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Data Centric Defenses for Privacy Attacks

Nikhil Abhyankar

(ABSTRACT)

Recent research shows that machine learning algorithms are highly susceptible to attacks

trying to extract sensitive information about the data used in model training. These attacks

called privacy attacks, exploit the model training process. Contemporary defense techniques

make alterations to the training algorithm. Such defenses are computationally expensive,

cause a noticeable privacy-utility tradeoff, and require control over the training process. This

thesis presents a data-centric approach using data augmentations to mitigate privacy attacks.

We present privacy-focused data augmentations to change the sensitive data submitted to

the model trainer. Compared to traditional defenses, our method provides more control to

the individual data owner to protect one’s private data. The defense is model-agnostic and

does not require the data owner to have any sort of control over the model training. Privacy-

preserving augmentations are implemented for two attacks namely membership inference

and model inversion using two distinct techniques. While the proposed augmentations offer

a better privacy-utility tradeoff on CIFAR-10 for membership inference, they reduce the

reconstruction rate to ≤ 1% while reducing the classification accuracy by only 2% against

model inversion attacks. This is the first attempt to defend model inversion and membership

inference attacks using decentralized privacy protection.
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(GENERAL AUDIENCE ABSTRACT)

Privacy attacks are threats posed to extract sensitive information about the data used to train

machine learning models. As machine learning is used extensively for many applications, they

have access to private information like financial records, medical history, etc depending on the

application. It has been observed that machine learning models can leak the information they

contain. As models tend to ’memorize’ training data to some extent, even removing the data

from the training set cannot prevent privacy leakage. As a result, the research community has

focused its attention on developing defense techniques to prevent this information leakage.

However, the existing defenses rely heavily on making alterations to the way a machine

learning model is trained. This approach is termed as a model-centric approach wherein the

model owner is responsible to make changes to the model algorithm to preserve data privacy.

By doing this, the model performance is degraded while upholding data privacy. Our work

introduces the first data-centric defense which provides the tools to protect the data to the

data owner. We demonstrate the effectiveness of the proposed defense in providing protection

while ensuring that the model performance is maintained to a great extent.
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Chapter 1

Introduction

1.1 Motivation

In recent years, the realm of Machine Learning (ML) has experienced a remarkable upswing

across various domains, owing to a confluence of factors. This surge in popularity can be

attributed to the exponential growth in computational power, the advent of open-source

frameworks, and the wide availability of vast datasets. Within the vast landscape of ML,

significant strides have been made in the specialized areas of natural language processing

and computer vision, leading to unprecedented achievements.

Embracing this transformative technology, tech giants such as Microsoft, Google, and Ama-

zon have taken the initiative to launch their own ‘Machine Learning as a Service’ (MLaaS)

offerings, seamlessly integrating them into their cloud infrastructure. This innovative ap-

proach empowers users to effortlessly access and leverage the models, paying only for the

specific services they utilize. However, amid these notable advancements, there remains a

pressing need to shed light on the critical concerns surrounding ML privacy and security.

Despite the immense potential and benefits offered by this technology, many individuals are

still unaware of the associated challenges that demand immediate attention. Consequently,

it is imperative to address these concerns promptly in order to ensure the responsible and

secure implementation of ML systems.

1
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As a result of the increased usage of ML in our day-to-day activities, models have gained

access to sensitive data like user images, videos, healthcare data, finances, etc. Regret-

tably, one aspect that has been frequently overlooked is the security of these models, leaving

the stored data vulnerable to severe risks, including the inadvertent exposure of private

information[6, 40, 52]. Contemporary studies have exhibited that ML models tend to mem-

orize the data used in training, making this data available to adversaries via insecure ML

models. Privacy Attacks typically make use of inference procedures to extract important

information about the training data. Training a model is an iterative process whereby the

model is fed with the training samples multiple times till it achieves the necessary perfor-

mance. The intuition is that a ML model has distinguishable behavior on the data that it

has seen iteratively (training data) versus the data it views for the first time (test data).

Cloud platforms, due to their centralized nature and the storage of numerous ML models,

are particularly vulnerable to security breaches. A single breach in the security infrastruc-

ture of a cloud service can potentially lead to widespread privacy violations, amplifying the

urgency of addressing these vulnerabilities and implementing robust security measures.

Adversary Knowledge When considering privacy attacks on ML models, the level of

knowledge or access that an adversary possesses about the target model is a crucial factor.

Generally, there are two main categories to describe the extent of this knowledge represented

in Figure.1.1: White box knowledge(Figure 1.1a) and Black box knowledge(Figure 1.1b).

White-Box In this setting, the attacker has unrestricted access to the information held

by the target model. The adversary can know the model architecture, distribution of the

training data, model parameters, and the training algorithm. White-box attacks assume

that the attacker has full transparency into the model’s internal mechanisms and can use

this knowledge to craft specific attacks.



1.1. MOTIVATION 3

(a) White-Box Knowledge: The adversary has the knowledge of the model along
with the prediction

(b) Black-Box Knowledge: The adversary can only access the model prediction

Figure 1.1: Overview of White-Box attacks and Black-Box attacks

Black-Box The adversary only has black-box access to the model. The adversary has

limited information and has query access to the model e.g. the adversary queries the model

to get the model predictions. Black-box attacks aim to infer sensitive information or exploit

vulnerabilities by observing the model’s behavior and responses without having direct access

to its internal details.

Existing defenses against privacy attacks mainly apply a model-centric approach, wherein the

model owner tries to revise the training algorithms or inference procedures such that data

privacy is protected. Privacy Guarantee techniques like DP-SGD (Differentially Private

Stochastic Gradient Descent)[1] is one of the commonly used methods.
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In DP-SGD, the model owner modifies the training by clipping followed by adding noise

to the training gradients. MemGuard [20] is a popular membership inference defense that

changes the inference process by adding noise to the model prediction vector. However,

it is important to acknowledge that these contemporary techniques place the burden of

data protection solely on the model owner. In essence, data owners are compelled to place

complete trust in the model owner’s ability to safeguard their sensitive information.

Consequently, this heavy reliance on the model trainer for ensuring privacy significantly

restricts the user’s control over their own data. Users become highly dependent on the model

trainer’s expertise and actions to protect the confidentiality of their sensitive information.

Moreover, the approach of altering the model training process to enhance privacy has notable

implications on the model’s overall performance, often resulting in reduced accuracy or

increased computational time. Recognizing these limitations and challenges imposed by

model-centric defenses, our work is motivated by the need to address these bottlenecks. The

aim of this work is to explore alternative approaches that provide users with greater control

over their data privacy while minimizing the impact on model performance.

Data collection is one of the most important aspects of model training. One of the common

ways to collect data is to use web crawlers or approach individual data owners to gather

data and create a dataset. The concerns about data privacy have resulted in legislations

like the California Consumer Privacy Act[34] and GDPR[29] which advocate for individuals

to have complete authority over their data including the prerogative to withdraw their data

from existing datasets. In alignment with these legislative efforts and the growing need for

enhanced data privacy, our approach focuses on empowering data owners in a decentralized

manner. We aim to develop methodologies that enable individuals to have greater control

and ownership over their data, ensuring that their privacy is protected throughout the data

lifecycle.
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(a) Data Centric Defense: Data is augmented by the data owner using privacy-
focused data augmentations before sending it to the model owner for training

(b) Model Centric Defense: The model trainer is responsible to provide data
protection by changing the model

Figure 1.2: Data Centric Defense vs Model Centric Defense
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1.2 Thesis Contributions

In this thesis, our primary interest is in analyzing and addressing the prevention of attacks on

data privacy, specifically membership inference attacks and model inversion attacks, through

the implementation of our data-centric defense strategy, as shown in 1.2. The contributions

can be summarized as follows:

• Analyzed Model Inversion and Membership Inference Attacks

• Studied and analyzed Model Inversion and Membership Inference Defenses to formulate

data-centric defense strategies

• Privacy Focused Data Augmentations Formulated and developed data augmen-

tations focused on providing data privacy along with an improvement in the model

generalizability

• Data-Centric Defense Implemented a data-centric defense against privacy attacks

with no dependence on the model trainer to provide data protection, giving complete

authority to the data owner to protect one’s own data

1. Data-Centric Defense against Model Inversion Attacks

2. Data-Centric Defense against Membership Inference Attacks

The thesis attempts to enhance the security and privacy of ML systems, enabling users to

have greater confidence in the protection of their sensitive data.
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1.3 Thesis Outline

The thesis organization is as follows: Chapter 2, contains the survey of the literature related

to privacy attacks and existing techniques to mitigate them. Chapter 3 is a detailed study of

the data-centric defense for model inversion[9] containing the methodology and the outcome

of the data-centric defense. Chapter 4 contains an extension of the work to defend against

membership inference attacks, using a data-centric approach. The final chapter, Chapter 5

has the conclusion and future work.



