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(ABSTRACT) 

The defect structure, atomic structure, and energy of the interphase boundaries between 

an fcc matrix and a lath-shaped bcc precipitate in Ni-45wt% Cr were investigated. The 

interfacial structure on the side facet of the precipitate consists of regular structural ledges 

and misfit dislocations. No regular defect structure can be found on the habit plane, or 

broad face, of the lath except for atomic-scale structural ledges. High resolution electron 

microscopy (HREM) observations show the (121); habit plane is coherent and is a good 

matching interface. Based upon conventional transmission electron microscopy (TEM) ob- 

servations, the orientation of the habit plane results from advancing growth ledges on the 

conjugate plane of the Kurdjumov-Sachs orientation relationship. Using embedded atom 

method (EAM) simulations, the interfacial energy of the (121), habit plane is calculated 

and the simulated interphase structure is compared with the HREM observations. The 

simulated interface represents a major portion of the observed interface. The calculated 

interfacial energy of the (121); habit plane is 210 mJ/m?, lower than typical grain bound- 

ary energies indicating this habit plane is a low-energy interphase boundary. A non-Bain 

lattice correspondence is identified and employed to predict the (121), habit plane suc- 

cessfully, although a Bain correspondence is more successful at predicting the elongation 

direction for the precipitate. Geometric matching is proposed to be responsible for deter- 

mining the orientation of the precipitate habit plane and the growth direction. Lattice



correspondence-based approaches such as the invariant line model and the phenomenolog- 

ical theory of martensitic crystallography can mimic aspects of geometric matching, but 

they do not accurately reflect the transformation mechanism during precipitation of bcc 

laths from an fcc parent.
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Chapter 1 

Introduction 

The morphology of precipitates is an important factor that controls the mechanical and 

physical properties of alloys. In many alloy systems, precipitates adopt a rod-shape (4, 5, 

6, 7], plate-shape [8, 9, 10, 11, 12], or lath-shape [13, 14, 15]. In these cases, the parameters 

needed to specify precipitate morphology are the direction of elongation , the broad face 

orientation (habit plane), and the aspect ratio of the precipitate. An understanding of these 

factors thus is an important area that may eventually enable materials engineers to ma- 

nipulate precipitate morphology. Though precipitation is a diffusional process, theories for 

diffusionless martensitic transformations have been borrowed to explain some of the phe- 

nomena associated with precipitation [16, 17]. To explore the implications of this apparent 

dichotomy, such theories for two major transformation mechanisms [18, 19], martensitic and 

diffusional precipitation, are introduced briefly here [20]. 

Following Wechsler, Lieberman and Read [21] and Bowles and Mackenzie (22, 23, 24], 

the phenomenological theory of martensitic crystallography (PTMC) describes a martensitic 

transformation by a homogeneous strain. This strain is generally described in terms of two 

components: one that deforms the parent (or matrix) crystal lattice to the product lattice 

and a shear (lattice invariant deformation) that produces an invariant, or macroscopically 

undistorted, plane between the parent and product phases. The invariant plane is the 

habit plane on which martensitic plates or laths develop. The homogeneous deformation 

implies an atomic correspondence between the parent and product phases, i.e., each atom



undergoes the same strain [18]. Within the constraints of the atomic correspondence, atoms 

migrate in a military fashion and the transformation proceeds athermally, and as Wayman 

has noted [25], there is no change in composition or order. As long as the shear direction 

and lattice correspondence are known, the martensite habit plane, orientation relationship 

between parent and product phases, and the magnitude of shear can be calculated using the 

PTMC. Except for the magnitude of shear, these parameters can be checked by experimental 

observations [26, 27]. However, it is important to note that there is no simple procedure to 

derive either the shear direction or lattice correspondence required by the PTMC. In some 

cases, especially for ferrous martensite with a {252}; habit plane [28], these parameters 

have been based upon educated guesses or trial and error [29]. For the most commonly 

considered fcc-bct martensitic transformation in ferrous alloys, an atomic correspondence 

identified by Bain [30] is generally assumed [31, 25]. 

During diffusional precipitation transformations, atomic rearrangements not only have 

to change the crystal structure, but they also have to redistribute solute and solvent atoms. 

This requires uncoordinated motion of individual atoms by thermally activated diffusional 

jumps. For this case, Aaronson proposed a general theory of precipitate morphology [32, 33] 

that explained precipitate shape during growth in terms of the orientation dependence of 

the boundary. Boundary orientations with high mobility were suggested to grow out leaving 

behind facets composed of lower mobility, coherent or partially coherent boundaries. Good 

matching, which means atoms on either side of the boundary lie close to the positions they 

would occupy if the boundary were not present, is implicit at these coherent and partially 

coherent boundaries. 

