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We study the non-equilibrium relaxation kinetics of interacting magnetic flux lines in disordered
type-II superconductors at low temperatures and low magnetic fields by means of a three-dimensional
elastic line model and Monte Carlo simulations. Investigating the vortex density and height auto-
correlation functions as well as the flux line mean-square displacement, we observe the emergence
of glassy dynamics, caused by the competing effects of vortex pinning due to point defects and
long-range repulsive interactions between the flux lines. Our systematic numerical study allows us
to carefully disentangle the associated different relaxation mechanisms, and to assess their relative
impact on the kinetics of dilute vortex matter at low temperatures.

PACS numbers: 74.25.Uv, 74.40.Gh, 61.20.Lc

I. INTRODUCTION

In this paper, we report an investigation of the non-
equilibrium relaxation kinetics in the vortex glass phase
of layered disordered type-II superconductors. Since
Struik’s original investigations,1 many glassy systems
have been found to exhibit physical aging phenomena,
which have attracted considerable interest during the
past decades.2 Recently, it has been realized that glass-
like relaxation and aging can in fact be found in many
other systems.3–5 Glassy materials feature extremely long
relaxation times which facilitates the investigation of ag-
ing phenomena in real as well as in numerical experi-
ments. Our definition of physical aging here entails two
fundamental properties: First, we require relaxation to-
wards equilibrium to be very slow, typically character-
ized by a power law decay, observable in a large acces-
sible time window tmic ≪ t ≪ teq; here tmic denotes an
appropriate short microscopic time scale, whereas teq is
the much larger equilibration time for the macroscopic
system under consideration. Second, a non-equilibrium
initial state is prepared such that the kinetics is rendered
non-stationary; thus, time-translation invariance is bro-
ken, and two-time response and correlation functions de-
pend on both times s and t > s independently, not just
on the elapsed time difference t − s. In this context, s
is often referred to as waiting time, and t as observation
time. In addition, in the limit t ≫ s many aging systems
are characterized by the emergence of dynamical scaling
behavior.3

The physics of interacting vortex lines in disordered
type-II superconductors is remarkably complex and has
been a major research focus in condensed matter physics
in the past two decades. It has been established that the
temperature vs. magnetic-field phase diagram displays a
variety of distinct phases.6 A thorough understanding of
the equilibrium and transport properties of vortex matter
is clearly required to render these materials amenable to
optimization with respect to dissipative losses, especially
in (desirable) high-field applications. Investigations of
vortex phases and dynamics have in turn enriched con-
densed matter theory, specifically the mathematical mod-

eling and description of quantum fluids, glassy states,
topological defects, continuous phase transitions, and dy-
namic critical phenomena. An appealing feature of dis-
ordered magnetic flux line systems is their straightfor-
ward experimental realization which allows direct com-
parison of theoretical predictions with actual measure-
ments. The existence of glassy phases in vortex mat-
ter is well-established theoretically and experimentally.6,7

The low-temperature Abrikosov lattice in pure flux line
systems is already destroyed by weak point-like disor-
der (such as oxygen vacancies in the cuprates). The
first-order vortex lattice melting transition of the pure
system8 is then replaced by a continuous transition into
a disorder-dominated vortex glass phase.9–11 Here, the
vortices are collectively pinned, displaying neither trans-
lational nor orientational long-range order.12 In addition,
there is now mounting evidence for a topologically or-
dered dislocation-free Bragg glass phase at low magnetic
fields or for weak disorder;7,11,13–15 and an intriguing in-
termediate multidomain glass state has been proposed.16

Unambiguous signatures of aging in disordered vortex
matter have also been identified experimentally: For ex-
ample, Du et al. recently demonstrated that the volt-
age response of a 2H-NbSe2 sample to a current pulse
depended on the pulse duration17 (see also Ref. [18]).
Out-of-equilibrium features of vortex glass systems re-
laxing towards their equilibrium state were studied some
time ago by Nicodemi and Jensen through Monte Carlo
simulations of a two-dimensional coarse-grained model
system;19 however, this model applies to very thin
films only since it naturally disregards the prominent
three-dimensional flux line fluctuations. More recently,
three-dimensional Langevin dynamics simulations of vor-
tex matter were employed by Olson et al.20 and by
Bustingorry, Cugliandolo, and Domı́nguez21,22 (see also
Ref. [23,24]) in order to investigate non-equilibrium re-
laxation kinetics, with quite intriguing results and indica-
tions of aging behavior in quantities such as the two-time
density-density correlation function, the linear suscep-
tibility, and the mean-square displacement. Romá and
Domı́nguez extended these studies to Monte Carlo simu-
lations of the three-dimensional gauge glass model at the
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critical temperature.25

We remark that it is generally crucial for the analysis of
out-of-equilibrium systems to carefully investigate alter-
native microscopic realizations of their dynamics in order
to probe their actual physical properties rather than ar-
tifacts inherent in any mathematical modeling. Indeed,
different mathematical and numerical representations of
non-equilibrium systems rely on various underlying a pri-

ori assumptions that can only be validated a posteriori.
It is therefore imperative to test a variety of different
numerical methods and compare the ensuing results in
order to identify those properties that are generic to the
physical system under investigation. In this paper we
employ Metropolis Monte Carlo simulations for a three-
dimensional interacting elastic line model to investigate
the relaxation behavior in the physical aging regime for
systems with uncorrelated attractive point defects.

We strive to employ parameter values that describe
high-Tc superconducting materials such as YBCO, and
limit our investigations to low magnetic fields and tem-
peratures (typically 10 K) in order for our disordered
elastic line model to adequately represent a type-II super-
conductor with realistic material characteristics. Thus
we address a parameter and time regime wherein the
slow dynamics is dominated by the gradual build-up of
correlations induced by an intricate interplay of repulsive
vortex interactions and attractive point pinning sites.

