
A Static Assurance Analysis of Android Applications

Karim O. Elish*, Danfeng (Daphne) Yao*, Barbara G. Ryder*, and Xuxian Jiang**

*Department of Computer Science, Virginia Tech
{kelish, danfeng, ryder}@cs.vt.edu

**Department of Computer Science, North Carolina State University
{jiang}@cs.ncsu.edu

Abstract
We describe an efficient approach to identify ma-

licious Android applications through specialized static
program analysis. Our solution – referred to as user-
intention program dependence analysis – performs of-
fline analysis to find the dependence relations between
user triggers and entry points to methods providing crit-
ical system functions. Analyzing these types of depen-
dences in programs can identify the privileged operations
(e.g., file, network operations and sensitive data access)
that are not intended by users. We apply our technique on
708 free popular apps and 482 malware apps for Android
OS, and the experimental results show that our technique
can differentiate between legitimate and malware appli-
cations with high accuracy. We also explain the limita-
tions of the user-intention-based approach and point out
the need for practitioners to adopt multiple analysis tools
for evaluating the assurance of Android applications.

1 Introduction
Malicious mobile apps and vulnerable mobile comput-
ing platforms threaten the privacy of personal data and
device integrity. These threats have been extensively
demonstrated in Android environments (e.g., [12, 18,
28]). Smartphones running malicious apps also increase
the attack surface of organizational local area networks
and may allow attackers to compromise stationary hosts
and servers to which they are connected threatening data
and systems of a much larger scale than mere individual
nodes.

Because of the diversity of mobile apps, most of the
existing approaches for achieving mobile computing se-
curity analyze, manage, and/or monitor mobile applica-
tions at installation time and runtime. These approaches
include:
• installation-time permission mechanisms where

users give explicit access authorizations to apps
(available in Android by default),

• conventional virus scan approaches (e.g., VirusTo-
tal),
• run-time monitoring of information flow (e.g.,

TaintDroid [18], user-driven permissions [46]),
• static program analysis where source code or bina-

ries of apps are analyzed to estimate their behavior
patterns (e.g., data flow analysis [25, 26, 28, 37] or
control flow analysis [8]).

In this paper, we describe a new user-intention-based
static analysis method for classifying applications. We
first briefly review the static program analysis technique
and then explain the novelty of our approach. The
static program analysis solutions in the Android security
paradigm specialize the classic information flow analy-
sis techniques in the Android environment with various
customized definitions of sinks and sources. Two main
categories of threats in the analysis are the leak of sen-
sitive data and unauthorized access to system resources
(e.g., malicious apps sending spam) 1.

Confidentiality and authorization are two main secu-
rity goals in the program analysis of apps. For exam-
ple, SCanDroid [25] extracts security specifications from
the manifest of an app and checks whether data flows
through the app are consistent with the stated specifica-
tions. We compare existing static analysis solutions in
Table 1 and describe them in detail in Section 6. These
complementary static analysis tools and policies can be
utilized to assess the trustworthiness of an application,
a process sometimes referred to as certification [25] and
vetting [37].

Software assurance refers to the degree of confidence
that the software functions in the intended manner and is
trustworthy [2, 38] (i.e., free from vulnerabilities). The
assurance assessment of software applications demands
multiple heterogeneous analysis mechanisms; there is no
silver bullet.

1Thanks to JVM’s safety properties, classic program vulnerabilities
such as buffer overflow are usually excluded in the analysis.

Table 1: Comparison of select static analysis solutions for apps. UID refers to our user-intention dependence analysis.

Solution Aim Flow Analysis Classification Policy Evaluation Scale

SCanDroid [25] Enforcement of
confidentiality, integrity

Data, string Constraints on permission logics N/A

CHEX [37] Discovery of exposed
component API

Data Component exported to public
without restrictions

5,486 apps

RiskRanker [30] Detection of abnormal
code/behavior patterns

Data, control Multiple malware behavior signa-
tures

118,318 apps

Woodpecker [28] Firmware permission Data, control N/A 8 phone images,
13 permissions

AndroidLeaks [26] Confidentiality Data Sensitive data used by risky APIs 24,350 apps

SCANDAL [33] Confidentiality Data Sensitive data used by risky APIs 90 apps & 8
malware

Stowaway [21] Detection of
overprivileged apps

String, Intent
control flow

Compare required and requested
permissions

940 apps

ComDroid [8] Detection of apps
communication
vulnerabilities

Intent control
flow

Implicit Intent with weak or no
permission

100 apps

PiOS [17] Confidentiality Data Sensitive data used by risky APIs 1,407 apps

UID Identification of
unauthorized calls

Data,
event-specific

control

Trigger-operation dependence for
privileged function calls

708 apps & 482
malware

In this work, we describe a new analysis approach that
leverages the dependence effects on program behaviors
and attempts to understand the reasons and causes of op-
erations. Smartphone apps (Android, iOS, or Windows
Phone) are unique in their user-centered and interaction-
intensive design, where operations may require users’
specific actions to initiate. We ask how to utilize user
intention in automatic and scalable program analysis for
assurance evaluation? Such an analysis method needs to
also cover inter-app communication (e.g., through Intent
in Android), where user intention may trigger operations
in multiple apps.

We present an approach that analyzes the dependence
relations between user inputs/actions and entry points to
methods providing critical system functions. Such an
analysis – referred to by us as user-intention program
dependence analysis – captures and enforces the causal
relations in programs. Our hypothesis is that in benign
apps, critical system operations such as network and file
access are directly or indirectly initiated by users’ re-
quests, whereas mal-intended apps, such as spyware or
Trojans, often abuse data and system resources without
proper explicit user consent. If this hypothesis holds,
dependence analysis between user triggers and opera-
tions on application code can contribute to automated

assurance assessment of unknown apps. Our experimen-
tal results analyzing 708 benign apps and 482 malware
apps provide positive evidence for the hypothesis and
this user-intention program dependence analysis can pro-
vide useful app assurance assessment.

Notable recent papers sharing a similar user-intention-
based hypothesis include user-driven access control [46,
48], and BINDER for run-time network assurance [11].
They are run-time policy-based monitoring solutions.
For example, BINDER describes traffic dependence
analysis and solves a completely different problem. We
demonstrate the effectiveness of user-intention-based
static program analysis. Our approach is fundamentally
different from the existing user-driven access control so-
lutions. One of the advantages of our approach is that it
does not require any user participation, as the analysis is
performed offline.

Our technical contributions are summarized as fol-
lows.

1. We designed an user-intention dependence analy-
sis for identifying malicious Android applications.
We introduce a specialized static program analysis
for identifying the directed paths between user in-
puts (e.g., data or actions) and entry points to meth-

2

ods providing critical system services. The analy-
sis produces a quantitative assurance score, which
is the percentage of critical function calls that are
triggered by user inputs. We also thoroughly dis-
cuss limitations and sources of inaccuracy in this
approach.

2. We implemented a static analysis tool for the pro-
posed dependence analysis for Android applica-
tions. Our tool provides specialized flow analy-
sis through finding the required dependence paths
that conform to our hypothesized application be-
havior model. The tool parses Java bytecode and
constructs a context-sensitive data-flow dependence
graph through intra- and inter-procedural def-use
analysis, and event-based information flow that in-
cludes the handling of data flow through Android
intents and GUI related implicit method invoca-
tions.

3. We evaluated our static analysis framework by con-
ducting large-scale experiments (with 1,190 real-
world Android apps) in order to characterize the be-
haviors of legitimate and malicious Android apps,
specifically on how they respond to user inputs and
events. Our results show encouraging evidence for
the validity of our dependence hypothesis. The
analysis successfully classifies most of 482 ma-
licious apps (e.g., 1.5% false negative rate when
the assurance score threshold is set to 80%, and
0.2% false negative rate when the threshold is set to
100%). The majority of 708 free popular apps from
the Android app market conforms to our hypothe-
sis; 91.5% of these apps give full 100% assurance
score (i.e., every critical function call in the pro-
gram has the required user dependence property).
Among the free popular apps that do not have full
assurance score, our tool pinpoints operations that
leak sensitive information without user triggers.

