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(ABSTRACT) 

The formulation of an accurate data base consisting of system state variable 

values is an initial and critical step in the economical and secure operation of 

modern power systems. The Least Median of Squares (LMS) estimator is ideal in 

the sense that it can provide a good state estimate despite high percentages of bad 

data and multiple bad leverage points. The estimator is, however, computationally 

intensive. 

In this thesis, an efficient algorithm is developed and implemented to 

increase the overall speed of the LMS estimator. The algorithm generates 

measurement samples in a manner that allows use of the resampling technique i-e., 

they make the system observable and also ensure that each measurement has a 

nearly equal probability of appearing in each of the measurement samples.
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CHAPTER 1 

INTRODUCTION 

1.1 Necessity For Accurate State Estimate 

Modern high—voltage transmission systems are highly interconnected and 

vast in size. These factors necessitate a centralized control structure to ensure 

secure operation. This centralized control is exercised via a hierarchical system of 

local and regional control centers, each of which is responsible for the proper 

operation of the system within its jurisdiction. 

The primary function of the control centers is to deliver power in a secure 

manner. Since a power system is composed of many interactive components, any of 

which may fail unexpectedly, a normally operating system may suddenly collapse. 

The removal of a single component, via component failure or the action of a 

protective device, can potentially cause the failure or removal of other system 

components in a cascading manner. To guard against such an occurrence, selected 

component failures are simulated using a computer model of the actual system. 

Based upon the results of these contingency analyses, the control center operators 

can alter the system configuration to prevent the computer—simulated outages from 

actually occurring. 

The second major function of the control centers is to operate the system as 

economically as possible given the system constraints imposed by satisfying the 

reliability requirement. Finding the economically optimum system configuration is 

known as the economic dispatch problem and its solution also requires the use of



computer models of the actual system. 

The operational decisions made by the control center operators are based 

heavily upon the output of the contingency analyses and economic dispatch 

programs. The viability of the output of these programs is directly related to the 

accuracy of the system model used by the programs. Determining an accurate 

system model or, equivalently, the actual system status is, therefore, an important 

first step which the control centers must accomplish. 

1.2 State Estimation 

The initial step in determining the status of the system is accomplished by 

the topology processor. The topology processor determines which transmission 

lines, generators, etc. are in service based upon the positions of the system circuit 

breakers and switches which are telemetered to the control centers. Once the 

topology of the system has been determined, one can proceed to evaluate the power 

flows and bus voltages associated with the system. 

Due to the extremely large number of buses and lines in a typical power 

network, it is not feasible to measure all of the bus voltages and power flows. These 

quantities can, however, be readily calculated from the system state. The system 

state is defined by the state variables — the voltage magnitude and phase angle at 

all system buses. As previously mentioned, relatively few of the bus voltage 

magnitudes are actually measured and, currently, none of the phase angles are 

measured. Recent advances have made it possible to measure the bus voltage phase 

angles, but the use of this technology is still experimental and, even when



implemented in earnest, will be used to give the phase angles at relatively few buses. 

The remaining state variables must be determined via state estimation. The 

purpose of a state estimator is to assign good values to unknown system state 

variables based upon system measurements, equations describing the system, and a 

statistical criterion that is minimized. Redundant measurements are used by a 

robust estimator to filter out small errors and reject discordant measurements, the 

so—called bad data, referred to as outliers in the statistical field. In power systems, 

the measurements consist of selected bus voltage magnitudes, power flows, and 

power injections. The state variables are related to these measurements via the 

following non—linear equations: 