Our work differs in crucial aspects from other recent
studies [21,22]. As in Refs. [19,20], we consider the
in type-II superconductors physically relevant situation
where all defects serve as genuinely attractive and local-
ized pinning sites for vortices, in the sense that they lo-
cally reduce the chemical potential (or equivalently, sup-
press the superconducting transition temperature). Our
pinning potential landscape is therefore characterized by
large flat regions in space, where the vortices feel no pin-
ning force, interspersed with small attractive potential
minima of extension b0, much smaller than the London
penetration depth λab that sets the vortex-vortex inter-
action range. This is to be contrasted with the model
used in Refs. [21,22], which is rather motivated by studies
of interfaces in random environments that are described
by Gaussian distributions for the disorder strength.6,26

Consequently these models inevitably incorporate both
attractive and repulsive disorder, which can be viewed as
mimicking a sample with a very high density of point de-
fects. Alternatively, such a coarse-grained representation
of pinning centers forming a continuous disorder land-
scape certainly becomes appropriate at elevated temper-
atures near Tc, since then the pinning range is set by the
coherence length ξab, which diverges as the critical point
is approached. Thus, a random medium description is
best-suited for investigations of critical phenomena, and
also more easily amenable to field-theory representations.
At low temperatures, however, where ξab ≤ b0, our mod-
eling of the localized pinning centers appears more re-
alistic, and we furthermore remark that in this scenario
repulsive defects would introduce different physics in the

non-equilibrium relaxation and aging kinetics of vortices
in superconductors, such as flux bunching in regions de-
void of such disorder. We therefore carefully exclude any
repulsive pinning sites. In addition, the temperatures
used in Refs. [21,22] appear to be considerably higher
than those studied in our present work. Further differ-
ences can be found in the length of the vortex lines (in
Refs. [21,22] rather short lines were considered), in the
boundary conditions, as well as in the initial preparation
of the system.

We characterize the aging properties of the interacting
and pinned flux lines through several different two-time
quantities, namely the vortex density-density autocor-
relation function, the flux line height-height autocorre-
lation function, and the transverse vortex mean-square
displacement. Investigating the influence of weak point
defects, we find that the non-equilibrium relaxation prop-
erties of magnetic flux lines in disordered type-II super-
conductors are governed by various crossover effects that
reflect the competition between pinning and repulsive in-
teractions. In the long-time limit and for not too large
pinning strengths, the dynamics is manifestly similar to
that observed in structural glasses.

The structure of this paper is as follows: In Section II
we describe our model and the Monte Carlo simulation
algorithm, and define the quantities of interest for our
study. Our data and principal results are presented in
Section III. In order to disentangle the different con-
tributions to the non-equilibrium relaxation dynamics of
our system, we first separately elucidate the effects of at-
tractive pinning centers and of long-range vortex-vortex
interactions, before we endeavour to analyze and under-
stand their intriguing interplay as reflected in the vortex
system’s relaxation kinetics. Finally, we discuss our find-
ings in Section IV, and compare them with other studies.

II. MODEL AND SIMULATION PROCEDURE

A. Effective model Hamiltonian

We consider a three-dimensional vortex system in the
London limit, where the London penetration depth is
much larger than the coherence length. We model the
vortex motion by means of an elastic flux line free en-
ergy described in Ref. [27], see also, e.g., Refs. [28–32].
The system is composed of N flux lines in a sample of
thickness L. The effective model Hamiltonian HN is de-
fined in terms of the flux line trajectories rj(z), with
j = 1, . . . , N , and consists of three components, namely
the elastic line tension, the repulsive vortex-vortex inter-
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action, and the disorder-induced pinning potential:

HN =
ǫ̃1
2

N
∑

j=1

∫ L

0









drj(z)

dz









2

dz

+
1

2

∑

i6=j

∫ L

0

V
(

|ri(z)− rj(z)|
)

dz

+

N
∑

j=1

∫ L

0

VD

(

rj(z)
)

dz. (1)

Here, the elastic line stiffness is ǫ̃1 ≈ Γ−2ǫ0 ln(λab/ξab),
with λab and ξab denoting the London penetration depth
and coherence length in the crystallographic ab plane
(we assume the magnetic field along the c axis), and
the anisotropy parameter (effective mass ratio) Γ−2 =
Mab/Mc. The energy scale is set by ǫ0 = (φ0/4πλab)

2,
where φ0 = hc/2e is the magnetic flux quantum. The
expression for the elastic line energy in Eq. (1) is valid
in the limit |drj(z)/dz|

2 ≪ Γ2. The purely in-plane
repulsive interaction potential (consistent with the ex-
treme London limit) between flux line elements is given
by the modified Bessel function of zeroth order, V (r) =
2ǫ0K0(r/λab), which diverges logarithmically as r → 0,
and decreases exponentially for r ≫ λab. These vortex
interactions are truncated at half the system size, which
is in turn chosen sufficiently big such that numerical arti-
facts due to this cut-off length are minimized. We model
point pinning centers through square potential wells with
radius b0 and strength U0 at ND defect positions. (For
additional details, see Refs. [32,33].)

B. Numerical parameter values

Our simulation parameter values33 were chosen cor-
responding to typical material parameters for YBCO as
listed in appendix D of Ref. [27]. In the following, lengths
and energies are reported relative to the effective defect
radius b0 and interaction energy scale ǫ0 (using cgs units),
and time in Monte Carlo steps (MCS), where one MCS
correspond to NL proposed updates of the flux line ele-
ments, with N the number of flux lines and L the num-
ber of layers. We set the pinning center radius b0 = 35
Å, anisotropy parameter Γ−1 = 1/5, and, as is appro-
priate at low temperatures, λab = 34b0 ≈ 1200 Å, and
ξab = 0.3b0 ≈ 10.5 Å. Then ǫ0 ≈ 1.9× 10−6 (in cgs units
of energy / length), and the energy scale in the line ten-
sion term becomes ǫ̃1 ≈ 0.18ǫ0. We systematically vary
the pinning strength U0 between 0 and 0.2ǫ0. Usually,
our simulations are performed at temperature T = 10 K,
which corresponds to kBT/ǫ0b0 ≈ 0.002. Thermal exci-
tation energies are thus small compared to the elastic and
pinning energies, and at equilibrium we therefore expect
the system to be deep in the glassy regime. We do not
allow for flux line cutting and reconnection processes in
our simulations of a low-temperature and dilute vortex
system.

0 s t

vortices
randomly placed measure C(t,s)

T=10 K T=10 K

FIG. 1: Sketch of the measurement protocol. At t = 0,
straight vortex lines are initialized far out of equilibrium by
placing them randomly in the system at T = 10 K in the pres-
ence of weak point defects. The vortex lines are then allowed
to relax for different waiting times s, before various two-time
quantities, such as the height autocorrelation function C(t, s),
are measured.

