
Chapter 4 

Solution Procedure

4.1 Coordinate Transformation

The final transformation takes the non-dimensional forms of the equations and converts

them to a body fitted coordinate system appropriate to the ejector geometry.  The

following transformation for x and r is used and, from the chain rule of calculus, the

required derivatives can easily be worked out:

x = x r =
r − rb
rt − rb

∂
∂x

= ∂
∂x

−
r(rt − rb) + rb

rt − rb

∂
∂r

∂
∂r

= 1
rt − rb

∂
∂r

(4.1)

where rb represents the bottom boundary of the domain and rt the top boundary.  Thus the

radial domain is always between 0-1.  These boundaries are functions of the axial distance,

x, and thus their derivatives r'
t and r'

b are simply d(rt)/dx and d(rb)/dx which represent the

slope of the top and bottom boundary.  The transformation thus converts a nonrectangular

grid in the physical domain to a rectangular one in the computational domain (see Fig. 4.1)

and greatly facilitates the process of discretization and computer solution.

Upon performing the substitutions shown in Eqn. 4.1, the transformed conservation

equations follow directly.  Note that the * notation used in Sec. 2.4 has been dropped for

clarity with the assumption that all variables are already dimensionless.  Also note that

rd=rt-rb and  r'
d=r'

t-r
'
b.
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Figure 4.1 - Grid in Physical and Transformed Coordinates



Continuity:

∂
∂x[rd(rrd + rb)αρu] − ∂

∂r



rrd + rb


 (rrd + rb)αρu

 + ∂
∂r[(rrd + rb)αρv]

= 
rrd

2 + rbrd

 Γ (4.2)

Axial Momentum:

∂
∂x




rrd

2 + rbrd

 αρu2 

 − ∂
∂r




rrd + rb


 (rrd + rb)αρu2 

 + ∂
∂r[(rrd + rb)αρuv]

= −α ∂
∂x




rrd

2 + rbrd

 P

 + α ∂
∂r




rrd + rb


 (rrd + rb)P

 + ∂
∂r





αµ(rrd + rb)
Rerd

∂u
∂r





+ 
rrd

2 + rbrd

 (Fx + Mx) (4.3)

Radial Momentum:

∂
∂x




rrd

2 + rbrd

 αρuv

 − ∂
∂r




rrd + rb


 (rrd + rb)αρuv

 + ∂
∂r

(rrd + rb)αρv2 

= −(rrd + rb)α∂P
∂r

+ ∂
∂r





2αµ(rrd + rb)
Rerd

∂v
∂r



 + ∂

∂x




αµ(rrd + rb)
Re

∂u
∂r





− ∂
∂r









αµ(rrd + rb)
rrd + rb




Rerd

∂u
∂r









−
2µαrd

Re(rrd + rb)2
(rrd + rb)v + 

rrd
2 + rbrd


 [Fr + Mr] (4.4)

Energy:

∂
∂r[(rrd + rb)αρvT] + ∂

∂x



rrd

2 + rbrd

 αρuT

 − ∂
∂r




rrd + rb


 (rrd + rb)αρuT

= 1
RePr

1
cp

∂
∂r





(rrd + rb)αk
rd

∂T
∂r



 + Ec

βuαT
cp

∂
∂x




rrd

2 + rbrd

 P



− Ec
βuαT

cp
∂
∂r




rrd + rb


 (rrd + rb)P

 +

rrd

2 + rbrd



cp
(Emt + Eht + Eke + Ewt) (4.5)

It is these equations which are suitable for discretization.

46



Unlike nondimensionalization, the body fitted coordinate transformation is a required step.

A simpler method which was tried for this project consisted of using a regular

untransformed grid and using high viscosity cells to simulate the wall boundaries.  This is a

well known method and is documented by Patankar [48].  The problem with it arises for

flow in diverging sections, in which the wall is thus approximated by a series of backward

facing steps.  It is well established that flow over a backward facing step separates, and

since this problem is parabolic, it cannot handle separation.  Therefore, the body fitted grid

was a necessity.