Chapter 2

Review of Literature

2.1 Machine Learning

Machine Learning (ML) refers to the realm of computer algorithms that harness the power

of data to enable machines to acquire knowledge through experience[30]. Model training is a

crucial aspect of ML. Given a model denoted as fθ, the training process involves learning the

parameters associated with fθ in order to accurately map the input x to the corresponding

output y. The primary objective of training an ML model is to minimize the prediction loss

on the inputs.

2.2 Privacy Attacks

Privacy attacks specifically target the extraction of sensitive information from candidate

samples by exploiting security vulnerabilities within the trained models [35]. This section

is directed toward the examination of privacy attacks, with a particular emphasis on mem-

bership inference and model inversion attacks. Understanding these attacks allows for the

development of more robust defense mechanisms and privacy-preserving techniques to safe-

guard sensitive data and protect individuals’ privacy.

8
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2.3 Model Inversion

The model inversion attack, as introduced by Fredrikson[14], involves inverting an ML model.

In this method, the attacker aims to reconstruct a training sample that accurately represents

a specific class, as depicted in Figures 2.1a and 2.1b.

(a) A classification model which takes in an image as an input and gives its
label as the output

(b) Given a trained machine learning model and the target label, a model in-
version attack that reconstructs the sensitive information associated with the
target label

Figure 2.1: Illustration of a model training algorithm and a model inversion attacks

In recent research, there has been a specific emphasis on face-recognition tasks that exploit

models to identify facial attributes associated with a given individual (output label). This

work also concentrates on face recognition, where the adversary’s objective is to reconstruct

facial images pertaining to a specific class. Model inversion attacks[2, 45, 54] solve an

optimization problem to minimize loss or maximize the likelihood for the target model.
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(a) Recovered image (b) Original image

Figure 2.2: An example of the image recovered using model inversion attack. Compared
with a sample image belonging to the target class, the recovered image showcases similarity
in the facial features

2.3.1 Model Inversion Attacks

The initial model inversion attack, as described by [14], aimed to recover genomic privacy.

This attack employed a linear regression model, auxiliary information, and the prediction

vector obtained through model inference. By solving an optimization problem, these attacks

identified the sensitive features. However, these techniques were limited to simple linear

models. In the case of deep neural networks (DNNs), the optimization process can become

non-convex, resulting in inconsistent outcomes.

An alternative approach called GMI[54] utilizes a generative attack based on Generative

Adversarial Networks (GAN)[16] with white-box access to the target DNN model. The

authors leverage publicly available datasets that share the same distribution as the target

dataset to generate images that serve as priors for model inversion attacks. This attack

optimizes the latent space to produce samples resembling the desired target class. However,

GMI is only effective for inverting low-resolution images (64x64).
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In contrast to traditional GAN techniques, MIRROR[2] employs a specialized architecture

based on StyleGAN[22], pre-trained on a publicly available dataset that is shared across

domains. This architecture separates inputs into different styles at various levels, enabling

more effective model inversion. By utilizing only one pre-trained StyleGAN2[23], PPA[45]

achieves disentanglement in the latent space which is optimized for implementing model

inversion Attacks.

Unlike white-box attacks, where the attacker has access to the entire model architecture, the

authors of BREP-MI[21] propose an attack in a more practical scenario. In this scenario, the

adversary only has access to the predicted label rather than the complete confidence vector.

2.3.2 Model Inversion Defenses

Model-specific defenses primarily concentrate on adjustments made to the training algorithm.

One effective technique for privacy-preserving ML and defense against model inversion at-

tacks is DP-SGD (Differentially Private - Stochastic Gradient Decent)[1]. Empirical evidence

demonstrates that DP-SGD can assist in mitigating attacks by injecting a sufficiently large

amount of noise. However, it should be noted that injecting excessive noise can lead to a

negative impact, causing a deterioration in the performance of the model.

[47] conducted a study on the theoretical underpinnings of the limited effectiveness of DP-

SGD in mitigating model inversion attacks. They also proposed an alternative approach

by incorporating information bottleneck-based learning objectives to reduce the correlation

between model outputs and training data. This involved modifying the model architecture

and adjusting the training process. Although this method yielded improved results compared

to DP-SGD, it still faced challenges related to the privacy-utility tradeoff. Additionally, it

introduced an overhead by necessitating changes to the model architecture.
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In contrast to model-centric defenses, which do not provide user-level privacy, the proposed

technique solely relied on data augmentation carried out by privacy-conscious individuals,

referred to as “privacy active”.

2.4 Membership Inference

The concept of membership inference was initially introduced by Homer[18] to address the

identification of an individual’s genome within a collection of genomes. This was achieved

by comparing data statistics. Subsequently, the idea of membership inference attacks in the

ML domain was proposed by [38]. In their work, the authors aimed to determine which

specific data samples belonged to the training set.

ML models are trained on data for multiple instances or epochs, which can lead to the memo-

rization of those specific samples[15]. Furthermore, training data may not fully represent the

entire data distribution, resulting in poor generalization of the models. Consequently, ML

models may exhibit distinct behavior when applied to training data versus unseen test data.

Overfitting is considered a key factor contributing to the success of membership inference

Attacks[38, 49].

Figure 2.3 shows how a membership inference attack works. Given a set of data points,

membership inference attacks aim to identify samples from the training set. The data points

are queried to the target model to get the model output. This output is then used by the

membership inference attack algorithm to

Researchers continue to explore and develop new strategies to improve the effectiveness and

understanding of these attacks.
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Figure 2.3: Overview of a Membership Inference Attack. A set of data samples are passed
through a trained ML model. The output is then given as an input to the membership infer-
ence attack which distinguishes between the training samples and the non-training samples.

2.4.1 Membership Inference Attacks

Membership inference attacks are indeed significant security threats, particularly when it

comes to sensitive data. For instance, these attacks can reveal the identity of a healthcare

record that has been utilized in a training dataset. By leveraging membership inference

attacks, it is possible to infer the owner of such data with a high level of accuracy. The attacks

can be used for data extraction, model impersonification, and auditing. These attacks can

generally be categorized into four types:

• Binary Classifier Based

• Metric Based

• Likelihood Ratio Based

• Label-Only Based
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Binary Classifier Based Attacks

[38] used a binary classifier for membership inference where several shadow models were used

to imitate the behavior of the target model. The shadow model outputs are used to train

a binary attack classifier, to predict the membership of data points on a target model. [37]

proposed to relax the assumptions of [38] by reducing the number of shadow models to one.

[49] suggests membership on the basis of a correct prediction by the target model. A misclas-

sified sample can be attributed to a test sample as the model will have 100% classification

accuracy on the data it has been trained on. Thus, the output of the classifier is used as a

proxy to identify the membership status of a sample.

Metric Based Attacks

These types of attacks do not rely on a binary classifier to determine the membership sta-

tus. Rather, they require less computation and make use of thresholding based on average

case/sample-specific metrics. Some of the metrics are as follows:

1. Correctness An attacker infers a member if the data record is correctly predicted by

the target model [49]. The logic is that since the model is well-trained on the training data,

it fails to generalize on unseen data and thus misclassifies it.

2. Loss [36] provides further strength to [49]’s theory to propose that model loss is the

only factor and provides the approximations for optimal strategy. Classification models are

trained to resolve an optimization problem to minimize the loss. Thus, members showcase

a lower loss than non-members.
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3. Entropy [37] concludes that since a model is trained to minimize the loss over training

data results in the prediction output of training samples close to its one-hot encoded label

vector. Thus, the prediction entropy of members is almost equal to 0, way lower than

non-members. [42] proposed a modified version of entropy considering the ground truth.

4. Confidence Since ML models are trained over multiple epochs on training data, models

tend to have higher confidence in member samples given by a higher value in the prediction

vector corresponding to its label.