P =3$VVY_ cos(0-@—-—6) i=1,...,N 
J=1 2 J Y 1 J 1) 1 

Q =EVVY.sinfO—6— 6) i=1,...,N 
=1 1 j) Y 2 J YJ 

P =V.V_Y. cos(@—6@— 6 )—V?Y_cos 6. 
Yq 2 J Y 1 ] J i y ij 

Q.=V.V.Y. sin(@—@— 6.)—V?Y_ sin 6, 
Y 1 J) Y 1 J 1 1 yY i 

where 

P real power flow from node 1 to node j 
j 

= reactive power flow from node i to node j Q 

P = real power injection at node 1 

6 

i 

Q = reactive power injection at node 2 
1 

‘i 

ij 

i 
= the voltage phase angle at node 1



6 = the angle of impedance of the line connecting nodes i and 4 
ij 
N = the number of system buses 

These equations can be written in matrix form as follows: 

z= h(x) +e (1) 

where 

Z = an mx1 vector consisting of real and reactive power 
flows, injections, and voltage magnitudes 

h = the nonlinear functions relating the measurements to 
the state variables 

x = the state vector 

€ = a measurement noise vector. 

Given a set of redundant system measurements and the above equations, the 

state estimator’s objective is to determine a "best" estimate of the unknown state 

variables. This "best" estimate is not unique, but is dependent upon the estimator 

used. Many estimators have been developed with each being designed with different 

goals in mind. An estimator may be designed to maximize the probability that the 

state estimate is equal to the actual state when the measurements are distributed 

according to a particular probability distribution function. For example, the least 

squares estimator is the maximum likelihood estimator if the measurements are 

normally distributed. The assumed model of the measurement noise vector e is a 

major factor to consider when deciding which estimator is most appropriate for a 

specific application. An estimator which is optimal in one case, may give erroneous 

results if the assumptions behind the estimator are not met.



The measurement errors and, hence the measurements, encountered in power 

systems do not necessarily follow any probability distribution function. Measuring 

devices may fail, resulting in very large measurement errors. The devices may be 

wired incorrectly, giving erroneous readings. The communication systems used to 

telemeter the measurements to the control centers may also fail resulting in 

incorrect measurements or no measurements at all. Simple screening of the received 

measurements can identify those measurements having unrealistic values, but 

measurements may remain that cannot be readily determined to be bad. 

Before proceeding with a discussion of some of the estimators currently being 

researched for use with power systems, it is necessary to make an additional 

comment concerning the measurements used by the state estimator. In order for 

any state estimator to be able to reach a solution, the measurements must be 

sufficient in number and in geographic distribution such that all of the state 

variables have a measurement associated with them. A system containing 

measurements meeting this criterion is called an observable system. The concept of 

system observability and methods available to determine if a given set of 

measurements make a system observable comprise the bulk of this paper and will be 

discussed in detail following the introduction. It is simply defined at this point 

because the term will appear during the following discussion of several estimators. 

1.3 Least Squares and Least Absolute Value Estimators 

The traditional approach used by the utility industry to arrive at a state 

estimate makes use of the least-squares (LS or L) estimator; usually coupled with 

some sort of residuals analysis. As previously stated, the L, is the maximum



likelihood estimator if the measurements are normally distributed, but power 

system measurements do not meet this assumption. The L, estimator, even when 

combined with some bad data rejection rules based on the residuals, exhibits several 

undesirable properties when it encounters data points departing from the gaussian 

assumption. First, it is subject to the masking affect. The state estimate is 

attracted by outers (points which are distant from the majority of the data are 

called outliers). The result is that the residuals of the outliers are small. The 

outliers are hidden or masked from detection. The second problem with this 

estimator is that it is attracted by bad leverage points (a leverage point is a data 

point which is far away from the bulk of the point cloud in the factor space of the 

regression). It has been shown that power system models contain many leverage 

points [1]. The result is that the L, estimator, although widely used, is not the 

appropriate choice for determining a reliable state estimate of power systems. 

Another estimator that is being applied to the power system state estimation 

problem is the least absolute value (LAV or L) estimator [2—7]. The L is able to 

handle vertical outliers; however, it is unable to give accurate state estimates in the 

presence of even a single bad leverage point. All of the M-type estimators (of 

which the L is but one example) exhibit this same weakness [1]. 

