code in different languages. For

example, Google Code Jam and Project CodeNet [96] were both collected in this manner.

However, due to the diverse background and the large number of users, the solutions for

the same problem have wide discrepancies in distribution across different languages, which

lowers the quality of the alignment.

Neural Code Translation Recent advances in machine learning, especially in self-supervised

learning techniques, have benefited a wide range of tasks [63, 71, 72, 119, 127]. Some tech-

niques from NLP were transferred to programming languages and have achieved great suc-

cess. Similar to BERT [23], CodeBERT [27] is a code language model pre-trained on Code-

SearchNet [49] with Masked Language Modeling (MLM). PLBART [5] is pre-trained the

same way as BART [68], with the Denoising Auto-Encoding (DAE) [65] on GitHub data.

Although CodeBERT and PLBART are pre-trained on code, they model code the same

way as natural language sequences without taking code-specific features into consideration.

Inspired by T5 [100], CodeT5 [132] is pre-trained on CodeSearchNet but with an identifier-

aware objective to align more with programming language distributions. All three models use

general pre-training to gain programming language intelligence, without optimizing for any

specific tasks. They require fine-tuning on task-specific data to perform downstream tasks.

TransCoder [111] is an unsupervised code translation model that relies on back-translation

to generate pseudo-parallel code data during training. However, back-translation introduces

noisy code into the training process, compromising the model’s ability to generate high-

quality translations. TransCoder-ST [113] improves TransCoder by adding automated unit

tests to filter out invalid translations and reduce noise from the back-translation process.

However, obtaining unit tests for different languages is expensive, and running unit tests
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Figure 8.2: Overview of SPACoder for Code Translation. SPACoder utilizes a two-step
process to generate high-quality translation hypotheses from monolingual code inputs. First,
the generator produces multiple translation hypotheses using tempered sampling. Next,
the selector applies static analysis and compilation techniques to select the most promising
hypotheses. By employing various selection criteria, SPACoder generates synthetic parallel
code datasets with varying alignment levels and quality. These synthetic datasets, along
with annotated parallel code datasets, are organized into a curriculum, where the alignment
and quality gradually improve. The proposed curriculum-based approach enhances code
translation performance.

is unscalable for large amounts of code data. MuST-PT [152] leverages snippet-level DAE

and translations for pre-training before fine-tuning on program-level data, which improves

code translation performance. However, MuST-PT relies solely on a limited amount of finely

aligned parallel code for training without utilizing widely available non-parallel code, which

makes this method less scalable.

8.3 Method

The lack of parallel code data poses a challenge for training code translation models, which

rely on large amounts of parallel data to achieve good performance. Semi-supervised methods

can leverage monolingual data to generate synthetic parallel data but often struggle to
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maintain alignment quality between the source and target languages. In this chapter, we

focus on function-level code translation, as functions are the building blocks of programs.

Figure 8.2 shows an overview of the proposed method.

8.3.1 Parallel Code Data Generation

To address the data scarcity challenge, we propose a parallel code generation method using

semi-supervised learning. The method consists of two modules, a hypothesis generator fG,

and a selector fD. The hypothesis generator fG is a trained sequence-to-sequence model

that takes as input a code snippet xs from the source language s and generates a set of

hypothetical translations Ys
t = {yst1, yst2, .., ystn} in the target language t, where n denotes the

set size. Here, Ys
t consists of several hypothetical translations for the same input code snippet

xs. The selector fD comprises a set of k filtering criteria F = {Fk}Kk=1 where Ỹs
t,k = Fk(Ys

t )

takes Ys
t as input and outputs the subset of hypotheses Ỹs

t,k ⊂ Ys
t that passes the criteria.

Hypothesis Generation

The hypothesis generator fG is initialized by training on a small parallel code dataset of

L training instances, i.e., DL = {(xs, yt)
(l)}|DL|

l=1 , in which xs and yt are parallel code from

source language s and target language t. This step enables fG to generate hypotheses with

sufficient initial quality.

Snippet Training. We first train the generator fG with a small annotated parallel code

dataset in which the code pairs are aligned at snippet level. The snippet training helps

the generator to learn fine-grained alignment between different languages and subsequently

enables fG to generate hypotheses with better alignment to the input code.

Tempered Sampling. Let DU = {xi}|DU |
i=1 be a monolingual dataset in source language
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s, where each xi is a function-level code block. With DU as input, we can sample H =

{Y1
h,Y2

h, . . . ,Y i
h, . . . ,Y

|H|
h } as output from fG, where Y i

h = {yit1, yit2, .., yitz} is a set of trans-

lation hypotheses of xi in target language t. To increase the diversity of the generated

hypotheses and improve coverage for different possible translations of the input code, we

make use of tempered sampling to acquire M different hypotheses from the generator for

each input code. Tempered sampling makes use of a tuned scaled softmax to control the

degree of randomness in the sampling process [3, 42].

Hypotheses Selection

The selector fD takesH as input and outputs H̃ = {Ỹ i
h,k}

|H̃|
i=1, in which Ỹ i

h,k ⊂ Y i
h is the subset

that passes the selection criteria Ỹ i
h,k = Fk(Y i

h). If Ỹ i
h,k contains more than one hypothesis,

only one is kept, namely yit,k ∼ Sample(Ỹ i
h,k), where Sample denotes the process of random

sampling. Our preliminary experiments confirm that sampling more than one hypothesis

does not yield improved performance. We pair all the yit,k with the input corresponding

input code xi to acquire pseudo parallel dataset DS = {(xi, yt)
(l)}|DS |

l=1 . In practice, we rely

on cross-lingual static code analysis and compilation as selection criteria for the hypotheses.

Cross-Lingual Static Analysis. To ensure that the selected hypotheses have high align-

ment quality with the input code, we use cross-lingual static analysis to compare the key

information of both the input code and all the hypotheses. Static code analysis is a technique

used to analyze source code without executing the program. One way to perform static code

analysis is through the use of an abstract syntax tree (AST). An AST is a tree-like data

structure that represents the structure of a program’s source code. It captures the high-level

structure of the code and the relationships between its elements, enabling a deeper under-

standing of the code beyond the sequence-level. Figure 8.2 shows an example AST generated

from a Java function.
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Specifically, we compare the number of functions, and after matching each pair of functions

from output with the input, we check whether the return types are equivalent, and if the

parameter lists match in terms of the number of parameters and the type of each parameter.

For non-typed languages such as Python, we skip the type part and only compare the number

of functions and the parameter list of each function. Passing the cross-lingual static analysis

is a strong indicator of the alignment quality of the hypotheses to the input, which helps in

selecting the best hypotheses.

Compilation Filtering. We also leverage compilation to filter out hypotheses that contain

errors. Specifically, we compile the generated code using the target compiler and check for

any compilation errors. If a hypothesis fails to compile, it is discarded. This step further

improves the quality of the selected hypotheses by ensuring that they are syntactically correct

and can be compiled successfully.

8.3.2 Alignment-based Curriculum Learning

By pairing the hypotheses with their corresponding inputs, we obtain multiple synthetic

parallel code datasets at different stages of the generation process. Without the selector, the

generation is reduced to plain back-translation. We denote the unfiltered synthetic parallel

data from the unfiltered hypotheses, as BT data. Similarly, we denote the synthetic parallel

data from cross-lingual static analysis as STAT and COMP, respectively. In addition, we

denote the subset of hypotheses that pass both criteria, static analysis and compilation, as

AND data. We adopt a curriculum learning approach to train our code translation model,

strategically leveraging the quality of the data at different stages. Our curriculum consists of

multiple training phases, progressively incorporating different types of data. We first train

with the unfiltered synthetic parallel data, allowing the model to grasp the basic translation
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Figure 8.3: Synthetic parallel code examples from CODENET-SPACoder, with PLBART [5]
as generator. The synthetic parallel data demonstrates great alignment quality, with minor
noise in some cases.

patterns. Next, we introduce the cross-lingual static analysis filtered data, which helps refine

the model’s understanding of language-specific code idioms and improve translation accuracy.

