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Abstract

Background: Solventogenic clostridia offer a sustainable alternative to petroleum-based production of butanol–an
important chemical feedstock and potential fuel additive or replacement. C. beijerinckii is an attractive
microorganism for strain design to improve butanol production because it (i) naturally produces the highest
recorded butanol concentrations as a byproduct of fermentation; and (ii) can co-ferment pentose and hexose
sugars (the primary products from lignocellulosic hydrolysis). Interrogating C. beijerinckii metabolism from a systems
viewpoint using constraint-based modeling allows for simulation of the global effect of genetic modifications.

Results: We present the first genome-scale metabolic model (iCM925) for C. beijerinckii, containing 925 genes, 938
reactions, and 881 metabolites. To build the model we employed a semi-automated procedure that integrated
genome annotation information from KEGG, BioCyc, and The SEED, and utilized computational algorithms with
manual curation to improve model completeness. Interestingly, we found only a 34% overlap in reactions collected
from the three databases–highlighting the importance of evaluating the predictive accuracy of the resulting
genome-scale model. To validate iCM925, we conducted fermentation experiments using the NCIMB 8052 strain,
and evaluated the ability of the model to simulate measured substrate uptake and product production rates.
Experimentally observed fermentation profiles were found to lie within the solution space of the model; however,
under an optimal growth objective, additional constraints were needed to reproduce the observed profiles–
suggesting the existence of selective pressures other than optimal growth. Notably, a significantly enriched fraction
of actively utilized reactions in simulations–constrained to reflect experimental rates–originated from the set of
reactions that overlapped between all three databases (P = 3.52 × 10-9, Fisher’s exact test). Inhibition of the
hydrogenase reaction was found to have a strong effect on butanol formation–as experimentally observed.

Conclusions: Microbial production of butanol by C. beijerinckii offers a promising, sustainable, method for
generation of this important chemical and potential biofuel. iCM925 is a predictive model that can accurately
reproduce physiological behavior and provide insight into the underlying mechanisms of microbial butanol
production. As such, the model will be instrumental in efforts to better understand, and metabolically engineer,
this microorganism for improved butanol production.

Background
The diminishing supply of non-renewable feedstocks–
and concern over environmental ramifications of their
use in fuel and chemical production–highlights the need
for technological advances to improve the economic

viability of sustainable production methods. In particu-
lar, given its broad scope of applications as a chemical
feedstock and compelling properties as an alternative
transportation fuel [1], sustainable production of butanol
is of particular industrial interest. Butanol production
via microbial fermentation from lignocellulosic material
(historically achieved using solventogenic clostridia,
prior to petroleum refining [2]) represents a sustainable
method for production of this important solvent.
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Recently, the most common fermentation microorgan-
isms–Escherichia coli and Saccharomyces cerevisiae–
have been engineered to produce butanol and its
branched chain derivatives (e.g., isobutanol) [3-5]. How-
ever, relative to E. coli and S. cerevisiae, the solvento-
genic clostridia offer two clear advantages as butanol-
producing microorganisms: (i) the evolved ability to pro-
duce and tolerate butanol at concentrations up to 21 g/
L–important because butanol is highly toxic to microor-
ganisms at even low concentrations [6-9], and (ii) the
ability to co-ferment pentose and hexose sugars, the pri-
mary sugars found in lignocellulosic hydrolysates
[10,11]. These characteristics should reduce the number
of genetic modifications needed to make biological buta-
nol production economically competitive.
Among the solventogenic clostridia, Clostridium aceto-

butylicum ATCC 824 and C. beijerinckii produce the
highest n-butanol concentrations; the mutant strain C.
beijerinckii BA101 achieves the highest reported concen-
tration (17-21 g/L) across all microorganisms [7-9]. The
parent strain of BA101, C. beijerinckii strain NCIMB
8052, holds several advantages for industrial butanol
production: (i) it has proven amenable to experimental
modifications that increase butanol tolerance and pro-
duction [9]; (ii) the solventogenic genes reside on the
chromosome rather than on a separate megaplasmid (as
is the case for C. acetobutylicum), potentially increasing
its resistance to degeneration [12]; (iii) it can success-
fully produce butanol in continuous culture conditions
[13]; and (iv) it has a broad substrate utilization spec-
trum [10,11,14]. Taken together, these traits give C. bei-
jerinckii particular appeal as a clostridial catalyst for
industrial butanol production.
Like other solventogenic clostridia, C. beijerinckii pro-

duces solvents (butanol and acetone) as products of a
biphasic metabolism. Butyrate and acetate are produced
first in acidogenesis; in solventogenesis, acids are re-
assimilated and production of butanol and acetone
begins. Central to improving butanol production is deci-
phering what causes this metabolic switch. Numerous
phenomena–decreased pH, acid accumulation, intracel-
lular ATP concentration, nutrient limitation, interplay
between carbon and electron flow pathways, and sporu-
lation–have been hypothesized to contribute [15,16].
Most of these phenomena are directly tied to cellular
metabolism, or more specifically, to changes among the
enzymes and metabolites that comprise the intracellular
metabolic network. Our aim is to develop an under-
standing of C. beijerinckii metabolism–through systems
analysis of the metabolic network–that will enable us to
optimally direct available carbon towards the production
of butanol.
In silico reconstruction of metabolic networks–and

subsequent analysis of genome-scale metabolic models

through constraint-based modeling [17]–enables a glo-
bal interrogation of metabolism not possible with stan-
dard experiments. The genome-scale model allows one
to analyze the cell from a systems viewpoint to predict
whole-cell effects of genetic changes, and to simulate
known and hypothesized phenotypes. Methods for
reconstructing and analyzing metabolic networks have
been well established for microorganisms, and genome-
scale models have been built for all branches of life
[18,19]. Furthermore, numerous successes have been
demonstrated for using these models to guide rational
engineering in model microorganisms such as E. coli
and S. cerevisiae [20-22]. Importantly, models of this
type can be constructed for any organism with a
sequenced genome, and thus hold particular utility for
lesser-characterized organisms such as C. beijerinckii.
We present here the first genome-scale metabolic

model (named iCM925) for C. beijerinckii, built based
on the NCIMB 8052 strain. There have been four gen-
ome-scale models built for clostridia–two for C. aceto-
butylicum [23-25] and one each for the cellulolytic
strains C. thermocellum [26] and C. cellulolyticum [27].
C. beijerinckii is distinct from these in that it is the
most productive wild-type butanol-producing clostridia
known to date [6-9]. Containing 925 genes, 938 reac-
tions, 881 metabolites, and 67 membrane transport reac-
tions, iCM925 is the largest genome-scale model for a
clostridial species. The iCM925 model can simulate sub-
strate uptake and product formation rates for typical
batch culture experiments, and correctly captures the
relationships between the formation of products such as
butanol and hydrogen. As such, the C. beijerinckii
model will be instrumental in our future efforts to engi-
neer C. beijerinckii to produce higher titers of butanol.

Results & Discussion
The first step towards building a genome-scale meta-
bolic model is reconstructing the genome-scale meta-
bolic network–typically done using publically available
annotation databases and published literature. A list is
collected of reactions that are either catalyzed by
enzymes encoded in the genome or have been defined
experimentally, and then expanded to define relation-
ships between genes, enzymes, reactions, metabolites,
and pathways in the network. To establish the genome-
scale metabolic model, the network reactions are sub-
jected to a number of physico-chemical constraints–
either calculated or based on physiological data–to
simulate defined cultural conditions. Given the limited
literature and biochemical data available for C. beijer-
inckii, we reconstructed our metabolic network first
using a semi-automated approach to obtain annotation
data from three major databases, and then utilized com-
putational algorithms and manual curation to further
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refine the network. To test the ability of the iCM925
model to simulate experimentally-observed behavior, we
conducted a series of batch fermentations to compare
measured substrate uptake and product formation rates
with model predictions. The model provides a solid
basis with which to study the unique characteristics of
C. beijerinckii metabolism and guide future metabolic
engineering experiments for enhanced butanol produc-
tion capability.

