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1 Introduction

Recently there has been a great deal of interest in global noninvertible symmetries, see for ex-
ample [1-7] for some overviews. Gauging of such noninvertible symmetries in two-dimensional
theories was described in [8-10]. These papers only considered gauging “multiplicity-free”
cases, meaning, cases in which the space of junction operators at an intersection of any three

simple lines is at most one-dimensional. In this paper, we generalize to consider gauging



noninvertible symmetries in two dimensions which are not multiplicity-free — for which the
Hilbert space of junctions is greater than one dimension.

We also discuss more general decompositions. Decomposition, first discussed in [11],
is the statement that a local quantum field theory in d dimensions with a global (d — 1)-
form symmetry is equivalent to (‘decomposes’ into) a disjoint union of local quantum field
theories, and arises in, for example, two-dimensional gauge theories in which a subgroup of
the gauge group acts trivially. (See for example [12] for a recent overview.) Our previous
work [8] discussed decomposition in two dimensions in gauged noninvertible symmetries in
the special case that the entire gauged noninvertible symmetry acted trivially. In this paper,
we study more general examples arising in gauged noninvertible symmetries, in which only
a subsymmetry acts nontrivially.

We begin in section 2 with a general overview of gauging noninvertible symmetries in
two dimensions, both reviewing the discussion of our previous paper [8] and also extending to
non-multiplicity-free cases. We also review notions of discrete torsion in gauged noninvertible
symmetries, as discussed recently in [13]. For example, we review that there are two distinct
generalizations, one of which naturally generalizes the old picture of discrete torsion as a
group action on B fields in ordinary orbifolds [14].

In section 3 we work through the details of gauging in a non-multiplicity-free example,
namely Rep(Ay). This is, to our knowledge, the simplest nontrivial non-multiplicity-free
example. That said, the analysis is somewhat lengthy. We present a complete expression of
partition functions for various gaugings and discuss possible discrete torsions.

In section 4 we apply our Rep(A)4 analysis to ¢ = 1 CFTs. We find resulting theories
under various Rep(A4) gaugings for the SU(2); /A4 theory, which is at a exceptional point
of the ¢ = 1 moduli space. Looking at the dual categories of gaugings, we find other ¢ = 1
CFTs enjoying Rep(A44) symmetry, even on the circle branch. We find that in general, if
a theory is self-dual under gauging a noninvertible symmetry, there can be multiple new
topological defects show up in order to obtain an associative fusion algebra. We utilize our
methods into the self-dual gauging of Rep(Ay) in SU(2);/A4, and find out the theory enjoys
a larger noninvertible symmetry Rep(SL(2,Z3)).

In section 5 we compare gaugings of Rep(Dy) to gaugings of Dy, extending an analysis
in our previous paper [8] to include contributions due to discrete torsion.

In section 6 we discuss examples of decomposition [11, 12]. Two-dimensional gauge
theories in which a subgroup of the gauge group acts trivially are examples, as a gauged
trivially-acting p-form symmetry yields a global (p+1)-form symmetry. Our previous paper [§]
discussed decomposition in two-dimensional theories with gauged noninvertible symmetries
in the special case that the entire noninvertible symmetry acted trivially. Here, we consider
more general cases in which a subset of the gauged noninvertible symmetry acts trivially.
We recover the results of [8] as special cases.

In appendix A we collect various technical results relevant to the Rep(A4) gauging, which
are essential to the computation but which are somewhat too technical for the readability of
the main argument of the paper, and so are banished to this appendix. In appendix B we
review a few facts about the Brauer-Picard group, which makes an appearance.