Subsequently, we integrate the compilation filtered data, which further enhances the model’s

ability to generate syntactically correct translations. The curriculum then advances to utilize

the intersection of both filtered datasets, combining the benefits of both data sources. We

then introduce snippet-level annotated data to enhance translation performance in specific

code segments. Finally, we conclude by training with function-level annotated data, enabling

the model to capture higher-level structural patterns and produce more coherent translations.

By following this carefully designed curriculum, SPACoder not only benefits from exposure

to a diverse range of training data but also progressively refines its translation quality and

alignment, leading to improved performance and robustness.

8.4 Experiments

Datasets. We make use of COST [152], a code translation dataset that contains parallel code

aligned at both function and snippet levels. We derive a pre-processed version of COST for
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execution-based training and evaluation, referred to as ECOST (Execution-based COST). To

create ECOST, we first execute all programs in COST and remove the ones that throw compi-

lation or run-time errors. To support execution-based evaluation, we also remove programs

that execute but have empty output. ECOST has approximately 1, 000 function-level train-

ing instances for C++, Java, and Python, and 150 for C. We employ a train/validation/test

split ratio of approximately 70:5:25. We focus on the function-level code translation of four

common programming languages, C++, Java, Python, and C. However, COST consists of

programs, not functions. To make ECOST support function-level experiments, we extract

functions from each program through AST2 and keep the rest of the program (referred to

as program_shell) for evaluation later. Note that when there are multiple functions in one

program, we keep all of them (except for the main() function).

Synthetic Parallel Code Generation. We use CODENET [96] as a source of monolingual

code inputs for parallel code generation. CODENET is a large-scale dataset containing 13M

programs spanning 55 languages. The programs in CODENET originate from code submissions

to online judge of programming problems. We select the “Accepted” submissions (i.e., sub-

missions that pass the online judge) in 4 languages, C++, Java, Python and C, from around

1, 600 problems, which gives us approximately 1M programs. To ensure the quality of the

input data, we set two filtering criteria: 1) the program should be modularized, which means

it should contain at least one function (other than main() or Main() function), and 2) the

program should be bug-free, which means it can be compiled without errors. After applying

the two steps of filtering, only around 8% of the programs remain, approximately 87, 000

examples. We experiment with two different models as the generator model, PLBART [5]

and CodeT5 [132]. The monolingual CODENET data are used as inputs to the generators to

obtain the hypotheses through tempered sampling, and then get the synthetic parallel code

2https://tree-sitter.github.io/tree-sitter/
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through selection by static analysis and compilation.

Baselines and Evaluation Metrics. We compare against five advanced code translation

models. CodeBERT [27], PLBART [5], and CodeT5 [132] are programming language models

pre-trained with self-supervised learning techniques on large-scale open-source code datasets.

These models can perform code translation as a downstream task after fine-tuning on parallel

code data. TransCoder [111] is an unsupervised code translation model that relied on back-

translation for data augmentation. TransCoder-ST [113] improves TransCoder by leveraging

unit testing to generate parallel code data. After generating the synthetic parallel code,

we train code translation models using the generated data and evaluate the performance.

CodeBERT, PLBART and CodeT5 need fine-tuning to perform code translation. Therefore,

they are fine-tuned on ECOST with both snippet-level and function-level data. On the other

hand, TransCoder and TransCoder-ST do not need fine-tuning as they are unsupervised

methods. All models are evaluated on the ECOST test set. CodeBLEU[107] is a weighted

sum of n-gram matching, AST matching, and data flow matching between source and target

programs. Computation Accuracy (CA) [111] is a new metric introduced in TransCoder that

measures if the hypothesis has the same execution output as the reference. We use CA@1

for all the evaluations. Model training details are included in the Appendix.

8.5 Results and Analysis

We evaluate two variations of our method, SPACoder-PLBART and SPACoder-CodeT5, by

performing parallel code generation with PLBART and CodeT5 as generators and curriculum

learning with their generated data respectively. The generated parallel code data is referred

as CODENET-SPACoder. We focus on two aspects, generated data quality and improvements

in code translation performance.
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PLBART Number of Pairs Selection Rate
Selector C++ – Java C++ – Py C++ – C Java – Py Java – C Py – C C++ – Java C++ – Py C++ – C Java – Py Java – C Py – C
Back Translation 47540 63637 49550 37233 22919 39231 1 1 1 1 1 1
Static Analysis 25211 58157 14945 31228 13059 33882 0.53 0.91 0.30 0.84 0.57 0.86
Compilation 15258 36224 1893 13525 1562 11088 0.32 0.57 0.04 0.36 0.07 0.28
SA & Compilation 9278 34733 1200 12104 1313 10730 0.20 0.55 0.02 0.33 0.06 0.27

Table 8.1: Statistics of CODENET-SPACoder, with PLBART [5] as generator. SA & Compi-
lation refers to the intersection of the Static Analysis and Compilation selections.

PLBART CodeBLEU Computation Accuracy
Dataset Java – C++ Py – C++ C++ – Java Py – Java C++ – Py Java – Py Java – C++ Py – C++ C++ – Java Py – Java C++ – Py Java – Py
CODENET 21.61 21.70 22.14 19.16 20.31 18.92 0 3.13 0.64 1.57 3.37 0
ECOST-function 38.87 53.60 41.42 46.24 53.94 50.50 0.81 4.52 1.88 3.63 16.87 16.62
ECOST-snippet 71.39 66.62 71.27 64.76 62.05 60.62 25.54 24.40 27.15 23.87 32.23 32.33
CODENET-SPACoder 69.02 65.92 70.96 63.54 61.77 61.52 38.44 27.71 28.49 24.17 35.54 37.76

Table 8.2: Performance comparison of the same model trained on existing parallel code data
versus on CODENET-SPACoder. The model used here is PLBART. The results from training
on CODENET-SPACoder demonstrate superior Computation Accuracy over existing parallel
code data, indicating its high quality and effectiveness in improving code translation. Py is
short for Python.

8.5.1 Quality of the Synthetic Parallel Code

Statistics of CODENET-SPACoder. With 86, 972 monolingual code as input, we manage

to generate 516, 142 and 529, 108 synthetic parallel code pairs in 6 language pairs from

PLBART and CodeT5, respectively. Table 8.1 shows the statistics of the synthetic parallel

code data generated by PLBART. Note that the datasets resulting from static analysis and

compilation are not subsets of back-translation, because for back-translation we randomly

pick a hypothesis from the 10 sampled hypotheses, and for static analysis and compilation

we select the hypothesis from the ones that pass the selection criteria. From the selection

rate, we can observe that static analysis is the most lenient to Python, as it is a weakly-typed

language. Compilation has the least selection rate on C. This is due to data scarcity as the

generator has poor performance on C due to being trained with less than 150 examples.

Quantitative Analysis. We quantitatively evaluate the quality of CODENET-SPACoder.

