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This paper illustrates how Phase I estimators in statistical process control (SPC) can affect the 

performance of Phase II control charts. The deleterious impact of poor Phase I estimators on the 

performance of Phase II control charts is illustrated in the context of profile monitoring. Two 

types of Phase I estimators are discussed. One approach uses functional cluster analysis to 

initially distinguish between estimated profiles from an in-control process and those from an out-

of-control process. The second approach does not use clustering to make the distinction. The 

Phase II control charts are established based on the two resulting types of estimates and 

compared across varying sizes of sustained shifts in Phase II. A simulated example and a Monte 

Carlo study show that the performance of the Phase II control charts can be severely distorted 

when constructed with poor Phase I estimators. The use of clustering leads to much better Phase 

II performance. We also illustrate that the performance of Phase II control charts based on the 

poor Phase I estimators not only have more false alarms than expected but can also take much 

longer than expected to detect potential changes to the process. 

Keywords: Clustering, Control Chart, Mixed Models, Statistical Process Control.  

 

1. Introduction 

Profile monitoring is a form of statistical process control (SPC) where the quality of a product or 

process is characterized by a functional relationship, referred to as a “profile”, between a 

response variable and one or more explanatory variables. Profile monitoring, and SPC in general, 

is conducted over two Phases, referred to as Phase I and Phase II. In Phase I profile monitoring, a 

historical data set (HDS) is utilized to first estimate the individual profiles using appropriate 

regression methods. Then the estimated profiles are analyzed to determine which estimated 

profiles can be considered from the in-control process and which, if any, can be considered from 
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an out-of-control process. Finally, using those estimated profiles determined to be from the in-

control process, appropriate estimates are obtained of in-control parameters and used to establish 

control limits for the Phase II control charts. Here, an out-of-control process is one where at 

some point there is a change in the functional relationship between the response and the 

explanatory variables. For example, such a change might be represented by a sustained shift in a 

parameter in the regression model representing the profiles. After detecting possible profiles 

from the out-of-control process and obtaining the control limits for Phase II control charts based 

on the profiles considered to represent the in-control process, Phase II profile monitoring consists 

of monitoring the future profiles to determine the on-going stability of the process. 

In Phase I profile monitoring, profiles from the out-of-control process can be detected by 

using the Hotelling’s 2T statistic. For example, Kang and Albin1, Kim et al.2 and Mahmoud and 

Woodall3 utilized the Hotelling’s 2T statistic to detect the profiles from the out-of-control 

process based on the estimated regression parameters using linear regression models. Profiles 

estimated by nonlinear and nonparametric regression methods were studied by Jin and Shi4, 

Walker and Wright5, Gupta et al.6, Ding et al.7, Williams et al.8, Williams et al.9, Chicken et al.10  

and Hung et al.11. In addition, Jensen et al.12, Jensen and Birch13, Qiu et al.14 and Abdel-Salam et 

al.15 provided mixed model approaches to monitor the profiles in order to account for the 

correlation structure typically existing within each profile.  

Based on the mixed models approach, the Hotelling’s 2T statistic used to detect the presence 

of profiles from an out-of-control process can be obtained by comparing each individual 

estimated profile, referred to as the “profile specific (PS) curve” to the estimated population 

average (PA) curve. Jensen et al.12 also showed that the Hotelling’s 2T  statistic used to detect 

profiles from the out-of-control process in the parametric mixed model can be equivalently 

obtained by using the estimated best linear unbiased predictors (eblups) of each profile. The 

method of Jensen et al.12 will be used throughout this paper and referred to as the “non-cluster-

based method”. 

Unfortunately, during Phase I analysis, the Hotelling’s 2T method may fail to properly 

classify profiles into the two categories of in-control and out-of-control. That is, a profile from 

an in-control process may be misclassified as being from an out-of-control process, an error 

referred to a false negative. The data from such a profile may be mistakenly discarded and not 
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used in the subsequent calculations to establish Phase II control limits. Also, a profile from the 

out-of-control process may be misclassified as being from the in-control process, an error 

referred to as a false positive. The data from such a profile are mistakenly included in calculating 

the Phase II control limits. Chen et al.16 showed that if profiles from the out-of-control process 

are classified as being from the in-control process, the resulting estimated PA profile parameters 

will be biased, perhaps severely so. They provided an alternative profile monitoring method in 

Phase I, referred to as “cluster-based profile monitoring” to obtain the estimates that are robust to 

profiles from the out-of-control process contained in the HDS. Recall that a primary goal of 

Phase I analysis is to obtain the estimates as close to the true parameters for the in-control PA 

profile as possible and then use these estimates to set the proper control limits for Phase II 

control charts. Severely biased estimates of the PA profile in Phase I can give incorrect Phase II 

control limits and adversely affect the performance of Phase II control charts.  