C. System preparation and simulation protocol

We apply the standard Metropolis Monte Carlo sim-
ulation algorithm in three dimensions with a discretized
version of the above effective Hamiltonian (1).32 The sys-
tem contains N = 16 flux lines in L layers, with a dis-
tance b0 between consecutive layers; and an equal number
ND/L = 1116 of point pinning centers that are however
randomly distributed within the layer, with mean sepa-
ration ∼ 9b0; in comparison, the triangular vortex lat-
tice spacing would be 78.5b0 in our dilute system. We
apply periodic boundary conditions in all three space di-
rections, as we are mainly interested in bulk properties.
This is to be contrasted with Refs. [21,22], where free
boundary conditions were used along the c axis. We have
systematically changed L between 10 and 2560 in order
to carefully monitor finite-size effects. The in-plane sys-
tem size is [Lx, Ly] = [ 2√

3
× 8λab, 8λab]; the dimensions

of the xy plane were chosen such that in the absence of
disorder the system accommodates a regular triangular
flux lattice. In the absence of defects, we have tested that
initially randomly placed vortices properly equilibrate to
form a triangular Abrikosov flux lattice. We have also
checked that there are no appreciable effects due to the
sharp cut-off of the vortex interactions at 4λab = Ly/2.

In order to investigate aging phenomena in the system
with uncorrelated point disorder, the vortices are pre-
pared in an out-of-equilibrium state: Straight flux lines
are initially (at t = 0) placed at random locations in
the system. The vortex lines are subsequently allowed
to relax at the temperature T = 10 K for a duration s,
the ‘waiting’ time, before we start measuring two-time
quantities for t > s, see Fig. 1. (This is again different
to Refs. [21,22], where the vortex lines were equilibrated
at high temperatures inside the vortex liquid phase be-
fore the subsequent quench to lower temperatures.) Our
waiting times extend up to s = 51200 MCS, whereas the
total length of a simulation run is typically t = 10s.
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D. Measured quantities

Aging phenomena can generally be adequately char-
acterized through the study of two-time quantities. In
our work we put special emphasis on a range of observ-
ables that allow us to rather comprehensively monitor
the distinct relaxation processes in vortex matter that
originate from pinning to attractive point defects and re-
pulsive interaction forces, respectively, and their intricate
competitive interplay.
The height-height autocorrelation function and mean-

square displacement represent two quantities that are
routinely studied in the context of interface fluctuations
and non-equilibrium growth processes.21–24,34–36 Sepa-
rating the time-dependent position of the flux line j in
the zth layer into its x and y components, rj(z, t) =
(

xj(z, t), yj(z, t)
)

, the two-time height-height autocorre-
lation function can be written as

C(t, s) =
1

LN

L
∑

z=1

N
∑

j=1

〈

xj(z, t)xj(z, s)
〉

−
〈

x(t)
〉〈

x(s)
〉

+
1

LN

L
∑

z=1

N
∑

j=1

〈

yj(z, t)yj(z, s)
〉

−
〈

y(t)
〉〈

y(s)
〉

, (2)

where x(t) = 1
LN

L
∑

z=1

N
∑

j=1

xj(z, t), and similarly for y(t).

The brackets 〈· · · 〉 here denote both an average over the
noise history, i.e., over the sequential realizations of ran-
dom number sequences, as well as a configurational aver-
age over defect distributions and initial positions of the
straight vortex lines at the outset of the simulation runs.
The two-time mean-square displacement in the xy planes,
transverse to the external magnetic field, can similarly be
cast in the form

B(t, s) =
1

LN

L
∑

z=1

N
∑

j=1

[〈

(

xj(z, t)− xj(z, s)
)2
〉

+
〈

(

yj(z, t)− yj(z, s)
)2
〉]

. (3)

We remark that other related quantities that essentially
contain the same information, are the two-time roughness
function or the two-time structure factor.23,35

Unfortunately, both the height autocorrelation and the
mean-square displacement are probably not easily acces-
sible in experiments on type-II superconductors, except
perhaps through low-angle neutron scattering. Much
better suited for an experimental study is likely the (con-
nected) two-time vortex density-density autocorrelation
function that can formally be written as

Cv(t, s) =
〈

ρ(r, t)ρ(r, s)
〉

− ρ2 , (4)

where ρ(r, t) represents the local flux density per unit
area at position r, with constant uniform average
〈

ρ(r, t)
〉

= ρ. Following an initially random placement,

(a) t = s (b) t > s

    

(c) t >> s

  

FIG. 2: Sketch (two-dimensional cross section) of vortex line
elements (small solid dots) and the associated circles with
radius αb0 (large open circles) at different observation times.33

(a) At t = s, each vortex line element by construction resides
inside its own circle and gives a count

∑
i
ni(t = s) = NS

(= 10 here). (b) At later times t > s, the repulsive vortex
interactions cause the flux line elements to move away from
their initial positions. This results in a smaller occupation
number

∑
i
ni(t > s) < NS (= 5 in this example). (c) At

long times t ≫ s, it is possible that all vortex line elements
have left the circle, ni(t ≫ s) = 0, which results in a complete
decorrelation. For instance, the quantity

∑
i
ni(s)ni(t) in the

pictures at these three times is evaluated to be 10 at t = s, 5
at t > s, and 0 for t ≫ s.

the repulsive vortex interactions cause positional rear-
rangements, such that one would expect a temporal de-
cay of the density autocorrelation function. In our sim-
ulations, we realize the vortex density autocorrelation
function in the following way:33 As before we start with
randomly placed straight vortex lines at t = 0 and let the
system subsequently relax up to waiting time s. A den-
sity count for the vortex line elements is then generated
by setting a circular area, with a radius equal to α b0 at
the location of each vortex line element i ≡ (j, z) at t = s.
Typical values for α range from 0.05 to 0.20. As time t
elapses, we count the number of vortex line elements still
in their circles, generating a time sequence of occupation
numbers ni(t), with ni = 0 or 1, and ni(t = s) = 1 by
construction. Due to the repulsive vortex interactions,
flux line elements tend to move away from their initial
positions, whence ni(t > s) can be 0 at a later time if
the vortex line element leaves the prescribed circle. In
the presence of pinning centers, vortex line elements will
become trapped inside the defects over a long time, caus-
ing ni(t > s) to preferentially remain 1. This quantity
is then averaged over the NS = LN different vortex seg-
ments and many distinct defect distributions and initial
configurations, yielding

Cv(t, s) =
〈 1

NS

NS
∑

i=1

ni(s)ni(t)
〉

. (5)

Fig. 2 illustrates the algorithm for calculating the density
autocorrelation function.33 We have checked the results
for different values of α and found that within a rea-
sonable range the precise choice of α does not affect the
results in the long-time aging regime where t ≫ s.
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III. RELAXATION PROCESSES

In order to fully understand the non-equilibrium re-
laxation processes and aging phenomena in disordered
type-II superconductors at low temperatures, we found
it imperative to carefully disentagle the dynamical con-
tributions originating from the repulsive interactions be-
tween the vortex lines and from their pinning to attrac-
tive point defects. We start our discussion with free flux
lines, mainly in order to validate our code by comparing
our data with the theoretically expected behavior and
earlier work. We will then separately consider the effects
of attractive point pins and of the long-range repulsive
vortex interactions, before we at last venture to study the
interplay of these two competing mechanisms to induce
or relax correlations in the system.