Transmission electron microscopy (TEM) observations and computer simulations made 

during the ’70 and ’80s for precipitate habit planes in ferrous, Al, and Cu alloys (4, 11, 34, 

35, 36, 37] demonstrated that the interphase boundaries were indeed good matching. The



predominant growth direction of precipitates (the elongated directions of laths and rods 

and radial directions of plates) was also shown by Bywater and Dyson [38] and Dahmen 

et al. [17, 39] to include a good matching direction. Dahmen and his coworkers used 

invariant line theory [17, 40, 39] to predict the perfect matching direction between parent 

and product phases and succeeded in predicting the growth direction of precipitates in 

various alloys [7, 13, 15]. Like the PTMC, a lattice site correspondence is required to apply 

the invariant line theory [41]. However the correspondence only applies to lattice sites rather 

than individual atoms in the case of precipitation reactions to allow the compositions of the 

parent phase and the precipitate to differ. 

One of the missing pieces in understanding the formation of precipitate morphology 

is the prediction of good matching boundary orientations, i.e., the precipitate habit plane. 

The invariant line theory only yields a single good matching direction and a second criterion 

‘is needed to predict a habit plane. There are several criteria [42, 43, 44] for this purpose, 

but their success is very limited especially for the fec/bcc system. Part of the problem in 

habit plane prediction is whether or not atomic matching can be represented by a lattice 

site correspondence. It is the goal of this dissertation to propose a way for predicting the 

fcc/bcc precipitate habit plane based upon the atomic mechanisms implied by the defect 

and atomic structures observed at an interface. 

The discussions are made from four different points of view: interfacial structure (Chap- 

ter 2), interfacial energy (Chapter 3), the best-matching direction and plane derivation 

(Chapter 4), and lattice correspondence and atomic matching (Chapter 5). These chapters 

are prepared as papers for the open literature. They thus contain the basic elements required 

by technical papers including introduction, procedure, results, discussion, and conclusions 

sections. References to the chapters are made to the papers listed as follows: Chapter 2 

is Reference [45], Chapter 3 is Reference [46], Chapter 4 is Reference [47], Chapter 5 is



Reference [48], Appendix A corresponds to the Appendix section in Reference [45], and 

Appendix B is the Appendix for Reference [48]. 

In Chapter 2, the interfacial structure and defects associated with the growth or pre- 

cipitates in Ni-45wt% Cr alloy are described. The chapter builds upon the earlier work of 

Luo and Weatherly [13, 49] on the same alloy. A large number of precipitates and defects 

are analyzed to determine the statistical importance of the defects observed and their role 

in the precipitate growth process. 

Chapter 3 employs atomistic simulations to estimate the interfacial energy of the pre- 

cipitate habit plane in Ni-Cr to confirm that the good matching boundary is a low en- 

ergy interface. The boundary structure used in the embedded atom method simulations is 

also compared for consistence with high resolution electron microscopy (HREM) observa- 

tions [45] on the precipitate habit plane. 

Chapter 4 proposes an analytical method to determine the best-matching direction and 

plane based upon a specified lattice correspondence. The method employs an eigenvalue 

technique to find the least and the largest misfit directions between two crystal structures 

arranged in an arbitrary orientation relationship. Results of evaluations using this method 

are compared with the growth directions and habit planes observed in precipitation reactions 

between bcc/9R, fec/bec, and bee/hcp crystal structures. 

Chapter 5 demonstrates a procedure for selecting precipitate facet planes and important 

lattice correspondences. The approach is based upon finding interphase boundaries with 

a high density of near-coincident sites. Such near coincident site boundaries are identified 

by analyzing computer-generated lattice correspondences. The questions are addressed of 

whether lattice correspondences other than the Bain correspondence [30] are appropriate 

and whether a correspondence obtains at all between the fcc and bcc phases in Ni-Cr. 

Appendix A describes a tool developed to obtain crystallographic information from TEM



diffraction data. The relation between a TEM double-tilt specimen holder and crystallo- 

graphic orientation is derived. Using the angle readings from a double tilt holder and more 

than three diffraction patterns, a translation matrix between the crystal coordinate system 

and a lab frame of reference can be obtained. The primary application of this tool is to help 

unambiguously index the crystallographic orientations for trace analysis and for orientation 

relationship determinations used in Chapter 2. 

In Appendix B, a procedure is described following Jaswon and Wheeler [31] for deriving 

the lattice correspondences that meet the least deformation criterion [25]. The procedure 

is implemented in a computer program and used to analyze ~ 2000 sets of correspondences 

in Chapter 5. 

A number of computer programs were developed during the course of this thesis. The 

programs consist of more than 10,000 lines of C, FORTRAN, or Mathematica [50] code. 