The use of static analysis for program classification
is not surprising. What is surprising is the effectiveness
of the simple user-intention-based dependence analysis.
The analysis attempts to investigate the dependences that
affect program behaviors and interpret the motives of op-
erations from the perspect of user intention. This logical
interpretation of program behaviors is useful and new.
It aims to enforce legitimate patterns in programs as op-
posed to identify malicious ones. Although the long-term
effectiveness of this type of analyses needs further evalu-
ation, we envision other similar static analysis solutions
in the future that exploit high level semantic or logical
features in legitimate program behaviors.

The rest of this paper is organized as follows. Sec-
tion 2 presents an overview and definitions of our user-
intention dependence analysis approach. Section 3 de-

scribes the design and details of our analysis method.
Section 4 describes the implementation and provides the
evaluation results. Section 5 discusses the security anal-
ysis of our approach. Finally, we review related work in
Section 6 and outline the directions for future work in
Section 7.

2 Overview and Definitions
Data flow and control flow dependence analyses are well
known techniques in program analysis and information
flow. Our goal is to customize them for Android app
assurance assessment. We describe a specialized depen-
dence analysis on Java bytecode where one traces back
the initial triggers or causes of sensitive function calls
(e.g., library calls for performing network and file system
operations). Sensitive function calls lacking proper trig-
gers are reported and may indicate unauthorized access
to data or system resources by the app. The definition
for proper triggers may vary according to the semantics
of the analysis. We demonstrate in this work that having
user intention as the trigger in the dependence analysis
yields a unique approach and produces useful insights
on app behaviors. User intention may be embodied in
user inputs, actions, or events such as Android Intent. We
call this approach user-intention dependence analysis for
programs (or UID for short). Server-side software such
as Apache web server or Sendmail email server typically
lacks direct user interaction, as users interact with the
servers through network requests. In comparison, mod-
ern smartphone apps are intensely user interactive, which
makes this approach appropriate.

Our analysis computes an assurance score (defined in
Equation 1) for a program that indicates the percentage
of critical function call invocations in the program that
are triggered by user inputs. In our model the higher
the assurance score is, the more trustworthy the program.
The analysis results help security experts with app clas-
sification (e.g., into different trustworthiness categories),
and can be combined with other static program analysis
reports (e.g., [25, 26, 28, 37]). Our experiments on 1,190
apps show that the analysis provides a strong indicator
for identifying malicious apps.

We aim at exposing possible privileged actions of apps
that are not intended by the user and lack proper depen-
dences in the code. We define our terminology used in
our user-intention approach as follows:

Trigger refers to a user’s input or action to the app. A
trigger is a variable defined in the program. For example,
the user’s input may be text (sequence of char string) en-
tered via text field, while the user’s action is any click
on UI element such as button. We consider relevant API
calls in UI objects that return an user’s input value or lis-
ten to user’s action, as triggers or sources.

3

Operation refers to an entry point of a method pro-
viding functionalities such as network I/O, file I/O, tele-
phony services. An operation is a function call in the
program. We consider relevant API calls that are related
to send/receive network traffic, create/read/write/delete
operations for files, insert/update/delete operations in
database and content provider, execute system com-
mands using java.lang.Runtime.exec, access and
return private information such as location information
and phone identifiers, and send text messages in tele-
phony services as operations or sinks.

Dependence path from trigger to operation refers to a
directed path that captures the dependence relations be-
tween a trigger and an operation in a program. There
are two types of dependence semantics, data flow depen-
dence and control flow dependence. The former specifies
a definition-and-consumption (def-use) relation, where a
trigger is defined and later used as an argument to an
operation, and the latter specifies the function call se-
quences. The trigger may be transformed before being
used as an argument in the operation, thus the depen-
dence path between them may be long.

Both sets of triggers and operations need to be speci-
fied for the analysis. Their sizes affect the run-time and
storage complexities.

Security goal of analysis is to prevent unauthorized
privileged actions that are not intended by the user. Be-
cause the analysis is static (as opposed to run-time) with-
out any user participation, user intention needs to be ap-
proximated. In our analysis user intention is embodied
in the trigger variables.

We define the user-intention dependence-based assur-
ance score in Equation 1, which is the percentage V of
operations that have valid triggers on their dependence
paths among all occurrences of operations. In our model,
the assurance score V ∈ [0%,100%] represents the por-
tion of critical function calls that are intended by the user;
a high V value is desirable.

V =
of operations with triggers on dependence paths

Total number of operations
(1)

A threshold T needs to be specified when classifying
programs into benign or suspicious classes. For example,
a security policy may be that if V > T , then the program
is benign, otherwise suspicious.

A data dependence graph (DDG) is a common
program analysis structure which represents inter-
procedural flows of data through a program [32]. The
DDG is a directed graph representing data dependence
between program instructions, where a node represents a
program instruction (e.g. assignment statement), and an
edge represents the data dependence between two nodes.
The data dependence edges are identified by data-flow

analysis. A direct edge from node n1 to node n2, which
is denoted by n1 → n2, means that n2 uses the value of
variable x which is defined by n1.

Formally, let I be the set of instructions in a program P.
The Data dependence graph G for program P is denoted
by G = [I, E], where E represents the directed edges in
G, and a directed edge Ii → I j ∈ E if there is a def-use
path from instruction Ii to instruction I j with respect to a
variable x in P.

Trigger propagation through events. Our analysis
needs to track the propagation of triggers through events,
specifically Intent, which is an event-based mechanism
for the communication between applications or compo-
nents in Android. Information entered by the user in one
Activity may be passed to another Activity for process-
ing. Therefore, the dependence graph needs to be aug-
mented in order to obtain the complete set of operations
that depend on trigger variables through events. Without
this expansion, the dependence analysis may underesti-
mate the dependence relations (i.e., fail to report legit-
imate trigger-operation dependence relations). Because
of our focus on dependences related to user activities, we
aim to produce Intent-specific control flow dependence
analysis, as opposed to general control flow analysis.

3 Details of Our Analysis Methods
We aim to identify unauthorized actions of apps that are
not intended by users. Our approach is to characterize
programs by statically examining how many sensitive
operations (data or system resource access) depend on
some forms of user inputs. Mobile apps typically have
intense user interaction, allowing us to approximate im-
plicit user intention with explicit user inputs and actions.
The workflow of our dependence analysis described in
this section is illustrated in Figure 1. The algorithm per-
forms the following high level steps. Pseudocode of our
procedure is given in Algorithm 1.
(i) Specify operations We identify a set of sensitive or
critical API calls to Android and Java libraries that may
be used to perform useful operations such as data access,
network and file I/O access as operations or sinks. This
task is app-independent and does not need to be repeated
for each app.
(ii) Specify triggers in the app We identify all possible
entries where user inputs (i.e., data or actions) may be
entered as triggers or sources.
(iii) Construct dependence graph Given the source code
or bytecode of an app, the algorithm constructs the com-
plete data dependence graph based on def-use relations.
Based on the event labels, the graph is further augmented
to cover the dependences through event-based propaga-
tion (e.g., through Intent or implicit method invocation).
(iv) Identify dependence paths The algorithm identifies

4

Construct Data Dependence and

Intent Control Graphs

APK

Java Bytecode

Identify Sensitive

Paths

Analysis Reports
1

Preprocessing

2

3

4

User events

(Sources)

Sensitive API

Calls (Sinks)

…

…

…

…

Figure 1: Workflow in our user-intention dependence analysis.

the data-dependence paths between triggers and opera-
tions through the augmented dependence graph. Specif-
ically, for each occurrence of an operation in the app, it
traverses the dependence graph to check for the existence
of a path (i.e., whether or not there exists a dependence
path from any of the triggers to this operation). If no path
exists between the user inputs and the sensitive API call,
this operation (API call) is reported as a risky/suspicious
API call which needs further inspection.