Likelihood Ratio Based Attacks

[7] first trained N shadow models P = {θ1, ...., θN} splitting the dataset D randomly such

that a sample point (x, y) ∈ D belongs to the training set of N/2 models (denoted as IN

models) and outside the training set of N/2 models (denoted as OUT models). For a sample

point (x′, y′), the adversary measures the respective confidence scores for IN and OUT

models given by Pin = {θin1 , ...., θinN/2} and Pout = {θout1 , ...., θoutN/2}

ϕ(fθ(x)t) = log(
fθ(x)t

1− fθ(x)t
) (2.1)

where fθ(x)t is the confidence vector of a sample point x in target class t. This is used to

generate logit scores for IN and OUT models and fits two Gaussian distributions N (µin, σ
2
in)

(IN) and N (µout, σ
2
out) (OUT). When the attacker queries for a point (x,t), the logit score is

found to estimate the membership probability.

membership =
p(fθ(x)t)|N (µin, σ

2
in)

p(fθ(x)t)|N (µout, σ2
out)

(2.2)
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Label-Only Attacks

Contemporary attacks assume the adversary to have the knowledge of the entire prediction

vector, however in most cases, the model only returns the prediction label for the query.

[12, 26] came up with attacks based on the prediction label. Both attacks use a fundamental

strategy of evaluating membership based on the L2 distance of the sample and the decision

boundary. A higher magnitude perturbation is necessary to cause mislabeling for members

compared to non-members.

2.4.2 Membership Inference Defenses

Numerous defense mechanisms have been proposed to combat membership inference attacks.

Some of these defenses focus on mitigating overfitting in ML models and safeguarding the

privacy of the data.

By addressing overfitting, these defenses aim to prevent attackers from extracting sensitive

information about the membership status of specific data samples. Overfitting reduction

techniques such as regularization, early stopping, and dropout can help enhance the model’s

generalization capabilities and make it less susceptible to membership inference attacks.

Additionally, other defenses involving privacy-preserving changes to training/inference pipelines

are also described below.

1. Regularization

It is a technique to reduce model complexity and reduce overfitting. Using the L2 norm

which penalizes the larger parameters by adding an additional term λ
∑

θ2, a larger λ has a

stronger effect during training.
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2. Dropout

Overfitting causes the model memorizes the training data so well that it starts to learn the

noise as well making the model have a poor generalization performance. In the context

of Dropout, this technique addresses overfitting by selectively dropping or ignoring certain

nodes in the network layers during training. By doing so, Dropout disrupts the connectivity

within the network, preventing specific nodes from relying too heavily on others. This regu-

larization technique helps to reduce the model’s reliance on individual nodes and encourages

the network to learn more robust and generalized representations, thus improving its ability

to generalize to unseen data.

3. Data Augmentation

Data augmentation is a technique employed to enhance the performance of a model on unseen

data. It involves applying various transformations to the existing training data and creat-

ing additional synthetic examples. By diversifying the training data through augmentation,

the model becomes more adept at handling variations and generalizing better to unseen in-

stances, leading to improved overall performance. However, only certain data augmentation

techniques help reduce the train-test gap making the data resilient to attacks [24].

4. Early Stopping

Early stopping is a technique utilized to mitigate overfitting without sacrificing the accuracy

of the model. It involves terminating the training process before the model starts to exhibit

signs of overfitting, thus improving its generalization capabilities and overall performance.[41]

recommends early stopping to perform better than the proposed defenses [20, 32].
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5. Differential Privacy - Stochastic Gradient Descent(DP-SGD)

DP-SGD[1] provides privacy guarantees for the data to protect it from MI Attacks. DP-SGD

aims at clipping the gradient and adding noise to them thereby reducing the influence of

individual training samples on the data. However, doing this affects the model performance

to a great extent.

6. RelaxLoss

Membership inference attacks often rely on distinguishing between the training and test loss

to determine membership status. To address this, RelaxLoss[8] is introduced to minimize

the gap between these losses and mitigate model leakage. RelaxLoss works by altering the

loss distribution through gradient ascent, transforming the optimization problem to include

a non-zero training loss. This defense mechanism aims to balance the preservation of utility

by implementing techniques such as posterior flattening and gradient normalization.

7. Adversarial Regularization

A surrogate model is employed to approximate the MI attack, and this information is utilized

as a regularization term during the training of the target model[32]. The process involves

a two-step optimization approach: the inner maximization occurs on the surrogate model

to perform membership inference, while the outer minimization aims to identify the most

robust classification model for addressing the inner optimization problem.
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8. MemGuard

In MemGuard[20], the prediction vector of the target classifier is manipulated by introducing

noise in a manner that maintains the same predicted label for the data sample. This strategy

serves the purpose of deceiving the attacker by transforming the query into an adversarial

sample that is designed to mislead them.

2.5 Relation between Data Augmentation and Privacy

Data augmentation is a widely employed technique in ML, which entails applying various

transformations or modifications to existing data samples, thereby artificially expanding

the training dataset. The objective of data augmentation is to introduce greater diversity

and variability into the training data, leading to improved model generalization and overall

performance in ML tasks. While the benefits of data augmentation for enhancing model

performance have been extensively studied, its implications for privacy and vulnerability to

membership inference attacks[10, 24, 46] have also been investigated.

The effects of data augmentations on model inversion attacks, compared to membership

inference attacks, have received less attention in research. [24] investigated whether augmen-

tations, which are typically employed to enhance model generalization, also provide privacy

benefits against membership inference attacks.

This thesis goes beyond the traditional belief of augmentations improving model performance

to providing a privacy guarantee to data and protect data from both membership inference

and model inversion attacks.
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Model Inversion

Model inversion attacks aim to reconstruct the sensitive features belonging to the samples

of a particular target class. This is done by solving an optimization problem that recon-

structs the samples with the highest likelihood or the lowest loss for the target model. The

proposed method aims to preserve target samples and influence the Model Inversion Attack

to recover the surrogate samples. The method provides the data owner with the tools to

ensure protection for their data without relying on the model trainer to provide protection.

3.1 Proposed Methodology

Let fθ be the target model mapping inputs x ∈ X to label y ∈ Y where Y = {y1, ..., ym}.

Unprotected training set is denoted by D = {(xij, yi)} : i = 1, ...,m, j = 1, ..., k where xij

represents the jth samples in class i where ki is the number of samples in class i. For a

face recognition problem, yi represents a distinct person, and xij is a sample belonging to it.

The method aims to protect these samples indexed by Stgt called the target label set. The

detailed pseudocode is given in Appendix B.1.

20
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Injection of surrogate samples to the training set

The first step is to identify a surrogate class such that it does not disclose any sensitivity

of the target class. The first step is to collect all samples from the surrogate class (x1
j , j =

1, ...,m; x1
j ∼ P (X|ysrg)) and relabel them as the target class. The result is an augmented

dataset given by

D1
ytgt = {(x

1
j , ytgt) : j = 1, ....,m} (3.1)

The model is thus trained on a combination of augmented target and surrogate samples, both

labeled as the target class. This creates confusion for the adversary about the correctness

of the attributes belonging to the target class. However, only injecting surrogate samples is

not enough as our aim is to prevent the reconstruction of the target samples.

Loss-Controlled Modification for target samples

Model inversion attacks solve an optimization problem arriving at samples with the lowest

loss for the prediction loss. To protect the target samples, the loss of target samples must

be higher than the surrogate samples. This results in the recovery of the surrogate samples

(lower loss) over target samples when queried for a target class. Following this, a small

fraction (π1) of the target samples is randomly mislabeled, increasing the loss associated

with target samples, and keeping the surrogate samples having the label as target class.

D0
ytgt = (x0

j , y
′

j) : j = 1..., ⌈mπ1⌉ ∪ (x0
j , ytgt) : j = ⌈mπ1⌉+ 1, ...,m (3.2)

where x0
j ∼ P (X|ytgt) and y

′
j ∼ Uniform(Y \ytgt)
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Injection of samples to shape the Loss Curvature

The loss modification aids the surrogate injection in improving the defense performance.

However, a side effect of this is a reduced model performance (up to 5-7%). Relying on non-

convex optimization theory[4], the loss landscape’s curvature is influenced by stimulating a

flatter curvature around the surrogate samples while a steeper curve around target samples.

This is achieved by adding Gaussian augmentation to the surrogate samples while keeping

the same label.

D2
ytgt = (x1

j + µj, ytgt) : j = 1...,m (3.3)

where µj ∼ N (0, ϵ21).

For target samples, however, a portion (π2) of samples is mislabelled after adding Gaussian

augmentation.