Specifically, we train PLBART using only the generated data from SPACoder-PLBART
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CodeBLEU Computation Accuracy
Model Java – C++ Py – C++ C++-Java Py – Java C++ – Py Java – Py Java – C++ Py – C++ C++ – Java Py – Java C++ –Py Java – Py
CodeBERT 61.75 50.18 29.71 42.21 46.99 46.69 13.44 4.82 10.22 3.93 6.33 5.74
PLBART 71.39 66.62 71.27 64.76 62.05 60.62 25.54 24.40 27.15 23.87 32.23 32.33
CodeT5 72.76 64.99 72.13 64.26 59.16 61.25 37.63 19.28 41.13 23.87 20.78 24.77
Trancoder 72.54 66.47 70.36 63.61 56.29 55.29 49.73 25.60 40.86 22.36 41.87 46.22
Trancoder-ST 71.47 61.28 70.96 64.81 58.85 57.70 51.08 36.14 44.09 35.35 43.98 51.96

SPACoder-PLBART 74.55 68.43 72.90 67.14 63.09 63.47 41.94 35.24 40.05 33.84 38.55 41.09
SPACoder-CodeT5 74.94 69.25 74.85 69.64 65.10 65.95 51.08 41.87 49.19 43.20 50.00 49.55

Table 8.3: Performance comparison of two implementations of SPACoder with PLBART and
CodeT5 against baseline approaches. The metrics used for comparison are CodeBLEU and
Computation Accuracy (CA@1). Across both measures, SPACoder outperforms the baseline
approaches, demonstrating its effectiveness in code translation.

and compare it with PLBART trained on other existing parallel data. Table 8.2 shows the

performance from training on each dataset. We observe that on Computation Accuracy,

CODENET-SPACoder from PLBART outperforms the annotated datasets on all the language

pairs, which is a strong indicator of its high quality and good alignment. CODENET has the

worst performance, with close to zero on Computation Accuracy, which is potentially due to

its poor alignment quality.

Qualitative Analysis. We further perform qualitative analysis and manually inspect sam-

ples of the generated data. Table 8.3 illustrates four examples from the synthetic parallel

code, with two in Java – C++, and two in Python – C++. The Java and Python codes

are the monolingual input from CODENET, and the C++ codes are the synthetic codes. The

generated code snippets are in good alignment with their corresponding inputs, with correct

mapping of types, data structures, and syntax. Note that the synthetic codes still contain

some noise, for example, there are some mistranslations of the numbers from the input code.

However, Table 8.3 and 8.4 results indicate that it does not impede the effectiveness of the

synthetic code in improving code translation performance.
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CodeBLEU Computation Accuracy
Model C++ – C Java–C Python – C C – C++ C–Java C – Python C++ – C Java – C Python – C C – C++ C – Java C – Python
PLBART 40.66 56.85 43.66 42.77 32.49 52.98 2.60 0 1.56 5.19 0 14.06
SPACoder-PLBART 79.08 72.37 61.73 80.34 68.79 61.92 33.77 28.77 17.19 48.05 23.29 28.12
CodeT5 82.06 74.16 62.25 80.04 71.25 61.06 66.23 47.95 25.00 64.94 39.73 28.12
SPACoder-CodeT5 82.26 74.59 63.87 81.24 74.21 66.65 68.83 56.16 31.25 64.94 45.21 51.56

Table 8.4: Performance comparison before and after applying SPACoder on low-resource
language C. The results show substantial performance improvements across all measures
after the application of our method, indicating the effectiveness of SPACoder on low-resource
languages.

CodeBLEU Computation Accuracy
Model Java – C++ Py – C++ C++ – Java Py – Java C++ – Py Java – Py Java-C++ Py – C++ C++ – Java Py – Java C++ – Py Java – Py
Base Model 38.87 53.6 41.42 46.24 53.94 50.50 0.81 4.52 1.88 3.63 16.87 16.62
BT 67.91 66.32 70.54 65.50 61.78 62.40 19.62 23.8 32.26 27.19 35.24 37.76
BT + STAT 74.35 68.23 71.56 66.19 62.45 62.83 38.71 28.92 34.95 29.31 36.45 38.97
BT + STAT + COMP 74.22 68.12 72.26 66.20 62.13 62.11 40.59 34.34 36.02 28.10 35.54 38.97
SPACoder 74.55 68.43 72.90 67.14 63.09 63.47 41.94 35.24 40.05 33.84 38.55 41.09

Table 8.5: SPACoder ablation study, showing the curriculum performance improvements in
code translation as each synthetic parallel code dataset is added to the alignment-ascending
curriculum. The results demonstrate the cumulative contribution of each synthetic dataset to
enhancing the effectiveness of the training curriculum. The base model is PLBART trained
on the ECoST-function dataset.

8.5.2 Improvement in Code Translation Performance

Comparison with Baseline Models. Table 8.3 shows the CodeBLEU and Computation

Accuracy performance on C++, Java, and Python of the baseline models and SPACoder-

PLBART and SPACoder-CodeT5. In terms of CodeBLEU, both SPACoder models out-

perform all baselines, with SPACoder-CodeT5 surpassing the best baseline performance by

8% on Python – C++ and Java – Python translation. In terms of Computation Accuracy,

SPACoder-CodeT5 outperforms the best baseline performance by 5% on Python – C++ and

C++ – Java, 6% on C++-Python, and 8% on Python-Java. Moreover, both SPACoder mod-

els outperform their respective generator models on all the language pairs and both metrics

by a wide margin. Compared to CodeT5, SPACoder-CodeT5’s Computation Accuracy on

Python – C++ and Python – Java improves by 20%, and on Java – Python and C++ –

Python the improvements are 25% and 30%, respectively.
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Figure 8.4: Qualitative translation results from SPACoder and the baseline methods given
the same input. In all three examples, the baselines’ results exhibit the “Shallow Translation”
problem, where code snippets are directly copied or translated token by token from the
source language, causing compilation and run-time errors in the target language. SPACoder’s
translation shows its strong ability in correctly aligning the syntax and APIs across different
languages.
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Performance on Low-resource Languages. In ECOST, C only has less than 150 parallel

code pairs with each language, making it suitable for evaluating in more challenging low-

resource language settings. As shown in Table 8.1, the compilation rate is the lowest when

C is involved, as the generator is not able to generate high-quality data when the training

data of C is significantly less. Table 8.4 shows the performance of the two implementations

of SPACoder and their respective generators. For PLBART, SPACoder improves the Code-

BLEU by up to 40% and improves the Computation Accuracy by up to 43%. This shows that

the augmentation of parallel code generation works well in low-resource language settings,

where the generator’s performance is weak. For CodeT5, the improvement in Computation

Accuracy is up to 23%.

Impact of Curriculum on Translation Performance. Table 8.5 shows the results of

an ablation study designed to incrementally add each synthetic and annotated parallel code

dataset to the alignment-ascending curriculum used for training the code translation model.

Starting with a base model trained solely on the annotated dataset ECOST (function-level),

we progressively add each dataset one by one into the curriculum. The results demon-

strate that each added synthetic dataset enhances the model’s performance on both metrics.

Notably, the best performance is achieved when all synthetic and annotated datasets are

included in the curriculum (SPACoder), underlining the cumulative contribution of each

dataset in the curriculum.

Qualitative Analysis. Figure 8.4 shows examples of various model translations and their

execution outputs given the same input code. The first column corresponds to the code

used as input in the source language, and the last column corresponds to the ground truth

translation in the target language. All examples are from the ECOST test set. We compare

SPACoder-CodeT5 with two other baselines, TransCoder-ST and CodeT5. In the first two

examples, we observe that both baselines demonstrate the “shallow translation” problem. In
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the C++ – Python example, both TransCoder-ST and CodeT5 directly copy from the input

code. While min_element is a valid built-in function defined in header <algorithm> in C++,

it does not exist in Python, resulting in compilation errors for both baselines. TransCoder-

ST also exhibits inability in translating multiple functions at once. In the Python – Java

example, both TransCoder-ST and CodeT5 translate the keyword "not" in Python to "!" in

Java. However, operator "!" cannot be used when the operand is an integer. By translating

at token level, these baselines fail in taking the context into consideration, causing run-

time errors. In both cases, SPACoder-CodeT5 is able to translate the function calls and

statements from the source language to the target language correctly. In the Java – Python

example, both baselines fail at translating a complex for loop, while SPACoder correctly

translates this in a different way from the ground truth, showing a strong capability of

understanding the input code and mapping it into a different language.