A. Free elastic line

The relaxation kinetics of a single free elastic vortex
line constitutes a valuable benchmark to check our pro-
gram as this case can be easily understood by recalling
that in the presence of thermal noise a fluctuating in-
terface that tries to minimize its line tension should be
described in the continuum limit by the linear Edwards–
Wilkinson equation.37 As the fluctuations in the trans-
verse x and y directions are independent random vari-
ables for our free line, we expect the results for the free
vortex to be described by the one-dimensional version of
that well-known stochastic equation (h below stands for
either x or y):

∂h(z, t)

∂t
= ν ∂2

zh(z, t) + η(z, t) , (6)

where η(z, t) represents a Gaussian white noise with zero
mean and covariance 〈η(z, t)η(z′, t′)〉 = 2T

ν δ(t − t′)δ(z −
z′), ν is the line stiffness (equal to ǫ̃1 here), and T the
temperature of the heat bath. The Edwards–Wilkinson
equation, as well as a range of microscopic models belong-
ing to the same dynamic universality class, has been stud-
ied extensively. Starting from a straight line, one first ob-
serves a short-time regime with uncorrelated fluctuations,
which is rapidly replaced by a correlated intermediate-
time interval characterized by a non-trivial power law
increase of the line roughness. After a crossover time
that algebraically depends on the system size, this corre-
lated regime finally reaches the steady-state or saturation
regime.

Two-time quantities have also been studied in the con-
text of the Edwards–Wilkinson equation,23,34,36, facili-
tated by the fact that a full analytical analysis is pos-
sible for the linear stochastic equation (6). For ex-
ample, in the correlated regime of the one-dimensional
Edwards–Wilkinson equation the following exact expres-
sion for the height-height autocorrelation function has

0 50 100 150
t-s

0.00

0.01

0.02

C
(t

,s
)

s=400
s=200
s=100

0 2000 4000
t-s

0.0

0.5

1.0

B
(t

,s
)

0 50 100 150
t-s

0.0

0.5

1.0

C
v(t

,s
)

0 0.5 1 1.5 2 2.5

ln(t/s)

-6.5

-6.0

-5.5

ln
(s

-0
.5

 C
(t

,s
))

0 0.5 1 1.5 2 2.5

ln(t/s)

-8

-6

-4

ln
(s

-0
.5

 B
(t

,s
))

0 0.5 1 1.5 2 2.5

ln(t/s)

-3

-2

-1

0

1

2

ln
(s

0.
5  C

v(t
,s

))

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 3: (Color online) Various two-time quantities for the
free elastic vortex line obtained in systems with (a-c) L = 10
and (d-f) L = 2560 planes, and averaged over typically 200
independent Monte Carlo simulation runs; (a) and (d): mean-
square displacement, (b) and (e): height-height autocorrela-
tion function, (c) and (f): vortex density-density autocorre-
lation function (measured with α = 0.05). Data obtained
for different waiting times are shown. For L = 10 layers the
system rapidly reaches the steady state, and time-translation
invariance is recovered, i.e., the two-time quantities only de-
pend on the time difference t − s. For L = 2560 aging and
dynamic scaling prevail throughout the simulation time win-
dow. The full line in (e) indicates the exact expression (7)
derived from the Edwards–Wilkinson equation. The dashed
lines in (d) and (f) indicate the predicted asymptotic power
laws with exponents 1/2 and −1/2, respectively. Here and
in the following figures error bars are much smaller than the
symbol sizes.

been derived:34

C(t, s) = C0s
1/2

[

(

t

s
+ 1

)1/2

−

(

t

s
− 1

)1/2
]

, (7)

where C0 is a known constant. The detailed crossover
properties of two-time quantities in the region between
the correlated and saturated regimes have been carefully
investigated in Ref. [23].
In Fig. 3, we display our Monte Carlo simulation re-

sults for our elastic vortex line model when both the vor-
tex interaction and the defect pinning are switched off,
i.e., only the first contribution in (1) is retained. One
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immediately notices a striking difference between the be-
havior of a “thin film” composed of only a few layers
(such as L = 10, see Figs. 3a–3c) and “bulk” systems con-
sisting of many layers (L = 2560, see Figs. 3d–3f). In the
former case, the system rapidly evolves into the steady-
state regime, yielding two-time quantities that only de-
pend on the elapsed time difference t − s. As a result,
the transverse displacements in the x and y directions
perform simple random walks, as is revealed by the lin-
ear increase of the mean-square displacement with time,
see Fig. 3a. For the larger bulk system, the correlated
regime persists throughout the duration of our simula-
tions, and both waiting and observation times reside well
within that extended intermediate regime. This gives rise
to aging and dynamical scaling: Time-translation invari-
ance is broken, and all the two-time quantities display
full-aging scaling.3 For each two-time observable we find
the following scaling behavior (here given for the height
autocorrelation function C(t, s)):

C(t, s) = s−bfC(t/s) , (8)

where b represents an aging scaling exponent and fC(y)
denotes an associated scaling function that follows a
power law decay for large arguments. For the height-
height autocorrelation we have b = −1/2.34 In Fig. 3e
we explicitly compare our numerically determined scal-
ing function with the expression (7) resulting from the
direct solution of the Edwards–Wilkinson equation (full
line), and obtain perfect agreement.
Summarizing, we see that the free vortex line fluctua-

tions are indeed aptly described by the one-dimensional
Edwards–Wilkinson equation (6). We also observe a
strong dependence on the system’s extension L in the
magnetic field direction, i.e., the vortex length: On the
time scale of our simulations, the stationary regime is al-
most immediately reached when the system consists of
only a few layers; in contrast, for larger bulk systems
aging and dynamical scaling are observed easily. This
points to quite distinct relaxation behavior in thin su-
perconducting films and thicker bulk samples. We de-
cided to avoid the additional complications stemming
from the crossover between the correlated and steady-
state regimes in our present study, and to rather focus
on system sizes sufficiently large that no finite-size ef-
fects (no crossover to the steady state) are observed on
the accessed time scales. Properties of smaller systems
and possible experimental consequences for thin super-
conducting films will be discussed in a separate publica-
tion.