The initial genome-scale metabolic network
The available genome annotations for lesser-character-
ized organisms are largely generated by computational,
informatics-based procedures (i.e., they often lack man-
ual curation), and there is a paucity of experimentally-
confirmed biochemical data. To facilitate reconstruction,
expand the scope of our C. beijerinckii network, and
evaluate confidence for each gene-protein-reaction
(GPR) relationship included, we merged annotation data
from three independent databases: KEGG (Kyoto Ency-
clopedia for Genes and Genomes) [28], BioCyc [29], and
The SEED [30,31]. To reduce the time required to
assemble annotation data into a well-connected gen-
ome-scale network, we employed a semi-automated
computational approach (see Methods) to retrieve and
integrate information from each database.
The foundation for our network, comprising 525 reac-

tions, was obtained from the KEGG database. We
expanded this network to include an additional 75 and
136 unique reactions from The SEED and BioCyc data-
bases, respectively. Careful reconciliation and integration
of the obtained biochemical data was required because
the three databases do not follow a uniform nomencla-
ture for reactions, metabolites, and pathways. We chose
to adhere to the nomenclature used by the BiGG data-
base (the largest available repository for genome-scale
metabolic models) in order to enable easier comparison
with other in silico models [32]. This mapping step was
quickly accomplished by using a matrix formalism to
overlay the different databases (see Methods) based on
stoichiometry. The mapping between BioCyc and KEGG
for reaction and metabolite names in C. beijerinckii is
available in Additional File 1.
We analyzed the overlap between annotation informa-

tion collected from KEGG, BioCyc, and The SEED to
help assess the reliability of each reaction included in
the network. Reactions found in all three databases were
considered to have the greatest reliability, followed by
reactions in two of the databases, and finally by reac-
tions found in only one database. Surprisingly, out of
the collective 776 suggested reactions, we found only
264 reactions (34%) present in all three annotations
(Figure 1). Given that many genome-scale models are
built in a similar manner, the small overlap observed for

C. beijerinckii suggests that researchers must exercise
caution when constructing networks for new organisms
using bioinformatics-based annotations alone. The
reconstruction and phenotypic testing of genome-scale
models provides an important means to integrate,
curate, and validate annotation information. Further
analysis of the relationship between database contribu-
tion and model accuracy (used to evaluate annotation
quality for C. beijerinckii) is discussed below.
In addition to establishing reliability for each included

reaction, we evaluated the predicted gene-associations
for reactions found in two or more of the annotation
databases (see Additional File 2A for database-based
GPR comparison). In cases where annotations did not
agree between databases, associations were selected for
the model based on the strongest BLAST [33] evidence
(i.e., genomic identity between the associated enzyme
and similarly annotated database proteins). Reassuringly,
we found that most annotation disagreements were due
to a missing gene-reaction relationship rather than a
contrasting association; this suggests that overlapping
reactions comprise a well annotated area of the network.

The refined C. beijerinckii metabolic network
The draft metabolic network derived from genome
annotation data–even with combined information from
multiple databases–contained gaps (i.e., missing reac-
tions) that prevented simulation of cell growth and
accurate physiological behavior (e.g., butanol produc-
tion). Gaps create unconnected sections/regions in the
network, thereby preventing production or consumption

Figure 1 Annotation database comparison. Reaction overlap for
the three annotation databases used to build the genome-scale
metabolic network.
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of a metabolite. In turn, the “dead-end” metabolite has
often been observed experimentally as consumed or
produced, or is needed to simulate cell growth. Network
gaps must therefore be filled using literature information
and/or genomic evidence beyond what was included in
the annotation databases.
Identifying network gaps and selecting candidate gap-

filling reactions with strong supporting evidence can be
time consuming, especially for lesser-characterized
organisms like C. beijerinckii. Consequently, we used the
GapFind and GapFill [34] algorithms to computationally
identify and resolve gaps, thus minimizing the amount
of manual curation needed. Candidate reactions sug-
gested by GapFill were chosen from the BiGG database;
this database contains genome-scale models that have
undergone extensive refinement and validation, and thus
is a resource of high-confidence reactions [32]. After
reviewing candidate reactions for sufficient BLAST [33]
evidence, we identified an additional 22 putative annota-
tions (and 22 additional network reactions) for the C.
beijerinckii genome (a list of added reactions may be
found in Additional File 1)–seven of which were
required for simulated cell growth. While GapFind and
GapFill are highly useful computational algorithms, we
found that they are not guaranteed to suggest reactions
with strong supporting evidence and do not focus speci-
fically on fulfilling the model objective function. There-
fore, manual addition of reactions based on literature
evidence was still needed to fill important gaps in the C.
beijerinckii network.
Notably, the draft network was missing a butanol

dehydrogenase enzyme, a ferredoxin NAD+ reductase,
and did not contain the necessary biochemical transfor-
mations for production of known phospholipids. Reac-
tions for both an NAD+ and NADP+ butanol
dehydrogenase enzyme (BUTOHDx and BUTOHDy),
known to exist in solvent producing clostridia [2,35],
were added based on BLAST [33] scores for the C. bei-
jerinckii gene Cbei_2421. We were unable to find a gene
association for ferredoxin NAD+ reductase–even though
the NADP+ reductase is matched to Cbei_0661 and
Cbei_2182–but added the reaction (FDXNRx) based on
literature evidence [2]. The phospholipid pathway was
characterized using a similar approach to Lee et al. [23],
drawing upon experimental data for fatty acid biosynth-
esis [36]. In total, 38 reactions were added as a result of
our manual curation–11 of which were added based on
BLAST [33] comparison with reactions from the Senger
& Papoutsakis C. acetobutylicum model [24,25] and 22
of which were added for the formation of phospholipid
and biomass components. The source for manually
added reactions (as well as all other reactions included
in the model) can be found in Additional File 1).

One of the most significant gaps in the draft C. beijer-
inckii network prevented model-simulated production of
oxoglutarate, a major component of central metabolism;
this gap stemmed from missing genetic evidence for
enzymatic reactions need to complete the TCA cycle.
We completed the TCA cycle in the model based on
conclusions from two recent experimental studies, in
which carbon labeling showed that C. acetobutylicum
uses a bifurcated TCA cycle culminating in succinate
secretion [37,38]. The initial reconstruction did not sup-
port a bifurcated TCA cycle: our network was missing a
citrate synthase (CS), succinyl-CoA synthetase
(SUCOAS), and a succinate transport (SUCCex) reaction.
In addition, the directionality of existing reactions did
not support the experimentally observed flux. To allow
for simulation of the bifurcated cycle and enable oxoglu-
tarate production, we added the three missing reactions
(without genetic evidence), and restricted reaction direc-
tionality to that observed in the study.

The genome-scale model (iCM925)
From our refined metabolic network, we constructed the
genome-scale model by representing reactions, gene
associations, pathway information, and reaction direc-
tionality in matrix form (see Additional File 1 and Addi-
tional File 3 for model files). This model for C.
beijerinckii, named iCM925 in accordance with the
model naming convention proposed by Reed et al. [39],
contains 938 reactions, 881 metabolites, and 925 genes–
representing 18% of total protein coding genes in the
genome [40,41]. Transport reactions across the cell
membrane–collected from the BioCyc and KEGG data-
bases, as well as from the published C. acetobutylicum
models [23-25] and the genome-scale models for Bacil-
lus subtilis [42,43]–make up 67 of the 938 reactions.
iCM925 contains the largest number of genes, reactions
and metabolites compared to the four other clostridial
models (Table 1); this could be a result of model con-
struction methods, but likely reflects the fact that C. bei-
jerinckii has a 50% larger genome than the other
clostridia.
The reactions in iCM925 span 95 pathways (organized
into 13 major groups in Figure 2), as defined by KEGG
pathway nomenclature. Carbohydrate and amino acid
metabolism represent the largest portions of the net-
work. For each pathway, we calculated the percentage of
reactions that can or cannot be utilized in glucose mini-
mal media simulations (Figure 2) in order to evaluate
model connectivity. Overall, 47% of reactions across all
pathways are blocked, which is on par with other in
silico genome-scale models [44]. Many of these blocked
reactions were concentrated within pathways that are
almost entirely blocked, such as metabolism of
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terpenoids and polyketides–suggesting that many of the
blocked reactions are actually a result of blocked path-
ways. Pathways involving carbohydrate metabolism
(compared to a more connected pathway such as
nucleotide metabolism) may have a higher number of
blocked reactions under glucose media conditions
because they contain numerous reactions intended for
metabolism on alternative sugar substrates.
We assessed the pathway contribution of each annota-

tion database (see Additional File 2B) to determine (i) if
any database exhibited more complete coverage in one
area of metabolism (e.g., carbohydrate metabolism) and
(ii) if one database contributed more blocked reactions
to the model. For each of the 13 pathway categories
depicted in Figure 2, we found similar coverage between
KEGG, BioCyc, and the SEED; this indicates that the
small overlap found between databases is not simply a
result of one database contributing more heavily to a
particular area of metabolism. Additionally, each data-
base contributed a similar number of blocked reactions:
22% of the blocked reactions came from BioCyc, 21%
from KEGG, 10% from The SEED, 18% from two or
more databases, and 17% from all three databases (these
percentages are not directly proportional to the total
number of enzymes contributed by each database).