Appendix C provides a short description of each program. Four of the programs are in- 

cluded with the dissertation: a crystallographic analysis tool box ( VectorAnalysis.ma used in 

Chapter 2), the best-matching direction and plane determination procedures (BMDBMP.ma 

used in Chapter 4 and 5), an algorithm for fcc/bcc lattice correspondence determinations 

(CORRfinder.ma used in Chapter 5), and the diffraction zone finder program for general 

crystal structure diffraction pattern indexing (ZoneFinder.ma used in Chapter 2 and Ref- 

erence (51, 52]).



Chapter 2 

Interfacial Structure and Growth Mechanisms of 

Lath-Shaped Precipitates in Ni-45wt% Cr 

2.1 Introduction 

The fec/bcc interface is one of the most important interphase boundaries in metallic 

alloys [32]. It plays an important role in ferrous phase transformations and has been studied 

in steels [53, 54], Ni-Cr [13, 49], Fe-Cu [6, 7], Cu-Cr (4, 15], and dual phase stainless 

steel [55]. Bcc laths generally precipitate from an fcc matrix in all these systems. There 

are many similarities among the crystallographic characteristics of the precipitates in these 

systems, such as the growth direction, habit plane, and morphology. 

The bcc precipitates hold an exact or near Kurdjumov-Sachs orientation relationship (K- 

S OR) [56] with the matrix fcc crystals!, and the ratio of the fec and bcc lattice parameters, 

a;/ap, falls between 1.25 and 1.26 in these alloys [6, 15, 55, 57, 58]. The precipitates elongate 

along a direction ~ 5.5° from [101];, the conjugate direction of the K~S OR. This elongated 

or predominant growth direction has been predicted successfully by the invariant line theory 

developed of Dahmen and coworkers [17, 39]. Since the precipitates have a lath-shape, their 

broad face or habit plane is parallel to this growth direction. The precipitate habit plane is a 

  

1 The indexing of crystallographic directions for the precipitates depends upon the choice of orientation 

relationship variant. The K-S variant used throughout this study is that used by Luo and Weatherly [13]: 

(111), || (101), and [101], || [111], 

where the “f” and “b” subscripts indicate coordinates for the fcc and bcc lattices, respectively.



(121), plane tilted ~ 19° from the parallel conjugate planes of the orientation relationship. 

Among these alloys, Ni-Cr is the most extensively characterized. Detailed studies of 

the interfacial structure of bcc precipitates in Ni-45 wt%Cr have been reported by Luo and 

Weatherly (13, 49] and Furuhara et al. [59], and the kinetics of growth ledge formation have 

been measured by Chen and Reynolds [60]. The current study employs this alloy system to 

characterize defects in the fcc matrix associated with the precipitate growth process. The 

defects, which include dislocations and stacking faults, are related to the fec/bcc interfacial 

structure and the precipitate growth mechanism. An attempt is also made to assess the 

variation in the type of defects and the interfacial structure from one precipitate to another. 

2.2 Procedure 

2.2.1 Sample Preparation 

A 400 gram ingot of the Ni-45wt%Cr alloy was made by arc-melting 99.99% pure Ni and 

Cr metals. A section of 10 x 10 x 100 mm was cut from the ingot, encapsulated in a quartz 

capsule, evacuated to a pressure of < 107° torr, and sealed under ; atm argon. A titanium 

powder compact was included within the capsule to getter oxygen. Homogenization was 

then performed at 1300°C for three days before quenching into ice brine. The homogenized 

material was cold rolled to 0.5 mm thick coupons. These coupons were again evacuated, 

flushed with argon, and resealed in a quartz capsule under 5 atm argon atmosphere. The 

coupons were solutionized for 4 hours at 1300°C and quenched in ice brine. The samples 

were then aged at 950°C for 4200 seconds in evacuated capsules. At this aging time, 

precipitates were still in the growth stage and have a uniform shape [60]. 

TEM foils were prepared by mechanically grinding the aged samples to approximately 

100 zm and punching 3 mm diameter disks. The disks were jet polished with a solution of



7% perchloric acid, 11% Butyl-Cellosolve, 31% 1-Butanol, and 51% Ethanol [61], at —30°C, 

and 150-200 V [60]. The thin foils were examined using a Philips EM420 transmission 

electron microscope (TEM) operated at 120 kV and a JEOL 4000X operated at 400 kV. 

2.2.2 TEM Analysis 

The long axis of the precipitates lies close to the conjugate [101]; and [111], directions, 

so a precipitate sectioned by the foil perpendicular to their long axis (Figure 2.1) produces 

diffraction patterns that reveal the K-S OR directly. The zone axis of such patterns cor- 

responds to the conjugate directions of the K-S OR and the patterns contain g vectors of 

the conjugate planes ((111); and (101),, see Figure 2.1(c)-(d)). Because both the habit 

plane and side facet of the precipitates are almost parallel to the elongated direction, these 

boundaries are nearly edge-on for precipitates in cross section (Figure 2.1(a)). The sample 

preparation procedure produced textured foils with foil normals close to a (110), direction, 

so it was relatively easy to obtain edge-on precipitates. 