1.4 Least Median of Squares Estimator 

Recently, attention has been directed to a family of estimators known 

collectively as high breakdown point estimators. Some of these estimators are 

capable of giving accurate state estimates despite bad data percentages approaching 

50%, and are also not adversely affected by bad leverage points. One such estimator



is the Least Median of Squares (LMS) estimator. This estimator has been shown to 

indeed have the ability to handle both vertical outliers and bad leverage points [1]. 

Although the LMS has many advantages, it is a computationally intensive 

estimator. The computation of the LMS estimate involves the repeated selection of 

different measurement samples of size n (where n is the number of state variables to 

be estimated) for which the system is observable. For each of these samples, the 

Newton—Raphson algorithm is used to solve for an estimate of the state of the 

system. The weighted residuals are computed and then ordered by increasing 

squared values. The state estimate which results minimizes the LMS criterion. 

Ideally, all of the measurement samples meeting the observability criterion should 

be considered. Power system sizes prohibit an exhaustive search for the optimum 

state by trying all suitable measurement combinations. 

1.5 Resampling Technique 

The resampling technique [8] is one method whose use allows the number of 

such measurement sets to be substantially reduced. Assuming that each 

measurement has an equally likely chance of being selected and included in a 

measurement set, the number of measurement sets k that need to be examined to 

have a probability P of obtaining at least one uncontaminated set can be expressed 

as follows. 

P = 1{1{1-«)")*, (2) 

where ¢ denotes the fraction of contaminated data and n denotes the number of data 

points in each set, i.e. the dimension of the problem or size of the network. The



probability P is set equal to nearly 1 (typically 0.95). This equation allows one to 

determine the number of samples that must be considered to achieve a desired 

probability of obtaining an uncontaminated data set for a given fraction of 

contamination. Although the resampling equation reduces the number of 

measurement sets that must be considered, the number increases exponentially with 

the size of the system. 

The number of measurement sets which must be created for the LMS may be 

further reduced via a system decomposition scheme which allows the LMS to be run 

on relatively small subsystems. Considering the fact that the number of 

measurement sets required grows exponentially with system size, the decomposition 

scheme offers a substantial reduction in the number of measurement sets that need 

be considered. 

1.6 Observability and The Resampling Technique 

Despite the use of techniques to reduce the number of measurement samples 

required for the LMS to be applied effectively to power system state estimation, the 

requirement for a fairly large number of measurement samples for which the system 

(or each of the decomposed subsystems) is observable remains. In addition, each 

measurement should have an equal probability of appearing in the measurement 

samples so that the resampling method can be used. Obtaining these sets in a rapid 

manner is critical to the use of the LMS in real time applications. 

The method currently used to generate the measurement samples proceeds as 

follows. The measurements are first grouped into their fundamental sets. Each



fundamental set contains those measurements which are functions of the same state 

variable. Since there are two state variables associated with each system bus (one 

associated with the reference bus), it follows that the number of fundamental sets 

for a network is equal to the number of buses in the network. Utilizing the fact that 

it is a necessary condition of observability that at least one measurement from each 

fundamental set be contained in the sample [1], a measurement is randomly drawn 

from each. This procedure, instead of simply selecting n measurements from the 

ungrouped set, increases the probability of drawing a sample for which the system is 

observable. However, since including a measurement from each of the fundamental 

sets is only a necessary condition of system observability, the measurement set 

drawn must be subjected to an observability test to ensure that they actually do 

result in an observable system. Simple topological tests are first employed to reject 

samples containing power flow measurements situated on (a) both ends of a line, 

and (b) all lines incident to a node whose injection measurement was drawn. 

Measurement samples passing these simple tests are then subjected to a 

numerically—based observability analysis algorithm to make a final observability 

determination. 