Therefore, we did not find that one database outper-
formed another in terms of model connectivity.

Validation of iCM925
To evaluate the predictive accuracy of iCM925, we used
Flux Balance Analysis (FBA, see Methods) to reproduce
experimental fermentation behavior. The FBA formalism
represents all known reactions in the cell as a stoichio-
metric matrix, and uses linear programming to maxi-
mize a user defined objective function (e.g., growth)
under a steady state assumption [45,46]. Importantly,
FBA can be used to simulate experimental parameters
such as growth rates, uptake rates, and byproduct secre-
tion rates–enabling quantitative evaluation of model
agreement with physiological behavior.
During fermentation, C. beijerinckii produces six pri-

mary carbon-containing byproducts: acetate, butyrate,
acetone, butanol, ethanol, and carbon dioxide. Due to
the biphasic nature of C. beijerinckii metabolism, not all
five byproducts are produced at the same rates through-
out fermentation. In a targeted gene expression study,
Shi and Blaschek found that solvent formation began
during mid-exponential growth (7-8 hours); this period
was characterized by increased expression levels of sol-
vent formation genes and accompanied by decreased

Table 1 Network statistics for genome-scale models of clostridia

C. beijerinckii
iCM925

C. acetobutylicum
(Lee)[23]

C. acetobutylicum
(Senger)[24,25]

C. cellulolyticum [27] C. thermocellum
iSR432 [26]

Genome 6.0 Mb 4.1 Mb 4.1 Mb 4.1 Mb 3.8 Mb

Protein Coding Genes 5100 3748 3748 3488 3236

Model Genes 925 432 474 431 432

Reactions 938 507 552 621 577

Metabolites 821 479 422 603 525

Statistics for each published genome-scale clostridia model and comparison with iCM925.

Figure 2 Pathway distribution for reactions in iCM925. The number of reactions that can carry flux is depicted in yellow and the number
that cannot carry flux is depicted in red (with black stripes) for each area of metabolism. Percentages indicate overall percent contribution of
that pathway to the model. Blocked reactions were determined by simulating growth on glucose minimal media.
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expression of genes associated with acid formation [15].
To validate the ability of the model to simulate bypro-
duct secretion and growth rates, we conducted our own
batch fermentation experiments using NCIMB 8052 cul-
tures grown on minimal media. Similar to Shi and Blas-
chek, we observed the switch from butyrate to butanol
formation at 8-10 hours; we chose to focus our simula-
tions on the subsequent period of exponential growth in
which butanol is produced.
We determined substrate uptake and product secre-

tion rates for cultures grown at four temperatures (30°C,
33°C, 35°C, 40°C) to obtain multiple data sets with
which to compare model simulations. Only results for
35°C are reported in the main text, as it is most repre-
sentative of typical fermentation conditions (complete
experimental results are available in Additional File 2C).
Experimental rate estimates (in units of mmol/gDW/hr)
were determined for butanol, acetone, ethanol, acetate
and butyrate using product concentration and growth
rate (see Methods, Additional File 2D). We observed a
net consumption of glucose and acetate (the carbon
containing compounds in our defined growth media)
and net production of acetone, butanol and ethanol.
When performing simulations, specified uptake and
secretion rates were constrained to fall within one stan-
dard deviation of experimentally measured rates, while
the remaining rates were determined by FBA. All model
simulations were conducted with biomass production
(defined by the biomass equation, see Methods and
Additional File 1 for details) as the assumed cellular
objective.
To evaluate model predictions for product formation

rates and growth rate we conducted simulations with
constrained model uptake of glucose and acetate. For
these simulation conditions, the iCM925 model pre-
dicted production of only acetone and butyrate–

production of butanol and ethanol was not predicted
(Figure 3A, see Additional File 2D for comparisons at
different temperatures). Additionally, the predicted
growth rate was higher than our experimentally
observed growth rate. These predictions are not surpris-
ing for the assumed optimal growth objective, given the
experimentally supported understanding of cellular
redox in C. beijerinckii. Specifically, disposal of excess
electrons is achieved in cell culture through the genera-
tion of butyrate, butanol, and hydrogen. However, dispo-
sal via hydrogen and butyrate would allow for ATP
production with minimal loss of carbon, thereby
improving the biomass objective. Thermodynamic lim-
itations of the hydrogenase reaction prevent such dispo-
sal biologically [2,47], but such constraints were not
incorporated into iCM925 explicitly because clear
experimental hydrogen formation rates were unavailable.
Acetone production in the model could also be traced
to acetate re-uptake: the formation of acetone utilizes
acetoacetate, a byproduct of acetate re-uptake by CoA-
transferase.
To confirm that iCM925 is capable of simulating pro-

duction of all expected metabolites at experimentally
determined rates, additional constraints were added to
the product secretion reactions for butanol, acetone,
ethanol, and butyrate (Figure 3B, see Additional File 2D
for comparisons at different temperatures). As product
formation is known to be associated with the generation
of ATP in the cell [2], the effect of ATP production
requirements was analyzed by altering the constraints
on the non-growth associated ATP maintenance
(NGAM) reaction. The first simulation assumed that no
ATP is needed for non-growth associated maintenance,
and resulted in a higher growth rate than expected; this
is a biologically unrealistic assumption, but illustrates
the dependency of growth rate on ATP maintenance.

Figure 3 Comparison of iCM925 simulations with experimental data. Model and experimental values for product fluxes, uptake fluxes and
growth rates represent conditions for the 35°C fermentation. Error bars indicate the observed experimental range and diamonds represent the
various simulation results. (A) shows the simulation results for the case where only acetate and glucose uptake rates are constrained. (B) shows
the case where these uptake rates, as well as butanol, acetone, and butyrate formation rates are constrained. In (B), the blue diamonds represent
the case where non-growth associated ATP maintenance is zero and the yellow diamonds represent the case where the non-growth associated
ATP maintenance is 8.5 mmol/gDW/hr.

Milne et al. BMC Systems Biology 2011, 5:130
http://www.biomedcentral.com/1752-0509/5/130

Page 6 of 15



The latter simulation–with an NGAM value that guided
the in silico growth rate to the experimentally calculated
range–demonstrated that the expected experimental
phenotype can be reproduced by the model. The
selected NGAM value was 8.5 mmol/gDW/hr, which is
encouragingly similar to the value used in the E. coli
iAF1260 model [48]. From these simulations, we con-
cluded that all observed secretion patterns exist within
the solution space of the model, even though solvent
secretion patterns in C. beijerinckii are not very well
described by the iCM925 model when using the optimal
growth objective.