8.6 Conclusion

In this chapter, we introduce SPACoder, addressing the limitations of existing methods

for code translation. By leveraging semi-supervised parallel code generation with enhanced

cross-lingual alignment, SPACoder overcomes the challenges of generating high-quality and

well-aligned parallel code data in a scalable manner. We demonstrate the effectiveness of

SPACoder through extensive experiments conducted on multiple languages and models. The

synthetic parallel code generated by SPACoder significantly improves the performance of

code translation, outperforming state-of-the-art baselines by a significant margin. Notably,

our method achieves remarkable gains in C translations even with a limited number of

annotated training instances. Our work showcases the importance of generating parallel

code data with good quality and alignment in order to enhance code translation capabilities.
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Future work can extend to more tasks that benefit from large amount of parallel data.
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Chapter 9

Conclusions

9.1 Revisit of Hypotheses

9.1.1 Part I: Learning with Long Sequences

• H1: For document ranking with respect to queries, an algorithm that assigns different

weight to each sentence based on the query and context leads to better query-document

matching, as compared to treating all sentences with equal importance.

Result: True. We designed a neural architecture, HAR [148], that successfully cap-

tures the hierarchical relevance between the query and each sentence of the document

and the whole document. The effectiveness of this approach is proven by the model’s

high performance in ranking documents in response to queries compared to a number

of baselines.

• H2: For questions where the answers span over non-consecutive sentences in a docu-

ment, an algorithm that simultaneously selects all relevant spans yields better answers

to queries than an algorithm that selects each sentence independently.

Result: True. Through the development of the MultiCo [149] architecture, we

demonstrated that it is possible to capture the inter-sentence relationship among an-

swer spans of a query in a document and form better answers compared to independent

sentence selection.

146
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9.1.2 Part II: Learning from Domain Knowledge

• H3: Modeling latent properties with the guidance of domain knowledge yields im-

proved results in biomedical entity linking, as compared to models that do not incor-

porate domain knowledge.

Result: True. We verified this hypothesis with the development and evaluation of

LATTE [150]. LATTE jointly performed fine-grained type learning and entity dis-

ambiguation. The performance improvement compared to state-of-the-art baselines

indicates the benefit of modeling latent types guided by domain knowledge.

• H4: Utilizing similar code comments across different programming languages to ob-

tain fine-grained parallel data enhances the development and validation of machine

learning methods in this domain.

Result: True. Our construction and utilization of the XLCoST [151] dataset, which

leveraged similar code comments across different languages, indeed resulted in the en-

hancement of development and validation of models, thereby validating our hypothesis.

9.1.3 Part III: Learning under Limited Supervision

• H5: Performing multilingual pre-training on snippet-level parallel code data enhances

program-level translation performance, particularly for languages with low resource

availability.

Result: True. The effectiveness of multilingual pre-training on snippet-level parallel

data was proven through the development and evaluation of our program transla-

tion model MuST-PT [152], which showed enhanced performance, especially for low-

resource languages.

• H6: Implementing curriculum learning with large amounts of noisy synthetic parallel

code enhances the performance of neural code translation.
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Result: True. By leveraging semi-supervised parallel code generation with enhanced

cross-lingual alignment in SPACoder, the implementation of curriculum learning signif-

icantly improved the performance of code translation, as evidenced by the experimental

results.

9.2 Conclusion

In this thesis, we have tackled the unique challenges posed by domain-specific language

understanding, specifically within the realms of healthcare and programming languages. We

have carefully addressed the unique issues concerning the comprehension of domain-specific

sequences, the necessity for domain knowledge, and the scarcity of labelled data within these

domains. Through our exploration, we have uncovered pivotal insights that are categorized

within three parts: Learning with Long Sequences, Learning from Domain Knowledge, and

Learning under Limited Supervision.

In Part I, we have presented an innovative deep neural network architecture that ranks docu-

ments for healthcare related queries, which has demonstrated substantial improvement over

existing techniques. We have also proposed a novel question-answering system that utilizes

multiple spans from a long document to provide comprehensive answers. This innovative

approach to question-answering has not only elevated the performance of our model but also

paved the way for future research in multi-span QA.

In Part II, we focused on integrating domain knowledge into our models. We introduced

LATTE, a novel neural architecture for biomedical entity linking that leverages latent type

modeling. Our results demonstrated that integrating such domain knowledge can lead to

improvements in performance. Moreover, we presented a new dataset parallel across multiple

programming languages, opening new avenues for research in cross-lingual tasks and code-
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related research problems.

Finally, in Part III, we addressed the challenge of learning with limited supervision. We

proposed a new program translation model utilizing multilingual snippet denoising auto-

encoding and translation pre-training, leading to significant improvements, especially for low-

resource languages. Additionally, we introduced SPACoder, a novel approach for code trans-

lation that leverages semi-supervised parallel code generation and enhanced cross-lingual

alignment, demonstrating remarkable performance even with limited annotated training in-

stances.

The work presented in this thesis has broad implications for the field of neural sequence

modeling for domain-specific languages. By addressing both general and domain-specific

challenges, we have shown that machine learning and natural language processing methods

can be successfully applied in a range of different contexts. We have also shown that there

is still a great deal of potential for further research in this area, especially when it comes to

further exploring the methods and techniques we have developed.

However, our work is just the beginning. In each part of our study, we have opened new

avenues for exploration and improvement. The impact of our work reaches beyond just the

healthcare and programming language domains and can potentially extend to a multitude of

other domain-specific languages. We hope our efforts will inspire and guide future research

in this field, ultimately leading to greater understanding and utility of domain-specific lan-

guages in the realm of machine learning.



Bibliography

[1] Asma Ben Abacha and Dina Demner-Fushman. A question-entailment approach to

question answering. BMC bioinformatics, 20(1):511, 2019.

[2] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,

Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:

a system for large-scale machine learning. In Proceedings of the 12th USENIX con-

ference on Operating Systems Design and Implementation, pages 265–283. USENIX

Association, 2016.

[3] David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm

for Boltzmann machines. Cognitive science, 9(1):147–169, 1985.

[4] Mayank Agarwal, Kartik Talamadupula, Fernando Martinez, Stephanie Houde,

Michael Muller, John Richards, Steven I Ross, and Justin D Weisz. Using document

similarity methods to create parallel datasets for code translation. arXiv preprint

arXiv:2110.05423, 2021.

[5] Wasi Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Unified pre-

training for program understanding and generation. In Proceedings of the 2021 Confer-

ence of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, pages 2655–2668, 2021.

[6] Wasi Uddin Ahmad, Md Golam Rahman Tushar, Saikat Chakraborty, and Kai-Wei

Chang. Avatar: A parallel corpus for Java-Python program translation. arXiv preprint

arXiv:2108.11590, 2021.

150



BIBLIOGRAPHY 151

[7] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. Sum-

marize and generate to back-translate: Unsupervised translation of programming lan-

guages. arXiv preprint arXiv:2205.11116, 2022.

[8] Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. Unsupervised

neural machine translation. arXiv preprint arXiv:1710.11041, 2017.

[9] Mikel Artetxe, Gorka Labaka, and Eneko Agirre. An effective approach to unsuper-

vised machine translation. arXiv preprint arXiv:1902.01313, 2019.

[10] Parminder Bhatia, Busra Celikkaya, Mohammed Khalilia, and Selvan Senthivel. Com-

prehend medical: a named entity recognition and relationship extraction web service.

arXiv preprint arXiv:1910.07419, 2019.

[11] Olivier Bodenreider. The unified medical language system (UMLS): integrating

biomedical terminology. Nucleic acids research, 32(suppl_1):D267–D270, 2004.

[12] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Free-

base: a collaboratively created graph database for structuring human knowledge. In

Proceedings of the 2008 ACM SIGMOD international conference on Management of

data, pages 1247–1250. AcM, 2008.

[13] Marc Brockschmidt, Miltiadis Allamanis, Alexander L Gaunt, and Oleksandr Polo-

zov. Generative code modeling with graphs. In International Conference on Learning

Representations, 2018.

[14] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.