B. Pinning without interactions

Intuitively, one anticipates pinning centers to strongly
influence the thermal fluctuations of our elastic flux lines.
Indeed, attractive forces emanating from the pinning cen-
ters will tend to localize vortex segments, and thus ulti-
mately suppress thermal fluctuations. Depending on the

6 9 12
ln t

-4

-3

-2

-1

0

ln
(B

(t
,0

))

p=0.05
p=0.01
p=0

FIG. 4: (Color online) Mean-square displacement B(t, 0) vs.
time t (in MCS) for different values of the pinning strength
p, for systems of size L = 640. In the initial time regime, the
pinning centers attract the vortex segments as revealed by an
increase of the slope of B(t, 0) as compared to a pure system.
At later times the localization of the flux line elements induced
by the pinning yields a strong decrease of this slope. The data
shown result from averaging over typically 100 independent
runs. The dashed lines indicate the times t = 100, 400, 1600,
and 6400 MCS, see Fig. 5 below.

pinning strength, flux line elements will end up spending
an appreciable amount of time close to a pinning cen-
ter. Therefore, compared to freely fluctuating lines, a
marked increase of correlations as function of time must
be expected.
Before we proceed to analyze the influence of pinning

centers in more detail, we need to stress that we ex-
clusively consider attractive point defects, in accordance
with the physics of disordered type-II superconductors
in the low-temperature regime. A recent study [24] ad-
dressed the relaxation and aging properties of elastic
lines subjected to a random potential, corresponding to
both attractive and repulsive pinning centers. Whereas
a Gaussian disorder strength distribution certainly is a
good model for disordered ferromagnets, its relevance for
relaxation processes in disordered type-II superconduc-
tors at low temperatures is less obvious.
Let us start by looking at the mean-square displace-

ment B(t, 0), with s = 0, which gives a measure of
the (squared) distance traveled by the flux line elements
since the initial preparation of the system. In Fig. 4 we
compare the behavior of a free elastic line with that of
flux lines subject to pinning centers of various strengths
p = U0/ǫ0. The presence of attractive pins clearly gives
rise to different regimes. The flux lines are rapidly at-
tracted by the point defects, which yields an increase
of the slope in the log-log plots of B(t, 0) vs. time t.
This continues until some pinning strength-dependent
crossover time at which the slope decreases even below
the value of the free line, signifying the confinement of lo-
calized vortex segments to the vicinity of the pins. As one
would expect, this crossover time decreases for increasing
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pinning strengths. For p ≥ 0.05, B(t, 0) remains essen-
tially unchanged, which indicates that for non-interacting
lines there exists a critical pinning strength above which
thermal fluctuations are no longer sufficiently strong to
allow the vortex line elements to escape from the defects.

These different regimes also manifest themselves when
two-time quantities are considered, as seen in Fig. 5,
where we have plotted the data according to the free-line
scaling behavior. Of course, it is not to be expected that
these scaling laws remain valid when attractive defects
are added to the system, but this representation of our
data facilitates the following discussion. We first remark,
see Figs. 5a and 5d, that the change of the slope of B(t, 0)
translates into deviations of the mean-square displace-
ment B(t, s) from the free-line scaling that can be readily
understood. For example, for p = 0.01 the time intervals
[25, 250], [100, 1000], and [400, 4000], used to compute
B(t, s) for the waiting times s = 25, 100, and 400, re-
spectively, correspond to the time regime with increasing
local slopes of B(t, 0), compare Fig. 4. This yields a shift
of ln(s−0.5B(t, s)) to higher values. As the crossover time
of B(t, 0) lies inside the interval [1600, 16000], the con-
verse behavior is observed for s = 1600 and even larger
waiting times, with a shift of ln(s−0.5B(t, s)) to lower
values. This effect is more pronounced for larger pinning
strengths, since then the crossover of B(t, 0) takes place
earlier.

The strongest influence of point defects and largest de-
viations from free elastic lines are observed in the height
autocorrelation function, Figs. 5b and 5e. As the flux line
elements are trapped by the pinning centers, their trans-
verse in-plane displacements become diminished, which
leads to an increase of the correlations as a function of
waiting time. In addition, the decay of C(t, s) as a func-
tion of t is much slower for larger values of s. For larger
pinning strengths and long waiting times we even observe
non-monotonic temporal evolution, as the trapped flux
lines experience an increase of the height correlations.

Finally, the vortex density-density autocorrelation
turns out to be the least sensitive among our two-time
observables to the presence of pinning centers, at least
for comparatively small waiting times, see Figs. 5c and
5f. Indeed, for moderate values of s one still observes the
free-line scaling behavior; this is of course a consequence
of our prescription for the computation of this correlation
function, namely setting a circular area with fixed radius
around every vortex line element at time s: As long as
only a few line elements are captured by a point defect,
the scaling of Cv(t, s) remains approximately unchanged.
Only when the majority of the vortex segments become
trapped, does this localization induce a strong enhance-
ment of the vortex density-density correlations.