Analysis of the active reactions in iCM925
After verifying that iCM925 could reproduce experimen-
tal uptake and secretion rates, we investigated the
underlying flux distributions used by the model to
achieve these rates. Under optimal growth conditions
for a defined minimal medium, a previous study found
that genome-scale models for Helicobacter pylori, Sta-
phylococcus aureus, E. coli, and S. cerevisiae have about
300 active reactions [44]; iCM925 had 291 active reac-
tions. Interestingly, 137 of these 291 reactions (Figure 4)
were found in all three annotation databases, represent-
ing a statistically significant number of active reactions
among the overlapping reactions (P = 3.52 × 10-9, Fish-
er’s exact test; see Methods). Since active reactions are
those used by the model to reproduce known physiolo-
gical behavior, the over-representation of reactions

found in all three databases supports our assumption
that overlapping reactions have the highest reliability for
inclusion.
To further study active reactions, we diagramed reac-

tions carrying the largest flux in glycolysis, TCA cycle,
and the product formation pathways (Figure 5). In gly-
colysis, we found that the model used the PTS rather
than ABC transporter to uptake extracellular glucose.
The choice of PTS over ABC suggests that C. beijer-
inckii may use the former transporter primarily as the
most efficient means of converting glucose to biomass, a
finding that is corroborated by experimental observation
of PTS transport (GLCpts) utilization by C. beijerinckii
[14,16,49]. Flux through the TCA cycle follows the
experimentally observed route of oxoglutarate produc-
tion [37] via citrate synthase (CS). However, the model
did not utilize the oxaloacetate to succinate transforma-
tion or the conversion of succinyl-CoA to succinate, as
was observed by Amador-Noguez et al. For succinyl-
CoA synthetase (SUCOAS, an ATP generating reaction),
we found that increased ATP requirements resulted in
activation.
Contrary to experimental ethanol production which

stems primarily from acetyl-CoA [2,40], iCM925 pre-
dicted that about 70% of ethanol was made from threo-
nine (derived from aspartate) by the enzyme threonine
acetaldehyde-lyase (THRA). Butanol, butyrate, and acet-
one were produced using the experimentally character-
ized pathways, and acetate was consumed using CoA-
transferase (COAT1) as expected [2,40]. Intriguingly, the
model predicted simultaneous production and consump-
tion of butyrate using butyrate kinase (BUTK) and CoA-
transferase (COAT2), respectively. The re-uptake of
acids by solventogenic clostridia has been experimentally
established, with one of the leading suggestions for this
behavior being a means of de-toxification of the acidic
environment [2]. Given that the primary objective in
our simulations is to maximize flux through the biomass
equation within the imposed constraints, it is most likely
that the motivation for re-uptake of butyrate by the
iCM925 model is the generation of additional ATP–a
major component of biomass. Previous experimental
studies investigating acid re-uptake [41-43] do not sup-
port this suggested motivation, however–making addi-
tional exploration into the motivations of the model an
interesting area of focus going forward. These experi-
mental findings further suggest that selective pressures
other than optimal growth may dominate phenotype
under typical fermentation conditions.
Flux Variability Analysis (FVA) was performed to

evaluate the robustness of our diagrammed reactions
(Figure 6, see Additional File 2E for a complete list).
FVA calculates the extent to which network reactions
can change without affecting the simulated maximal

Figure 4 Origin of active reactions. Percentages represent the
fraction of all active reactions (in the constrained simulation, based
on 35°C experiments) originating from individual databases, a
combination of databases, or other sources.
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growth rate–the model represents an underdetermined
system, and even when optimizing for a specific objec-
tive, multiple solutions exist for each set of constraints
[50]. ACK, PTA, BUTK, BCOPBT, COAT1, and
COAT2 are connected to the uptake and production of
acetate and butyrate. As suspected, it is possible for

both metabolites (either together or independently) to
be simultaneously produced and consumed. The varia-
tion seen in BUTOHDx and HACD1x indicates that
either the NAD+ or NADP+ versions of these reactions
can be used with no effect on growth rate. Similarly,
the variation observed in PFL, POR4, and PYK shows

Figure 5 Network map of important active reactions. Network fluxes were determined in 35°C fermentation simulations with ATPM = 8.5
mmol/gDW/hr. Blue ovals indicate substrates, red colored diamonds indicate products, and yellow boxes indicate intracellular metabolites only.
Numbers next to each reaction name represent flux predicted by the model. Fluxes are not necessarily consistent from one reaction to the next
because other, smaller flux pathways have interplay with the reactions here.
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equally optimal methods of pyruvate formation and
consumption.

Understanding butanol production: the role of molecular
hydrogen
Hydrogen formation is known to play an important role
in balancing cellular redox for C. beijerinckii, and has
been found to effect the production of butanol [2,51,52].
We confirmed this relationship in the iCM925 model
using robustness analysis [17,50] to compare the effects
of varied hydrogen secretion rate on the production of
acetate, butyrate, acetone, butanol and ethanol. When
grown on glucose and acetate, we found that maximiz-
ing the specific growth rate led to the formation of acet-
one and butyrate only; this simulation had a predicted
hydrogen production rate of about 18 mmol/gDW/hr
(Figure 7). Our analysis showed that in order to observe
positive butanol production, hydrogen production must
be limited to below about 10 mmol/gDW/hr; the corre-
sponding growth rate becomes sub-optimal with this
constraint. Since the production mechanisms of ethanol
and butanol both consume the same number of NADH
molecules (two in each pathway), the model predicted
that at low hydrogen production rates, either ethanol or
butanol generation could be used to balance redox with
no change in growth rate. In vivo, regulation likely plays
a role in determining how much of each product is
made.
The tradeoff observed in our simulations between

hydrogen formation and solvent formation has been
experimentally observed in C. acetobutylicum. Kim, et
al. [52] found that a decrease in hydrogenase activity
(induced by carbon monoxide poisoning) when grown
on glucose resulted in decreased growth rate, decreased
acetone, acetate, and butyrate production, and increased
ethanol and butanol production. As this experiment was
conducted without acetate in the initial media, we again
investigated the effect of hydrogen production rates, but
with glucose as our only carbon-containing model input
(Figure 8). We observed that lower hydrogen formation
rates coincided with higher solvent formation, as was
found by Kim et al. [52] and in our simulations using

both acetate and glucose as inputs (Figure 7)–suggesting
that similar mechanisms may be involved in butanol
production by both C. beijerinckii and C,
acetobutylicum.
Additionally, our simulation shows that for high levels

of hydrogen formation, acetate is the only byproduct
and growth rate is at a maximum. The production of
hydrogen eliminates the need for additional NADH con-
sumption by butyrate, allowing ATP generation to occur
exclusively via acetate formation–the most efficient
method for the cell. Maximum growth rate is observed
under these conditions because they represent the most
energy efficient means of glucose utilization for the
microorganism. At very low hydrogen consumption
rates, we observe production of butanol rather than

Figure 6 Flux Variability Analysis of important active reactions. Bars depict the possible range (minimum and maximum) fluxes calculated
by Flux Variability Analysis for reactions depicted in Figure 5.

Figure 7 Effect of hydrogen formation rate with fixed glucose
and acetate uptake. H2 output flux was varied to examine the
effect of hydrogen production on predicted formation rates for
butyrate, acetone, butanol, ethanol, and biomass. Glucose and
acetate uptake rates were fixed to 9.39 and 3.41 mmol/gDW/hr,
respectively, and non-growth associated maintenance was set to 8.5
mmol/gDW/hr. Note that while positive ethanol formation is not
depicted in the plot, FVA found ethanol and butanol production to
be interchangeable, with no detrimental result to growth rate–likely
because the net consumption of NADH is identical in both
scenarios. Experimentally, ethanol formation happens at a slower
rate than butanol formation.
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butyrate, as the production of butanol results in the
consumption of two additional NADH molecules com-
pared to butyrate. This observation supports the conclu-
sion that without hydrogen production, excess electrons
are disposed of via the production of acids and solvents.
The overall observed effect of hydrogen formation is not

only experimentally consistent, but it highlights the
importance of this reaction in regulating butanol forma-
tion, and will be an area of focus in our continued
efforts to improve butanol production in C. beijerinckii.

Comparison of iCM925 with C. acetobutylicum model
Although the genome of C. beijerinckii is 50% larger
than that of C. acetobutylicum, the two microorganisms
present phenotypically similar fermentation profiles. To
investigate the effect of additional genes in C. beijer-
inckii, we compared iCM925 to the C. acetobutylicum
model which was published in a computable format (the
model published by Senger and Papoutsakis in 2009
[24,25]), using KEGG reaction IDs as a basis for com-
parison. Of the 940 iCM925 reactions, 375 were found
to overlap with the Senger model (Figure 9); 183 of
these reactions are present in our list of 291 active reac-
tions for the 35°C (ATPM = 8.5 mmol/gDW/hr) fermen-
tation simulation. Interestingly, the pathways and
database sources of the 564 reactions unique to iCM925
were similarly distributed as those of the full model–
suggesting that (i) C. beijerinckii does not simply con-
tain more reactions in a particular pathway, and (ii) that
our additional reactions are not an artifact of our multi-
ple database approach. Of the 375 overlapping reactions,
119 have more connected genes per reaction in C. bei-
jerinckii than in C. acetobutylicum–with an average of
1.3 times more genes per reaction in C. beijerinckii.
This is not a statistically significant result, but suggests
that several of the reactions (e.g., CoA-transferase and

Figure 8 Effect of hydrogen formation rate with fixed glucose
uptake only. H2 output flux was varied to examine the effect of
hydrogen on the production of acetate, butyrate, acetone, butanol,
ethanol and biomass for optimal growth simulations on only
glucose, with an uptake rate of 9.39 mmol/gDW/hr and a non-
growth associated ATP maintenance of 8.5 mmol/gDW/hr. Note
that while positive ethanol formation is not depicted in the plot,
FVA found ethanol and butanol production to be interchangeable
with no detrimental result to growth rate.