 Phase II performance based on Phase I estimators has been studied in the past by others 

under different scenarios than considered in this paper. For example, Mahmoud17investigated the 

performance of three Phase II simple linear profile approaches, those of Kang and Albin18, Kim 

et al.2, and Mahmoud et al.19, with estimated parameters. Aly et al.20, on the other hand, 

compared the in-control performance of three Phase II simple linear profile monitoring 

approaches based on the standard deviation of the average run length (SDARL).  

 

2. Review of Methods in Phase I Profile Monitoring 

In Phase I profile monitoring, we assume that the thi profile can be represented by using the linear 

mixed model (LMM) (Laird and Ware21) given by  

, 1, 2, ,i i i i i i m= + +    =  .y X β Z b ε                                                 (2.1) 

where m is the number of profiles, iy is the 1in ×  response vector associated with the thi profile, 

in  is the sample size for the thi profile, iX and iZ  are in p× and ,in q× respectively, matrices of 

explanatory variables, β  is a 1p× vector of PA parameters, ib  is a 1q×  vector of random effects 

for the thi profile with ~ ( , )i MN b 0 G  and G  is a q q× covariance matrix. In addition, iε  is the 

1in × vector of random errors for the thi profile with ( ), iMNiε 0 R
, where iR  is the i in n×  
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covariance matrix. For more details of the LMM, see Schabenberger and Pierce22, Ruppert et 

al.23, Seber and Wild24 and Demidenko25.  

Using the LMM, the thi estimated PS curve is given by  

 ˆ ˆ ,i LMi M i i= +X β Z bPS                                                 (2.2) 

where ˆ
LMMβ  is the estimator  for β and îb  is the eblup vector  for the random effect ib . If we let 

 
=   

 

LMM
i

i

ˆ
ˆ

b̂

β
β  and i i iX X Z=    , then equation (2.2) can also be expressed as  

  ˆ .

i i i=PS X β                                                  (2.3) 

The estimated PA curve is 

  ˆ
LMM=PA Xβ ,                                                (2.4) 

where X  is the n p× model matrix composed of all the distinct rows contained in each iX  and 

n is the number of such distinct rows.   

The first step of Phase I profile monitoring is to classify the profiles as either from the in-

control or out-of-control process. Using the LMM, Jensen et al.12 proposed using the distance of 

the estimated vector for the thi  profile, ˆ
iβ , from the center of the group of estimated vectors, 

ˆ
LMMβ . They introduced a formula for the 2T  statistic for the thi profile, denoted as 2

iT , based on 

comparing ˆ
iβ  to the sample mean of  the ˆ

iβ vectors, ,ˆ
LMMβ which is defined as 

 ( ) ( )2 1ˆ ˆ ˆ ˆˆ ,
T

i i LMM i LMMT −= − −β β V β β  (2.5) 

where V̂ is the estimated variance-covariance matrix of ˆ
iβ . The successive difference estimator 

ˆ ,DV  is preferred here. Sullivan and Woodall22 showed that use of ˆ
DV is effective in detecting 

sustained step changes in the process that may occur in Phase I data, the situation we consider. 

The successive difference estimator of V is  

 
( ) ( )( )1

1 11

1 ˆ ˆ ˆ ˆˆ .
2 1

Tm
D i i i iim

−

+ +=
= − −

− ∑V β β β β  (2.6) 
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Jensen et al.12 showed that the distribution of 2T follows asymptotically a chi-squared 

distribution with p  degrees of freedom for large samples, where p  is the number of estimated 

parameters. Since 
1

ˆ ,
m

i
i=

=∑b 0 it follows that (Jensen et al.12) the Equations (2.5) and (2.6) can be 

written equivalently as  

2 1ˆ ˆˆ ,T
i i D iT −= b V b  

and 

( ) ( )( )1
1 11

1 ˆ ˆ ˆ ˆˆ .
2 1

Tm
D i i i iim

−

+ +=
= − −

− ∑V b b b b
 

The 2T  statistic provided by Jensen et al.12 works well when the HDS contains very few or 