Language models are few-shot learners. Advances in neural information processing

systems, 33:1877–1901, 2020.



152 BIBLIOGRAPHY

[15] Danqi Chen, Adam Fisch, Jason Weston, and Antoine Bordes. Reading Wikipedia

to answer open-domain questions. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1870–1879,

2017.

[16] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira

Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brock-

man, et al. Evaluating large language models trained on code. arXiv preprint

arXiv:2107.03374, 2021.

[17] Xinyun Chen, Chang Liu, and Dawn Song. Tree-to-tree neural networks for program

translation. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett, editors, Advances in Neural Information Processing Systems, vol-

ume 31. Curran Associates, Inc., 2018. URL https://proceedings.neurips.cc/

paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf.

[18] Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi

Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representations using

RNN encoder–decoder for statistical machine translation. In Proceedings of the 2014

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

1724–1734, 2014.

[19] Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse trans-

formers. In Proceedings of the 2019 Conference on Empirical Methods in Natural

Language Processing and the 9th International Joint Conference on Natural Language

Processing (EMNLP-IJCNLP), pages 2174–2184, 2019.

[20] Zhuyun Dai, Chenyan Xiong, Jamie Callan, and Zhiyuan Liu. Convolutional neural

networks for soft-matching n-grams in ad-hoc search. In Proceedings of the Eleventh

https://proceedings.neurips.cc/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/d759175de8ea5b1d9a2660e45554894f-Paper.pdf


BIBLIOGRAPHY 153

ACM International Conference on Web Search and Data Mining, pages 126–134. ACM,

2018.

[21] Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G Carbonell, Quoc Le, and Ruslan

Salakhutdinov. Transformer-XL: Attentive language models beyond a fixed-length

context. In Proceedings of the 57th Annual Meeting of the Association for Computa-

tional Linguistics, pages 2978–2988, 2019.

[22] Dina Demner-Fushman and Jimmy Lin. Answer extraction, semantic clustering, and

extractive summarization for clinical question answering. In Proceedings of the 21st

International Conference on Computational Linguistics and the 44th annual meet-

ing of the Association for Computational Linguistics, pages 841–848. Association for

Computational Linguistics, 2006.

[23] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-

training of deep bidirectional transformers for language understanding. In NAACL-

HLT (1), 2019.

[24] Matthew Dunn, Levent Sagun, Mike Higgins, V Ugur Guney, Volkan Cirik, and

Kyunghyun Cho. SearchQA: A new Q&A dataset augmented with context from a

search engine. arXiv preprint arXiv:1704.05179, 2017.

[25] Sergey Edunov, Myle Ott, Michael Auli, and David Grangier. Understanding back-

translation at scale. arXiv preprint arXiv:1808.09381, 2018.

[26] Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael

Auli. ELI5: Long form question answering. In Proceedings of the 57th Annual Meeting

of the Association for Computational Linguistics, pages 3558–3567, 2019.



154 BIBLIOGRAPHY

[27] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong, Lin-

jun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. CodeBERT: A pre-trained

model for programming and natural languages. In Findings of the Association for

Computational Linguistics: EMNLP 2020, pages 1536–1547, Online, November 2020.

Association for Computational Linguistics. doi: 10.18653/v1/2020.findings-emnlp.139.

URL https://aclanthology.org/2020.findings-emnlp.139.

[28] Matthew Francis-Landau, Greg Durrett, and Dan Klein. Capturing semantic similarity

for entity linking with convolutional neural networks. arXiv preprint arXiv:1604.00734,

2016.

[29] Robert M French. Catastrophic forgetting in connectionist networks. Trends in cog-

nitive sciences, 3(4):128–135, 1999.

[30] Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boosting

algorithm for combining preferences. Journal of machine learning research, 4(Nov):

933–969, 2003.

[31] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,

Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. InCoder: A generative

model for code infilling and synthesis. arXiv preprint arXiv:2204.05999, 2022.

[32] Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models

better few-shot learners. arXiv preprint arXiv:2012.15723, 2020.

[33] Siddhant Garg, Thuy Vu, and Alessandro Moschitti. Tanda: Transfer and adapt pre-

trained transformer models for answer sentence selection. In Proceedings of the AAAI

conference on artificial intelligence, volume 34, pages 7780–7788, 2020.

[34] Fredric C Gey. Inferring probability of relevance using the method of logistic regression.

https://aclanthology.org/2020.findings-emnlp.139


BIBLIOGRAPHY 155

In Proceedings of the 17th annual international ACM SIGIR conference on Research

and development in information retrieval, pages 222–231. Springer-Verlag New York,

Inc., 1994.

[35] Paul N Gorman, Joan Ash, and Leslie Wykoff. Can primary care physicians’ questions

be answered using the medical journal literature? Bulletin of the Medical Library

Association, 82(2):140, 1994.

[36] Antonio Gulli and Sujit Pal. Deep learning with Keras. Packt Publishing Ltd, 2017.

[37] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long Zhou,

Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code

representations with data flow. arXiv preprint arXiv:2009.08366, 2020.

[38] Jiafeng Guo, Yixing Fan, Qingyao Ai, and W Bruce Croft. A deep relevance matching

model for ad-hoc retrieval. In Proceedings of the 25th ACM International on Conference

on Information and Knowledge Management, pages 55–64. ACM, 2016.

[39] Nitish Gupta, Sameer Singh, and Dan Roth. Entity linking via joint encoding of types,

descriptions, and context. In Proceedings of the 2017 Conference on Empirical Methods

in Natural Language Processing, pages 2681–2690, 2017.

[40] Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasupat, and Mingwei Chang. Re-

trieval augmented language model pre-training. In International conference on machine

learning, pages 3929–3938. PMLR, 2020.

[41] Zellig S Harris. Distributional structure. Word, 10(2-3):146–162, 1954.

[42] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015.



156 BIBLIOGRAPHY

[43] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[44] Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S Weld.

Knowledge-based weak supervision for information extraction of overlapping relations.

In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-

guistics: Human Language Technologies-Volume 1, pages 541–550. Association for

Computational Linguistics, 2011.

[45] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text

classification. arXiv preprint arXiv:1801.06146, 2018.

[46] Phu Mon Htut, Samuel Bowman, and Kyunghyun Cho. Training a ranking function

for open-domain question answering. In Proceedings of the 2018 Conference of the

North American Chapter of the Association for Computational Linguistics: Student

Research Workshop, pages 120–127, 2018.

[47] Baotian Hu, Zhengdong Lu, Hang Li, and Qingcai Chen. Convolutional neural net-

work architectures for matching natural language sentences. In Advances in neural

information processing systems, pages 2042–2050, 2014.

[48] Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng, Alex Acero, and Larry Heck.

Learning deep structured semantic models for web search using clickthrough data. In

Proceedings of the 22nd ACM international conference on Conference on information

& knowledge management, pages 2333–2338. ACM, 2013.

[49] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc

Brockschmidt. CodeSearchNet challenge: Evaluating the state of semantic code search.

arXiv preprint arXiv:1909.09436, 2019.



BIBLIOGRAPHY 157

[50] Gautier Izacard and Edouard Grave. Distilling knowledge from reader to retriever for

question answering. arXiv preprint arXiv:2012.04584, 2020.

[51] Ganesh Jawahar, Benoît Sagot, and Djamé Seddah. What does BERT learn about the

structure of language? In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 3651–3657, 2019.

[52] Mengqi Jin, Mohammad Taha Bahadori, Aaron Colak, Parminder Bhatia, Busra Ce-

likkaya, Ram Bhakta, Selvan Senthivel, Mohammed Khalilia, Daniel Navarro, Borui

Zhang, et al. Improving hospital mortality prediction with medical named entities and

multimodal learning. arXiv preprint arXiv:1811.12276, 2018.

[53] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings

of the eighth ACM SIGKDD international conference on Knowledge discovery and data

mining, pages 133–142. ACM, 2002.