To conclude this section, we note that the non-
equilibrium relaxation physics is drastically different
when both attractive and repulsive pinning centers are
implemented. As studied in Ref. [24] (see also Refs. [38,
39]) an elastic line in a random potential is characterized
by a time-dependent correlation length that crosses over
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FIG. 5: (Color online) Various two-time quantities for non-
interacting vortex lines subject to attractive point defects of
strengths (a-c) p = 0.01 and (d-f) p = 0.05: (a) and (d)
mean-square displacement; (b) and (e) height-height auto-
correlation function; (c) and (f) vortex density-density au-
tocorrelation (with α = 0.05). The shown data result from
averaging over typically 100 independent runs in systems of
size L = 640. For direct comparison with Fig. 3, the data
are plotted according to the scaling properties of free elas-
tic lines. Whereas an approximate scaling prevails for small
waiting times (especially for the mean-square displacement
and the vortex density-density autocorrelation), strong devi-
ations emerge for larger waiting times. In (e) the apparent
collapse of the height autocorrelation function for the largest
waiting times is merely caused by the scale used in that figure.
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FIG. 6: (Color online) (a) Mean-square displacement and
(b) height-height autocorrelation function for non-interacting
vortex lines subject to both attractive and repulsive point
defects with strengths drawn from the square distribution
[−0.01, 0.01]. The shown data result from averaging over typ-
ically 100 independent runs in systems of size L = 1280. The
data display simple aging scaling, with different exponents for
the two quantities.
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from an early time power law growth to an asymptotic
logarithmic growth. Consequently, two-time quantities
display an apparent simple aging scaling with effective
exponents that depend on temperature and on the ran-
domness. We have verified that we obtain similar results
as in Ref. [24] when using both attractive and repulsive
defects in our model and Monte Carlo algorithm. In-
deed, as shown in Fig. 6, the time-dependent correlation
length gives rise to simple aging scaling of our two-time
quantities, with effective exponents that display a de-
pendence on temperature and on the distribution of the
pinning strengths. These crossover features also capture
most of the relevant properties of disordered ferromag-
nets undergoing phase ordering.40–42 In Refs. [21,22], dis-
ordered type-II superconductors in the low-temperature
phase were modeled by a corresponding model with ran-
dom pins that are either attractive or repulsive. How-
ever, the physical realization relevant to materials is that
of purely attractive pins, similar to those studied in our
present work. Yet since the properties of elastic lines
strongly depend on the nature of the pinning centers,
any conclusions regarding the non-equilibrium relaxation
properties of disordered type-II superconductors at low
temperatures that are inferred from models with both
attractive and repulsive defects should be viewed with
some scepticism.

C. Interacting vortex lines without pinning

In the absence of disorder our system composed of in-
teracting flux lines evolves toward a regular triangular
Abrikosov lattice. As we start our simulations by de-
posing initially straight lines at random positions, large
displacements of the flux line elements are expected, as
the system tries to minimize the long-range in-plane re-
pulsive vortex interaction energy. The ensuing dynamic
regimes are again nicely captured by the mean-square
displacement B(t, 0) which takes on values that are two
orders of magnitude larger than in the absence of inter-
actions, see the (red) dashed line in Fig. 7. While the
flux line segments experience these large displacements,
B(t, 0) displays an approximate power law increase with
time, with an effective exponent of ≈ 1.68. Once the
majority of vortices have reached the vicinity of their fi-
nal equilibrium positions, the slope of B(t, 0) starts to
gradually decrease.
The two-time quantities reveal both the initial-time

regime as well as the crossover at later times, see Fig. 8.
The mean-square displacement B(t, s) yields a reason-
ably good data collapse for the smaller waiting times with
the scaling exponent −1.68 that follows from the slope
of B(t, 0) in that regime. When the observation time t
exceeds the crossover time, this scaling breaks down. In-
stead the growth rate of B(t, s) decreases strongly with
increasing s, even resulting in a crossing of the curves
for different waiting times. The behavior of B(t, s) is
mirrored by that of the vortex density autocorrelation
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FIG. 7: (Color online) Mean-square displacement B(t, 0) vs.
time t (in MCS) for interacting vortex lines with different val-
ues of the pinning strength p (system size L = 640; the data
result from averaging over typically 100 independent runs).
Due to the long-range interactions, the flux lines aim to max-
imize their separations, thus yielding values of B(t, 0) that are
two orders of magnitude larger than in the absence of repulsive
forces, compare Fig. 4. These displacements are impeded and
vortex motion eventually stopped by the caging constraints
of neighboring lines and pinning to attractive point defects.
The (red) dashed line displays our data for a pure system,
in the absence of pinning centers. The vertical dashed lines
indicate the times t = 100, 400, 1600, and 6400 MCS.

function: For small waiting times s, scaling is achieved
with exponent 1.68, whereas for larger waiting times the
decay of the correlation slows down as s increases. From
these results we infer that the vortex density-density au-
tocorrelation contains essentially the same physical infor-
mation as the mean-square displacement. Interestingly,
the height-height autocorrelation function displays a dif-
ferent scaling for smaller waiting times, given by the scal-
ing exponent b = −0.5 of the free line, see Figs. 8c and
8d. This means that during the initial rearrangement of
the vortex lines the height fluctuations are essentially the
same as for the free line. Only when the vortices come
close to their equilibrium positions does the character of
the correlations change, reflecting the presence of long-
range repulsive forces.

D. Interacting vortex lines with pinning

We are now ready to study the combined effects of
repulsive flux line interactions and point defect pinning
during the non-equilibrium relaxation of vortex matter in
disordered type-II superconductors. We again begin by
first considering the mean-square displacement B(t, 0),
see Fig. 7. Adding very weak attractive defects, e.g.,
with p = 0.01, has only a very minor effect on the time
evolution of B(t, 0). Strengthening the point pins leads
to a smaller rate of increase for the mean-square dis-
placement, see the curve for p = 0.05. At early times the
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FIG. 8: (Color online) Two-time quantities for interacting
vortices in the absence of pinning centers: (a) and (b) mean-
square displacement; (c) and (d) height-height autocorrela-
tion function; (e) and (f) vortex density-density autocorre-
lation (with α = 0.05). Data obtained for different waiting
times s are shown, typically obtained from averaging over
500 independent simulation runs; the system size is L = 640.
(a), (c), and (e) display the unscaled data in a log-log plot,
whereas (b), (d), and (f) show the approximate scaling ob-
served for not too large waiting times. This scaling regime
corresponds to the intermediate time window where B(t, 0)
exhibits a power law increase as a function of time, with an
(effective) exponent ≈ 1.68, see Fig. 7.

flux lines are still displaced from their initial positions,
as the vortex interactions try to establish an Abrikosov
lattice. However, at intermediate times these displace-
ments are impeded by the defects that noticeably slow
down vortex motion. As a result the system tends to
a new (quasi-)equilibrium state that balances these two
competing mechanisms. For even stronger pinning, the
moving flux lines become rapidly trapped by the disorder
and the system gradually freezes into a blocked configu-
ration. In Fig. 7 this is clearly the case for both p = 0.20
and p = 0.78.