no profiles from the out-of-control process. However, if there are even a modest number of 

profiles in the HDS from the out-of-control process, this method can be adversely affected and 

will result in biased estimates of the PA profile (Chen et al.16). In order to provide a 2T  statistic 

that is robust to the profiles from the out-of-control process, Chen et al.16 introduced the cluster-

based profile monitoring method for Phase I profile monitoring analysis. Instead of computing 

the 2T statistic based on all the profiles in the HDS, their method is first to cluster the estimated 

profiles to obtain an initial main cluster of estimated profiles with similar shapes. The profiles in 

the initial main cluster set are used to obtain the initial PA parameter estimates which are used to 

compute the 2T statistic for each profile not contained in the initial main cluster set. Those 

profiles with “small” 2T statistics are added to the initial main cluster set to obtain a new set of 

profiles. By iteratively updating the profiles not in the main cluster in this manner until no 

profiles can be added to the main cluster set, the estimated PA parameters are obtained by using 

the profiles in the final main cluster set. The details of algorithm can be found in Chen et al.16.  

During Phase I analysis, if the HDS contains profiles from the out-of-control process 

resulting from a sustained shift, Chen et al.16 illustrated the following two important features of 

their cluster-based profile monitoring method: 1) their method is more likely to correctly 

distinguish  profiles from the in-control process from those from the out-of-control process than 

the method of Jensen et al.12 and 2), their method results in PA estimated parameters with less 
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bias than those estimates resulting from the method of Jensen et al.12. The impact of these 

features on the Phase II monitoring performance is illustrated in Sections 3 and 4.  

 

3. Phase II Control Charts based on  Phase I Estimates 

It is intuitive that an estimator with favorable Phase I properties, such as small bias and small 

variance, will result in better Phase II control chart performance than an estimator with less 

favorable Phase I properties. This effect is further illustrated using the following example of the 

Phase I profile monitoring analysis (Chen et al.16). 

In this example, using the LMM, the first nine profiles were generated from the in-control 

process as 

2
0 0 2 1 3 2 1( ) ( ) ( ) , 1, 2,..., , 1, 2,...,ij i i ij i ij ijy b b x b x i m j nβ β β ε= + + + + + +  =  =                  (3.1) 

and the last three profiles were generated as 

2
0 0 1 1 2 2 1( ) ( ) ( ) , 1,..., , 1, 2,...,ij i i ij i ij ijy b b x b x i m m j nβ β β ε′ ′ ′= + + + + + +    = +   =             (3.2) 

where ( )0 1 2, ,T β β β=β = ( )12.5, 7,2−  for the in-control process and ( )'
0 1 2, ,T β β β′ ′ ′=β =

( )21.875, 14.5,3.5−  for the out-of-control process with n=10, 1 9, 12,= =m m 2 2 2
0 1 2 0.5,= = =σ σ σ

and 2 4σ = . The regressor vector, x, contains 10 equally spaced values from 1 to 10. Thus, 

profiles 1 through 9 represent profiles from the in-control process and profiles 10, 11, and 12 

represent profiles from the out-of-control process. The plot of the observed data is given in 

Figure 1 where straight line segments are used to connect the ten observations for each profile. 

We note that it is not at all clear from looking at Figure 1 that profiles 10, 11, and 12 are from the 

out-of-control process. 

 The non-cluster-based method leads one to conclude that the 6th profile  is from the out-of-

control process, and then yielded the following  estimates for the PA parameters  

( )ˆ 16.27, 9.71, 2.18
PA

T = −β  

The estimated variance-covariance matrix was  
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3.660 2.470 0.405
ˆ 2.470 2.035 0.132

0.405 0.132 0.493

− − 
 = − − 
 − − 

V . 

The cluster-based method, on the other hand, correctly detected the 10th, 11th and 12th profiles as 

from the out-of-control process and yielded as the estimates for the PA parameters and variance-

covariance matrix  

( )ˆ 12.55, -7.24, 1.78 ,T
PA =β  

and 

0.203     0.120  0.270
ˆ 0.120    0.236  0.090

 0.270    0.090  0.389

 
 =  
  

V , 

respectively.  