D3
ytgt = (x0

j + µ
′

j, y
′

j) : j = 1..., ⌈mπ2⌉ ∪ (x0
j + µ

′

j, ytgt) : j = ⌈mπ2⌉+ 1, ...,m (3.4)

where µ
′
j ∼ N (0, ϵ22) and y

′
j ∼ Uniform(Y \ytgt)

The model memorizes the training samples which yield different labels for the target samples

and their augmented neighbors. This distorts the reconstruction toward generating surrogate

samples. Figure 3.1 is representative of the methodology to shape the loss curve.

Figure 3.1: Illustration of curvature-controlled augmentations and the resulting loss land-
scape of target and surrogate samples.
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Analysis on Mislabeling Ratio (π1) and (π2)

Solely injecting surrogate samples in the training set does not effectively mitigate the risk of

MI attacks. However, when combined with either loss control or curvature control, the attack

accuracy decreases to approximately 10%. By employing all three techniques together, the

attack accuracy is reduced to 0.0%. An ablation study on parameter selection is presented

in Table 3.1. π1 is the mislabel ratio used for the Loss-Controlled modification whereby a

portion (π1) of the target samples are mislabeled and π2 is the ratio of mislabeled samples

after adding Gaussian augmentation for controlling the loss curvature.

No Protection Surr-Inj Surr-Inj&L-Ctrl Surr-Inj&C-Ctrl Surr-Inj&L-Ctrl&C-Ctrl
Mislabel Ratio (π1) - - 0.1 0.2 0.5 - - - - 0.1 0.2 0.2
Mislabel Ratio (π2) - - - - - 0.1 0.2 0.5 1.0 0.5 0.5 1.0

ACC-all 98.58 98.46 98.14 97.98 97.89 98.50 98.62 97.87 97.86 98.39 97.97 97.96
ACC-tar 99.25 100.00 98.45 97.97 95.15 99.42 99.71 98.55 98.51 98.99 97.94 97.38

Att. ACC 79.20 29.60 12.60 9.80 0.60 21.80 19.80 11.80 10.60 0.30 0.00 0.00

Table 3.1: Ablation Study of π1 only involved in L-Ctrl and π2 only involved in C-Ctrl.

Analysis on Noise Magnitude of Target Samples ϵ2

This is a supplementary experiment to investigate the influence of different noise magnitudes

on target samples ϵ2. It is important to note that, throughout this thesis, a fixed noise

magnitude (ϵ1 = 8/255) is maintained for all experiments. Selecting ϵ2 values that are

smaller than ϵ1, can further enhance the control strength and create sharper curvature in

the target samples. As expected, the results in Table 3.2 demonstrate that our method

achieves comparable and satisfactory performance when using ϵ2 < 8/255, with the best

performance observed at ϵ2 = 0.003. On the other hand, for ϵ2 > 8/255, the strength

of curvature control weakens, resulting in a lower defense performance, where the attack

accuracy is around 30%.
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Gaussian Noise Magnitude ϵ2

0.001 0.003 0.005 0.01 8/255 0.1 0.3
ACC-all 97.75 97.21 98.16 97.458 98.12 97.32 97.32
ACC-tar 99.13 98.99 95.57 99.71 99.13 99.86 99.57

Att. ACC 2.60 0.40 2.00 2.20 5.80 26.20 35.40

Table 3.2: Sensitive analysis on the noise magnitude of target samples ϵ2. Experiments are
conducted on GTSRB with GMI attack. Injected samples use a magnitude of 8/255. Note
that mislabel ratios are set to be π1 = 0, π2 = 0.5 to amplify the effect brought by ϵ2.

3.2 Experiments

This section contains a discussion of the experimental setup for the algorithm to answer

questions related to the generalizability of the technique over different models and datasets,

comparison with existing defenses, and the choice of hyperparameters and surrogate samples.

3.2.1 Attack Algorithm

The effectiveness of the proposed data-centric defense is evaluated on three white-box model

inversion attacks: GMI, PPA, and MIRROR-W. PPA and MIRROR are the more recent

attacks built over the initial idea of using GANs by GMI. To carry out a thorough evaluation

of the method, it is also evaluated over black-box techniques like the black-box counterpart

of MIRROR-W called MIRROR-B and BREP-MI.

3.2.2 Evaluation Setup - Attacks, Models, and Datasets

The efficiency of data-centric defense across different models and datasets utilized in various

model inversion attacks is studied in this section.Table 3.3 gives the details of the different

datasets and models used for evaluation.
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Attack Method Task Private Dataset Public Dataset Pre-trained GAN Model

GMI Traffic Sign Recognition GTSRB[44] TSRD WGAN [3] VGG-16[39]

PPA
Face Recognition

CelebA[27]
FFHQ

StyleGAN21[23]
ResNet-152[17], ResNext-101[48],

MetFaces DenseNet-169[19], ResNeSt-101[53]

FaceScrub[33]
FFHQ

StyleGAN2
ResNeSt-101

MetFaces ResNeSt-101

Dog Classification St.Dogs[25] AFHQ StyleGAN2 ResNeSt-101

MIRROR-B Face Recognition CelebA-partial256 VGGFace2[5] StyleGAN 2 VGG-16

MIRROR-W Face Recognition CelebA-partial256 VGGFace2 StyleGAN[22] VGG-16

BREP-MI Face Recognition CelebA CelebA WGAN face.evoLVe[11], IR-152[17]

Table 3.3: Overview of the attack methods, datasets, and models on which our method is
evaluated.

The public and private datasets are decided based on their tasks consisting: 1. Face Recog-

nition (Private: CelebA, FaceScrub, Public: FFHQ, MetFaces); 2. Traffic Sign Recognition

(Private: GTSRB, Public: TSRD); 3. Dog Classification (Private: St. Dogs, Public: AFHQ)

for model inversion attacks GMI, PPA, MIRROR, and BREP-MI. The attacks employ gener-

ative methods to devise an image prior, using different GANs for different attacks pre-trained

on public datasets sharing the same distribution as the private dataset. The detailed analysis

of datasets and models is presented in Appendix A.

3.2.3 Comparison with Baseline Defenses

A comparison with the existing defenses of DP-SGD and MID is made in this section. To

ensure the reproducibility and consistency of results, the open-sourced implementations of

both these techniques [47] have been used. The privacy parameters (hyperparameters) as-

sociated with ensuring adequate privacy are configured by running multiple variations of

each baseline method. The choice of hyperparameters or ‘privacy parameters’ is shown in

Appendix C.1
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DP-SGD DP-SGD clips and adds noise to the training gradient. The privacy parameters

include the gradient clipping threshold C, noise multiplier σ adjusted to get the required

privacy budget ϵ, and probability upper bound δ. The δ has been set to a value equivalent to
1

size of data. The learning rate and the batch size are the same as the unprotected version.

MID MID restricts the information from the model prediction. MID adds a regularization

term to the loss known as information loss to achieve privacy. MID introduces β(the weight

given to the information loss) to reduce the correlation between the prediction and the input.

3.3 Results

Figure 3.2 displays a comparison between the recovered images for the baseline defenses by

the Model Inversion Attack. Figure 3.3 displays the surrogate sample to be injected for

the corresponding target samples (Figure 3.3a) which successfully deceives the attacks to

generate representative samples of the target class resembling the injected surrogate sam-

ples.(Figure 3.3b)

Interpretation of Results The following metrics are to be considered in order to under-

stand the results.

• ACC-all Classification accuracy over the entire test set, represented in %. The ACC-

all should be high for the ML model to perform well on the downstream task at hand.

• ACC-tar Classification accuracy over the target test samples, represented in %. The

ACC-tar should be high for the ML model to perform well on the test-target samples.
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Figure 3.2: Visual representation comparing the faces recovered for different baselines by
the Model Inversion Attack. Each row shows the reconstruction of an image belonging to
the same identity. The true image is on the left followed by the reconstruction under no
protection, DP-SGD, and MID

• Att.ACC Attack Accuracy determines the success of the Model Inversion Attack.

Given in %, the value should be 0.00% to achieve perfect protection of data samples.

Performance against various attacks

A detailed comparison of our method is done with existing defenses on different attacks,

varying the model architectures and datasets. The results are averaged over multiple classes

repeating over multiple iterations to ensure consistency leaving out the stochasticity intro-

duced by the model training. Table 3.4 reflects the comparison of the performance with

various levels of protection. The unprotected model showcases a high attack accuracy (Att.