This method has several weaknesses. First, the percentage of measurement 

samples passing the simple topological tests but failing the final observability test is 

high. For the IEEE 14—bus system with the measurement configuration shown in 

figure 1, the percentage is approximately 44%. This failure rate increases for larger 

systems since the topological checks used are unable to detect the formation of loops 

by either flows or injections and the number of loops increases with system size. As 

a result, much time is wasted testing samples which prove to be unusable.
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Including the samples that fail either the initial topological tests or the final 

observability check, the percentage of drawn samples that fail to make the system 

observable reaches 84% for the IEEE— 14 bus system. For the IEEE 118—bus 

system, this percentage approaches 100%. A second weakness is that the 

numerically—based observability algorithm used as the final check is relatively slow 

when compared to some topologically—based algorithms. Thirdly, the correct 

determination of system observability using this method is also dependent upon the 

effective zero utilized in the triangular factorization process. 

The most important weakness of the above method is that it does not satisfy 

the assumptions behind the resampling method. Since injection measurements 

appear in the fundamental sets associated with all of the nodes incident to the node 

on which the injection is located, each injection measurement appears in several 

fundamental sets. In contrast, each flow measurement appears in only two 

fundamental sets. The result of this measurement distribution is that randomly 

selecting a measurement from each of the fundamental sets results in a higher 

probability of selecting an injection. Figure 2 shows the distribution of the 

measurements in 100 measurement samples generated by the above method for the 

IEEE 14—bus system of figure 1. It is clear from the plot that the injections 

(measurements 24-34) appear more frequently than do the flow measurements. 

This means that injections are used to a greater extent in determining the optimal 

solution in the LMS sense. If some of these injections correspond to the bad 

measurements that are to be identified by the LMS estimator, their presence in a 

high percentage of measurement sets means that the probability of obtaining an 

uncontaminated measurement sample cannot be given by equation 2.
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1.7 Thesis Objective 

This thesis develops an algorithm to generate measurement samples for use 

with the LMS estimator. The final algorithm overcomes the weaknesses of the 

currently used method as presented above. The algorithm is efficient, correct, and 

ensures that each measurement has a nearly equal probability of appearing in a 

given measurement sample. 

Chapter 2 begins with an historical overview of the development of 

observability analysis algorithms. The basic principles of observability are then 

presented and several recent algorithms claiming to be fast and correct are analyzed. 

Chapter 3 describes in detail an observability analysis algorithm based upon 

the concept of intersecting matroids. The theory of matroids and their use in power 

system observability analysis are presented along with several examples which serve 

to make the concepts clear. This observability analysis technique is used in the 

final algorithm used to generate the measurement sets. 

Chapter 4 describes the final algorithm in detail. Techniques utilized to 

increase the efficiency of the algorithm are presented, as is a method which ensures 

an almost uniform measurement distribution within the generated measurement 

sets. Comparisons between the current method and the new method are also 

presented in this chapter.



CHAPTER 2 

OBSERVABILITY ANALYSIS 

2.1 State—of—the—Art in Observability 

There have been many papers published concerning power system 

observability theory and analysis methods since the subject was first examined by 

Clements and Wollenberg [9] in 1975. The major objective of each of these papers 

has been to develop and implement observability analysis algorithms that yield a 

necessary and sufficient condition for observability and are computationally 

efficient. This common goal has resulted in a number of different fundamental 

approaches to the problem, as well as a variety of implementation schemes for each 

approach. 

Initial observability analysis algorithms were heuristic in nature [9-11] and 

only verified a sufficient condition for observability. These algorithms may 

incorrectly label observable networks as being unobservable. 

A major change in the approach to the observability problem was pioneered 

by Krumpholz and Clements [12] in the early 1980’s. Krumpholz and Clements 

made the connection between classical graph theory and power system observability 

when they introduced the concept of topological observability and proved that a 

necessary and sufficient condition for network observability is that a spanning tree 

can be formed in the system one—line diagram. Clements and his colleagues have 

successively refined the topologically—based algorithm [13-15] initially presented in 

[12]. 