Figure 9 Comparison of iCM925 with the Senger & Papoutsakis C. acetobutylicum model. The number, database distribution, and pathway
distribution of reactions in iCM925 and the Senger & Papoutsakis C. acetobutylicum model were compared based on KEGG IDs. (A) Numbers of
reactions in common between the two models or unique to each are depicted by bars on the graph. The fractions of unique and shared
reactions that are active in iCM925 are denoted by light-shaded regions. (B) The database distribution of reactions exclusive to iCM925 are
shown in the upper left, while the pathway distribution is shown in the bottom of the panel.
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butyrate kinase) do have more associated genes than the
corresponding C. acetobutylicum reactions.

Conclusions
Butanol, currently produced as a byproduct of petro-
leum refining, is appealing in industry as both an impor-
tant chemical feedstock and an alternative
transportation fuel. We have built the first genome-scale
model for C. beijerinckii to better understand the meta-
bolic behavior of the microorganism, and to guide
future metabolic engineering for increased butanol pro-
duction. Having a genome-scale model for C. beijerinckii
is advantageous because it helps provide a global picture
of metabolism–enabling interrogation of the interplay
between the various fermentation products of the
microorganism from a systems viewpoint. Given the
lack of detailed biochemical data available for C. beijer-
inckii, we integrated and cross-checked information
from three major annotation databases to reconstruct
the core metabolic network, and then further completed
the network with computational algorithms and manual
curation. We collected experimental fermentation data
to determine production rates of acetone, ethanol, and
butanol, and uptake rates of acetate and glucose, and
these rates were used to confirm the ability of the
model to accurately represent physiological behavior.
Interestingly, reactions found in all three annotation
databases proved to contribute significantly to the
actively used reactions in validation simulations. Even
though the observed experimental phenotypes were
found to exist in the solution space of the model, opti-
mal growth simulations on glucose did not predict the
expected product profiles–suggesting the possibility of
an alternative cellular objective or additional mechan-
isms not captured by the iCM925 model. One reaction
found to have a strong impact on the predicted product
formation rates was the hydrogenase reaction–a reaction
that has been found to impact solvent formation experi-
mentally as well. Going forward, this model will play a
central role in understanding and engineering butanol
production by C. beijerinckii.
Additionally, the construction of iCM925 highlighted

important areas of investigation for future model-build-
ing efforts in other lesser-characterized microorganisms
(e.g., genome annotation agreement), and for improved
constraint-based simulation of non-growth phenotypes
(e.g., alternative objective functions).

Methods
Genome-scale models are built using enzyme-catalyzed
reaction information encoded in the genome of an
organism, as well as experimentally characterized reac-
tion information. This collection of all known reactions
in the metabolism of the organism then serves as the

foundation for the metabolic model. The model is repre-
sented mathematically by the stoichiometric (S) matrix.
Each column in S represents a reaction in the network,
where entries for each row indicate the stoichiometric
relationship of corresponding metabolites (negative and
positive coefficients denote reactants and products,
respectively, and zero entries indicate a non-participat-
ing reaction). Through constraint-based modeling
[17,53], a series of balances and bounds (discussed
below) are applied to the reactions in S, and the model
is used to simulate cell growth by optimizing for a user-
defined objective function. These simulations can then
be used to examine the interplay between different reac-
tions and pathways, and to predict resulting metabolic
phenotypes from genetic modifications.

Semi-automated compilation of the draft metabolic
network
The metabolic network describes the connectivity of
metabolites and reactions in a cell and characterizes the
link between genes, proteins and reactions (GPR rela-
tionship). We built the base metabolic network using
the KEGG genome annotation for C. beijerinckii. This
draft network contained annotation-based information
available for C. beijerinckii from the KEGG database,
including GPR relationships, pathway information, reac-
tion stoichiometry, and reaction reversibility. To reduce
the time needed to generate the initial draft network we
developed a MATLAB based program to automatically
collect and organize organism-specific biochemical
information from the KEGG database.
The KEGG draft network was augmented using inde-

pendent annotations from The SEED and from BioCyc.
Like with the KEGG database, these annotations were
collected and organized automatically using MATLAB.
Additionally, we used MATLAB to automate the inte-
gration of all three databases as much as possible.
Annotations in The SEED database are linked to KEGG
biochemical data, making integration of the two net-
works straightforward. BioCyc, however, employs a dif-
ferent nomenclature, so we constructed a mapping
between reaction and metabolite IDs in BioCyc and
KEGG for C. beijerinckii. Specifically, metabolites were
mapped using (i) BioCyc files linking to KEGG (incom-
plete); (ii) compound names and unique iNICHi identi-
fiers; (iii) the E. coli specific mapping for iAF1260 [48];
and (v) manual curation. Between-database reaction
mapping was then determined as follows:

i. using the between-database metabolite mapping,
we identified the set of all compounds shared by
BioCyc and KEGG;
ii. we built temporary S matrices (one for the BioCyc
C. beijerinckii reaction set, one for the KEGG/SEED
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draft network set, and one for the BiGG database–
including only those reactions involving metabolites
in the shared set (metabolites were ordered identi-
cally in each matrix);
iii. we identified matching columns (reactions),
assuming that identical stoichiometric relationships
between a set of metabolites represented a matching
reaction between BioCyc and KEGG.
iv. we manually inspected and curated reactions not
mapped in an automated fashion.

The resulting network, based on KEGG nomenclature,
consisted of the list of reaction formulas, the corre-
sponding enzymes (including enzyme commission num-
ber) and genes, reaction identifiers, pathway
information, and a note on the source database. To
enable comparison with other published genome-scale
models (over 50 to date [21]), the metabolite and reac-
tion identifiers were reformatted in accordance with
models available in the BiGG database [32]. This was
done similarly to the BioCyc-KEGG mapping described
above. Metabolite mapping was achieved using flat files
from BiGG, and reactions were mapped using temporary
S matrices for BiGG and the C. beijerinckii network.
Manual matching was performed for reactions and
metabolites for which no automated connection was
found. Names were generated for any remaining reac-
tions and metabolites for which no mapping existed.
After identifying active reactions in defined model

simulations (described below), we examined whether
there was a strong association between database overlap
and inclusion in the active set. Specifically, we used the
Fisher’s exact probability test to determine whether the
set of overlapping reactions (those found in all three
annotation databases) was “enriched” for active use in a
simulation. Using the ‘fisherextest’ function available for
MATLAB, we defined a 2 × 2 table representing the fol-
lowing frequencies: (i) reactions belonging to all data-
bases that were active in the simulation; (ii) overlapping
reactions that were inactive; (iii) non-overlapping reac-
tions (those belonging to two or less databases) that
were active; and (iv) non-overlapping reactions that
were inactive in the simulation. An exact P-value–indi-
cating the probability of observing the same or higher
frequency of overlapping, active reactions by random
chance–was calculated by the function based on a
hypergeometric distribution.