 

Figure 1: The plot of observed data. The dashed curves represent profiles from the in-control 

process; the solid curves represent profiles from the out-of-control process. 
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The Phase II control limits were obtained by simulating the in-control process with the Phase 

I estimates and an in-control ARL0 set equal to 200. In order to choose the upper control limit 

(UCL) so that the in-control ARL0=200, first define the in-control 2T as  

( ) ( )2 1ˆ ˆ ˆ ˆˆ ,
T

PA PAT −= − −β β V β β  

where β̂ is the estimated profile parameter vector   for  the  in-control process profile simulated 

by the LMM with the estimated PA parameter vector ˆ
PAβ  and estimated corresponding 

covariance  matrix V̂  resulting from the  Phase I analysis. The UCL is then obtained so that the 

average number (based on 5000 simulations) of simulated in-control profiles until a signal (a 2T  

greater than the UCL) occurs is 200. A good start value of UCL could be based on the average of 

the maximum of every 200 simulated in-control 2T statistics. Note, since the simulated in-control 

profiles are based on the Phase I estimates, and not on the true in-control parameters, it is likely  

for the Phase II ARL to not equal 200 even when the profiles result from an in-control process.  

After calibrating the control limits with ARL0 equaling 200 for the non-cluster-based 2T

control chart and the cluster-based 2T control chart, the performance of each chart can be 

evaluated by comparing the out-of-control ARL, denoted as ARL1, for different Phase II shift 

values. The PA curve in this example may be written as   

2
0 1 2β β β= + +PA x x                                            (3.3) 

where ( )12.5, 7,2T = −β . Equation (3.3) can be rewritten as  

( )2
1 2 2.5C Cβ β= + −PA x x                          (3.4) 

 where ( ) ( )1 2, 3, 2T
C C Cβ β= =β . Assuming that the out-of-control process has the PA profile  

( )( )2
1 2 2.5C C shiftβ β= + + −PA x x                                   (3.5) 

with shift=(0,0.25,0.5,0.75,1,1.25,1.5), the in-control ARL0 and the out-of-control ARL1 based 

on the cluster-based 2T control chart and the non-cluster-based 2T control chart are given in 

Table 1 to compare the performance of these two control charts.  



9 
 

Table 1: ARL_CB and ARL_NCB with ARL0≈200 for Phase II with Varying Shift Values. 

ARL_CB represents the ARL for the cluster-based method and ARL_NCB represents the ARL for 

the non-cluster-based method (bolded cells represent the better values).  

Phase II  
Shift 

ARL_CB ARL_NCB 

0 193.8 64.9 
0.25 72.13 120.3 
0.5 17.4 261.4 
0.75 3.5 30.36 

1 2.0 7.9 
1.25 1.3 2.6 
1.5 1.1 1.6 

 

Table 1 shows that when Phase II shift size is greater than 0 the ARL1 based on the cluster-

based 2T  control chart are uniformly smaller than the ARL1 based on the non-cluster-based 2T  

control chart, especially when the Phase II shift size is small. For example, when the Phase II 

shift size equals 0.25, the ARL1 based on the non-cluster-based 2T control chart is 73.2 while the 

ARL1 based on the cluster-based 2T control chart is 120.3. When the Phase II shift size equals 1, 

the cluster-based 2T control chart has an ARL1 value of 2.0. The non-cluster-based 2T  control 

chart, on the other hand, takes about 8 samples, on the average, to detect the change of process. 

Also, the simulation results show that when Phase II shift equals 0, the ARL for the cluster 

method is 193.8 and for the non-cluster method the ARL is 64.9. This result indicates that when 

the Phase I estimates are far from the true parameters, the ARL is much smaller than 200, the 

desired value, and thus leads to more false alarms.  

In addition, Table 1 shows that the ARL values based on the non-cluster-based 2T  control 

chart are greater than 200 when Phase II shift size is 0.5. This result indicates that the non-

cluster-based 2T control chart requires many more observations than expected to detect the 

change of process at this point. This ARL-bias feature occurs because the non-cluster-based 

method in Phase I misclassified the profiles from both the in-control and the out-of-control 

processes, and the resulting estimates of the PA profile parameters are severely biased. Recall 

that the profiles from the out-of-control process in the HDS were generated with the PA curve  

221.875 14.5 3.5= − +PA x x , 
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which can be written as  

( )23 (2 1.5) 2.5= + + −PA x x                                     (3.6) 

Note equation (3.6) is equivalent to equation (3.5) with a shift size equal to 1.5. The non-cluster-

based estimator (Jensen et al.12) involves 3 profiles from the out-of-control process with Phase I 

shift size equal to 1.5 and, as a result, its estimated PA curve is pulled to the direction of the PA 

curve with shift value equal to 1.5. The corresponding Phase II control chart is also distorted, 

resulting in many more samples, on the average, than expected to detect changes in the process 

and many more false alarms when the process is in-control.  