In steps (i) and (ii), we manually identify the initial
trigger and operation sets. Then, scanning apps for the
occurrences of triggers and operations in the sets is au-
tomated. Steps (i), (ii), and (iii) are independent of each
other, thus the order of execution does not matter.

For each app, an assurance score representing the per-
centage of sensitive API calls which are not triggered
by the user (in Equation 1) is computed and reported.
Also reported are useful details and statistics such as the
names and locations of these calls for further diagnosis.

3.1 Dependence Graph Construction
Our method for constructing the dependence graph based
on explicit def-use relations is presented. Then we ex-
plain why and how it is augmented in order to capture
def-use relations through events.

General purpose data-flow dependence
We use data flow analysis to construct the data depen-

dence graph (DDG) with intra- and inter-procedural call
connectivity information to track the dependences be-
tween the definition and use of user-generated data in a
given program. The intra-procedural dependence edges
are identified based on local use-def chains, while the
inter-procedural dependences edges are identified based
on constructing a call-site context-sensitive call graph.
The context-sensitive analysis considers the context in

the caller function when analyzing a callee function.
In particular, it differentiates between multiple function
calls of the same function with respect to provided ar-
guments. On the other hand, a context-insensitive anal-
ysis does not differentiate between multiple calls of the
same function with different arguments. Thus, a context-
insensitive analysis may not provide as accurate a solu-
tion.

Because events may be implicit, data flow associated
with events is not handled by general-purpose data flow
analysis techniques. Thus event-specific dependence
analysis is required; otherwise the analysis results may
underestimate the actual dependence relations, yielding
false alarms.

Event-specific data dependence
We consider two types of events – i) implicit

method invocation (e.g., through listeners in GUI)
and ii) Android-specific Intent-based inter-app or inter-
component events. The approach is to perform necessary
control flow analysis, which finds bridges between dis-
joint graph components, so that one can obtain the com-
plete reachability of trigger variables.

We describe our Intent-based dependence analysis that
tracks the control flow among Intent-sending methods
in intra- and inter-application communication. This
Intent-specific control flow analysis is necessary for
capturing data dependence relations between triggers
and operations across multiple apps and their compo-
nents. An Intent can declare a component name, an
action and optionally includes data or extra data. For
example, an Intent can be used to start a new Ac-
tivity by invoking the startActivity(Intent i) or
startActivityForResult(Intent i, ...) meth-
ods. An Intent should be sent to a target component by
matching the Intent’s fields with the declaration of the

5

target component in the manifest.
We give details of how our analysis handles ex-

plicit Intent, where the target component name is
specified. Our analysis includes knowledge of the
standard actions of the system built-in components to
identify them (e.g., android.intent.action.VIEW

action to launch map app and show location, and
android.intent.action.DIAL action to launch
phone app and dial a specific number).

We first identify the source component and the tar-
get component that are linked through an Intent ob-
ject. The analysis identifies the Intent creation and send-
ing methods (e.g., startActivity(Intent i) and
sendBroadcast(Intent i)) to capture the control
flow dependences between the source and target com-
ponents. In particular, we analyze the Intent object
constructor to extract the name of the target compo-
nent if it is provided. If it is not provided, we search
the parameters in the setClass(), setComponent() or
setAction() methods on the Intent object, which spec-
ify target’s name, to obtain the target component.

Then, based on the information obtained, the depen-
dence graph is augmented by adding a directed edge
from the Intent-sending method of the source component
to the target component. This analysis is performed for
all explicit Intents created in a given application.

For an implicit Intent, the target component can be any
component that declares its ability to handle a specified
action. The target component is determined by the An-
droid system based on the manifest file. A static analysis
approach for analyzing an implicit Intent is by process-
ing the manifest to extract a list of components with their
actions to identify the target component.

Implicit method invocation, such as those in the GUI,
must be accounted for in the dependence graph. We
address this problem by linking the dependent calls
to the relevant API functions related to threads and
listeners with their callee in the graph. For exam-
ple, Button.setOnClickListener() is linked with
an implicit call to its event handler implementation
onClick().

3.2 Finding Dependence Paths
Once the dependence graph is constructed, checking the
path between a source and sink pair becomes straight-
forward. In Algorithm 1, checkPathExistence() per-
forms this task. It checks if two nodes in the graph
(Nsource and Nsink) are connected by traversing the de-
pendence graph (i.e., is there a path from node Nsource to
node Nsink). If no path exists, we report Nsink as a sensi-
tive API call for further inspection. The resulting paths
are used for calculating the assurance score.

In summary, our static analysis framework con-
structs a context-sensitive data-flow dependence graph

with intra- and inter-procedural dependence analysis,
and intra- and inter-application Intent-based dependence
analysis. The graph construction method is general and
the graphs may be used for other analyses beyond user
dependence.

Algorithm 1 User-intention dependence analysis
Input: A← {App source/bytecode}

Ui← {Set of user triggers of an app}
Ms← {Set of sensitive operations of an app}

Output: V ← {Assurance score}
Mn ← {Set of sensitive operations not depen-

dent on user triggers}
1: G← ConstructDependenceGraph(A)
2: for each ms ∈Ms do
3: for each ui ∈Ui do
4: checkPathExistence(ui, ms, G)
5: end for
6: if no path exists between (ui∧ms) ∈ G then
7: Mn←Mn∪ {ms}
8: end if
9: end for

10: // L is list of operations triggered by user
11: L←Ms−Mn
12:

13: V ← # of operations in L
of operations in Ms

14:
15: return (V , Mn)
16:
17: procedure CHECKPATHEXISTENCE(ui, ms, G)
18: create queue Q
19: Q.enqueue(ui)
20: while Q is not empty do
21: n← Q.dequeue()
22: if n == ms then
23: return True
24: end if
25: list N← get all direct successors nodes of ui
26: for each node ∈ N do
27: if node not visited before then
28: Q.enqueue(node)
29: end if
30: end for
31: end while
32: return False
33: end procedure

4 Experimental Evaluation
We implemented our static analysis framework based on
Soot (a static analysis toolkit for Java) [3]. Soot trans-
forms Java bytecode into an intermediate code represen-
tation suitable for analysis. We also utilized the def-

6

use structures provided by Soot. Soot does not pro-
vide inter-procedural call information. Thus, we imple-
mented our own analysis method to augment the def-use
relations across the boundaries of methods. We iden-
tified a list of sensitive API calls to be used for iden-
tifying sensitive operations in each app. As described
in Section 2, those operations can utilize system re-
sources, such as network I/O, file I/O, GSM-specific tele-
phony services, (e.g., sendTextMessage() provided
by android.telephony.gsm.SmsManager library for
sending SMS, and openFileOutput() provided by
android.content.Context library for opening and
writing to a file). All occurrences of critical function
calls are identified and labeled. We identified user trig-
gers as a data input or action to a program as described
in Section 2. Our framework analyzes Java bytecode
or source code. It statically constructs the dependence
graph that captures the data consumption relations and
the Intent-specific control flow in Android apps to iden-
tify the directed paths between user triggers and entry
points to methods providing critical system services.