4.2 Control-Volume Discretization Method

Discretization of the conservation equations is done by integrating each transformed PDE

over a typical control volume, in this case a cell of rectangular shape.  This well known

"control volume" method produces a solution which automatically satisfies global

conservation requirements over the entire duct.  Since even the coarsest of grids exhibits

this property, the method is not only appealing for engineering problems but allows for

quicker testing of newly developed code.

Inherent in the discretization method are assumptions about the profiles of properties over

the control volume.  Also important is the upwind approximation in which it is assumed

that the flow projects a value of an unknown downstream to the next point.  

To illustrate the discretization process, the x-momentum equation will be integrated in a

step-by-step fashion to show the method.  The equation is first double integrated over a

typical rectangular cell in the transformed coordinate domain (Figure 4.2).  For the first

term in Eq. 4.3 this operation is summarized as follows:
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Figure 4.2 - Organization of Grid and Typical Discretization Control Volume



 ∫rs

rn ∫w

e ∂
∂x




rrd

2 + rbrd

 αρu2 

dxdr

= ∫rs

rn 


rrd

2 + rbrd

 αρu2 

e
− 



rrd

2 + rbrd

 αρu2 

w
dr

 = 


1
2

(rn
2 − rs

2)rd(xe)2 + rb(xe)rd(xe)(rn − rs)

αjρjuj

2

+ 


1
2

(rn
2 − rs

2)rd(xw)2 + rb(xw)rd(xw)(rn − rs)

αujρujuuj

2

= Feuj − Fwuuj (4.6)

Note that  simply mean the radial position of the north and south boundaries ofrn and rs

the computational cell, in body fitted coordinates.  The scripts e and w refer to the east

and west boundary of the cell.  Also, Fe and Fw represent the flow through the east and

west faces of the boundary respectively.  This later becomes a useful way to represent the

convective momentum flux.  From the above derivation it is clear that the physical

meaning of the term is the net convective momentum flux leaving the control volume

through the east and west faces.

The second term in the x-momentum equation is handled similarly:

 − ∫w

e

∫rs

rn
− ∂

∂r



rrd + rb


 (rrd + rb)αρu2

 drdx

= −∫w

e 


rrd + rb


 (rrd + rb)αρu2 

 n
− 



rrd + rb


 (rrd + rb)αρu2 

 s
dx

= −αnρnun
2∫w

e 
rnrd + rb


 (rnrd + rb)dx + αsρsus

2∫w

e 
rsrd + rb


 (rsrd + rb)dx

= Fnuun + Fsuus (4.7)

This term obviously represents convective fluxes carried by the axial component of the

velocity through the north and south boundary of the control volume.  The term arises

because in the physical plane the control volume can be slanted upward or downward.

The method for calculating un  and us by the upwind method will be addressed later.

Average values of α and ρ at the north and south boundary are taken as follows:

49



αn = 1
2


αj + αj+1


 αs = 1

2

αj + αj−1


 ρn = 1

2

ρj + ρj+1


 ρs = 1

2

ρj + ρj−1


 (4.8)

 

The third term is integrated as follows:

∫w

e

∫s

n ∂
∂r[(rrd + rb)αρuv]drdx = ∫w

e
[(rrd + rb)αρuv]n − [(rrd + rb)αρuv]s dx

= αnρnunvn∫w

e
(rnrd + rb)dx − αsρsusvs∫w

e
(rsrd + rb)dx = Fnvun + Fsvus (4.9)

  

This term represents the convective flux carried by the radial velocity component.  Note

that the flows  can be combined to give the total flowrate across theFnu, Fnv, Fsu, and Fsv

control volume face.  Terms can be added as follows:

Fn = Fnu + Fnv Fs = Fsu + Fsv (4.10)

Now the convective terms across each face can be expressed in terms of the total flowrate.