Building the genome-scale metabolic model
In order to simulate cellular behavior based on a defined
set of inputs and outputs, the network derived from
KEGG, BioCyc, and The SEED was converted into a
genome-scale metabolic model. As described above, the
stoichiometric matrix (S) contains the primary model

information. The fundamental equation used to model
the system is based on the net mass balance of reactions
in the network, defined by:

Sv =
dx
dt

where dx/dt is change in metabolite concentration
over time and the flux vector v represents the rate of
biomolecular conversion for each reaction (units of
mmol/gDW/hr). Constraint-based modeling [17] typi-
cally assumes steady state operation (mass into the cell
equals mass out), leading to the following mass balance
constraint:

Sv = 0

When building the model, application of physico-che-
mical constraints–namely mass and energy balance–
were carefully enforced. To mass- and charge-balance
model reactions, charge information for each molecule
was determined using (in order): (i) the BiGG database;
(ii) computational pKA based predictions at pH 7.2; and
(iii) BioCyc (see Additional File 1 for complete list). The
model was then mass balanced in a semi-automated
fashion using charged molecular formulas. Reactions
with a hydrogen imbalance were balanced by automati-
cally altering the stoichiometric hydrogen relationship
until both mass and charge balances were satisfied.
Reactions that could not be balanced in this manner
were inspected manually. Any reactions that ultimately
could not be balanced were excluded from the model
entirely.
We applied environmental constraints as bounds on

individual fluxes (e.g., flux capacities, thermodynamics),
defining the smaller solution space that represents the
allowable phenotypes for the model. Irreversible reac-
tions were constrained to positive or negative flux,
depending on direction. Membrane transport and
exchange reactions were used to transfer metabolites
into and out of the cytosol and system boundaries,
respectively. For metabolites whose uptake or output
rates were experimentally determined, we specified indi-
vidual bounds (e.g., glucose, acetate) on the correspond-
ing exchange reactions, and these were varied
depending on the simulation. Reversibility was deter-
mined by careful comparison of reaction direction in all
databases, and the most common directionality was typi-
cally chosen. We used extreme pathway analysis [54,55]
to identify thermodynamically infeasible cycles, and
eliminated these cycles by changing directionality or
deleting one of the participating reactions.
As the constraint-based system is highly underdeter-

mined, many solutions (i.e., flux distributions) exist that
satisfy Sv = 0. We therefore used Flux Balance Analysis
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(FBA) to determine the distribution of reaction fluxes
that optimize a user-defined biological objective func-
tion (in our simulations, the commonly used biomass
production objective) [46,56]. To facilitate simulations,
the model was formatted to be compatible with the
COBRA Toolbox [50]; all model simulations were subse-
quently performed using COBRAToolbox-1.3.1 in
MATLAB, with GLPK as the linear programming solver.
For all optimizations, the ‘minNorm’ flag was turned on
(related to the cost of enzyme production in the cell),
and simulations were run with a negative lower bound
representing a reversible reaction.
To simulate biomass production, a single equation

representing all macromolecules comprising one C. bei-
jerinckii cell was created using known experimental
compositions and compositions inferred from the gen-
ome. Following the detailed supplemental information
provided by Lee et al. [23] for their C. acetobutylicum
genome-scale model, biomass was assumed to consist
of: DNA, RNA, lipids, protein, peptidogylcan, and tei-
choic acid and trace metabolites. DNA, RNA and pro-
tein content were calculated directly from the genome
sequence, and peptidoglycan, teichoic acid and trace
metabolites were kept similar to C. acetobutlylicum. To
determine the appropriate lipid composition, we per-
formed a detailed analysis of lipid and fatty acid content
in the cell using data from [36]. See Additional File 1
for more details.
When performing Flux Variability Analysis [17,50], we

selected reactions that could increase or decrease by
25% of their maximal flux value for further analysis. To
simulate the effect of hydrogen production on the pro-
duction of acetate, butyrate, acetone, butanol, ethanol
and growth we performed a robustness analysis [17,50].
This was done by constraining the flux through the
hydrogen exchange reaction and iteratively performing
FBA to evaluate changes in flux through the exchange
reactions of other products. The reaction flux through
exchange reactions for all interested metabolites was
then plotted versus flux through the hydrogen exchange
reaction.

Refinement of the genome-scale metabolic model
As defined by Kumar et al., metabolites that participate
in network gaps fall into two categories: non-produced
or non-consumed. We first used GapFind/GapFill [34],
which identifies network gaps and suggests reactions
(from a user-specified database–in our case, the BiGG
database) whose addition to the model would eliminate
the gap. Suggested reactions were manually inspected
for relevancy and homology evidence using BLAST [33];
reactions with an E-value of 1 × 10-8 or less for their
associated gene were added to the model. This liberal
cut off was used in an effort to achieve biomass

growth–the identified gene associations for the added
reactions were later compared against KEGG, BioCyc
and The SEED. If one of the suggested gene associations
was found to have a stronger annotation in one of these
databases, the corresponding reaction from GapFill was
not added to the model. To identify replacement reac-
tions, we iteratively ran GapFind and GapFill until the
suggested reactions all had poor supporting genetic
evidence.
Additional model refinement was carried out using

reactions described in published C. beijerinckii material,
as well as the two published C. acetobutylicum genome-
scale models [23-25]. Reactions added from the C. acet-
obutylicum models were added in the same manner as
the GapFill suggestions, with a required BLAST [33] E-
value of no more than 1 × 10-8. In only a few cases,
reactions were added without any genomic evidence,
given sufficient literature support for the reaction.
Model refinement continued until the model was cap-
able of simulating accurate growth and product
formation.

Experimental data collection & analysis
The four fermentation studies were conducted at differ-
ent temperatures: 30°C, 33°C, 35°C, and 40°C; each
study was run in triplicate. Cultures of C. beijerinckii
NCIMB 8052 were stored in spore form at 4°C in sterile
H2O [7]. Spores were heat shocked for 10 minutes at
80°C, immediately transferred into an ice bath for 5
minutes, and inoculated into a 6% glucose filter-steri-
lized P2YE medium [9,57]. The inoculum was incubated
in an anaerobic chamber under N2:CO2:H2 (volume
ratio of 85:10:5) atmosphere for 14 hours at 35 ± 1°C.
Cell cultures were then transferred into 1 L Sixfors Bior-
eactors (Appropriate Technical Resources, Inc.) contain-
ing 400 mL 6% glucose filter-sterilized P2 medium
under anaerobic conditions for a 100 hour total fermen-
tation period. Over this time period, samples were taken
every 3 hours for the first 24 hours, 6 hours for the next
12 hours, 12 hours for the next 24 hours, and then
every 24 hours for the remainder of the time. For each
sample, optical density was measured using a UV-Visible
Spectrophotometer (Thermo Scientific BioMate 3) and
cell density was calculated using the relationship A600 =
1 equivalent to 0.28 mg/mL. Gas chromatography (Agi-
lent Technologies 7890A GC System) was used to quan-
tify acetic acid, acetone, butyric acid, ethanol, and
butanol concentrations, and glucose concentration was
determined using high pressure liquid chromatography
(Agilent Technologies 1200 Series). The pH was
recorded throughout the fermentation.
For each fermentation run, substrate uptake or pro-

duct formation rates were calculated using the following
equation [58], and then averaged across each
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temperature condition:

rate =
�[metabolite]
�[biomass]

µ

In this equation, [metabolite] is the metabolite con-
centration in mmol/L, [biomass] is the cell concentra-
tion in gDW/L and μ is the growth rate. The yield Δ
[metabolite]/Δ[biomass] was determined by plotting
metabolite concentration against biomass concentration.
Growth rate was found using an exponential growth fit
to the biomass vs. time plots. To test the ability of
iCM925 to reproduce the experimental rates, an experi-
mental “range” was defined as within one standard
deviation above or below the mean. This range was used
to constrain the upper and lower bounds of the relevant
uptake and output reactions in the model, and the
resulting in silico growth prediction was compared to
the experimental growth rate.

Additional material

Additional file 1: Model Details. This Excel file contains detailed
information about the following aspects of the iCM925 model: • reaction
information (reactionData). • metabolite information (metaboliteData). •
reaction additions from BiGG based on GapFill suggestions and BLAST
scores (GapFill additions from BiGG). • biomass equation and details
about its construction (Biomass Composition). • fatty acid and
phospholipid molecular formulas (Phospholipid Formulas).

Additional file 2: Additional Figures and Analyses. This PDF contains
information about the following supporting results, figures, analyses: A.
Annotation Database Gene-Protein-Reaction (GPR) Agreement. B.
Annotation Database Pathway Contribution. C. Experimental Data. D.
Substrate Uptake Rates & Product Formation Rates. F. Flux Variability
Analysis.

Additional file 3: Model SBML File. This file contains the model in the
Systems Biology Markup Language format. This file can be read into
MATLAB using the COBRA Toolbox.