[54] Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. TriviaQA: A large

scale distantly supervised challenge dataset for reading comprehension. In Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 1601–1611, 2017.

[55] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer

Levy. SpanBERT: Improving pre-training by representing and predicting spans. Trans-

actions of the Association for Computational Linguistics, 8:64–77, 2020.

[56] Svetoslav Karaivanov, Veselin Raychev, and Martin Vechev. Phrase-based statistical

translation of programming languages. In Proceedings of the 2014 ACM International

Symposium on New Ideas, New Paradigms, and Reflections on Programming & Soft-

ware, pages 173–184, 2014.



158 BIBLIOGRAPHY

[57] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey

Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain

question answering. In Proceedings of the 2020 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pages 6769–6781, 2020.

[58] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[59] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-

jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka

Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.

Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[60] Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann,

Gábor Melis, and Edward Grefenstette. The NarrativeQA reading comprehension

challenge. Transactions of the Association for Computational Linguistics, 6:317–328,

2018.

[61] Kusum Kusum, Abrar Ahmed, Bhuvana C, and V. Vivek. Unsupervised translation

of programming language - a survey paper. In 2022 4th International Conference on

Advances in Computing, Communication Control and Networking (ICAC3N), pages

384–388, 2022. doi: 10.1109/ICAC3N56670.2022.10074182.

[62] Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur

Parikh, Chris Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee,

et al. Natural questions: a benchmark for question answering research. Transactions

of the Association for Computational Linguistics, 7:453–466, 2019.

[63] Guillaume Lample and Alexis Conneau. Cross-lingual language model pretraining.

arXiv e-prints, pages arXiv–1901, 2019.



BIBLIOGRAPHY 159

[64] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,

and Chris Dyer. Neural architectures for named entity recognition. In Proceedings of

the Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, pages 260–270, 2016.

[65] Guillaume Lample, Alexis Conneau, Ludovic Denoyer, and Marc’Aurelio Ranzato.

Unsupervised machine translation using monolingual corpora only. In International

Conference on Learning Representations, 2018.

[66] Phong Le and Ivan Titov. Improving entity linking by modeling latent relations be-

tween mentions. arXiv preprint arXiv:1804.10637, 2018.

[67] Minsuk Lee, James Cimino, Hai Ran Zhu, Carl Sable, Vijay Shanker, John Ely, and

Hong Yu. Beyond information retrieval: medical question answering. In AMIA an-

nual symposium proceedings, volume 2006, page 469. American Medical Informatics

Association, 2006.

[68] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-

hamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising

sequence-to-sequence pre-training for natural language generation, translation, and

comprehension. In Proceedings of the 58th Annual Meeting of the Association for

Computational Linguistics, pages 7871–7880, 2020.

[69] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen

Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. In Inter-

national Conference on Learning Representations (ICLR), 2017.

[70] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen

Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. Interna-

tional Conference on Learning Representations (ICLR), 2017.



160 BIBLIOGRAPHY

[71] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A robustly

optimized BERT pretraining approach. 2019.

[72] Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey Edunov, Marjan Ghazvininejad,

Mike Lewis, and Luke Zettlemoyer. Multilingual denoising pre-training for neural

machine translation. Transactions of the Association for Computational Linguistics,

8:726–742, 2020.

[73] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambrosio Blanco,

Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. CodeXGLUE: A machine

learning benchmark dataset for code understanding and generation. In Thirty-fifth

Conference on Neural Information Processing Systems Datasets and Benchmarks Track

(Round 1), 2021.

[74] Gang Luo, Chunqiang Tang, Hao Yang, and Xing Wei. MedSearch: a specialized search

engine for medical information retrieval. In Proceedings of the 17th ACM conference

on Information and knowledge management, pages 143–152. ACM, 2008.

[75] Yuanhua Lv and ChengXiang Zhai. When documents are very long, BM25 fails!

In Proceedings of the 34th international ACM SIGIR conference on Research and

development in Information Retrieval, pages 1103–1104. ACM, 2011.

[76] Wenlei Mao and Wesley W Chu. Free-text medical document retrieval via phrase-based

vector space model. In Proceedings of the AMIA Symposium, page 489. American

Medical Informatics Association, 2002.

[77] Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist

networks: The sequential learning problem. In Psychology of learning and motivation,

volume 24, pages 109–165. Elsevier, 1989.



BIBLIOGRAPHY 161

[78] Alexa T McCray. The UML semantic network. In Proceedings. Symposium on Com-

puter Applications in Medical Care, pages 503–507. American Medical Informatics

Association, 1989.

[79] Yishu Miao, Lei Yu, and Phil Blunsom. Neural variational inference for text processing.

In International conference on machine learning, pages 1727–1736, 2016.

[80] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of

word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[81] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed

representations of words and phrases and their compositionality. In Advances in neural

information processing systems, pages 3111–3119, 2013.

[82] Bhaskar Mitra, Fernando Diaz, and Nick Craswell. Learning to match using local

and distributed representations of text for web search. In Proceedings of the 26th

International Conference on World Wide Web, pages 1291–1299. International World

Wide Web Conferences Steering Committee, 2017.

[83] Sunil Mohan and Donghui Li. MedMentions: A large biomedical corpus annotated

with UMLS concepts. arXiv preprint arXiv:1902.09476, 2019.

[84] Shikhar Murty, Patrick Verga, Luke Vilnis, Irena Radovanovic, and Andrew McCal-

lum. Hierarchical losses and new resources for fine-grained entity typing and linking.

In Proceedings of the 56th Annual Meeting of the Association for Computational Lin-

guistics (Volume 1: Long Papers), pages 97–109, 2018.

[85] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Lexical statistical

machine translation for language migration. In Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering, pages 651–654, 2013.



162 BIBLIOGRAPHY

[86] Anh Tuan Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Divide-and-conquer ap-

proach for multi-phase statistical migration for source code. In 2015 30th IEEE/ACM

International Conference on Automated Software Engineering (ASE), pages 585–596.

IEEE, 2015.

[87] Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Ma-

jumder, and Li Deng. MS MARCO: a human-generated machine reading comprehen-

sion dataset. 2016.

[88] Hamid Palangi, Li Deng, Yelong Shen, Jianfeng Gao, Xiaodong He, Jianshu Chen,

Xinying Song, and Rabab Ward. Deep sentence embedding using long short-term

memory networks: Analysis and application to information retrieval. IEEE/ACM

Transactions on Audio, Speech and Language Processing (TASLP), 24(4):694–707,

2016.

[89] Anusri Pampari, Preethi Raghavan, Jennifer Liang, and Jian Peng. emrQA: A large

corpus for question answering on electronic medical records. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing, pages 2357–2368,

2018.

[90] Liang Pang, Yanyan Lan, Jiafeng Guo, Jun Xu, Shengxian Wan, and Xueqi Cheng.

Text matching as image recognition. In Proceedings of the Thirtieth AAAI Conference

on Artificial Intelligence, pages 2793–2799. AAAI Press, 2016.

[91] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. BLEU: a method

for automatic evaluation of machine translation. In Proceedings of the 40th annual

meeting of the Association for Computational Linguistics, pages 311–318, 2002.

[92] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary



BIBLIOGRAPHY 163

DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

[93] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors

for word representation. In Proceedings of the 2014 conference on empirical methods

in natural language processing (EMNLP), pages 1532–1543, 2014.

[94] Ben Peters, Vlad Niculae, and André FT Martins. Sparse sequence-to-sequence mod-

els. In Proceedings of the 57th Annual Meeting of the Association for Computational

Linguistics, pages 1504–1519, 2019.

[95] Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark,

Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representations. In

Proceedings of NAACL-HLT, pages 2227–2237, 2018.