Our static analysis framework is implemented in Java
with 2,494 lines of source code. We convert Android
app code (APK) from the dex format to a jar file using
the Dare tool [41]. 2

We evaluated 482 known Android malware samples
collected by [54]. We also evaluated 708 popular free
real-world Android apps collected in December 2012
from Google Play and alternative markets covering var-
ious categories. We assume that the trustworthiness of
these free apps is unknown and they may be malware or
contain malicious components. Table 2 shows a statisti-
cal summary of the Android apps used in our evaluation
for both free popular apps and malicious apps. Our eval-
uation is to answer the following questions:

1. How many apps (free popular or malicious ones)
conform to our user-intention dependence hypothe-
sis?

2. Can our method find new malware from free popu-
lar apps?

3. What is the performance time of our analysis?

4.1 Analysis Accuracy
In addition to the assurance score V , we reported for each
analyzed app the number of user triggers, the total num-
ber of sensitive API calls (operations), the list of the sen-
sitive API calls used, and the number of operations with
valid user triggers. Table 3 summarizes the assurance
scores of the apps, namely, the percentage of critical API
calls having the required dependence property.

Given a threshold T ∈ (0,100%] for assurance scores,

2We also tried the dex2jar tool [1], however, the conversion fails in
many cases.

we analyze the assurance scores in two groups as fol-
lows.

• The false negative rate is computed for known mal-
ware samples. It is the percentage of apps whose as-
surance scores are higher than or equal to the thresh-
old T . False negative rate represents undesirable de-
tection misses.
• The probable malware rate is computed for free

popular apps. It is the percentage of apps whose as-
surance scores are lower than the required threshold
T . Because the trustworthiness of these apps is un-
known, we further investigated each of these cases
manually.

Detection results varied according to the assurance
threshold chosen. We illustrate how false negative and
probable malware rates change with thresholds in Fig-
ure 2, which is further explained next.

50% 60% 70% 80% 90% 100%

Probable Malware 0.0% 0.0% 0.0% 2.0% 3.2% 8.5%

False Negative 5.2% 3.3% 3.1% 1.5% 0.2% 0.2%

0.0%

1.0%

2.0%

3.0%

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

R
a

te
s

Threshold for Assurance Score (V)

Figure 2: Detection results w.r.t. various assurance
thresholds. False negative rates (detection misses) are
reported for known malware samples. For free popular
apps, the percentage of apps that have-lower-than-the-
threshold scores is reported. This percentage is referred
to as the probable malware rate.

4.1.1 Known Malicous Apps

The analysis results of the known malicious apps are
shown in Table 3 and Table 4. Most of them gave low
assurance scores; they have a significant number of sen-
sitive API calls without proper user triggers. In particu-
lar, 313 malware samples out of 482 gave 0% assurance
values meaning that none of their critical function calls
has user triggers. The majority of the rest of the 169 sam-
ples have lower than 50% assurance values. The only
malware having 100% score is a phishing app, FakeNet-
flix. FakeNeflix malware provides a fake user interface to
trick the user to enter her or his Netflix credential infor-
mation. This app is a standalone phishing app which be-
haves similarly to a legitimate app in terms of using user

7

Table 2: Statistics of analysis for all apps analyzed.

Free Popular Apps Malicious Apps

Statistic Min Max Mean Min Max Mean

Bytecode Size (KB) 20.13 869.84 178.84 4.75 1810.26 161.09
Class Count 7 1897 135.67 7 240 77.87
Method Count 8 9351 613.24 5 1202 338.61
Sensitive API Call Count 1 93 20.93 1 72 8.87
DDG Node Count 32 24792 7016.13 97 22885 7402.47

Table 3: Summary of evaluation results.

Assurance Score (V) # of Free
Popular Apps

of Malware

0% 0 313
(0% - 10%) 0 68
[10% - 20%) 0 4
[20% - 30%) 0 20
[30% - 40%) 0 27
[40% - 50%) 0 25
[50% - 60%) 0 9
[60% - 70%) 0 1
[70% - 80%) 14 8
[80% - 90%) 9 6
[90% - 100%) 37 0
100% 648 1

Number of Samples 708 482

triggers to launch sensitive operations. This type of mal-
ware behavior can circumvent our approach and lead to
false negatives. Detecting malicious social engineering
apps is challenging. App certification and user education
approaches are more effective than program analysis.

The Android malware samples that we analyzed per-
form malicious functionality, such as sending unau-
thorized SMS messages (e.g., FakePlayer), subscribing
to premium-rate messaging services automatically (e.g.,
RogueSPPush), listening to SMS-based commands to
record and upload the victim’s current location (e.g.,
GPSSMSSpy), stealing users’ credentials (e.g., FakeNet-
flix), and granting unauthorized root privilege to some
apps (e.g., Asroot and DroidDeluxe) 3.

Operations in some malware samples (35.1%) have
proper user triggers. Their assurance scores are non-
zero. The reason is that these malware samples are not
stand alone apps; they are bundled with other legitimate

3The malware naming convention follows [54].

apps that require user interactions. ADRD, DroidDream,
and Geinimi are examples of repackaged malware in be-
nign apps.

Table 4 shows types of API calls used by a subset of
the malware. Our manual review reveals that some exam-
ples of sensitive API calls in malware are related to writ-
ing and sending information through the network, send-
ing unauthorized SMS messages, executing system pro-
cesses, and accessing user’s private data. For example,
Asroot and BaseBridge use Runtime.exec() to execute
system processes.

4.1.2 Free Popular Apps

The analysis results of the free popular apps are shown
in Table 3 and Table 5. Most of the free popular apps
conform to our hypothesis. For example, 98% of apps
have assurance scores greater than or equal to 80% (i.e.,
for each of these apps 80% or more of their critical func-
tion calls have the required user-trigger dependences). In
the most strict case where the threshold is set to 100%,
the probable malware rate is 8.5% (i.e., 60 out of the 708
apps gave less than 100% assurance scores).

We manually inspected these 60 probable malware
apps, to understand their behaviors. Table 5 depicts the
analysis results for some of the 60 free popular apps that
had lower than 100% assurance scores. The table shows
the total number of sensitive API calls, assurance score
value, and the name of sensitive API calls that are not
triggered by the user intention. The problematic opera-
tions involve access to private information such as phone
identifier and locations. These operations are exclusively
in the ads and/or analytics libraries. Figure 3 shows the
breakdown between non-policy-conforming uses in these
apps.

Many of the advertisement or analytics libraries
in these 60 apps are heavily obfuscated. We de-
scribe two such apps. For example, in application
com.androidscreenshotapptool.free 4, we found
API calls to getLongitude(), getLatitude()

4This app allows the user to create a screenshot of Android.

8

Table 4: A subset of known malicious apps analyzed.

Malware Name* # of Sensitive
API Calls

Assurance
Score (V)

Distinct API Calls Without User Intention**

Asroot 15 73.3% write(), read(), readLine(), Runtime.exec()
BaseBridge 74 63.5% write(byte[]), read(), openFileInput(), Runtime.exec(), getLongi-

tude(), getLatitude(), getDeviceId(), getNetworkOperatorName()
DroidKungFu1 60 63.3% write(byte[]), read(), openFileInput(java.lang.String), Run-

time.exec(), getLongitude(), getLatitude(), getDeviceId(),
getNetworkOperatorName()

DroidKungFu2 18 5.6% write(byte[]), read(), Runtime.exec(), getDeviceId(), get-
Line1Number()

GingerMaster 57 75.4% write(byte[]), read(), java.io.File: boolean delete() Run-
time.exec(), android.os.AsyncTask execute();

HippoSMS 9 33.3% sendTextMessage(), write(), read(byte[]), openFileInput(), open-
FileOutput(), java.io.File: boolean delete()

NickySpy 17 58.8% sendTextMessage(), getDeviceId(), read(), java.io.File: boolean
delete()

Pjapps 40 47.5% org.apache.http.client.HttpClient: java.lang.Object execute(),
write(byte[]), readLine(), getCellLocation(), getLine1Number()
getDeviceId(), getSimSerialNumber(), getSubscriberId(), getNet-
workOperator()

Tapsnake 12 25% org.apache.http.client.HttpClient: java.lang.Object execute(), get-
Longitude(), getLatitude(), getAccuracy(), openFileOutput(),
openFileInput()

Walkinwat 7 14.3% org.apache.http.client.HttpClient: java.lang.Object execute(), get-
Longitude(), getLatitude(), getDeviceId(), sendTextMessage()

*This is malware family name. Each malware sample belongs to a family has different analysis results.
**Some method signatures are omitted due to space limitation.