Each precipitate was indexed individually following the chosen K-~S OR variant. When 

the parallel (101), (|| [1T1]-) , [111], (|| [101] ,), or [121] (|| [121] +) zones could be obtained 

within the specimen holder’s range of tilt, the indexing was straightforward since two sets of 

patterns from fcc and bcc crystals could be indexed. In cases where these parallel zones were 

unreachable, the tilt angle readings corresponding to each observed zone were recorded. A 

more detailed description of the procedure is provided in Appendix A. The locations of 

Kikuchi lines from the fcc and bcc phases were then compared with the corresponding 

stereographic projections arranged in the chosen variant of the K-S OR to index the zone 

axis. A set of unique indices was accordingly assigned. 

For trace analysis, at least three non-coplanar zones were used. Up to nine different 

diffracting g vectors were used to analyze the defects in each precipitate using the g- b = 0



  
   bcc precipitate 

a + 
ledge with (1 1 1); facet stacking fault 

    

(b) 

Figure 2.1: (a) Cross section of a bcc precipitate formed by aging Ni-45wt% Cr at 950°C for 

4200 seconds, (b) a schematic of the precipitate lath cut by the foil nearly perpendicular to 

the elongated direction. The arrows indicate the directions of ledge growth migration. (c) 

The corresponding diffraction pattern of the precipitate in this orientation ({101], || [111].), 

and (d) the indices for (c).
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invisibility criterion [62, 49] and two-beam bright field micrographs. TEM contrast simu- 

lation [63, 64] was applied when the Burgers vectors could not be identified uniquely. The 

weak-beam dark field (WBDF) technique was used whenever possible to resolve the defects 

and to allow more accurate quantitative measurements [65, 66]. For many of the precipi- 

tates investigated, WBDF images using g = {111}, and g = {200} ¥ yielded good resolution 

and, in some cases, a clear distinction between ledges and dislocations in the interfaces. 

2.3. Results 

2.3.1 Basic Parameters: Habit Plane and Side Facet 

Fifty precipitates were analyzed, twenty three of them could be tilted and viewed along 

the cross-section (along the near-invariant line direction). In some of the precipitates tilted 

to the [101]; zone axis, the orientation relationship was close to, but not exactly, the K-S 

OR. In these cases, the (111); was parallel to the (101),, but the [111], direction was not 

exactly parallel to [101] y- The largest deviation found between these two directions was 

~ 0.9°. Two out of the fifty precipitates studied deviated substantially from a K-S OR; 

these were ascribed to the influence of a heterogeneous nucleation site [67] and were not 

studied further. 

Figure 2.2 shows the orientations of the habit planes and side facets determined by 

trace analysis on the fifty precipitates. The average orientation of the fifty habit planes is 

~ (1 2.05 1.17);. The largest deviation from this average is approximately 10°. The side 

facet orientation ranges from (212), to (10 1 10) and averages (3.78 1 3.96);. These are 

both consistent with values reported by Luo and Weatherly [13]. 
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Figure 2.2: The poles of the habit plane, the side facet and the line direction of dislocations 

lying in the habit plane. 
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2.3.2 Shapes of Precipitates and Ledges 

From the twenty three precipitates viewed along [101] +, the real width and thickness of 

the precipitates could be measured directly, since the precipitates are oriented in edge-on 

cross-section. The widths of precipitates fell between 330 and 700 nm, and their thicknesses 

were between 170 and 400 nm. Due to the small probability of sectioning precipitates 

parallel to the elongated direction, the length of precipitates were not measured accurately. 

The precipitate aspect ratio (width to thickness) ranged from 0.9 to 3.5 with an average of 

2.01. 

The orientations of the habit plane and side facet do not change with aspect ratio. 

However, the precipitates with a higher aspect ratio tended to have a below-normal thick- 

ness, i.e., these precipitates appear to have a higher aspect ratio because thickening was 

restricted. The precipitates with lower aspect ratio tended to be the ones that deviated 

most from the exact K-S OR. 

Growth ledges on the habit plane have a facet parallel to (111),, which is the conju- 

gate close-packed plane of the K-S OR, and it is at an angle of 19° to the habit plane 

(Figure 2.1(b)). These ledges have an average height of ~ 1.0nm [49, 60]. 

For ledges on the side facets, no major planes seem to dominate, and they sometimes 

coalesce into a larger size step with a facet of ~ (313), [68]. The ~ (313); was calculated 

as the best-matching plane in this system using the Bain correspondence [47]. 

2.3.3 Observations of Defect Structure 

Parallel defects on habit plane 

Parallel but irregularly spaced dislocations and ledges are found in the habit planes 

lying approximately parallel to [1 0 1]. Examples of both are shown in Figure 2.3. The 
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