[96] Ruchir Puri, David S Kung, Geert Janssen, Wei Zhang, Giacomo Domeniconi, Vladmir

Zolotov, Julian Dolby, Jie Chen, Mihir Choudhury, Lindsey Decker, et al. Project

CodeNet: A large-scale AI for code dataset for learning a diversity of coding tasks.

arXiv preprint arXiv:2105.12655, 2021.

[97] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for code

generation and semantic parsing. In Proceedings of the 55th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1139–1149,

2017.

[98] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

language understanding by generative pre-training.

[99] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,

et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.



164 BIBLIOGRAPHY

[100] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael

Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning

with a unified text-to-text transformer. Journal of Machine Learning Research, 21

(140):1–67, 2020.

[101] Jonathan Raphael Raiman and Olivier Michel Raiman. DeepType: multilingual en-

tity linking by neural type system evolution. In Thirty-Second AAAI Conference on

Artificial Intelligence, 2018.

[102] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD:

100,000+ questions for machine comprehension of text. In Proceedings of the 2016

Conference on Empirical Methods in Natural Language Processing, pages 2383–2392,

2016.

[103] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unan-

swerable questions for SQuAD. arXiv preprint arXiv:1806.03822, 2018.

[104] Juan Ramos et al. Using tf-idf to determine word relevance in document queries.

In Proceedings of the first instructional conference on machine learning, volume 242,

pages 133–142, 2003.

[105] Chandan K Reddy and Charu C Aggarwal. Healthcare data analytics. Chapman and

Hall/CRC, 2015.

[106] Siva Reddy, Danqi Chen, and Christopher D Manning. CoQA: A conversational ques-

tion answering challenge. Transactions of the Association for Computational Linguis-

tics, 7:249–266, 2019.

[107] Shuo Ren, Daya Guo, Shuai Lu, Long Zhou, Shujie Liu, Duyu Tang, Neel Sundaresan,



BIBLIOGRAPHY 165

Ming Zhou, Ambrosio Blanco, and Shuai Ma. CodeBLEU: a method for automatic

evaluation of code synthesis. arXiv preprint arXiv:2009.10297, 2020.

[108] Stephen E Robertson and K Sparck Jones. Relevance weighting of search terms. Jour-

nal of the American Society for Information science, 27(3):129–146, 1976.

[109] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,

Mike Gatford, et al. Okapi at TREC-3. NIST Special Publication Sp, 109:109, 1995.

[110] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lam-

ple. Unsupervised translation of programming languages. In H. Larochelle,

M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neu-

ral Information Processing Systems, volume 33, pages 20601–20611. Curran As-

sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/

ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf.

[111] Baptiste Roziere, Marie-Anne Lachaux, Lowik Chanussot, and Guillaume Lample.

Unsupervised translation of programming languages. In NeurIPS, 2020.

[112] Baptiste Roziere, Marie-Anne Lachaux, Marc Szafraniec, and Guillaume Lample.

DOBF: A deobfuscation pre-training objective for programming languages. arXiv

preprint arXiv:2102.07492, 2021.

[113] Baptiste Roziere, Jie Zhang, Francois Charton, Mark Harman, Gabriel Synnaeve, and

Guillaume Lample. Leveraging automated unit tests for unsupervised code translation.

In International Conference on Learning Representations, 2021.

[114] Sebastian Ruder and Barbara Plank. Strong baselines for neural semi-supervised learn-

ing under domain shift. arXiv preprint arXiv:1804.09530, 2018.

https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/ed23fbf18c2cd35f8c7f8de44f85c08d-Paper.pdf


166 BIBLIOGRAPHY

[115] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.

Commun. ACM, 18(11):613–620, November 1975. ISSN 0001-0782. doi: 10.1145/

361219.361220. URL http://doi.acm.org/10.1145/361219.361220.

[116] Gerard Salton and Christopher Buckley. Term-weighting approaches in automatic text

retrieval. Information processing & management, 24(5):513–523, 1988.

[117] Rudolf Schneider, Sebastian Arnold, Tom Oberhauser, Tobias Klatt, Thomas Steffek,

and Alexander Löser. Smart-MD: Neural paragraph retrieval of medical topics. In

Companion of the The Web Conference 2018 on The Web Conference 2018, pages

203–206. International World Wide Web Conferences Steering Committee, 2018.

[118] Mike Schuster and Kuldip K Paliwal. Bidirectional recurrent neural networks. IEEE

Transactions on Signal Processing, 45(11):2673–2681, 1997.

[119] Vikash Sehwag, Saeed Mahloujifar, Tinashe Handina, Sihui Dai, Chong Xiang, Mung

Chiang, and Prateek Mittal. Robust learning meets generative models: Can proxy

distributions improve adversarial robustness? In International Conference on Learning

Representations.

[120] Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirec-

tional attention flow for machine comprehension. International Conference on Learning

Representations (ICLR), 2017.

[121] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. Learning

semantic representations using convolutional neural networks for web search. In Pro-

ceedings of the 23rd International Conference on World Wide Web, pages 373–374.

ACM, 2014.

http://doi.acm.org/10.1145/361219.361220


BIBLIOGRAPHY 167

[122] Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick LeGresley, Samyam Rajb-

handari, Jared Casper, Zhun Liu, Shrimai Prabhumoye, George Zerveas, Vijay Kor-

thikanti, et al. Using DeepSpeed and Megatron to train Megatron-Turing NLG 530B,

a large-scale generative language model. arXiv preprint arXiv:2201.11990, 2022.

[123] Simon Suster and Walter Daelemans. CliCR: a dataset of clinical case reports for

machine reading comprehension. In Proceedings of the 2018 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long Papers), pages 1551–1563, 2018.

[124] Marc Szafraniec, Baptiste Roziere, Hugh Leather Francois Charton, Patrick Labatut,

and Gabriel Synnaeve. Code translation with compiler representations. arXiv preprint

arXiv:2207.03578, 2022.

[125] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna

Gurevych. BEIR: A heterogeneous benchmark for zero-shot evaluation of informa-

tion retrieval models. In Thirty-fifth Conference on Neural Information Processing

Systems Datasets and Benchmarks Track (Round 2).

[126] Özlem Uzuner, Brett R South, Shuying Shen, and Scott L DuVall. 2010 i2b2/VA

challenge on concepts, assertions, and relations in clinical text. Journal of the American

Medical Informatics Association, 18(5):552–556, 2011.

[127] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances

in neural information processing systems, pages 5998–6008, 2017.

[128] Ellen M. Voorhees and Dawn M. Tice. Building a question answering test collection.

In Proceedings of the 23rd Annual International ACM SIGIR Conference on Research



168 BIBLIOGRAPHY

and Development in Information Retrieval, SIGIR ’00, pages 200–207, New York, NY,

USA, 2000. ACM. ISBN 1-58113-226-3. doi: 10.1145/345508.345577. URL http:

//doi.acm.org/10.1145/345508.345577.

[129] Shengxian Wan, Yanyan Lan, Jiafeng Guo, Jun Xu, Liang Pang, and Xueqi Cheng. A

deep architecture for semantic matching with multiple positional sentence representa-

tions. In AAAI, volume 16, pages 2835–2841, 2016.

[130] Jiang Wang, Yang Song, Thomas Leung, Chuck Rosenberg, Jingbin Wang, James

Philbin, Bo Chen, and Ying Wu. Learning fine-grained image similarity with deep

ranking. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 1386–1393, 2014.

[131] Wenhui Wang, Nan Yang, Furu Wei, Baobao Chang, and Ming Zhou. Gated self-

matching networks for reading comprehension and question answering. In Proceedings

of the 55th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), volume 1, pages 189–198, 2017.

[132] Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. CodeT5: Identifier-aware

unified pre-trained encoder-decoder models for code understanding and generation.

In Proceedings of the 2021 Conference on Empirical Methods in Natural Language

Processing, pages 8696–8708, 2021.

[133] Dirk Weissenborn, Georg Wiese, and Laura Seiffe. Making neural QA as simple as

possible but not simpler. In Proceedings of the 21st Conference on Computational

Natural Language Learning (CoNLL 2017), pages 271–280, 2017.