This simplification is useful because it allows us to develop a criterion for upwinding, a

technique which enhances the solution procedure and prevents negative coefficients (to be

discussed later) from arising.  

Upwinding is achieved by assuming that the value of the unknown variable at a control

volume face is equal to the value at the nearest upwind point.  The flow thus projects the

value downstream.  This concept is physically realistic and, as expected, works better for

strongly convective flows.

Mathematically, the upwind method states that if the flow is positive, the velocity value to

be used should be the nearest point below the c.v. boundary, and if the flow is negative,

the value should be the nearest point above the c.v. boundary.  This amounts to:
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  if Fn > 0 then un = uj

if Fn < 0 then un = uj+1 (4.11)

thus,

Fnun = ujMAX[Fn, 0] − uj+1MAX[−Fn, 0] (4.12)

Similarly for the south boundary of the c.v.:

if Fs > 0 then us = uj

if Fs < 0 then us = uj−1
Fsus = ujMAX[Fs, 0] − uj−1MAX[−Fs, 0] (4.13)

The terms in Eqn's 4.12 and 4.13 will be important in the final discretized equation.

The first pressure force term in Eqn. 4.3 is integrated as follows:

   −∫s

n

∫w

e
α ∂

∂x



rrd

2 + rbrd

 P

dxdr = ∫s

n
−αp




rrd

2 + rbrd

 P

 e
− 



rrd

2 + rbrd

 P

w
dr

= −αpPeRINTE + αpPwRINTW (4.14)

This expression represents the pressure forces acting on the east and west faces of the

control volume.  Here it is assumed that the void fraction takes on some average value

over the entire control volume (αp).  The pressure is, of course, uniform over the control

volume faces because of the parabolic assumption.  The terms RINTE and RINTW

represent the areas of the faces in the transformed coordinate system.  Several such terms

are required. 

The second pressure term in Eqn. 4.3 is integrated similarly:

∫w

e

∫s

n
α ∂

∂r



rrd + rb


 (rrd + rb)P

drdx (4.15)
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= ∫w

e
αp




rrd + rb


 (rrd + rb)P

 n
− αp




rrd + rb


 (rrd + rb)P

 s
dx

= 1
2

αp(Pe + Pw) ∫w

e 


rnrd + rb


 (rnrd + rb)

dx − ∫w

e 


rsrd + rb


 (rsrd + rb)

dx

= 1
2

αp(Pe + Pw)(RINT2N − RINT2S) (4.16)

This term represents the axial pressure force exerted on the north and south boundary of

the control volume.  This term exists only because, in the physical plane, the north and

south boundary is slanted to fit the ejector geometry.  Note that an average pressure

between the upstream and downstream values is used.

The viscous term is discretized as follows:

∫w

e

∫s

n ∂
∂r





αµ(rrd + rb)
Rerd

∂u
∂r



drdx = ∫w

e 








αµ(rrd + rb)
Rerd

∂u
∂r





n
− 




αµ(rrd + rb)
Rerd

∂u
∂r





s




dx

αnµn

uj+1 − uj




Re(rj+1 − rj) ∫w

e rnrd + rb
rd

dx −
αsµs


uj − uj−1




Re(rj − rj−1) ∫w

e rsrd + rb
rd

dx

=
αnµnRINT4N

uj+1 − uj



Re(rj+1 − rj)
−

αsµsRINT4S
uj − uj−1




Re(rj − rj−1)

= CXV1
uj+1 − uj


 − CXV2

uj − uj−1

 (4.17)

Now it remains to discretize the interfacial source terms in Eqn. 4.3.  Because source

terms are often a function of the dependent variable (u in this case) it is useful to break

them up into constant and varying portions.  Since the discretization equations are

ultimately linear, the varying portion must only allow a linear function of the dependent

variable.  Patankar [48] offers a detailed explanation of source term linearization.