2 Gauging: general principles

2.1 Review of basics of gauging

In this section we review the basics of gauging noninvertible symmetries in 2d QFT. We will
concentrate on symmetries described by fusion categories. In particular, we will mainly focus
on fusion categories of the form C = Rep(#) for H a finite-dimensional semisimple Hopf
algebra over the complex numbers. Our fusion category C, whose objects describe topological
line operators in a 2d QFT 7, comes equipped with a finite set of (isomorphism classes
of) simple objects A, B,C,-- -, in the present case the irreducible complex representations
of H. In this way, every object in the category (i.e. every topological line operator in our
theory) is isomorphic to a finite sum of simple objects (the category is semisimple). There is
also a conjugation operation sending an object A to its conjugate A which represents the
orientation reversal of the corresponding line operator. As representations in Rep(#H), A
is the dual representation to A. We also have a definition of fusion on objects, which for
simple objects means that we have an expansion

A®B=Y NYgC, (2.1)

C
where NX B € Z>o are fusion coefficients. In particular, there is always a simple object 1,
called the monoidal unit, with the property that Nf 1=N fi 1 =04 B, as well as N}xZ =1 for

all simple A. These coefficients Nﬁ g are the dimensions of the vector spaces Hom(A® B, C),
which we can think of as the space of topological operators which can be placed at a
junction with A and B lines coming in and a C line going out. Generalizing [8], we consider
categories with multiplicity, meaning these hom-spaces can have dimension greater than
one. For each such space Hom(A ® B,C) of junction operators, we can choose a basis
()\g, plisi=1,-- ,NX g a fusion basis. For fusions involving the identity object there are
canonical choices for )\ﬁ’]l and )\f’ 4 (this will be explicit in specific examples), but the rest
of the basis is simply a choice.

Our category also comes equipped with an associator structure, a set of maps « AB,C €
Hom((A® B) ® C,A® (B ® C)). With the fusion bases chosen above, we can expand
these associator maps as

(Mog) o (1 A® (AE,C)) oaapC = ;{;ﬁ Fiamer. (APe), o (Mip), @1c).  (22)
The coefficients Fggfkg)zD are known as F-symbols, and they encode the information of the
associator. See figure 1 for an illustration.

In [8], we often used the notation of the crossing kernels K gvg(E,F ) [15] to describe
the components of the associator in the multiplicity-free case. In the present paper we
choose to switch to the slightly more common convention of F-symbols, which are related
to the crossing kernels by

(2.3)

o
N
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Figure 1. The associator for topological lines are encoded in F-symbols. The labels on the vertices
represent insertions of our fusion basis vectors, i.e. (AﬁE)i and (Ag,c)j on the left and (/\i,B)k’ and
(Aﬁc)g on the right.

The associator obeys a consistency condition known as the pentagon identity, which
when translated to a statement about the F-symbols becomes
(ABF)E £(JCD)E (BCD)G (AHD)E c(ABC)I
Z FkG] th tF7, 7"Ip Z F]F'L ZHm ka,nIp FnHE,qu : (24)
H;¢,mmn
The fusion ring (2.1) and the F-symbols (2.2) together determine the fusion category C.
As with fusion, a co-fusion basis can be chosen for each hom-space Hom(A, B® C), which
likewise are allowed to have dimension greater than one (indeed dim(Hom(A, BC)) = NgE).
In principle the co-fusion basis can be chosen independently of the fusion basis, but we préfer
to take the following set of conventions. We define evaluation maps for each simple object A
by €4 := )\%A € Hom(A® A, 1), €4 := )\i12 € Hom(A® A, 1). Then we define co-evaluation
maps y4 € Hom(1,A® A), ¥, € Hom(1, A ® A) uniquely by the requirement that
(EA®1)oa2}Z’AO(1®7A)=1, (1@ea)oayz40(a®l) =1 (2.5)
Finally, for the co-fusion basis we again have canonical choices for 5£’A and (52"Jl and then
we define the remainder of the basis by

(5E’C>Z~ - ((’\]jﬁ)i ® lc) 0050 (la®T0)0 e (2.6)

In the present context, the notion of gauging depends on a choice of a symmetric special
Frobenius algebra A in the fusion category C. Such a choice is understood as specifying
a subsymmetry of C, which often but not necessarily corresponds to a fusion subcategory
C' € C. An algebra A of such kind is specified by an object A € ob(C), along with morphisms
w: A® A — A (multiplication), u : 1 — A (unit), A: A - A® A (comultiplication), and
u®: A — 1 (counit), satisfying a series of identities described in e.g. [8, appendix A.2]. Such
identities ensure that the gauged theory 7 /A is well-defined. One should note that for a
fixed object A € ob(C) there can exist different morphisms (u, u, A, u°) that make it into a
symmetric special Frobenius algebra. The physically-meaningful information, however, only
depends on the Morita equivalence class of such algebra structures.