 

4. A Monte Carlo Study Comparing Phase II Control Charts  

In this section, the average performance of Phase II control charts for the two methods is 

compared based on the average performance of Phase I estimators. The average Phase I 

estimates were obtained from the Monte Carlo study provided by Chen et al.16. In this Phase I 

Monte Carlo study, they assumed that the in-control profiles are randomly generated from the 

linear mixed model 

2
0 1 2 1, 1, 2,..., , 1, 2,...,ij i i ij i ij ijy x x i m j n= + + + = = ，β β β ε                         (4.1) 

where ijy is the thj observation for the thi profile, m1 is the number of profiles from the in-control 

process, n is the number of observations within each profile, and where   

2
0 2 0

1 1 2 1

2 2 2

,
2 ,

,

i i

i i

i i

x b
x b

b

β β
β β β
β β

= +

= − +

= +

 

 with 1 1 .

m n

ij
i j

x

mnx = =
∑∑

 =  Here, ( )0 1 2, ,T =β β β β  represents the fixed effect parameters and 

( )0 1 2, ,T
i i i ib b b =b  represents the random effects. Note the corresponding PA parameter vector 

can also be written as ( )2
2 1 2 2, 2 , .T

PA x xβ β β β = −β
 
Consequently, the PA profile, evaluated 

at an arbitrary vector of 
00 01 02 0( , ,..... )nx x x=x  can be written as  
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 2 2
2 1 2 0 2 0 0( 2 ) , 1, 2,..., .j j jPA x x x x j n= + − +   =β β β β   (4.2) 

It is easy to show that the PA profile can be simplified to give  

 ( )2

1 0 2 0 0, 1, 2,..., .j j jPA x x x j n= + −   =β β  (4.3) 

The profiles in the out-of-control process were also generated from a model of the same 

form, but with a sustained shift .  Thus we have 

( )
( )

( )

2
0 1 2 1 1

2
0 0 0

1 1 2 1

2 2 2

, 1, 2,..., , 1, 2,...,

,

2 ,

,

，ij i i ij i ij ij

i i

i i

i i

y x x i m m m j n

shift x b

shift x b

shift b

β β β ε

β β

β β β

β β

= + + + = + + =

= + +

= − + +

= + +

                  (4.4)
 

where m is the number of profiles. The shift is assumed to be sustained for the final 1m m−

profiles. Thus, the corresponding PA profile is  

( ) ( ) ( )2 2
0 1 2 0 2 0

0

2 ,

1, 2,..., .
j j jPA shift x shift x x shift x

j n

β β β β= + + − + + +  
=

               (4.5) 

Also, equation (4.5) can be simplified to give 

 ( )( )2

1 0 2 0 0, 1, 2,..., .j j jPA x shift x x j n= + + −   =β β  (4.6) 

In equation (4.4), it is assumed that 

( )
2

0 0
2 2

1 1
2
22

0 0
~ , 0 0 , ~ , .

0 0

i

i i n n

i

b
b MN MN
b

×

   
         

        

σ
σ σ

σ
0 ε 0 I  

Here, 2 2 2
0 1 2 0.5,σ σ σ= = = 2 1,=σ 1 23, 2β β=   =  and , 1, 2,..., , 1, 2,..., .ijx j i m j n=   =   =  

Consequently, the PA parameter vector for the in-control process is  ( )60.5, 19, 2 .T
PA = −β  

Additionally, 1 20, 30m m=   = and 10.n = Thus, one third of the profiles are from the out-of-

control process. The Phase II control limits were obtained based on the Phase I average (based 

on 5,000 samples) PA parameter vector and average variance-covariance matrix estimates to 

achieve the simulated in-control ARL, ARL0, equal to 200. The performance of Phase II control 
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charts are obtained by using either a small (shift=0.05), moderate (shift=0.175) or large (shift= 

0.3) Phase I shift value. The profiles for Phase II were generated via the same model as described 

above for Phase I with twelve Phase II shift values ranging from 0 (that is, the process is in-

control) to 0.3.  