The most interesting scenario naturally emerges for in-
termediate defect strengths. Indeed, when the pins are
very weak, the rearrangement of the flux lines is barely
affected, and all studied two-time quantities quantita-
tively display the same behavior as in a pure system. On
the other hand, when the defects are too strong, the flux

0.0 0.5 1.0 1.5 2.0 2.5

ln(t/s)

-4

-2

0

2

ln
(B

(t
,s

))

s=6400
s=1600
s=400
s=100
s=25

0 5 10 15

ln(t-s)

0.4

0.6

0.8

1.0

C
(t

,s
)/

C
(s

,s
)

0.0 0.5 1.0 1.5 2.0 2.5

ln(t/s)

-7

-6

-5

-4

-3

-2

-1

0

ln
(C

v(t
,s

))

(a)

(b)

(c)

s=25

s=51200

FIG. 9: (Color online) Two-time quantities for interacting
vortices in the presence of attractive pinning centers: (a)
mean-square displacement; (b) height-height autocorrelation
function; and (c) vortex density-density autocorrelation (with
α = 0.05). The pinning strength here is p = 0.05, the system
size L = 640, and the data result from averaging over typi-
cally 800 independent simulation runs. The waiting times s
for the vortex density autocorrelation are the same as those
for the mean-square displacement. For the height autocor-
relation function, the waiting times range from s = 25 to
s = 51200, the values of s being doubled between consecutive
curves. The (normalized) height-height autocorrelation func-
tion, after a crossover, displays the same qualitative behavior
as that encountered in structural glasses. For large values of
t− s, the height autocorrelation assumes the stretched expo-
nential form (9) with β = 0.4, as shown by the dashed line
overlying the s = 51200 data.

line elements remain firmly attached to the pinning cen-
ters, and a frozen configuration ensues. The non-trivial
behavior at intermediate pinning strengths is studied in
more detail in Fig. 9 for the case p = 0.05.
The data for B(t, s) and Cv(t, s) shown in Figs. 9a and

9c are readily understood by comparing them to the cor-
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responding results for the pure case, see Figs. 8a and 8e.
The difference between these data sets is the absence of
the early-time regime where B(t, 0) has an approximately
constant slope, see Fig. 7. Consequently the data with
p = 0.05 do not allow any data collapse, not even for
the smallest waiting times considered. However, this is
the only noticeable difference, and the behavior for larger
waiting times is qualitatively the same as for p = 0, ex-
cept that the decrease in slope of B(t, s) for larger values
of s is stronger when p 6= 0.
However, a completely different picture emerges for the

evolution of the normalized height-height autocorrelation
function. As shown in Fig. 9b, for waiting times s larger
than a certain crossover value, C(t, s) exhibits the typical
two-step relaxation of a structural glass: An initial time-
translation invariant regime, which corresponds to the
so-called β relaxation in glasses and only depends on the
elapsed time difference t− s, is followed by a slow decay
that is usually referred to as α relaxation in the glass
literature.43 In the long-time limit we can fit this slow
decay to a stretched exponential

f(τ) = exp

[

−

(

τ

td(s)

)β
]

, (9)

with τ = t − s, and a waiting-time dependent decorre-
lation time td(s). For our different waiting times we ob-
tain a consistent value β ≈ 0.40 for the stretching expo-
nent in Eq. (9). This emergence of a characteristic two-
step glass-like relaxation is very intriguing. Obviously,
the flux lines do not settle into a stable microstate even
after their lateral displacements have become strongly
reduced owing to the capture by the attractive pinning
centers and the caging due to their repelling neighboring
vortices. Instead, as a consequence of the two compet-
ing relaxation mechanisms, collective dynamics and slow
decorrelation sets in that yields the typical two-step re-
laxation dynamics of a glass.
We also note the intriguing shape of the normalized

height autocorrelation function in the crossover regime.
Indeed, at intermediate waiting times C(t, s) displays a
strongly non-monotonic behavior, with a maximal value
that even exceeds the value C(s, s) at t = s. This re-
markable feature points to a fundamental change in the
nature of the emerging correlations, which is due to the
trapping of vortex segments in the vicinity of the defects
and the subsequent balancing of the competition between
the attractive pinning and the repulsive interactions.

IV. DISCUSSION AND CONCLUSION

Our three-dimensional Monte Carlo investigation of re-
laxation processes in disordered type-II superconductors
has allowed us to gain a thorough understanding of the
non-equilibrium properties of these technologically im-
portant materials. We find the relaxation processes to
be dominated by the interplay of two competing inter-
actions, namely the pinning of the flux line elements to

attractive point defects and the long-range mutual re-
pulsion of the vortices. This competition generates var-
ious crossover scenarios that we have discussed system-
atically. The most interesting regime emerges for pin-
ning centers of intermediate strength, for which we ob-
serve a distinguished two-step relaxation and a final slow,
stretched-exponential decay of the height-height autocor-
relation function. This behavior is reminiscent of that
encountered in structural glasses, clearly demonstrating
that disordered type-II superconductors subject to point
defects indeed display pronounced glassy behavior at low
temperatures, again justifying the term “vortex glass”
for this frustrated pinned low-temperature phase.

We remark that our results are at variance with re-
cent investigations based on three-dimensional London–
Langevin dynamics simulations, where standard aging
and dynamical scaling behavior of two-time quantities
was observed,21,22 akin to the relaxation features of elas-
tic lines in a random medium.24 However, these stud-
ies, in addition to difference in sample preparation, sys-
tem size, and boundary conditions in the z-direction,
employed a coarse-grained continuous random medium
model of disordered type-II superconductors that be-
comes adequate near the normal- to superconducting
transition, but does not realistically capture supercon-
ducting materials at low temperatures for which isolated
defects such as oxygen vacancies always induce a local
suppression of the transition temperature and therefore
constitute attractive localized pinning centers for vor-
tices. As our study shows, dynamical scaling no longer
prevails for purely attractive point pinning centers, but
instead much richer glassy relaxation dynamics sets in.

As already mentioned in the Introduction, it is essen-
tial for investigations of non-equilibrium systems to study
different dynamics and their algorithmic implementa-
tions in order to ensure that any ensuing results indeed
describe actual physical properties of the system rather
than numerical artifacts. We have therefore recently be-
gun to implement corresponding London–Langevin dy-
namics simulations for our elastic line model (1) with
exclusively attractive pinning centers.44 Our first tenta-
tive findings are in complete agreement with the Monte
Carlo simulation results reported in this paper: They
too show the emergence of glass-like behavior, with a
slow, stretched-exponential decay at long times. An in-
depth analysis of this dynamics is currently in progress;
this comparative study also aims at matching the differ-
ent microscopic time scales implicit in Monte Carlo and
Langevin dynamical simulations.