[134] Caiming Xiong, Victor Zhong, and Richard Socher. Dynamic coattention networks for

question answering. In International Conference on Learning Representations (ICLR),

2017.

http://doi.acm.org/10.1145/345508.345577
http://doi.acm.org/10.1145/345508.345577


BIBLIOGRAPHY 169

[135] Chenyan Xiong, Zhuyun Dai, Jamie Callan, Zhiyuan Liu, and Russell Power. End-to-

end neural ad-hoc ranking with kernel pooling. In Proceedings of the 40th International

ACM SIGIR Conference on Research and Development in Information Retrieval, pages

55–64. ACM, 2017.

[136] Jun Xu and Hang Li. AdaRank: a boosting algorithm for information retrieval. In

Proceedings of the 30th annual international ACM SIGIR conference on Research and

development in information retrieval, pages 391–398. ACM, 2007.

[137] Liu Yang, Qingyao Ai, Jiafeng Guo, and W Bruce Croft. aNMM: Ranking short

answer texts with attention-based neural matching model. In Proceedings of the 25th

ACM International on Conference on Information and Knowledge Management, pages

287–296. ACM, 2016.

[138] Yi Yang, Wen-tau Yih, and Christopher Meek. WikiQA: A challenge dataset for

open-domain question answering. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing, pages 2013–2018, 2015.

[139] Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Carbonell, Russ R Salakhutdinov, and

Quoc V Le. XLNet: Generalized autoregressive pretraining for language understand-

ing. In Advances in neural information processing systems, pages 5754–5764, 2019.

[140] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy.

Hierarchical attention networks for document classification. In Proceedings of the 2016

Conference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, pages 1480–1489, 2016.

[141] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao. Semantic parsing

via staged query graph generation: Question answering with knowledge base. In Pro-



170 BIBLIOGRAPHY

ceedings of the 53rd Annual Meeting of the Association for Computational Linguistics

(Volume 1: Long Papers), pages 1321–1331, 2015.

[142] Pengcheng Yin and Graham Neubig. A syntactic neural model for general-purpose

code generation. In Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 440–450, 2017.

[143] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Moham-

mad Norouzi, and Quoc V Le. QANet: Combining local convolution with global

self-attention for reading comprehension. International Conference on Learning Rep-

resentations (ICLR), 2018.

[144] Hong Yu, Minsuk Lee, David Kaufman, John Ely, Jerome A Osheroff, George Hripc-

sak, and James Cimino. Development, implementation, and a cognitive evaluation of

a definitional question answering system for physicians. Journal of biomedical infor-

matics, 40(3):236–251, 2007.

[145] Lei Yu, Karl Moritz Hermann, Phil Blunsom, and Stephen Pulman. Deep learning for

answer sentence selection. arXiv preprint arXiv:1412.1632, 2014.

[146] Matthew D Zeiler. ADADELTA: an adaptive learning rate method. arXiv preprint

arXiv:1212.5701, 2012.

[147] Richard Zens, Franz Josef Och, and Hermann Ney. Phrase-based statistical machine

translation. In Annual Conference on Artificial Intelligence, pages 18–32. Springer,

2002.

[148] Ming Zhu, Aman Ahuja, Wei Wei, and Chandan K Reddy. A hierarchical attention

retrieval model for healthcare question answering. In The World Wide Web Conference,

pages 2472–2482, 2019.



BIBLIOGRAPHY 171

[149] Ming Zhu, Aman Ahuja, Da-Cheng Juan, Wei Wei, and Chandan K Reddy. Ques-

tion answering with long multiple-span answers. In Findings of the Association for

Computational Linguistics: EMNLP 2020, pages 3840–3849, 2020.

[150] Ming Zhu, Busra Celikkaya, Parminder Bhatia, and Chandan K Reddy. LATTE:

Latent type modeling for biomedical entity linking. In Proceedings of the AAAI Con-

ference on Artificial Intelligence, volume 34, pages 9757–9764, 2020.

[151] Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravindran, Sindhu Tipirneni, and

Chandan K Reddy. XLCoST: A benchmark dataset for cross-lingual code intelligence.

arXiv preprint arXiv:2206.08474, 2022.

[152] Ming Zhu, Karthik Suresh, and Chandan K Reddy. Multilingual code snippets train-

ing for program translation. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 36, pages 11783–11790, 2022.

[153] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Gün-

nemann. Language-agnostic representation learning of source code from structure and

context. In International Conference on Learning Representations (ICLR), 2021.


	Titlepage
	Abstract
	General Audience Abstract
	Dedication
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Background
	Outline
	Part I: Learning with Long Sequences
	Part II: Learning from Domain Knowledge
	Part III: Learning under Limited Supervision

	Contributions

	Review of Literature
	Neural Information Retrieval
	Document Ranking
	Passage Retrieval
	Information Retrieval for Healthcare

	Neural Machine Comprehension
	Question Answering Datasets
	Question Answering Datasets in Healthcare

	Neural Entity Linking
	Neural Code Translation
	Cross-Lingual Code Tasks
	Parallel Code Data
	Neural Program Translation


	I Learning with Long Sequences
	A Hierarchical Attention Retrieval Model for Healthcare Question Answering
	Introduction
	The Proposed Model
	Word Embeddings
	Encoder
	Cross Attention between Query and Document
	Query Inner Attention
	Document Hierarchical Inner Attention
	Score Computation
	Optimization

	HealthQA Dataset
	Knowledge Articles
	Question-Answer Pair Generation

	Experimental Results
	Evaluation Metrics
	Baseline Methods
	Implementation Details
	Results
	Performance Analysis

	Conclusion

	Question Answering with Long Multiple-Span Answers
	Introduction
	MASH-QA Dataset
	Dataset Description
	Data Collection and Processing
	Dataset Characteristics

	The Proposed MultiCo Model
	Problem Formulation
	Model Architecture
	Optimization

	Experiments
	Implementation Details
	Performance against Answer Sentence Classification Based Methods
	Performance against Span Extraction Based Methods
	Qualitative Results

	Conclusion


	II Learning from Domain Knowledge
	Latent Type Modeling for Biomedical Entity Linking
	Introduction
	The Proposed Model
	Motivation
	Problem Statement
	Model Architecture
	Optimization

	Experimental Results
	Datasets
	Candidate Generation
	Evaluation Metrics
	Implementation Details
	Baselines
	Results

	Conclusion

	A Machine Learning Benchmark for Cross-lingual Code Intelligence
	Introduction
	The XLCoST dataset
	Definitions
	Data Characteristics
	Data Collection and Processing

	Code Tasks
	Experiments
	Evaluation Metrics and Baselines
	Result Analysis
	Limitations and Future Work

	Conclusion


	III Learning under Limited Supervision
	Multilingual Code Snippets Training for Program Translation
	Introduction
	The Code Snippets Translation (CoST) Dataset
	Data Collection and Processing
	Dataset Comparisons and Characteristics

	The Proposed Method
	Problem Formulation
	Model Architecture
	Model Initialization
	Multilingual Snippet Denoising Auto-Encoding
	Multilingual Snippet Translation (MuST)
	Implementation Details

	Experiments
	Datasets
	Evaluation Metrics
	Baseline Methods
	Results Analysis

	Conclusion and Future Work

	Alignment-Enhancing Parallel Code Generation for Semi-Supervised Code Translation
	Introduction
	Related Work
	Method
	Parallel Code Data Generation
	Alignment-based Curriculum Learning

	Experiments
	Results and Analysis
	Quality of the Synthetic Parallel Code
	Improvement in Code Translation Performance

	Conclusion

	Conclusions
	Revisit of Hypotheses
	Part I: Learning with Long Sequences
	Part II: Learning from Domain Knowledge
	Part III: Learning under Limited Supervision

	Conclusion

	Bibliography