Table 2 lists the average ARLs of the Phase II 2T  control charts, listed for appropriate values 

of the shift in Phase II, obtained by using the estimates from both methods when the out-of-

control process has a shift=0.05 in Phase I. When the Phase I shift = 0.05, the simulation results 

from Chen et al.16 showed that the average estimated PA parameter vector based on 5000 

samples with the cluster-based method was ( )ˆ 61.00, 19.18, 2.02T = −β and the estimated 

variance-covariance matrix was  

0.387 0.007 -0.003
ˆ 0.007 0.407 0.002

-0.003 0.002 0.441

 
 =  
  

V .

 

To achieve an ARL0=200, the UCL for the cluster-based 2T control chart, determined via 

simulation using the Phase I estimates, is 50.8.  

The average estimated PA parameters based on 5000 samples, with the non-cluster-based 

method from Chen et al.16, was ( )ˆ 61.01, 19.18, 2.02T = −β and corresponding estimated variance-

covariance matrix was  

0.476 -0.001 -0.002
ˆ -0.001 0.467 0.003

-0.002 0.003 0.501

 
 =  
  

V .

 

With ARL0=200, the UCL for the non-cluster-based 2T control chart is 41.4. Clearly, the 

estimates resulting from the two methods are nearly equal because the size of the Phase I shift is 

very small. The ARLs for different Phase II shifts are presented in Table 2.  
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Table 2: ARL_CB and ARL_NCB with Phase I shift=0.05, ARL0 ≈200. ARL_CB represents the 

ARL for the cluster-based method and ARL_NCB represents the ARL for the non-cluster-based 

method (bolded cells represent the better values). 

Phase II  
Shift 

ARL_CB ARL_NCB 

0 186.2 186.1 
0.05 77.6 78.3 
0.075 22.1 22.4 
0.1 8.2 8.2 

0.125 3.7 3.7 
0.15 2.1 2.1 
0.175 1.4 1.4 
0.2 1.2 1.2 

0.225 1.1 1.1 
0.25 1.0 1.0 
0.275 1.0 1.0 
0.3 1.0 1.0 

 

When the Phase I shift=0.15, the simulation results from Chen et al.16 showed that the 

average estimated PA parameters using the cluster-based method was ( )ˆ 61.71, 19.44, 2.04T = −β

and the estimated variance-covariance matrix was   

0.966 -0.190 0.014
ˆ -0.190 0.507 0.004

0.014 0.004 0.476

 
 = − 
 − 

V .

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 27.39.  

The average estimated PA parameter vector based on the non-cluster-based method from 

Chen et al.16 was ( )ˆ 62.01, 19.55, 2.05T = −β and corresponding estimated variance-covariance 

matrix was  

1.425 -0.347 0.029
ˆ -0.347 0.591 0.008

0.029 0.008 0.503

 
 = − 
 − 

V .
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With ARL0=200, the UCL for the non-cluster-based 2T control chart is 21.58. The ARLs for 

different Phase II shifts are presented in Table 3.  

Table 3: ARL_C and ARL_NCB with Phase I shift=0.15, ARL0 ≈200. ARL_CB represents the 

ARL for the cluster-based method and ARL_NCB represents the ARL for the non-cluster-based 

method (bolded cells represent the better values). 

Phase II  
Shift 

ARL_CB ARL_NCB 

0 104.5 97.5 
0.05 590.5 927.2 
0.075 146.7 392.8 
0.1 36.6 99.0 

0.125 11.8 27.7 
0.15 5.0 9.8 
0.175 2.6 4.3 
0.2 1.7 2.4 

0.225 1.3 1.6 
0.25 1.1 1.4 
0.275 1.0 1.1 
0.3 1.0 1.0 

 

When the Phase I shift =0.3, the simulation results from Chen et al.16 showed that the 

average estimated PA parameter vector using the cluster-based method was 

( )ˆ 61.73, 19.08, 2.01T = −β and the estimated variance-covariance matrix was 

0.748 -0.108 0.006
ˆ -0.108 0.489 0.002

0.006 0.002 0.481

 
 = − 
 − 

V .

 

With ARL0=200, the UCL for the cluster-based 2T control chart is 24.55.  