Ads: 39
apps

Analytics:18
apps

Ads &
Analytics: 3

apps

Ads

Analytics

Ads & Analytics

Figure 3: The breakdown of causes of free popular apps
that lack proper trigger-operation dependences.

functions inside com.flurry.android ana-
lytics library without user triggers. In ap-
plication com.aol.mobile.aolapp 5, it has
calls to getDeviceId() functions inside
com.flurry.android library without user trig-
gers. Some of the libraries were mentioned in other
work, e.g., Enck et al. [19] deduced that code obfusca-
tion in advertisement or analytics libraries is a form of
intellectual property protection. Still, little is known on
the assurance of these libraries.

Location and device information may be sensitive.
Our analysis pinpoints the exact places where the API
calls are made to access these information without any
user triggers. From the assurance assessment perspec-
tive, knowing the lack of proper user-based dependences
in those sensitive function calls is useful. If certain ad or
analytical libraries are known to be legitimate, then they
may be put on whitelists to avoid triggering false alarms.

We checked all the collected free apps by using Virus-

5This app allows the user to read the top stories from AOL.

9

Table 5: A subset of free popular apps that lack proper trigger-operation dependences. The cause indicates the reason
of lacking trigger-operation dependences.

App Name # of Sensitive
API Calls

Assurance
Score (V)

Distinct API Calls Without User
Intention*

Cause Category

com.ab.labyNaruto 63 95.2% read(byte[]), readLine() ads Libraries & Demo

com.androidscreenshotapptool.free 38 81.6% write(byte[]), read(), readLine(),
getAccuracy(), getLongitude(), get-
Latitude()

analytics App Widgets

com.androidtrainer.survive 9 88.89% readLine() ads Books & Ref

com.aol.mobile.aolapp 37 78.3% write(byte[]), readLine(), getDevi-
ceId()

analytics News & Magazines

com.hd.peliculashd 39 94.9% readLine() ads Entertainment

com.indeed.android.jobsearch 25 96% readLine() ads Business

com.intellijoy.android.shapes 17 70.6% readLine(), getAccuracy(), getLon-
gitude(), getLatitude()

ads Education

com.max.SurvivalGuide 11 90.9% readLine() ads Books & Ref

com.pcvirt.livewallpaper.ocean 10 90% readLine() ads Wallpaper

com.rechild.advancedtaskkiller 17 94.1% readLine() ads App Widgets
*Some method signatures are omitted due to space limitation.

Total [4], which uses more than 40 different antivirus
products and scan engines. None of them have known
malware signatures. Signature-based scanning is unable
to locate potential causes of unintended operations; nei-
ther is the default Android permission system. In com-
parison, our tool provides fine-grained reports on app
operations and attempts to reason their causes and pur-
poses.

4.2 Efficiency Evaluation
The experiments were conducted on a computer which
has 3.0GHz Intel Core 2 Duo CPU E8400 processor and
3GB of RAM. We measured the execution time of our
analysis, specifically steps (iii) and (iv) explained in Sec-
tion 3. The average processing time for an app is about
249.48 seconds. This processing time does not include
the time required to convert the dex format to jar.

The execution time varies significantly across differ-
ent apps. We studied the impact of four specific fac-
tors (bytecode size, method count, class count, and node
count in the constructed graph) that may affect the exe-
cution time as shown in Figure 4. The execution time
positively correlates with the size of the apps and the
number of components therein. Because only a partial
DDG is traversed for finding dependence paths, the in-
crease in execution time with the total number of DDG
nodes is relatively slow, compared to the increase in ex-
ecution time with the number of classes and methods.

Summary The experimental results provide encourag-

ing evidence supporting our hypothesis that critical op-
erations in legitimate apps are mostly triggered by user
inputs or actions. They demonstrate the feasibility of
our static user-intention dependence analysis as a use-
ful app classification method. When using 80% as the
assurance threshold, our results gave a reasonable false
negative rate (1.5%) for known malware and a proba-
ble malware rate (2%) for free popular apps studied 6.
The latter may require further inspection through man-
ual effort and the use of other complementary analysis
tools to understand their behaviors. Our future work will
investigate more complex dependence requirements that
may involve multiple operations or triggers to improve
the classification accuracy.

5 Security Analysis
Our static analysis aims to identify possible unauthorized
privilege operations which do not have dependences with
user inputs or actions in the program. Our analysis
method on trigger-operation dependences realizes this
goal. Critical operations typically involve accessing sys-
tem resources and sensitive data. Inferring their user-
intention dependences enables the detection of potential
data confidentiality and authorization issues. Examples
of malicious patterns that can be detected by our analysis
include:

6Because of the lack of ground truth for free popular apps, we are
unable to compute the false negative rate for that group.

10

(b) Num. of Classes vs. Time

0

200

400

600

800

1000

1200

0 500 1000 1500 2000

T
im

e
 (

s
e

c
o

n
d

s
)

Bytecode Size

0

200

400

600

800

1000

1200

0 500 1000 1500 2000

T
im

e
 (

s
e

c
o

n
d

s
)

Class Count

0

200

400

600

800

1000

1200

0 10000 20000 30000

T
im

e
 (

s
e

c
o

n
d

s
)

DDG Node Count

0

200

400

600

800

1000

1200

0 5000 10000

T
im

e
 (

s
e

c
o

n
d

s
)

Method Count

(a) Bytecode Size vs. Time (c) Num. of Methods vs. Time (d) Num. of DDG Node vs. Time

Figure 4: Performance time analysis.

• authorization related: executing critical operations
without proper user triggers, such as sending unau-
thorized SMS messages, subscribing to premium-
rate services automatically, or granting unautho-
rized root privilege to apps.
• confidentiality related: accessing sensitive data

items without proper user triggers, such as record-
ing and uploading the victims current location. Our
static analysis does not track sensitive data vari-
ables. Instead, the function calls that may be used
to access sensitive data are labeled (as operations)
and analyzed.

In our model, the accuracy of the analysis is closely
related to the accuracy of the data dependence analy-
sis. Intra-procedural analysis captures fine-grained def-
use relations within a function. The intra-procedural def-
use relations can prevent a superfluous user input attack,
thusly. One possible attack scenario is where the mal-
ware may require superfluous user inputs (before mak-
ing function calls to conduct unauthorized activities) at-
tempting to satisfy the dependence, but the user inputs
are not consumed by the calls. For example, the user en-
ters a phone number and a message to send SMS. The
phone number entered by the user can be ignored and re-
placed with other number inside sendTextMessage()

function. This type of data flow can be detected by track-
ing the dependence between the user inputs entered and
the sensitive function calls, thus the superfluous user in-
puts can be identified.

Sources of inaccuracy.

Overestimation of trigger-operation dependence may
cause false negatives in the analysis report (i.e., failing to
detect potentially malicious operations in the app). Over-
estimation of data dependence may be due to conditional
branches that are unpredictable statically, and certain de-
pendence paths only exist under specific conditions. This
type of data dependence overestimation may be miti-
gated by identifying the specific conditions for certain
dependence paths to be valid (e.g., by symbolic execu-
tion).

Conversely, underestimation of triggers may cause
false positives. For instance, legitimate API calls can be
triggered by runtime events such as clock-driven events
from the calendar (e.g., the calendar app sends a re-
minder email message of an calendar event), or triggered
by incoming network events. These run-time events may
not be explicitly triggered by the user and thus lack the
proper dependence according to our security model. One
mitigation to the problem is to generalize and expand our
definitions of triggers to include other legitimate trigger-
ing events. However, because triggers may be generated
at runtime, static analysis alone may not be sufficient.
Hybrid approaches based on both static and dynamic
analyses are needed for complete dependence analysis
that involves more than the user intention triggers. Its
realization remains an interesting open problem.