ACC) of 100% for MIRROR-W as well as MIRROR-B followed by 90% for PPA, 76% for

GMI. While the attack accuracy is reduced, both MID and DP-SGD show a significant loss

in classification accuracy. On the other hand, the data-centric method significantly reduces

the attack accuracy to 0% for MIRROR-W, MIRROR-B, and GMI, and 1% for PPA. Thus,

a better privacy-utility balance is ensured by maintaining utility while upholding privacy.
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GMI MIRROR-W
TSRD→GTSRB FFHQ→VGGFace2

ACC-all ACC-tar Att. ACC ACC Att. ACC

No Protection 98.34 99.20 76.13 99.99 100.0
DP 54.30 31.24 12.80 56.25 54.69

MID 67.70 55.37 54.53 41.34 100.00
Data-Centric Defense 95.89 93.74 0.00 96.88 0.00

PPA MIRROR-B
FFHQ→CelebA FFHQ→VGGFace2

ACC-all ACC-tar Att. ACC ACC Att. ACC

No Protection 88.42 84.37 90.40 99.99 100.0
DP 39.61 6.67 14.33 56.25 50.00

MID 69.54 53.33 52.33 41.34 12.50
Data-Centric Defense 88.05 81.88 1.00 96.88 0.00

Table 3.4: Defense performance comparison against various MI attacks, where results are
given in %. Note that for MIRROR, all 8 classes are target classes, and the classification
accuracy is presented as ACC.

The performance is computed also on the label-only black-box attack BREP-MI. The assess-

ment is carried out using the same implementation settings as BREP-MI with two datasets

FaceNet64 and IR152. Consistent with the earlier evaluation, 6 target classes are selected

for evaluation. The results can be seen below in Table 3.5

FaceNet64 IR152

ACC-all ACC-tar Att.ACC ACC-all ACC-tar Att.ACC

No Protection 86.78 93.33 83.33 89.05 81.87 66.67
Data Centric Defense 85.72 85.86 0.00 92.31 86.67 0.00

Table 3.5: Defense performance against black-box MI - BREP-MI on two model architectures
FaceNet64 and IR152
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Generalization over different Models

In this part, the performance on different DNN models is evaluated. The selected models are

ResNet-152, ResNext-101, ResNeSt-101, and DenseNet-169. The results in Table 3.6 draw

attention to the model-agnostic ability of our method. The data-centric defense successfully

negates the attack with the attack accuracy reaching levels less than 5% in spite of a high

attack potency of PPA on unprotected samples. The data-centric approach thus preserves

privacy irrespective of the model architecture and training method.

ACC-all ACC-tar Att. ACC ACC-all ACC-tar Att. ACC

ResNeSt-101 ResNet-152

No Protection 88.42 84.37 90.40 84.82 80.00 76.67
Data Centric Defense 88.05 81.88 1.00 85.33 86.67 4.00

DenseNet-169 ResNext-101

No Protection 84.85 60.00 73.67 85.89 73.33 84.67
Data Centric Defense 84.32 60.00 3.00 87.16 60.00 2.00

Table 3.6: Defense performance against PPA on CelebA with different model architectures.
Results are averaged over 6 randomly selected targets.

Generalization over different Datasets

The performance was assessed on the PPA attack (Table 3.7) with diverse datasets rep-

resenting different tasks - CelebA, FaceScrub (both face recognition), and St.Dogs (dog

classification). For a thorough evaluation, GANs were pre-trained on FFHQ and MetFaces

for facial datasets and AFHQ as the public dataset for St.Dogs. FFHQ-based GAN was

more effective with an attack accuracy of 90% against 59% for MetFaces for the unprotected

sample set. Data-centric defense works effectively with the attack accuracy going down to

1% and 0.02% respectively.
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CelebA

ACC-all ACC-tar FFHQ MetFaces

Att.ACC Att.ACC

No Protection 88.42 84.37 90.40 59.33
Data Centric Defense 88.05 81.88 1.00 0.02

FaceScrub

ACC-all ACC-tar FFHQ MetFaces

Att.ACC Att.ACC

No Protection 95.78 97.50 82.40 53.20
Data Centric Defense 94.93 90.37 1.20 4.20

St.Dogs

ACC-all ACC-tar FFHQ

Att.ACC

No Protection 74.15 82.27 99.60
Data Centric Defense 74.12 85.71 0.00

Table 3.7: Defense performance against PPA on various datasets. Results are averaged over
6 randomly selected targets.

3.4 Discussion

3.4.1 Similarity between Target samples and Surrogate samples

Our experiments show that the surrogates that differ from the target samples aid the defense.

Such a sample results in the reconstruction of images that are completely different from the

target sample for e.g. using a female with black hair as a surrogate for a male with blonde

hair results in the protection of blonde haired male.
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(a) Comparison of the recovered images for various defenses with Data-Centric
Defense. The recovered image is visually similar to the injected samples, thus
protecting the target sample from the Model Inversion Attack

(b) Representation of the surrogate samples injected in the training set for Data-
Centric Defense. The images in each row represent images belonging to the
same identity with the true image on the left and an example of the surrogate
injected on the right

Figure 3.3: Visual representation of recovered faces of Model Inversion Attacks
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For the CelebA dataset, images are annotated by attributes like wearing a hat, wearing

glasses, gender, hair color, etc. The most easily distinguishable attributes were chosen

namely gender and to carry out our study. As shown in Table 3.8, two identities were

utilized - one was a full match (male with black hair for a male with black hair), and the

other was a full mismatch (female with blonde hair for a male with black hair). Except for a

female with black hair which has a higher attack accuracy of 47.99%, with the other examples

showcasing an attack accuracy of less than 10%. A full mismatch is the best, resulting in

full protection of the data (attack accuracy of 0.00%) for three out of four cases.

Attribute Defense Performance
Gender Hair Color ACC Att. ACC ACC(−−) Att. ACC(−−) ACC(++) Att. ACC(++)

Male Black 83.33 96.77 81.67 0.00 100.00 5.99

Female Black 100.00 100.00 100.00 4.99 100.00 47.99

Female Blonde 85.71 92.00 81.14 0.00 85.71 7.99

Male Blonde 75.00 100.00 69.00 0.00 75.00 0.00

Table 3.8: Defense performance with full mismatch and full match surrogate samples.

3.4.2 Non-zero diversity among surrogate samples within same

class

Celebrity datasets are convenient for selecting surrogate samples owing to diversity and easy

availability. The evaluation is carried out on three scenarios for the same amount of data:

1. No-Dup: Each surrogate image is unique. 2. Dup-5: Each target has 5 surrogate images

duplicated, 3. Dup-1: A duplicated single surrogate sample. Furthermore, depending on the

quality of the surrogate image, “Dup-1 High” for higher-quality images and “Dup-1 Low”

for lower-quality images based on annotated features like hair color.
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Table 3.9 shows that No-Dup has an attack accuracy of 4.5%. Dup-5 further deteriorates

the attack accuracy to 0.80%. This shows that the diversity of surrogates does help in better

defense. Our hypothesis based on our experiments suggests that the model performs better

on high-quality images than on low-quality surrogates.

No Protection Dup-1-Low Dup-1-High Dup-5 No-Dup
ACC-all 86.95 86.92 86.24 86.97 86.57
ACC-tar 100.00 96.47 97.13 97.52 97.15

Att. ACC 100.00 22.50 18.00 0.80 4.50

Table 3.9: Impact of diversity and quality of surrogate samples within the same class.
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Membership Inference

Membership Inference Attacks solve a binary classification problem to identify the samples

belonging to the training set of the target model. The target model has high confidence

in the samples which the model has already seen. The proposed method aims to ensure

correct classification with reduced confidence in the samples by replacing them with their

augmented versions. Unlike regular data augmentation, this technique is used by the data

owners to augment their data before sending it to the model owners for the downstream

task.

4.1 Proposed Methodology

This research takes into account the scenario where the model owner, responsible for training

the machine learning model (denoted as fθ)is not the owner of the data and crawls one or

multiple sources to gather useful information for the model training.

The objective of the data owner is to modify the input-label pair (x, y) by augmenting the

inputs with a perturbation denoted as δ. This modification replaces the original input,

resulting in a new data sample of the form (x + δ, y), maintaining the target label. The

generation of the augmented samples is inspired by [51] (pseudo-code given in B.2) and

involves the following steps:

34
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• Proxy model pre-training on a shared domain knowledge dataset

• Proxy model fine-tuning on the data of the data owner

• Replacement of original samples with augmented samples

Data Owner Knowledge

In the given scenario, the data owner lacks specific knowledge about the target model’s

architecture and other training-related parameters. However, data owners do possess infor-

mation about the task for which the data will be utilized, such as image classification or

face recognition. This general information is typically made public to gather insights from

trusted external sources.