       The average estimated PA parameters based on the non-cluster-based method from Chen et 

al.16 was ( )ˆ 63.52, 20.10, 2.10T = −β and corresponding estimated variance-covariance matrix was  

2.874 -0.878 0.076
ˆ -0.878 0.785 0.025

0.076 0.025 0.504

 
 = − 
 − 

V . 
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With ARL0=200, the UCL for the non-cluster-based 2T  control chart is 19.27. The ARLs for 

different Phase II shifts are presented in Table 4.  

Table 4:ARL_CB and ARL_NCB with Phase I shift=0.3, ARL0 ≈200. ARL_CB represents the 

ARL for the cluster-based method and ARL_NCB represents the ARL for the non-cluster-based 

method (bolded cells represent the better values). 

Phase II 
Shift 

ARL_CB ARL_NCB 

0 189.4 50.3 
0.05 33.9 371.4 
0.075 11.1 706.1 
0.1 4.8 891.8 

0.125 2.5 718.4 
0.15 1.6 375.3 
0.175 1.2 146.1 
0.2 1.1 51.5 

0.225 1.0 18.5 
0.25 1.0 7.5 
0.275 1.0 3.7 
0.3 1.0 2.2 

  

Tables 2-4 show that the cluster-based 2T  control chart can detect a change in the process at 

all Phase II shifts with far fewer observations than the ARL0 of 200. The non-cluster-based 2T  

control chart continues to require a very large number of observations to detect a process shift, 

especially for Phase II shifts in the 0.05 to 0.2 range.  

Tables 2-4 also show that the cluster-based 2T control chart can detect the shift in the process 

with very few observations even when the shift value is very small. For example, Table 4 shows 

that, on average, this chart  only requires  about 34 samples to signal when the Phase II shift is 

0.05, and it signals almost immediately when the Phase II shift is equal to or greater than 0.15. 

Also, Tables 2-4 show that the non-cluster-based 2T  control chart incorrectly detects that an 

observed profile is from an out-of-control process (a “false negative”) far sooner than expected 

than the cluster-based 2T control chart when the process is in-control.  
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5. Conclusion 

The goal of this paper is to illustrate how the performance of the Phase I analysis in profile 

monitoring can affect the performance of the Phase II control chart. From the example and the 

Monte Carlo study, one can conclude that the better the Phase I estimates are, the better the 

Phase II results will be as indicated by an in-control ARL nearer the desired value and smaller 

ARL1 values for smaller Phase II sustained shift sizes. The poorer the Phase I estimates are, the 

poorer the Phase II results will be, as indicated by very large ARL1 values even for moderate 

Phase II sustained shift sizes.  

In the example, one can see that the Phase I estimates from both the cluster-based method 

and the non-cluster based method are not very close to the true parameters due to the small 

amount of data and the impact of the data from the out-of-control process. Both methods 

provided poor Phase I estimates and ended up with poor performance of the Phase II control 

charts. For example, both Phase II control charts have many more false alarms than expected. 

However, the non-cluster based control chart not only has more false alarms, it takes much 

longer than expected to detect changes in the process. The Monte Carlo study demonstrated the 

average effect of Phase I estimates on the performance of Phase II control charts across a variety 

of sustained shift values. From Tables 2-4 in Section 5, one can conclude that the cluster-based 
2T  control chart  works uniformly better than the non-cluster-based 2T  control chart for the 

cases considered due to its better Phase I estimates. Also, we can see that poor Phase I estimates 

can severely compromise the performance of Phase II control charts. 

Perhaps a better method of conducting the Monte Carlo study would be to perform the Phase 

II analysis separately based on each of the 5,000 individual estimated PA parameter vectors and 

their corresponding variance-covariance matrices rather than the average of the estimated PA 

parameter vectors and the average of the variance-covariance matrices. This former approach is 

what we used for the example and would mimic the way in which the Phase I analysis leads to 

the Phase II analysis in real applications.  The problem we encountered when implementing the 

former approach is the tremendous computing resources needed to complete the analysis. The 

method of using the average values required far less computational effort and produced results 

that clearly favor the use of the cluster-based method. 
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We believe that clustering methods in Phase I will lead to better Phase II performance. 

Generally, we encourage more research on the effect of Phase I estimation error on Phase II 

performance when monitoring profiles. This suggestion is in agreement with the idea expressed 

in Jensen et al.12  that parameter estimation in Phase I may greatly affect the performance of 

control charts during Phase II.  
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