These overestimation and underestimation issues can
be addressed as explained above. However, there are sev-
eral limitations of the static user-intention program anal-
ysis approach that require completely different technical
approaches.

Limitations.
Social engineering apps may demonstrate proper

trigger-operation dependences, because of the seemingly
conforming dependence paths between user triggers and
critical operations. Therefore, due to the intrinsic nature
of our user-intention analysis, it is not suitable for de-
tecting social engineering apps. Instead, app certification
and user education are two effective solutions.

Our analysis does not examine the content of vari-
ables, only dependences of operations. Operations in-
volving potentially malicious content may possess the
necessary dependence property. For example, a (mali-
cious) app may append a URL to any outgoing SMS mes-
sage sent by the user, where the URL refers to a compro-
mised website. The problem is due to the lack of under-
standing of operation semantics, rather than the accuracy
of dependence analysis. Enforcing the intended seman-
tics of programs in general-purpose automated program
analysis is challenging. One program analysis approach
to this issue is to statistically characterize content and op-
erations to identify normal patterns (e.g., analyzing the

11

frequency of occurrences of string concatenation opera-
tions involving URLs in legitimate apps) and then detect
anomalous patterns.

Our analysis is on Java bytecode, which does not ap-
ply to native libraries. Some applications utilize native
libraries via Java Native Interface (JNI) to incorporate
the C/C++ libraries into the application. We found that
58 out of 708 apps (8.19%) we studied include at least
one native code library in their APK. Malicious apps can
use obfuscation or Java reflection techniques to evade the
standard static program analysis. The latter problem may
be addressed by using dynamic taint analysis [40], [52]
to provide insights about the program’s runtime execu-
tion.

6 Related Work
We first explain the novelty of our work with respect to
several closely related previous solutions, and then de-
scribe other notable results in the Android security and
related literature.

Android-specific static analysis. Mapping the data
flow or control flow dependences with static program
analysis techniques allows one to understand expected
behaviors of apps. Different security goals (or equiva-
lently attack models) demand specialized analysis meth-
ods in Android. For example, SCanDroid [25] ex-
tracts security specifications from the app’s manifest and
checks whether data flows through the app are consis-
tent with the stated specifications. Stowaway [21] aims
to identify overprivileged Android apps by comparing
the required and requested permissions based on map-
ping API calls used to permissions. CHEX [37] identi-
fies potentially vulnerable component interfaces that are
exposed to the public without proper access restrictions
in Android apps. The authors utilized data-flow based
reachability analysis. Definitions of sources, sinks, and
policies are different from our work due to different se-
curity goals.

RiskRanker [30] aims to detect Android malware us-
ing i) a set of vulnerability specific-signatures and ii)
control flow and intra-method data flow analysis look-
ing for suspicious behavior signatures (e.g., calls access-
ing certain sensitive data in a code path that also contains
decryption (for deobfuscation) and execution methods on
their dependence paths should raise red flags). For exam-
ple, RiskRanker searches for the code paths that may cost
the user money without implying such user interaction
(e.g., clicking onscreen button). That detection is a spe-
cial case of our user-intention dependence analysis with
the specific definition of the trigger/source and the op-
eration/sink. In comparison, our analysis systematically
generalizes this user-intention dependence approach and
has broader scopes in terms of trigger and operation def-

initions. Because of our focus on def-use dependence
analysis, our method does not require general control
flow analysis, only event-specific control flow necessary
for bridging data flow dependences.

The approaches in AndroidLeaks [26], SCAN-
DAL [33], and PiOS [17] for iOS platform follow the
line of the classic confidentiality information flow; (e.g.,
labeling sensitive data/sources and potentially risky sinks
(typically network API calls) and reporting when there
are data dependence paths between them). Our secu-
rity goal is to identify operations unintended by a user,
as opposed to confidentiality analysis. As a result, our
definition of sources is anything related to user inputs
or actions and may or may not be sensitive. The work
in Woodpecker [28] differs from all above; it focuses
on smartphone firmware security, specifically evaluat-
ing potential permission leaks through high privileged
pre-loaded apps in smartphone firmware. We compare
the above solutions with our user-intention dependence
(UID) analysis in Table 1 in the introduction.

Roesner et al. [46] proposed user-driven access con-
trol (UDAC) gadgets for granting permissions, instead
of adding them previously through manifests or system
prompts. Although our work is similar with UDAC in
recognizing the importance of user intention in security
design, the technical approaches are fundamentally dif-
ferent. Our static program analysis can be fully auto-
mated, whereas UDAC being a runtime solution requires
user participation.

Mobile app characterization. Several large-scale char-
acterization efforts on benign Android apps or malware
apps in terms of their data and resource access permis-
sions have been reported recently, including [19, 22, 54].
For example, ComDroid [8] identifies security vulner-
abilities caused by Android inter-app communication.
AdRisk [29] systematically studies large number of pop-
ular ad libraries used in Android apps to evaluate the po-
tential risks. Zhou et al. [53] characterizes the evolve-
ment of families of Android malware using fuzzy hashes
that identify repackaged apps. DNADroid [10] detects
cloned Android apps in the markets by comparing simi-
larities of program dependency graphs.

Android permission systems. Researchers have shown
that the Android default permission systems are inade-
quate for data and device protection, and proposed ex-
tensions and mitigation solutions. For example, Felt et
al. [23] introduced the permission re-delegation problem
in inter-app communication of Android and pointed out
that the permission re-delegation problem is a special
case of the confused deputy problem. Cryptographic au-
thentication techniques were presented to prevent these
problems in QUIRE [15]. The Kirin [20] framework pro-
vides a lightweight certification of Android apps to block
the installation of potential unsafe apps based on certain

12

undesirable permission combination. In Saint [42], the
authors proposed install-time permission granting poli-
cies as well as runtime inter-application communication
policies for improved Android security. AdDroid [43]
and AdSplit [47] proposed different approaches to sepa-
rate the privileges between the ad library and its host app
to eliminate the permissions requests done by the host
app on behalf of its ad library.

Runtime app monitoring. Solutions in the runtime app
monitoring category complement a static app analysis
approaches such as our work. They typically either i)
enforce security policies or ii) detect abnormal execution
patterns through behavioral signatures or learning/min-
ing techniques. For example, Dixon et al. [16] and
Liu et al. [34] monitor power consumption of a device
for anomalies. Crowdroid [7] performs clustering algo-
rithms on activity and behavior data of running apps to
classify them as benign or malicious. DroidRanger [55]
detects known malicious apps in Android Markets. It
extracts behavioral signatures of known malware sam-
ples, and then detects new samples of known malware
families using the behavioral signatures. TaintDroid [18]
uses dynamic taint analysis to report potential privacy
leaks at runtime. Rastogi et al. [45] proposes the App-
sPlayground framework which performs dynamic anal-
ysis of Android apps for the purpose of detecting mali-
cious activities and privacy leaks. Aurasium [50] repack-
ages apps to add user-level sandbox and security policies
so that the app’s runtime behavior can be restricted. Para-
noidAndroid [44] performs runtime analysis for mal-
ware detection on a remote server in the cloud. Droid-
Scope [51] provides a virtualization environment for the
purposes of dynamic analysis and information tracking
of Android apps. AppFence [31] modifies Android OS
to protect private data from being leaked by providing
and imposing fine-grained privacy controls on existing
apps. TISSA [56] proposes a privacy mode in Android
platform which provides fine-grained control over user
privacy.

Non-Android-specific static program analysis, mal-
ware characterization, and detection. Static program
analysis has traditionally been applied to ensuring the
data integrity and confidentiality of information flow,
e.g., [13, 14, 35, 36, 39]. Using static program analysis
for anomaly detection was first described by Wagner and
Dean [49], then improved by [5, 6, 24, 27] with more ac-
curate control flow analysis with calling context and call
dependences.