14
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Many of the more recent papers dealing with the subject of observability 

have presented additional topologically—based algorithms. Van Custem [16] 

attempts to form a spanning tree by treating the injections in an enumerative way, 

claiming that the high proportion of flow measurements typical of power systems 

makes such an approach competitive with non—enumerative algorithms. One way 

to avoid an enumerative search is by reformulating the problem as a maximum flow 

problem [17]. This method has been shown to be quite slow [18] as are all of the 

observability algorithms based upon classical graph—theory. 

Another major class of observability analysis algorithms is based on 

factorization of the Jacobian matrix in complex form. The goal is to determine if 

the matrix is of full rank indicating that the overdetermined system of equations 

describing the power network can be solved. Numerically—based observability 

algorithms were first introduced by Monticelli and Wu who presented the 

supporting theory in [19] and associated algorithms in [20~—21]. The advantages of 

such algorithms are that they use computer subroutines already in existence at 

control centers and that system line parameters are taken into consideration. The 

major disadvantages of such algorithms are their susceptibility to finite arithmetic 

errors and their requirement for the selection of an appropriate effective zero [22]. 

Symbolic factorization algorithms have been developed in an attempt to 

avoid the disadvantages associated with the factorization of the measurement 

Jacobian matrix. The initial algorithm [23] was subject to incorrect determination 

of system observability [24]. A more recent algorithm by Clements and Davis [25] 

avoids this problem, but the efficiency of the algorithm cannot be judged since
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computing times are not presented in the paper. 

Reformulating the network observability problem as a maximum—cardinality 

matroid intersection problem has resulted in two major papers. Quintana et al. [26] 

introduces the concept and presents an algorithm. The same concept is utilized by 

Nucera and Gilles in [27], where they develop a much more efficient algorithm based 

on augmenting sequences. This algorithm has been shown to be faster than an 

optimized numerically—based method, thereby, disproving the claim that 

topologically—based procedures are necessarily slower than numerically—based ones. 

2.2 Definition and Principles 

In the introduction it was stated that the measurement samples generated for 

the LMS estimator must make the system observable. In this section the concept of 

observability will be discussed and methods of determining network observability 

will be presented. 

One definition of observability [19] is that a network is observable if any flow 

in the network can be observed by the set of measurements. Equivalently, a 

network is observable if, whenever all measurements are equal to zero, all flows are 

equal to zero. If some nonzero network flows actually do exist when all 

measurements read zero, the network branches in which these flows exist are called 

unobservable branches. A more intuitive definition of observability is as follows. A 

network is said to be observable if the measurements are sufficient in number and in 

geographic distribution such that the state of the system can be determined.



17 

The state of the system is determined by finding a solution to the 

overdetermined set of equations represented by Equation (1). Since this equation is 

nonlinear, a direct solution is not possible and an iterative solution technique is 

required. The Newton—Raphson algorithm is the method most commonly used. At 

each iteration, Equation (1) is linearized about an operating point x via a 

first—order Taylor series expansion. The result being 

Az = HAx, (3) 

where H is the Jacobian matrix, H = dh({x)/dx. Normally, an iterative solution 

technique would involve the evaluation of the Jacobian matrix at each new x. Since 

power systems are operated near a known x, the flat voltage profile (x = 120°), it is 

possible to converge to a solution using a Jacobian matrix whose entries are 

evaluated at the flat voltage profile and maintained constant throughout the 

iterative procedure. Making use of this approximation saves computing time. 

Equation (3) implies that the state of the system can be estimated if and only if H is 

of full rank. Observability can, therefore, be defined in terms of the rank of the 

Jacobian matrix. A system is said to be algebraically observable if the Jacobian 

matrix associated with the system is of full rank. 

Although the Jacobian matrix may be of full rank, it does not necessarily 

follow that Equation (3) can be solved. The solvability of Equation (3) is also 

dependent upon the condition number of the Jacobian matrix. An ill—conditioned