To address this limitation, a proxy model is employed for generating augmentations to protect

sensitive data. This proxy model is trained on a public dataset that shares domain knowledge

relevant to the task at hand. The pre-trained proxy model is further finetuned to serve as a

substitute, enabling the generation of patches for sensitive data.

Design of Augmented Samples

The injected augmentation (δ), is carefully selected in such a way that the model fθ, which

is trained on the modified input x + δ, relies on δ to make its prediction. The injected

augmentation patch, denoted as δ, is carefully selected to ensure that the model fθ, which

is trained on the modified input x + δ, incorporates and utilizes δ in its prediction process.

Figure.4.1 shows what an augmented data sample for the given sample looks like.
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(a) Clean Version (b) Augmented Version

Figure 4.1: Clean and augmented version of images

Generating augmented dataset

The augmentations are generated (shown in Figure 4.2) by leveraging the utilization of a

pre-trained model (fθsurr), which possesses domain knowledge in the form of learned fea-

tures. This model is trained on a dataset that shares the same domain knowledge as the

training dataset, e.g. for a face recognition task, the model is trained on a publicly available

face recognition dataset. The model thus becomes proficient at extracting general semantic

features responsible for classifying different images from various classes for the downstream

task.

The pre-trained model functions as a feature extractor which is then fine-tuned on the

data owner’s dataset, enabling the extraction of meaningful semantic features from the data

owner’s samples. This finetuned model is used to synthesize the augmentation using stochas-

tic gradient descent. The model batches the samples and takes an average of the gradients

over these samples.



4.1. PROPOSED METHODOLOGY 37

The augmentation patch is then updated with the earlier calculated gradient value ensuring

allowable design limit ∆ the lp ball constraint (δ : ||δ||p ≤ ϵ).

The δ is designed to iteratively solve the optimization problem:

δ∗ = arg min
δ∈∆

∑
(x,y)∈D

L(fθsurr(x+ δ), y) (4.1)

These extracted features are then used to generate a δ that resembles the target class. Bound-

ing of δ ensures that when the augmented image x+ δ is created, it remains visually similar

to the original input x, as the changes introduced by δ are limited within certain visual

boundaries. Figure 4.3 shows how an unbounded δ can cause the image to look visually

dissimilar to the original image.

Figure 4.2: Pipeline to generate augmented samples(x + δ) for a target class from a pre-
trained model fθsurr finetuned on the data belonging to the target class. The target samples
are used to generate an ‘inward pointing’(δ) patch by solving an optimization problem to
minimize the loss on the augmented data samples, which classifies as the target sample.
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Figure 4.3: Visual distortion of an image as the magnitude (lpnorm) of augmentation in-
creases. The leftmost image is the original image followed by augmentations with the right-
most image being the one with the highest augmentation (lp).

4.2 Experiments

4.2.1 Attack algorithm

For a thorough study of the proposed data-centric defense against membership inference at-

tacks, the proposed defense is evaluated on a variety of attack techniques, using one example

of each of the above-mentioned attacks: 1. Classifier-based attack [38], 2. Metric-based at-

tack (entropy, confidence, loss)[41, 49], 3. Likelihood Ratio Attack (LiRA) [7]. 4. Label-Only

Attack [12, 26]

Half of the CIFAR-10 dataset (25000) makes up the train set and the remaining 25000,

the test set. A random subset of 250 samples (1%) out of the train set with an almost

equal representation from each of the 10 classes was selected as the data samples to be

replaced by its augmented versions. For the defense evaluation over membership inference

attacks, 250 original images selected for replacement and 250 samples from the test set were

combined. Thus as a random guess results in an attack accuracy of 50%, the goal is to find

augmentations that reduce the membership inference attack accuracy as close to the level of

a random guess to provide perfect protection.
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4.2.2 Baseline Augmentations for Comparison

Each of the baseline techniques affects the defense performance based on the change in the

hyperparameter values. As these values change, it alters the privacy-utility tradeoff which

is presented in Appendix C.2. The representation of the baseline augmentations is given in

Figure 4.4.

Gaussian Noise These samples are generated with the mean kept as the clean version

with varying σ (lp ball) to alter the degree of visual similarity.

Adversarial Noise A proxy model is selected which is trained on Tint-ImageNet for 60

epochs. This pre-trained model is then finetuned for 5 epochs on our dataset. Following this,

adversarial samples were generated using [28] by considering two hyperparameters step-size

α and ϵ for lp ball.

Random Crop Random Crop augments the 32∗32 image by adding zero-padding around

the image to create an image of a larger size. Following this, an image of the size 32 ∗ 32

was cropped, which is then supplied to the model. The padding is chosen based on the best

privacy-utility tradeoff.

CutOut In CutOut[13], a random n ∗ n pixel area is masked from the given image. The

masked image is then used to train the model.
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(a) Random Crop (b) CutOut (c) Gaussian (d) Narcissist

Figure 4.4: Visual Representation of various baseline augmentations to the target image

4.2.3 Evaluation Setup - Attacks, Datasets, and Models

The evaluation was done on a variety of attack types and models. The dataset used was

CIFAR-10. There are two sets of models used, one is the augmnetation generation model

and the other is the target model. An overview is presented in Table 4.1 with details in

Appendix A.

Attack Type Dataset Model Pre-Trained Model
Binary Classifier

CIFAR-10

ResNet-18

ResNet-18
Loss-Based ResNet-18

Confidence-Based ResNet-18
Entropy-Based ResNet-18

LiRA WideResNet-28-2
Label-Only CNN

Table 4.1: Overview of the attack methods, datasets, and models on which the data-centric
method is evaluated.

The pre-trained model used is ResNet-18 to generate the augmentation δ, as for the target

model, different were bused as target models like ResNet-18 for binary classifier-based attacks

and metric-based attacks, a WideResNet-28,2[50] for LiRA, and CNN model for the label-

only attack as open-sourced by the authors [7, 26]. A detailed description of the models and

datasets is in Appendix A.
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4.3 Results and Discussions

The membership inference attacks were evaluated by considering different augmentations

techniques to study how these augmentations affect the model performance and membership

inference. The augmentation providing a better privacy-utility tradeoff is the one that has

a lower AUC and TPR at low FPR while having a high ACC-tar.

Evaluation Metrics

AUC-ROC The Receiver Operating Characteristic (ROC) Curve(Figure 4.5) presents a

tradeoff between a True Positive Rate(TPR) and a False Positive Rate(FPR) at various

threshold settings. This is a better identifier for the binary classification problem of mem-

bership. The Area Under Curve (AUC) is the ability to distinguish between the samples for

membership. An AUC of 0.5 represents a random guess. i.e. zero ability to correctly identify

a member sample. For a perfect defense, the AUC should be as close to 0.5 as possible.

Figure 4.5: The ROC curve
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TPR at low FPR [7] suggests a modified version of the AUC-ROC for evaluating the

potency of membership inference attacks. [7] shows the ROC curve on a logarithmic scale

while reporting the results as TPR at a fixed FPR (0.1% or 0.001%). Figure 4.6 shows the

ROC curve along the logarithmic scale which is used to calculate TPR at low FPR. An ideal

defense should have a TPR value of 0.0000 for low FPR.

Figure 4.6: The logarithmic scale ROC curve to find TPR at a low FPR

ACC-tar Classification accuracy over the target samples which have been replaced by their

augmented versions, represented in %. The aim is to replace the samples while ensuring that

the model is still able to correctly classify them to their respective classes. Thus, ideally, the

value for ACC-tar should be as high as possible.