Solutions such as dynamic system-wide taint analysis
in Panorama [52] and malware behavior characterization
(e.g., [9]) are inspirations to some of the aforementioned
security solutions on Android. We omit their details and
other notable related security solutions in non-Android-
specific platforms due to space.

7 Conclusions and Future Work
We demonstrated the feasibility of user-intention-based
static dependence analysis in assessing the assurance of
programs, in particular Android apps. We explained the
need for approximating user intentions in our static anal-
ysis. Our method computes the percentage of critical
function calls that depend on some form of user inputs
or actions through def-use analysis of the code. We
call this percentage value an assurance score. Our ap-
proach can be applied to general user-centered programs
and applications beyond the specific Android environ-
ment studied. Our experiments on 482 malicious apps
and 708 free popular apps show high classification ac-
curacy. These results suggest the promise of using our
user-intention-based dependence analysis. Thus, our ap-
proach strengthens software assurance assessment which
requires a comprehensive set of techniques.

For future work, we plan to generalize the dependence
definitions to include non-user triggers, and also to uti-
lize advanced program analysis techniques to further im-
prove the accuracy. For the deployment perspective, we
expect static app analysis tools to be used by cyberse-
curity and software experts for screening apps, as op-
posed to regular smartphone users. We will work on
tools to provide informative and intuitive interpretation
of the multiple dimensional analysis results from various
tools to these experts and help them to further examine
potential problematic code regions.

References
[1] dex2jar: A tool for converting Android’s .dex format to Java’s

.class. https://code.google.com/p/dex2jar/.
[2] National information assurance glossary. Tech. rep. CNSS In-

struction No. 4009 National Information Assurance Glossary.
[3] Soot: a Java optimization framework.

http://www.sable.mcgill.ca/soot/.
[4] VirusTotal. https://www.virustotal.com/.
[5] ABADI, M., BUDIU, M., ÚLFAR ERLINGSSON, AND LIGATTI,

J. Control-flow integrity: principles, implementations, and ap-
plications. In Proceedings of the 12th ACM Conference on Com-
puter and Communications Security (2005), ACM, pp. 340–353.

[6] BHATKAR, S., CHATURVEDI, A., AND SEKAR, R. Dataflow
anomaly detection. In Proceedings of the IEEE Symposium on
Security and Privacy (2006), IEEE Computer Society, pp. 48–62.

[7] BURGUERA, I., ZURUTUZA, U., AND NADJM-TEHRANI, S.
Crowdroid: behavior-based malware detection system for An-
droid. In Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices (SPSM) (2011),
ACM, pp. 15–26.

[8] CHIN, E., FELT, A. P., GREENWOOD, K., AND WAGNER, D.
Analyzing inter-application communication in Android. In Pro-
ceedings of the 9th Int’l Conference on Mobile Systems, Applica-
tions, and Services (2011), ACM, pp. 239–252.

[9] CHRISTODORESCU, M., JHA, S., AND KRUEGEL, C. Mining
specifications of malicious behavior. In Proceedings of the 6th
joint meeting of the European software engineering conference
and the ACM SIGSOFT symposium on the foundations of soft-
ware engineering (2007), ACM, pp. 5–14.

13

[10] CRUSSELL, J., GIBLER, C., AND CHEN, H. Attack of the
clones: Detecting cloned applications on Android markets. In
Proceedings of the 17th European Symposium on Research in
Computer Security (ESORICS) (2012), vol. 7459 of Lecture
Notes in Computer Science, Springer, pp. 37–54.

[11] CUI, W., KATZ, R. H., AND TIAN TAN, W. Binder: An extru-
sionbased break-in detector for personal computers. In Proceed-
ings of USENIX Annual Technical Conference (2005), USENIX,
pp. 363–366.

[12] DAVI, L., DMITRIENKO, A., SADEGHI, A.-R., AND
WINANDY, M. Privilege escalation attacks on Android. In Pro-
ceedings of the 13th International Conference on Information Se-
curity (ISC) (2010), Springer-Verlag, pp. 346–360.

[13] DENNING, D. E. A lattice model of secure information flow.
Communication of ACM 19, 5 (1976), 236–243.

[14] DENNING, D. E., AND DENNING, P. J. Certification of pro-
grams for secure information flow. Communication of ACM 20,
7 (1977), 504–513.

[15] DIETZ, M., SHEKHAR, S., PISETSKY, Y., SHU, A., AND WAL-
LACH, D. S. QUIRE: Lightweight provenance for smart phone
operating systems. In Proceedings of the 20th USENIX confer-
ence on Security (2011), USENIX Association.

[16] DIXON, B., JIANG, Y., JAIANTILAL, A., AND MISHRA, S. Lo-
cation based power analysis to detect malicious code in smart-
phones. In Proceedings of the 1st ACM Workshop on Security
and Privacy in Smartphones and Mobile Devices (2011), ACM,
pp. 27–32.

[17] EGELE, M., KRUEGEL, C., KIRDA, E., AND VIGNA, G. PiOS:
Detecting Privacy Leaks in iOS Applications. In Proceedings of
the Network and Distributed System Security Symposium (NDSS)
(2011), The Internet Society.

[18] ENCK, W., GILBERT, P., GON CHUN, B., COX, L. P., JUNG, J.,
MCDANIEL, P., AND SHETH, A. TaintDroid: An information-
flow tracking system for realtime privacy monitoring on smart-
phones. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (2010), USENIX Associa-
tion, pp. 393–407.

[19] ENCK, W., OCTEAU, D., MCDANIEL, P., AND CHAUDHURI,
S. A study of Android application security. In Proceedings of the
20th USENIX conference on Security (2011), USENIX Associa-
tion.

[20] ENCK, W., ONGTANG, M., AND MCDANIEL, P. D. On
lightweight mobile phone application certification. In Proceed-
ings of the ACM Conference on Computer and Communications
Security (2009), ACM, pp. 235–245.

[21] FELT, A. P., CHIN, E., HANNA, S., SONG, D., AND WAG-
NER, D. Android permissions demystified. In Proceedings of the
18th ACM Conference on Computer and Communications Secu-
rity (2011), ACM, pp. 627–638.

[22] FELT, A. P., FINIFTER, M., CHIN, E., HANNA, S., AND WAG-
NER, D. A survey of mobile malware in the wild. In Proceedings
of the 1st ACM workshop on Security and privacy in smartphones
and mobile devices (SPSM) (2011), ACM, pp. 3–14.

[23] FELT, A. P., WANG, H. J., MOSHCHUK, A., HANNA, S., AND
CHIN, E. Permission re-delegation: Attacks and defenses. In
Proceedings of the 20th USENIX Security Symposium (2011),
USENIX Association.

[24] FENG, H., GIFFIN, J., HUANG, Y., JHA, S., LEE, W., AND
MILLER, B. Formalizing sensitivity in static analysis for intru-
sion detection. In Proceedings of IEEE Symposium on Security
and Privacy (2004), IEEE Computer Society.

[25] FUCHS, A. P., CHAUDHURI, A., AND FOSTER, J. S. SCan-
Droid: Automated security certification of Android applications,
2009. Technical report, University of Maryland.

[26] GIBLER, C., CRUSSELL, J., ERICKSON, J., AND CHEN, H.
AndroidLeaks: Automatically detecting potential privacy leaks
in Android applications on a large scale. In Proceedings of the
5th International Conference on Trust & Trustworthy Computing
(TRUST) (2012), vol. 7344 of Lecture Notes in Computer Science,
Springer, pp. 291–307.

[27] GIFFIN, J., JHA, S., AND MILLER, B. Efficient context-sensitive
intrusion detection. In Proceedings of the Network and Dis-
tributed System Security Symposium (2004), The Internet Society.