Given these guidelines the source terms in the momentum equations are broken up as

follows:

Fx = SCFX + SVFXu (4.18)
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From Eqn. 3.1 it is readily apparent what the values of SCFX and SVFX need to be:

SCFX =
3ρcontαdiscCD

4ddisc

→
V other −

→
V uother

SVFX = −
3ρcontαdiscCD

4ddisc
Vother −

→
V (4.19)

The values of  used above are assumed to be known (guessed).  An iterativeuother − u

scheme is constructed in which the guessed values become equal to the actual value of the

velocity which the scheme solves for.

In general, then, integration of this source term proceeds as follows:

∫w

e

∫s

n 
rrd

2 + rbrd

 (SCFX + SVFXu)drdx = (SCFX + SVFXu)∫w

e

∫s

n 
rrd

2 + rbrd

 drdx

(SCFX + SVFXu)∫w

e 


1
2

(rn
2 − rs

2)rd
2 + rbrd(rn − rs)


dx = (SCFX + SVFXu)RINT3M (4.20)

Here it is assumed that the values of SCFX and SVFX are constant over the control

volume and, hence, can be placed outside the integral.  

Similarly the second source term in the axial momentum equation can be determined:

Mx = SCMX + SVMXu
SCMX = MAX[Γ, 0]uother

SVMX = −MAX[Γ, 0] (4.21)

∫w

e

∫s

n 
rrd

2 + rbrd

 (SCMX + SVMXu)drdx = (SCMX + SVMXu)∫w

e

∫s

n 
rrd

2 + rbrd

 drdx

(SCMX + SVMXu)∫w

e 


1
2

(rn
2 − rs

2)rd
2 + rbrd(rn − rs)


dx = (SCMX + SVMXu)RINT3M (4.22)

The source term discretization procedure is the same for each term, once it has been

decided how it should be linearized.
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Now, all the terms in the axial momentum equation have been discretized and it remains to

simply put the terms together in a form compatible with a matrix solution.  Without

showing the required algebraic steps, the resulting linear equation is:

{−MAX[−Fs, 0] − CXV2}uj−1

+ {Fe + MAX[Fn, 0] + MAX[Fs, 0] + CXV1 + CXV2 + SVFX + SVMX}uj
+ {−MAX[−Fn, 0] − CXV1}uj+1

= Fwuuj + Pw(αpRINTW + .5αpRINT2N − .5αpRINT2S)
− Pe(αpRINTE + .5αpRINT2S − .5αpRINT2N) + SCFX + SCMX (4.23)

Now the discretized form of the continuity equation can be introduced to simplify the

above expression.  In particular it is desired to eliminate Fe since it is not known because it

is dependent on u.  Following a procedure similar to the one shown above, the discretized

continuity equation  can be shown to be simply:

Fe − Fw + Fn + Fs = SCC (4.24)

where .SCC = ΓRINT3M

Subtracting this equation from the coefficient of uj in Eqn. 4.23 above, the result is:

{−MAX[−Fs, 0] − CXV2}uj−1

+ {Fw + MAX[−Fn, 0] + MAX[−Fs, 0] + CXV1 + CXV2 + SVFX + SVMX + SCC}uj

+ {−MAX[−Fn, 0] − CXV1}uj+1

= Fwuuj + Pw

αpRINTW + 1

2
αpRINT2N − 1

2
αpRINT2S


− Pe(αpRINTE + 1

2
αpRINT2S − 1

2
αpRINT2N) + SCFX + SCMX (4.25)

This equation can be simplified by assigning values to all the known coefficients:

A juj−1 + B juj + Cjuj+1 = Dj (4.26)
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4.3 Tridiagonal Form of Equations

When this equation is written repeatedly for all the crossectional points in the domain 2 to

N-1 a tridiagonal matrix system is obtained:


























B2 C2 0 0 0 0 0 0
A3 B3 C3 0 0 0 0 0
0 A4 B4 C4 0 0 0 0
0 0 A j−1 B j−1 Cj−1 0 0 0