Metric-Based Attacks

Tables 4.2, 4.3 and 4.4 show the results for how augmentations affect metric-based at-

tacks. As observed, the AUC for membership inference attacks on clean samples stands

at 0.7120,0.7151, and 0.7151 for confidence, modified entropy, and loss respectively.
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Gaussian noise proves to be slightly effective in protecting the data samples with the AUC

decreasing marginally to 0.5804, 0.5890, and 0.5865 for respective metric-based attacks while

having an ACC-tar of 89.00%. Adversarial noise proves to enhance membership inference

increasing the TPR at a low FPR. As the results indicate, these attacks are not potent enough

when it comes to identifying the membership status of individual samples with confidence

with the TPR at a low FPR being 0.0000 for all augmentations for all the attacks except for

modified entropy. For modified entropy, the TPR increases from 0.0064 for the clean model

to 0.0120 for Gaussian models and 0.0128 for Adversarial models. The values for Cutout are

lower than for clean models for all the metrics. Random Crop reported an AUC of 0.5660,

0.5680, and 0.5672 at a lower ACC-tar of 87.20. Narcissist Augmentation provides a better

privacy-utility tradeoff with AUC scores of 0.5573, 0.5685, and 0.5675 for respective attacks

while having an ACC-tar of 90.00%.

Clean Gaussian Adversarial Random CutOut Narcissist
Augmentation Augmentation Crop Augmentation

AUC 0.7120 0.5804 0.5752 0.5660 0.6738 0.5573
TPR@0.1% FPR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ACC-tar 100.00 89.00 87.70 87.20 97.60 90.00

Table 4.2: Overview of the augmentation methods for Metric Based Attacks - Confidence

Clean Gaussian Adversarial Random CutOut Narcissist
Augmentation Augmentation Crop Augmentation

AUC 0.7151 0.5890 0.5835 0.5680 0.6802 0.5685
TPR@0.1% FPR 0.0064 0.0120 0.0240 0.0040 0.0080 0.0064

ACC-tar 100.00 89.00 87.70 87.20 97.60 90.00

Table 4.3: Overview of the augmentation methods for Metric Based Attacks - Modified
Entropy
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Clean Gaussian Adversarial Random CutOut Narcissist
Augmentation Augmentation Crop Augmentation

AUC 0.7151 0.5865 0.5813 0.5672 0.6800 0.5675
TPR@0.1% FPR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ACC-tar 100.00 89.00 87.70 87.20 97.60 90.00

Table 4.4: Overview of the augmentation methods for Metric Based Attacks - Loss

Binary Classifier Attacks

As the data samples are augmented(shown in Table 4.5) the AUC from 0.7151 for clean

samples decreases to 0.5684 for Gaussian noise with an accuracy of 89% and 0.6544 CutOut

with 97.60%, a bigger drop is seen for the random crop with AUC 0.5463 and accuracy

87.20% and Adversarial samples with AUC of 0.5500 and accuracy of 87.70%. Narcissist

Augmentation lowers the AUC to 0.5441 while having a higher accuracy of 90.00%.

Clean Gaussian Adversarial Random CutOut Narcissist
Augmentation Augmentation Crop Augmentation

AUC 0.7151 0.5684 0.5500 0.5463 0.6544 0.5441
TPR@0.1% FPR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

ACC-tar 100.00 89.00 87.70 87.20 97.60 90.00

Table 4.5: Overview of the augmentation methods for Binary Classifier Attacks

Label-Only Attacks

Evaluation against Label-Only Attacks is seen in Table 4.6, with AUC and TPR 0.6689 and

0.0043 for Clean samples, 0.6578 and 0.0040 for Gaussian Augmentation, 0.5780 and 0.0040

for random crop whereas it is 0.5692 and 0.0040 for Narcissist Augmentation. The target

accuracy is 100%, 97%, 91%, and 86% for Clean, Gaussian, Random Crop, and Narcissist

Augmentation.
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Clean Gaussian Random Narcissist
Augmentation Crop Augmentation

AUC 0.6689 0.6578 0.5780 0.5692
TPR@0.1% FPR 0.0043 0.0040 0.0040 0.0040

ACC-tar 100.00 97.00 91.00 86.00

Table 4.6: Overview of the augmentation methods for Label-Only Attacks

Likelihood Ratio Attacks

As seen in Table 4.7, the TPR at low FPR is quite significant having values 0.0470, 0.0690,

and 0.0800 for Clean, Gaussian augmentation, and adversarial samples respectively whereas

it drops to 0.0005 for random crop and rises to 0.0135 for CutOut. The AUC starting at

0.8046 for clean samples decreases to 0.7824 for Gaussian noise and 0.5920 for Random

Crop whereas, for Adversarial Noise and Cutout, it reaches higher to 0.8252 and 0.7644

respectively. For each of the augmentations, the target accuracy is 90.10%, 85.40%, 90.08%,

84.88%, and 89.00%. For Narcissist Augmentation the AUC is 0.5540 and TPR of 0.0050

with the target accuracy of 83.78%.

Clean Gaussian Adversarial Random CutOut Narcissist
Augmentation Augmentation Crop Augmentation

AUC 0.8046 0.7824 0.8252 0.5920 0.7644 0.5540
TPR@0.1% FPR 0.0470 0.0690 0.0800 0.0005 0.0135 0.0050

ACC-tar 90.10 85.40 90.08 84.88 89.00 83.78

Table 4.7: Overview of the augmentation methods for LiRA

A detailed explanation of the effects of change of hyperparameters on the privacy-utility

tradeoff can be seen in Appendix C.2. The results show that using adversarial samples does

more harm to the model when the perturbation is low. This conforms with the findings

of [43]. [43] displays the ill effects of robust model training suggesting that adversarially

trained models lead to increased privacy risks. As the adversarial samples are not mislabeled,

they affect the decision boundary of the model leading to increased exposure of clean data.
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Adding Gaussian augmentation, however, adds confusion to the model as it masks some of the

semantic features protecting the original samples. With random noise, the augmented sample

preserves the information from the original semantic features. Narcissist Augmentation on

the other hand augments the samples such that the augmented sample lies even more inside

the decision boundary. With the original sample being slightly pushed closer to the decision

boundary, the target model has less confidence in the original sample, leading to its protection

from membership inference attacks.

While the results indicate that a better privacy-utility tradeoff within the existing is given

by random cropping. However, the performance takes a hit as the padding values increase

beyond four. The intuition is that as a result of spurious correlation, the model focuses

more on the background semantics than the foreground semantics to make the label decision.

[31] supports this argument indicating that background distortion deteriorates the decision

confidence more than foreground distortions.
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Conclusion and Future Work

The thesis proposes a data protection mechanism that is driven by user preferences and

allows for individual control. The approach, known as Data-Centric Defense, guarantees the

preservation of data privacy without compromising the utility or accuracy of the model’s

classifications. A thorough evaluation demonstrated that the proposed defense surpasses

existing model-centric defenses in terms of both privacy and utility when it comes to model

inversion attacks.

One limitation is that it results in a fourfold increase in the number of examples associated

with the target class in the context of model inversion attacks. Malicious model trainers

can identify and exclude surrogate samples that exhibit visual dissimilarities from the target

class, thus compromising the effectiveness of data protection. To address this issue, future en-

deavors should focus on obscuring the injected samples to deceive human inspection, thereby

mitigating these limitations.

The theory of Data Augmentation has been extensively surveyed in the setting of mitigat-

ing membership inference attacks, primarily aiming to address model overfitting concerns.

While these augmentations contribute to enhancing the overall generalization of the model,

they may not yield remarkable results when applied to unprotected versions of the sample.

47
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Besides, the model owner is responsible for applying these methods leaving the data owner

with lesser control over one’s own data. This thesis expands upon the notion of a data-centric

defense and by applying it to membership inference attacks. By doing so, an improved trade-

offs between privacy and utility compared to certain existing data augmentation techniques

is showcased.

The future work should aim to discover an improved data augmentation approach specif-

ically designed for membership inference attacks to provide a better privacy-utilty tradeoff.

The objective must be to develop a technique that effectively safeguards the benign samples,

ensuring their privacy, while simultaneously preserving a high level of classification accuracy.
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Appendix A

Datasets and Models

A.1 Datasets

CelebA A 202,599 strong face dataset consisting of 10,177 celebrities with each image of

the size 178x218. The images are resized to 224x224 and cropped by a face factor of 0.65.

Our dataset contains 27,034 training images and 3004 test images belonging to the 1000

most frequent samples in CelebA.

FaceScrub The FaceScrub dataset is a substantial collection of face images, consisting

of 106,863 images. It includes 530 celebrities, with an equal split of 265 males and 265

females. Each celebrity has approximately 200 images associated with them. To simplify the

dataset, we assigned integer labels 0-264 to male celebrities and 265-529 to female celebrities.

Following the guidelines established in PPA, we utilized 34,090 images for training and 3,788

images for testing purposes.