Acknowledgements
The authors gratefully acknowledge funding from an NSF CAREER grant
(NDP) and a Chemistry-Biology Interface NIH Training Grant Fellowship
(CBM). Additionally, the authors would like to thank professors Aaron Best
and Matt DeJongh from Hope College for their assistance with collecting
annotation data from The SEED database, graduate students Matthew
Benedict, Matthew Gonnerman, and Yi Wang for their feedback, ideas and
assistance with model building, and undergraduate students Sanchit Beri,
Keith Chavez, and Kanishka Desai for their contributions to building the
model.

Author details
1Department of Chemical and Biomolecular Engineering, University of Illinois,
Urbana, IL, USA. 2Institute for Genomic Biology, University of Illinois, Urbana,
IL, USA. 3Department of Bioengineering, University of Illinois, Urbana, IL, USA.
4Center for Advanced BioEnergy Research, University of Illinois, Urbana, IL,
USA. 5Department of Biological Systems Engineering, Virginia Tech,
Blacksburg, VA, USA. 6Department of Food Science and Human Nutrition,
University of Illinois, Urbana, IL, USA. 7Department of Chemical Engineering
and Material Science, University of Minnesota, MN, USA. 8Institute for
Systems Biology, 401 Terry Avenue N, Seattle, WA 98109, USA.

Authors’ contributions
CBM completed the bulk of the metabolic reconstruction, model generation,
and related analyses, guided and contributed to experimental data
collection, and drafted the manuscript. JAE contributed significant
intellectual feedback regarding model building and analysis, assisted with
the automated collection of annotation data, and substantially edited the
manuscript. RR assisted with the initial metabolic reconstruction and model
generation, and the initial experimental fermentation studies. SA optimized
the experimental fermentation protocol and assisted with experimental data
collection and analysis. PJK provided significant intellectual feedback, and
coded and executed gapfilling algorithms. RSS provided invaluable
intellectual support regarding model analyses and comparisons to C.
acetobutylicum, and provided significant edits to the manuscript. YSJ
provided experimental expertise and equipment, regular feedback regarding
model building and analysis, and significant edits to the manuscript. HPB
provided invaluable knowledge of C. beijerinckii metabolism, experimental
expertise and equipment, regular feedback regarding model building and
analysis and significant edits to the manuscript. NDP conceived of the study,
guided the project, contributed to the design of the metabolic
reconstruction, model generation, and subsequent analyses, and
substantially edited the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors have filed a provisional patent related to the C. beijerinckii
metabolic model described herein.

Received: 3 May 2011 Accepted: 16 August 2011
Published: 16 August 2011

References
1. Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS: Fermentative butanol

production by Clostridia. Biotechnol Bioeng 2008, 101:209-228.
2. Jones DT, Woods DR: Acetone-butanol fermentation revisited. Microbiol

Rev 1986, 50:484-524.
3. Atsumi S, Hanai T, Liao JC: Non-fermentative pathways for synthesis of

branched-chain higher alcohols as biofuels. Nature 2008, 451:86-89.
4. Bond-Watts BB, Bellerose RJ, Chang MC: Enzyme mechanism as a kinetic

control element for designing synthetic biofuel pathways. Nat Chem Biol
.

5. Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A, Ouellet M,
Keasling JD: Metabolic engineering of Saccharomyces cerevisiae for the
production of n-butanol. Microb Cell Fact 2008, 7:36.

6. Ezeji T, Milne C, Price ND, Blaschek HP: Achievements and perspectives to
overcome the poor solvent resistance in acetone and butanol-producing
microorganisms. Appl Microbiol Biotechnol 85:1697-1712.

7. Annous BA, Blaschek HP: Isolation and characterization of Clostridium
acetobutylicum mutants with enhanced amylolytic activity. Appl Environ
Microbiol 1991, 57:2544-2548.

8. Ezeji TC, Qureshi N, Blaschek HP: Butanol fermentation research: upstream
and downstream manipulations. Chem Rec 2004, 4:305-314.

9. Formanek J, Mackie R, Blaschek HP: Enhanced Butanol Production by
Clostridium beijerinckii BA101 Grown in Semidefined P2 Medium
Containing 6 Percent Maltodextrin or Glucose. Appl Environ Microbiol
1997, 63:2306-2310.

10. Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP: Butanol
production by Clostridium beijerinckii. Part I: Use of acid and enzyme
hydrolyzed corn fiber. Bioresource Technology 2008, 99:5915-5922.

11. Ezeji T, Qureshi N, Blaschek HP: Butanol production from agricultural
residues: Impact of degradation products on Clostridium beijerinckii
growth and butanol fermentation. Biotechnology and Bioengineering 2007,
97:1460-1469.

12. Wilkinson SR, Young M: Physical map of the Clostridium beijerinckii
(formerly Clostridium acetobutylicum) NCIMB 8052 chromosome. J
Bacteriol 1995, 177:439-448.

13. Kashket ER: Clostridial strain degeneration. FEMS Microbiology Review 1995,
17(3):307-315.

14. Shi Y, Li YX, Li YY: Large number of phosphotransferase genes in the
Clostridium beijerinckii NCIMB 8052 genome and the study on their
evolution. BMC Bioinformatics 11(Suppl 11):S9.

Milne et al. BMC Systems Biology 2011, 5:130
http://www.biomedcentral.com/1752-0509/5/130

Page 14 of 15

http://www.biomedcentral.com/content/supplementary/1752-0509-5-130-S1.XLS
http://www.biomedcentral.com/content/supplementary/1752-0509-5-130-S2.PDF
http://www.biomedcentral.com/content/supplementary/1752-0509-5-130-S3.XML
http://www.ncbi.nlm.nih.gov/pubmed/18727018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18727018?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/3540574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18172501?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19055772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19055772?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1722664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1722664?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15543610?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15543610?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16535628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16535628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16535628?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18061440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18061440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18061440?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17274071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17274071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17274071?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7814334?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7814334?dopt=Abstract


15. Shi Z, Blaschek HP: Transcriptional analysis of Clostridium beijerinckii
NCIMB 8052 and the hyper-butanol-producing mutant BA101 during the
shift from acidogenesis to solventogenesis. Appl Environ Microbiol 2008,
74:7709-7714.

16. Mitchell WJ: Physiology of carbohydrate to solvent conversion by
clostridia. Adv Microb Physiol 1998, 39:31-130.

17. Price ND, Reed JL, Palsson BO: Genome-scale models of microbial cells:
evaluating the consequences of constraints. Nat Rev Microbiol 2004,
2:886-897.

18. Feist AM, Herrgard MJ, Thiele I, Reed JL, Palsson BO: Reconstruction of
biochemical networks in microorganisms. Nat Rev Microbiol 2009,
7:129-143.

19. Thiele I, Palsson BO: A protocol for generating a high-quality genome-
scale metabolic reconstruction. Nat Protoc 2010, 5:93-121.

20. Feist AM, Palsson BO: The growing scope of applications of genome-scale
metabolic reconstructions using Escherichia coli. Nat Biotechnol 2008,
26:659-667.

21. Milne CB, Kim PJ, Eddy JA, Price ND: Accomplishments in genome-scale in
silico modeling for industrial and medical biotechnology. Biotechnol J
2009, 4:1653-1670.

22. Oberhardt MA, Palsson BO, Papin JA: Applications of genome-scale
metabolic reconstructions. Mol Syst Biol 2009, 5:320.

23. Lee J, Yun H, Feist AM, Palsson BO, Lee SY: Genome-scale reconstruction
and in silico analysis of the Clostridium acetobutylicum ATCC 824
metabolic network. Appl Microbiol Biotechnol 2008, 80:849-862.

24. Senger RS, Papoutsakis ET: Genome-scale model for Clostridium
acetobutylicum: Part I. Metabolic network resolution and analysis.
Biotechnol Bioeng 2008, 101:1036-1052.

25. Senger RS, Papoutsakis ET: Genome-scale model for Clostridium
acetobutylicum: Part II. Development of specific proton flux states and
numerically determined sub-systems. Biotechnol Bioeng 2008,
101:1053-1071.

26. Roberts SB, Gowen CM, Brooks JP, Fong SS: Genome-scale metabolic
analysis of Clostridium thermocellum for bioethanol production. BMC
Syst Biol 4:31.