0 0 0 A j B j Cj 0 0

0 0 0 0 A j+1 B j+1 Cj+1 0

0 0 0 0 0 AN−2 BN−2 CN−2

0 0 0 0 0 0 AN−1 BN−1



















































u2

u3

u4

uj−1

uj

uj+1

uN−2

uN−1


























=


























D2

D3

D4

Dj−1

Dj

Dj+1

DN−2

DN−1


























(4.27)

Note that the coefficients A2 and CN-1 are equal to zero in accordance with the top and

bottom boundary conditions for the domain.  Therefore they are not shown in the above

matrix.  This system of equations is easily solved using the well known Thomas

Algorithm. 

4.4 IPSA Based Algorithm

For single-phase flow the parabolic solution method is relatively straightforward.  In

two-phase flow, however, the void fraction distribution needs to be solved for, a variable

not present in single phase flow.  In order to have a number of equations equal to the

number of unknowns, the solution of the radial momentum equation is necessary.   It is

not necessary to solve this equation in a single-phase parabolic flow.

To illustrate this problem, Figure 4.3 shows the set of equations and unknowns for a small

3 by 3 computational grid.  Notice that the pressure gradient for the radial momentum
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Unknowns Number of

Unknowns

Equations Number of

Equations

u1 3 x1 momentum 3

dP/dx 1 continuity1 1

v1 2 continuity1 2

T1 3 energy1 3

dP/dr 3 r1 momentum 3

v2 3 r2 momentum 3

u2 3 x2 momentum 3

T2 3 energy2 3

α 3 continuity2 3

Total 24 24

u1

u2

u1

u2

u1

u2

v1

v1

α

α

α

T1 T2
v2

T1

T1 Τ2
v2

T1 T2
v2

dP
dx

dP
dr

dP
dr

dP
dr

Figure 4.3 - Sample Grid for Unknowns vs. Equations



equation is considered independent of the pressure gradient in the axial momentum

equation.  This "uncoupling" is necessary to retain the parabolic nature of the procedure.

The inaccuracy of doing this is not great as long as the radial pressure gradient is small

compared to the axial gradient.

4.5 Solution of Ejector Flow Problem

Figure 4.3 also generally illustrates the procedure that the computer solution takes.  First,

the void fraction is guessed and the first phase equations are solved.  This part of the

solution is a standard parabolic procedure in which the axial pressure gradient is guessed

and iterated until the global mass flowrate across the domain is satisfied.  The radial

momentum equation for the first phase is solved for the radial pressure gradient.  Next, the

second phase unknowns are solved for using the just calculated radial pressure gradient

and the same guessed void fraction.  Eventually the continuity equaiton for the second

phase is solved for the void fraction distribution.  The void fraction is compared to the

guessed value and the procedure is iterated until the guessed void fraction equals the

calculated value.  This procedure is based on the IPSA procedure deveoloped by Spalding

[34].

The general procedure the solution takes for each downstream step is as follows:

1. Guess the void fraction distribution, α.

2. Guess values of uc and vc for the step.  Generally these are taken as the upstream

values.

3. Guess ∆P for the step. 

4. Solve continuous phase axial momentum equation for uc.
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5. Check that global mass is conserved across the duct.  If it is, continue.  If not

return to step 3.

6. Solve the continuous phase continuity equation for vc.

7. Check if uc=ug and vc=vg.  If not return to step 2.

8. Solve the continuous phase r-momentum eqn. for dP/dr.

9. Guess values of ud and vd for the step.

10. Solve the discontinuous phase r-momentum eqn. for vd

11. Solve the discontinuous phase x-momentum eqn. for ud.

12. Check if u=ug, v=vg.  If not return to step 9.

13. Solve the discontinuous phase x-momentum eqn. for αd .

14. Check that αc +αd  =1.  If not return to step 1.

15. Solve the continuous and discontinuous energy equations for Tc and Td.
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