Stanford Dogs The Stanford Dogs dataset is a collection of images used for dog classifi-

cation, featuring 120 different dog breeds. The dataset consists of 18,522 training samples

and 2,058 test samples, totaling 20,580 images. The images in the dataset exhibit variations

in size, style, and content. Some images even include multiple dog breeds.
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GTSRB The German Traffic Sign Recognition Benchmark (GTSRB) dataset is specifically

designed for traffic signal recognition. It consists of 35,288 training images and 12,630 test

images, all categorized into 43 different classes representing distinct traffic signs. To maintain

consistency, all the images in the dataset have been resized to dimensions of 32x32 pixels.

VGGFace2 The VGGFace2 dataset is a face recognition dataset that focuses on large-

scale recognition tasks. The images in this dataset were sourced from Google Image Search,

resulting in a wide range of variations in terms of pose, age, illumination, ethnicity, and

profession. However, it’s important to note that the dataset link is no longer active on

the official website, limiting the availability of images. As a result, we were only able to

gather 1984 training images and 416 test images, distributed across 8 distinct classes, for

this dataset.

FFHQ The FFHQ dataset is known for its exceptional quality and diversity, surpassing

both the CelebA and FaceScrub datasets. It consists of a remarkable collection of 70,000

face images, each having a resolution of 1024x1024.

MetFaces The image dataset in question contains 1,336 unique images, each depicting

artistic renditions of human faces. These images showcase a wide range of artistic variations.

However, it’s important to note that the dataset is biased and lacks adequate representation

of individuals with darker skin tones.

Animal Faces-HQ (AFHQ) The dataset consists of 16,130 images of wildlife animals,

cats, and dogs, all sized 512x512 pixels. However, for the specific purpose of evaluating the

Stanford Dogs dataset, only the images of dogs are selected and used.
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TSRD The collection comprises 58 different categories, encompassing a total of 6,164

traffic sign images. These images are further divided into training and test sets, with 4,170

images allocated for training and 1,994 images for testing.

CIFAR-10 CIFAR-10 is a dataset consisting of low-resolution (32x32) color images be-

longing to 10 classes. It consists of 60,000 images with 50,000 training images and 10,000

test images respectively, split equally into 10 classes.

TinyImageNet As the name suggests it is a miniaturized version of the full ImageNet

dataset. The colored dataset has 200 classes each containing about 500 images totalling

up to 100,000 images in all. A downsized version of ImageNet has images of size 64x64, it

includes 500 training images, 50 validation images, and 50 test images.

A.2 Models

The models used in our experiments are VGG-16, ResNet-152, ResNeSt-101, ResNext-101,

ResNet-18, WideResNet-10-2, CNN, and DenseNet-169.

VGG The VGG model, developed by the Visual Geometry Group at the University of

Oxford, is a widely recognized deep convolutional neural network architecture utilized for

image classification tasks. The model VGG-16 comprises up to 16 different types of layers.

ResNet ResNet tackles the difficulty of training deep neural networks by incorporating

residual connections. These connections enable the flow of information, mitigating the issue

of vanishing gradients. ResNet-18 and ResNet-152 are specific alternatives, each with a
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different depth configuration.

ResNeSt ResNeSt is an advanced variant of ResNet that enhances deep learning models

with its ”Split-Attention” concept.

ResNext ResNext enhances the ResNet architecture through the introduction of ”cardinal-

ity.” This concept involves parallel branches within each residual block, enabling the model

to capture diverse and detailed features effectively.

DenseNet Introduces dense connections, where each layer is directly connected to every

other layer in a feed-forward manner. The DenseNet-169 has 169 such layers having strong

connections.

WideResNet Wide ResNet is a modification of ResNet that focuses on increasing the

number of channels within each layer, enhancing the model’s representational capacity.

CNN Convolutional Neural Networks (CNNs) are specialized deep learning models pri-

marily utilized for computer vision applications. Typically comprises multiple convolutional,

pooling, and fully connected layers.



Appendix B

Pseudo-Code of the proposed

algorithms

B.1 Model Inversion

Algorithm 1 Algorithm of Data-Centric Defense for Model Inversion Attacks
Input: Entire label set , target label set Stgt, raw training samples corresponding to the

target label set Dtgt-raw, mislabel ratio π1 and π2, noise magnitude ϵ1 and ϵ2.
Denote samples from class yi as {(xij, yi) : j = 1, . . . ,mi}, where mi is the number
of samples of this class.

for i ∈ Stgt do
1. Find a surrogate class not present in Y and gather the same number of samples as

class yi. Relabel the gathered samples as class yi

D1
i = {(x1

ij, yi) : j = 1, ...,mi}.
2. Mislabel a small portion of raw target training samples with a ratio π1 using a random

wrong label y′ ∼ Uniform(Y \ yi) to these samples
D0

i = {(x0
ij, y

′
j) : j = 1, ..., ⌈miπ1⌉} ∪ {(x0

ij, yi) : j = ⌈miπ1⌉+ 1, ...,mi}.
3. Augment surrogate samples with Gaussian noise

D2
i = {(x1

ij + µj, yi) : j = 1, . . . ,mi}, where µj ∼ N (0, ϵ21).
4. Augment target samples with Gaussian noise and mislabel a portion of augmentations

with ratio π2 using a random wrong label ỹ:
D3

i = {(x0
ij + µ′

j, ỹj) : j = 1, . . . , ⌈miπ2⌉} ∪ {(x0
ij + µ′

j, yi) : j = ⌈miπ2⌉ + 1, . . . ,mi},
where µ′

j ∼ N (0, ϵ22)

end for
return {D0

i ∪D1
i ∪D2

i ∪D3
i : i ∈ Stgt}
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B.2 Memebership Inference

Algorithm 2 Algorithm of Data-Centric Defense for Membership Inference Attacks[51]
Input:

fθsurr : Proxy Model
Dt : Target Samples
ϵ : Permissible limit(lp ball radius) for the augmentation

δ0 ← 01∗dims of image

for i ∈ (1, itr) do
1. Update the patch

δi+1 ← δi − α
∑

(x,t)∈D L(fθsurr(x+ δ), t)

2. Apply the lp ball constraint
δi+1 ← ||δi+1||p ≤ ϵ

end for
return δitr



Appendix C

Hyperparamters

C.1 Model Inversion

DP-SGD involves adding noise to the gradient followed by gradient clipping. The hyperpa-

rameters include the probability upper bound, denoted as δ, which represents the likelihood

of the model failing to provide privacy guarantees (roughly 1

size of the dataset
), and the

noise multiplier, denoted as σ, which is adjusted to achieve the desired privacy budget ϵ.

The learning rate and batch size remain fixed at the values used for normal model training,

while the threshold for gradient clipping is set to a constant value of 1.

The goal of MID is to restrict the information conveyed by the model’s prediction about the

input. To achieve this, MID introduces a hyperparameter denoted as β, which represents

the weight assigned to the information loss that reduces the correlation between the output

logit and the input. Detailed information is provided in Table C.1.

Table C.1: Privacy Parameters in DP-SGD and MID.

Attack Method MID DP

β σ δ C

GMI 0.2 1.0 1e− 4 1.0
PPA 0.07 0.1 4e− 5 1.0

MIRROR 0.003 2.0 5e− 4 1.0
BREP-MI 0.002 0.1 4e− 5 1.0

64



C.2. MEMBERSHIP INFERENCE 65

C.2 Membership Inference

We have considered σ as the parameter for the lp ball radius for Adversarial augmentation

and Gaussian augmentation. The σ is progressively increased ranging from 8

255
up to 128

255

increasing by a factor of 2 at each stage. The step size α is kept constant at 0.2 along with

the number of epochs being 20 to construct Adversarial samples. For random cropping, we

consider the amount of padding (p) ranging from 1 to 8.

Figures C.1,C.2,C.3,C.4 showcase how different the hyperparameter choice affects the privacy-

utility tradeoff. The points in the top-left corner indicate augmentations that have a high

utility and also expose data privacy, whereas the points on the bottom right are those with

low utility and high privacy. Ideally, for a good defense, the points should have a high

utility and high privacy i.e. the points should lie in the top right-hand corner of the plot.

The further away a point is from the axis, the better the privacy-utility tradeoff.

Figure C.1: Privacy - Utility curve for the loss based attacks
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Figure C.2: Privacy - Utility curve for the modified entropy based attacks

Figure C.3: Privacy - Utility curve for the maximum confidence based attacks
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Figure C.4: Privacy - Utility curve for the binary classifier based attacks
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