27. Salimi F, Zhuang K, Mahadevan R: Genome-scale metabolic modeling of a
clostridial co-culture for consolidated bioprocessing. Biotechnol J
5:726-738.

28. Kanehisa M, Goto S: KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Res 2000, 28:27-30.

29. Caspi R, Foerster H, Fulcher CA, Kaipa P, Krummenacker M, Latendresse M,
Paley S, Rhee SY, Shearer AG, Tissier C, et al: The MetaCyc Database of
metabolic pathways and enzymes and the BioCyc collection of
Pathway/Genome Databases. Nucleic Acids Res 2008, 36:D623-631.

30. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Cohoon M, de
Crecy-Lagard V, Diaz N, Disz T, Edwards R, et al: The subsystems approach
to genome annotation and its use in the project to annotate 1000
genomes. Nucleic Acids Res 2005, 33:5691-5702.

31. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K,
Gerdes S, Glass EM, Kubal M, et al: The RAST Server: rapid annotations
using subsystems technology. BMC Genomics 2008, 9:75.

32. Schellenberger J, Park JO, Conrad TM, Palsson BO: BiGG: a Biochemical
Genetic and Genomic knowledgebase of large scale metabolic
reconstructions. BMC Bioinformatics 11:213.

33. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W,
Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res 1997, 25:3389-3402.

34. Satish Kumar V, Dasika MS, Maranas CD: Optimization based automated
curation of metabolic reconstructions. BMC Bioinformatics 2007, 8:212.

35. Chen JS: Alcohol dehydrogenase: multiplicity and relatedness in the
solvent-producing clostridia. FEMS Microbiol Rev 1995, 17:263-273.

36. Durre P, Ed: Handbook of Clostridia. Taylor & Francis Group, LLC; 2005.
37. Amador-Noguez D, Feng XJ, Fan J, Roquet N, Rabitz H, Rabinowitz JD:

Systems-level metabolic flux profiling elucidates a complete, bifurcated
tricarboxylic acid cycle in Clostridium acetobutylicum. J Bacteriol
192:4452-4461.

38. Crown SB, Indurthi DC, Ahn WS, Choi J, Papoutsakis ET, Antoniewicz MR:
Resolving the TCA cycle and pentose-phosphate pathway of Clostridium
acetobutylicum ATCC 824: Isotopomer analysis, in vitro activities and
expression analysis. Biotechnol J 2010 Nov 4.

39. Reed JL, Vo TD, Schilling CH, Palsson BO: An expanded genome-scale
model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 2003, 4:
R54.

40. Markowitz VM, Ivanova NN, Szeto E, Palaniappan K, Chu K, Dalevi D,
Chen IM, Grechkin Y, Dubchak I, Anderson I, et al: IMG/M: a data
management and analysis system for metagenomes. Nucleic Acids Res
2008, 36:D534-538.

41. Markowitz VM, Korzeniewski F, Palaniappan K, Szeto E, Werner G, Padki A,
Zhao X, Dubchak I, Hugenholtz P, Anderson I, et al: The integrated
microbial genomes (IMG) system. Nucleic Acids Res 2006, 34:D344-348.

42. Henry CS, Zinner JF, Cohoon MP, Stevens RL: iBsu1103: a new genome-
scale metabolic model of Bacillus subtilis based on SEED annotations.
Genome Biol 2009, 10:R69.

43. Oh YK, Palsson BO, Park SM, Schilling CH, Mahadevan R: Genome-scale
reconstruction of metabolic network in Bacillus subtilis based on high-
throughput phenotyping and gene essentiality data. J Biol Chem 2007,
282:28791-28799.

44. Nishikawa T, Gulbahce N, Motter AE: Spontaneous reaction silencing in
metabolic optimization. PLoS Comput Biol 2008, 4:e1000236.

45. Edwards JS, Ibarra RU, Palsson BO: In silico predictions of Escherichia coli
metabolic capabilities are consistent with experimental data. Nat
Biotechnol 2001, 19:125-130.

46. Kauffman KJ, Prakash P, Edwards JS: Advances in flux balance analysis.
Curr Opin Biotechnol 2003, 14:491-496.

47. Minton NP, Clarke DJ, Eds: Clostridia. New York: Plenum Press; 1989.
48. Feist AM, Henry CS, Reed JL, Krummenacker M, Joyce AR, Karp PD,

Broadbelt LJ, Hatzimanikatis V, Palsson BO: A genome-scale metabolic
reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260
ORFs and thermodynamic information. Mol Syst Biol 2007, 3:121.

49. Mitchell WJ: Carbohydrate uptake and utilization by Clostridium
beijerinckii NCIMB 8052. Anaerobe 1996, 2:379-384.

50. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ:
Quantitative prediction of cellular metabolism with constraint-based
models: the COBRA Toolbox. Nat Protoc 2007, 2:727-738.

51. Datta R, Zeikus JG: Modulation of acetone-butanol-ethanol fermentation
by carbon monoxide and organic acids. Appl Environ Microbiol 1985,
49:522-529.

52. Kim BH, Bellows P, Datta R, Zeikus JG: Control of Carbon and Electron
Flow in Clostridium acetobutylicum Fermentations: Utilization of Carbon
Monoxide to Inhibit Hydrogen Production and to Enhance Butanol
Yields. Appl Environ Microbiol 1984, 48:764-770.

53. Price ND, Papin JA, Schilling CH, Palsson BO: Genome-scale microbial in
silico models: the constraints-based approach. Trends Biotechnol 2003,
21:162-169.

54. Papin JA, Price ND, Edwards JS, Palsson BB: The genome-scale metabolic
extreme pathway structure in Haemophilus influenzae shows significant
network redundancy. J Theor Biol 2002, 215:67-82.

55. Price ND, Papin JA, Palsson BO: Determination of redundancy and
systems properties of the metabolic network of Helicobacter pylori
using genome-scale extreme pathway analysis. Genome Res 2002,
12:760-769.

56. Edwards JS, Covert M, Palsson B: Metabolic modelling of microbes: the
flux-balance approach. Environ Microbiol 2002, 4:133-140.

57. Lee J, Mitchell WJ, Blaschek HP: Glucose uptake in Clostridium beijerinckii
NCIMB 8052 and the solvent-hyperproducing mutant BA101 (vol 67, pg
5025, 2001). Applied and Environmental Microbiology 2002, 68:3181-3181.

58. Varma A, Palsson BO: Stoichiometric flux balance models quantitatively
predict growth and metabolic by-product secretion in wild-type
Escherichia coli W3110. Appl Environ Microbiol 1994, 60:3724-3731.

doi:10.1186/1752-0509-5-130
Cite this article as: Milne et al.: Metabolic network reconstruction and
genome-scale model of butanol-producing strain Clostridium beijerinckii
NCIMB 8052. BMC Systems Biology 2011 5:130.

Milne et al. BMC Systems Biology 2011, 5:130
http://www.biomedcentral.com/1752-0509/5/130

Page 15 of 15

http://www.ncbi.nlm.nih.gov/pubmed/18849451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18849451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18849451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9328646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9328646?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15494745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15494745?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19116616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19116616?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20057383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20057383?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18536691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18536691?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19946878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19946878?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19888215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19888215?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18758767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18758767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18758767?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18767192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18767192?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18767191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18767191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18767191?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10592173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17965431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17965431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17965431?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16214803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16214803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16214803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18261238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18261238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9254694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584497?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7576768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7576768?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12952533?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17932063?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16381883?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19555510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19555510?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17573341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17573341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17573341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19057639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19057639?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11175725?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11175725?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14580578?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17593909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17593909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17593909?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17406635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17406635?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16346746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16346746?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16346643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16346643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16346643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16346643?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12679064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12679064?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12051985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12051985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12051985?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11997342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11997342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11997342?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12000313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12000313?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7986045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7986045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7986045?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results & Discussion
	The initial genome-scale metabolic network
	The refined C. beijerinckii metabolic network
	The genome-scale model (iCM925)
	Validation of iCM925
	Analysis of the active reactions in iCM925
	Understanding butanol production: the role of molecular hydrogen
	Comparison of iCM925 with C. acetobutylicum model

	Conclusions
	Methods
	Semi-automated compilation of the draft metabolic network
	Building the genome-scale metabolic model
	Refinement of the genome-scale metabolic model
	Experimental data collection & analysis

	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