Our current study can readily be expanded in various
directions. Our results are valid in the regime where all
time-dependent length scales remain small compared to
the size of the system. However, many transport and
relaxation experiments are carried out on thin supercon-
ducting films rather than bulk samples. In our model,
a finite (small) number of layers introduces a dominant
new length scale that substantially changes the relaxation
processes, leading to additional crossover features. We
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also note that other types of defects can be experimen-
tally realized, ranging from parallel and splayed colum-
nar pins to planar defects, and combinations thereof with
point disorder. It is an open and intriguing problem
to understand how these different defect configurations
influence the out-of-equilibrium relaxation processes in
type-II superconductors. A detailed understanding of the
relaxation phenomena in superconducting materials may
facilitate characterization and optimization of samples
with respect to pinning and flux transport. Finally, in
all transport applications the flux lines are driven across
the samples by external currents, which at long times
yields a non-equilibrium steady state replacing the ther-
mal equilibrium state that emerges without drive. Fol-
lowing similar lines as in the present study, one should be
able to also analyze the relaxation properties of driven
disordered type-II superconductors in a comprehensive

manner. We plan to address these and related problems
in the future.

Acknowledgments

We are indebted to Thananart Klongcheongsan for his
original contributions during his Ph.D. dissertation work,
and for preparing Figure 2. We thank Sebastian Bustin-
gorry for useful correspondence, and Ulrich Dobramysl
for interesting and helpful discussions. This work was
supported by the U.S. Department of Energy, Office of
Basic Energy Sciences (DOE–BES) under grant no. DE-
FG02-09ER46613.

1 L.C.E. Struik, Physical Aging in Amorphous Polymers and

Other Materials (Elsevier, Amsterdam, 1978).
2 For recent overviews, see: M. Henkel, M. Pleimling, and
R. Sanctuary (eds.), Ageing and the glass transition, Lec-
ture Notes in Physics 716 (Springer, Berlin, 2007).

3 M. Henkel and M. Pleimling, Non-Equilibrium Phase Tran-

sitions, Volume 2: Ageing and Dynamical Scaling Far

From Equilibrium (Springer, 2010).
4 L.F. Cugliandolo, in: Slow Relaxation and Non Equilib-

rium Dynamics in Condensed Matter, eds. J.-L. Barrat,
J. Dalibard, J. Kurchan, and M.V. Feigel’man (Springer,
2003).

5 M. Henkel and M. Pleimling, in Rugged Free Energy

Landscapes: Common Computational Approaches in Spin

Glasses, Structural Glasses and Biological Macromolecules,
ed. W. Janke, Lecture Notes in Physics 736, 107 (Springer,
2008).

6 For a now classical general review, see: G. Blatter,
M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and
V.M. Vinokur, Rev. Mod. Phys. 66, 1125 (1994).

7 S.S. Banerjee et al., Physica C 355, 39 (2001).
8 D.R. Nelson, Phys. Rev. Lett. 60, 1973 (1988); D.R. Nel-
son and H.S. Seung, Phys. Rev. B 39, 9153 (1989);
D.R. Nelson, J. Stat. Phys. 57, 511 (1989).

9 M.P.A. Fisher, Phys. Rev. Lett. 62, 1415 (1989);
D.S. Fisher, M.P.A. Fisher, and D.A. Huse, Phys. Rev.
B 43, 130 (1991).

10 M.V. Feigel’man, V.B. Geshkenbein, A.I. Larkin, and
V.M. Vinokur, Phys. Rev. Lett. 63, 2303 (1989).

11 T. Nattermann, Phys. Rev. Lett. 64, 2454 (1990).
12 For clear structural experimental evidence, see: U. Divakar

et al., Phys. Rev. Lett. 92, 237004 (2004).
13 T. Giamarchi and P. Le Doussal, Phys. Rev. Lett. 72, 1530

(1994); Phys. Rev. B 52, 1242 (1995); Phys. Rev. Lett.
76, 3408 (1996); Phys. Rev. B 55, 6577 (1997); T. Klein,
I. Joumard, S. Blanchard, J. Marcus, R. Cubitt, T. Gia-
marchi, and P. Le Doussal, Nature 413, 404 (2001).

14 J. Kierfeld, T. Nattermann, and T. Hwa, Phys. Rev. B 55,
626 (1997).

15 D.S. Fisher, Phys. Rev. Lett. 78, 1964 (1997).
16 G.I. Menon, Phys. Rev. B 65, 104527 (2002).

17 X. Du, G. Li, E.Y. Andrei, M. Greenblatt, and P. Shuk,
Nature Physics 3, 111 (2007).

18 W. Henderson, E.Y. Andrei, M.J. Higgins, and S. Bhat-
tacharya, Phys. Rev. Lett. 77, 2077 (1996).

19 M. Nicodemi and H.J. Jensen, Phys. Rev. Lett. 86, 4378
(2001); J. Phys. A: Math. Gen. 34, L11 (2001); Europhys.
Lett. 54, 566 (2001); J. Phys. A: Math. Gen. 34, 8425
(2001); Phys. Rev. B 65, 144517 (2002).

20 C.J. Olson, C. Reichhardt, R.T. Scalettar, G.T. Zimanyi,
and N. Grønbach-Jensen, Phys. Rev. B 67, 184523 (2003).

21 S. Bustingorry, L.F. Cugliandolo, and D. Domı́nguez,
Phys. Rev. Lett. 96, 027001 (2006).

22 S. Bustingorry, L.F. Cugliandolo, and D. Domı́nguez,
Phys. Rev. B 75, 024506 (2007).

23 S. Bustingorry, L.F. Cugliandolo, and J.L. Iguain, J. Stat.
Mech. (2007) P09008.

24 J.L. Iguain, S. Bustingorry, A.B. Kolton, and L.F. Cuglian-
dolo, Phys. Rev. B 80, 094201 (2009).
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31 V. Petäjä, M. Alava, and H. Rieger, Europhys. Lett. 66,

778 (2004).
32 J. Das, T.J. Bullard, and U.C. Täuber, Physica A 318,
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