[28] GRACE, M., ZHOU, Y., WANG, Z., AND JIANG, X. Systematic
detection of capability leaks in stock Android smartphones. In
Proceedings of the 19th Network and Distributed System Security
Symposium (NDSS) (2012).

[29] GRACE, M. C., ZHOU, W., JIANG, X., AND SADEGHI, A.-
R. Unsafe exposure analysis of mobile in-app advertisements.
In Proceedings of the 5th ACM Conference on Security and Pri-
vacy in Wireless and Mobile Networks (WISEC) (2012), ACM,
pp. 101–112.

[30] GRACE, M. C., ZHOU, Y., ZHANG, Q., ZOU, S., AND JIANG,
X. RiskRanker: scalable and accurate zero-day Android malware
detection. In Proceedings of the 10th International Conference
on Mobile Systems, Applications, and Services (MobiSys) (2012),
ACM, pp. 281–294.

[31] HORNYACK, P., HAN, S., JUNG, J., SCHECHTER, S. E., AND
WETHERALL, D. These aren’t the droids you’re looking for:
retrofitting Android to protect data from imperious applications.
In Proceedings of the 18th ACM Conference on Computer and
Communications Security (CCS) (2011), ACM, pp. 639–652.

[32] HORWITZ, S., REPS, T., AND BINKLEY, D. Interprocedural
slicing using dependence graphs. ACM Transactions on Pro-
gramming Languages and Systems 12 (1990), 26–60.

[33] KIM, J., YOON, Y., YI, K., AND SHIN, J. SCANDAL: Static
analyzer for detecting privacy leaks in android applications. In
Proceedings of the Workshop on Mobile Security Technologies
(MoST), in conjunction with the IEEE Symposium on Security
and Privacy (2012).

[34] LIU, L., YAN, G., ZHANG, X., AND CHEN, S. VirusMeter:
Preventing your cellphone from spies. In Proceedings of the 12th
International Symposium on Recent Advances in Intrusion Detec-
tion (2009), Springer, pp. 244–264.

[35] LIU, Y., AND MILANOVA, A. Practical static analysis for infer-
ence of security-related program properties. In Proceedings of the
17th IEEE International Conference on Program Comprehension
(ICPC) (2009), IEEE Computer Society, pp. 50–59.

[36] LIU, Y., AND MILANOVA, A. Static information flow analy-
sis with handling of implicit flows and a study on effects of im-
plicit flows vs explicit flows. In Proceedings of the 14th Euro-
pean Conference on Software Maintenance and Reengineering
(CSMR) (2010), IEEE Computer Society, pp. 146–155.

[37] LU, L., LI, Z., WU, Z., LEE, W., AND JIANG, G. CHEX:
statically vetting Android apps for component hijacking vulnera-
bilities. In Proceedings of the ACM Conference on Computer and
Communications Security (CCS) (2012), ACM, pp. 229–240.

[38] MERCEDES, K., AND WINOGRAD, T. Enhancing the develop-
ment life cycle to produce secure software. Tech. rep., 2008. Data
and Analysis Center for Software.

[39] MILANOVA, A., AND RYDER, B. G. Annotated inclusion con-
straints for precise flow analysis. In Proceedings of the 21st
IEEE International Conference on Software Maintenance(ICSM)
(2005), IEEE Computer Society, pp. 187–196.

14

[40] NEWSOME, J., AND SONG, D. X. Dynamic taint analysis for au-
tomatic detection, analysis, and signature generation of exploits
on commodity software. In Proceedings of the Network and Dis-
tributed System Security Symposium (2005), The Internet Society.

[41] OCTEAU, D., JHA, S., AND MCDANIEL, P. Retargeting An-
droid applications to Java bytecode. In Proceedings of the 20th
ACM SIGSOFT Symposium on the Foundations of Software En-
gineering (FSE) (2012), ACM.

[42] ONGTANG, M., MCLAUGHLIN, S. E., ENCK, W., AND MC-
DANIEL, P. D. Semantically rich application-centric security
in Android. In Proceedings of the 25th Annual Computer Se-
curity Applications Conference (2009), IEEE Computer Society,
pp. 340–349.

[43] PEARCE, P., FELT, A. P., NUNEZ, G., AND WAGNER, D. Ad-
Droid: privilege separation for applications and advertisers in
Android. In Proceedings of 7th ACM Symposium on Informa-
tion, Compuer and Communications Security (ASIACCS) (2012),
ACM, pp. 71–72.

[44] PORTOKALIDIS, G., HOMBURG, P., ANAGNOSTAKIS, K., AND
BOS, H. Paranoid Android: versatile protection for smartphones.
In Proceedings of the 26th Annual Computer Security Applica-
tions Conference (ACSAC) (2010), ACM, pp. 347–356.

[45] RASTOGI, V., CHEN, Y., AND ENCK, W. AppsPlayground: Au-
tomatic large-scale dynamic analysis of Android applications. In
Proceedings of the 3rd ACM Conference on Data and Application
Security and Privacy (CODASPY) (2013), ACM.

[46] ROESNER, F., KOHNO, T., MOSHCHUK, A., PARNO, B.,
WANG, H. J., AND COWAN, C. User-driven access control: Re-
thinking permission granting in modern operating systems. In
Proceedings of the IEEE Symposium on Security and Privacy
(2012), IEEE Computer Society, pp. 224–238.

[47] SHEKHAR, S., DIETZ, M., AND WALLACH, D. S. AdSplit: sep-
arating smartphone advertising from applications. In Proceedings
of the 21st USENIX conference on Security symposium (2012),
USENIX Association.

[48] SHIRLEY, J., AND EVANS, D. The user is not the enemy: Fight-
ing malware by tracking user intentions. In Proceedings of the
Workshop on New Security Paradigms (NSPW) (2008), ACM,
pp. 33–45.

[49] WAGNER, D., AND DEAN, D. Intrusion detection via static anal-
ysis. In Proceedings of IEEE Symposium on Security and Privacy
(2001), IEEE Computer Society, pp. 156–68.

[50] XU, R., SAÏDI, H., AND ANDERSON, R. Aurasium: practi-
cal policy enforcement for Android applications. In Proceedings
of the 21st USENIX conference on Security symposium (2012),
USENIX Association.

[51] YAN, L. K., AND YIN, H. DroidScope: seamlessly reconstruct-
ing the os and dalvik semantic views for dynamic Android mal-
ware analysis. In Proceedings of the 21st USENIX conference on
Security symposium (2012), USENIX Association.

[52] YIN, H., SONG, D., EGELE, M., KRUEGEL, C., AND KIRDA,
E. Panorama: capturing system-wide information flow for mal-
ware detection and analysis. In Proceedings of the ACM Confer-
ence on Computer and Communications Security (2007), ACM,
pp. 116–127.

[53] ZHOU, W., ZHOU, Y., JIANG, X., AND NING, P. DroidMOSS:
Detecting repackaged smartphone applications in third-party An-
droid marketplaces. In Proceedings of the 2nd ACM Conference
on Data and Application Security and Privacy (2012), ACM.

[54] ZHOU, Y., AND JIANG, X. Dissecting Android malware: Char-
acterization and evolution. In Proceedings of the IEEE Sympo-
sium on Security and Privacy (2012), pp. 95–109.

[55] ZHOU, Y., WANG, Z., ZHOU, W., AND JIANG, X. Hey, you,
get off of my market: Detecting malicious apps in official and
alternative Android markets. In Proceedings of the 19th Network
and Distributed System Security Symposium (NDSS) (2012).

[56] ZHOU, Y., ZHANG, X., JIANG, X., AND FREEH, V. W. Tam-
ing information-stealing smartphone applications (on Android).
In Proceedings of the 4th International Conference on Trust and
Trustworthy Computing (TRUST) (2011), Springer, pp. 93–107.

15