In particular, the partition function of the A-gauged theory can be constructed using
the algebra structure of A, using the same procedure as described in our previous paper [8].
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Figure 2. Definition of the partial trace (ZX p)ij as a T? correlation function with topological lines
inserted as shown and our chosen fusion and co-fusion basis vectors at the junctions.

For this, a triangulation of the two-dimensional spacetime is chosen, which in a prescribed
way gives rise to a combination of (co)multiplications of 4. The formalism involved ensures
that the final result is independent of the chosen triangulation. For example, the partition
function for a genus one surface (7?) is

Z(r,7) = Y (WG (ALY (ZG )ij(r, 7). (2.7)
A,B,Ci,j

In the expression above, the A, B,C are the simple objects (simple line operators) of the
parent theory C, and the coefficients (ui, )" and (Ag’A)j are obtained by expanding the
morphisms 4 : A®A —- Aand A : A - A® A in terms of a fixed (co-)fusion basis
of hom-spaces Hom(A ® B, () and Hom(C, B ® A), respectively. Thus, for instance, the
coefficient (,u(i B)i corresponds to expanding the multiplication morphism p: A® A — A in
terms of the basis junction operators and exctracting the coefficient of (Ai p)i- The partial
trace (ZX 5)ij(T,7) is defined as the correlation function of the theory on a T2 with modular
parameter 7, and with insertions of topological lines A wrapping the vertical cycle from
bottom to top, joining on the right with B wrapping the horizontal cycle from right to left.
The two lines meet and form a C line which then splits again into a B line and an A line.
At the junction where A and B join into C' we put an operator ()\g, )i, and at the junction
where C splits into B and A we put an operator (55”4) ;. This is sketched in figure 2. This
is understood as the generalization of the partition function expression [8, Equation (2.91)]
to fusion categories that are not necessarily multiplicity-free.

We can rewrite the co-fusion junction (5g’A)j as a combination of a fusion junction
(/\gz) ; and a co-evaluation 7 4 using (2.6). Then, we can use familiar manipulations along
with applications of the associator to derive the modular transformation properties of our



partial traces,

(25 B) (r+1,7+1) %E [Fas® ]; . (ZE,D)M (r,7), (2.8)
(ZXBL (=1/7,—-1/7) = Dkze:m {F(ABA L;] . { F(ADB)1 ]k; - (Zg,z)zm (1,7). (2.9)

The steps in this derivation are nearly identical to those in the multiplicity-free case which
is presented in [8] and so are omitted here.

Let us also briefly review some aspects of the connection between gaugings of a theory
with non-anomalous symmetry group G, and hence symmetry category Vec(G), and gaugings
of the dual symmetry category Rep(G). In Vec(G) the simple objects are labeled by group
elements g € G, and fusion is given by group multiplication. Indeed we can understand the set
of objects as the set of G-graded vector spaces, while the morphisms are grading-preserving
linear transformations. In Rep(G) the objects are representations of G (the simple objects
are irreducible representations), with fusion given by tensor products of representations. The
morphisms are intertwiners, i.e. linear transformations that commute with the group action.

According to [23], the gaugings of Vec(G) should be in one-to-one correspondence with the
gaugings of Rep(G). The gaugings of Vec(G) are easy to list. For each subgroup H C G (up to
conjugation), we make a choice of discrete torsion, i.e. an element of H2(H,U(1)), and there is
a corresponding gauging. The algebra object for such a gauging is A = >, h. The different
choices of discrete torsion get encoded in the Frobenius multiplication that we associate to A.

In [8] we showed how to construct a Frobenius algebra in Rep(G) associated to each
subgroup H C G without discrete torsion. The algebra object is the coset representation
A = Vi g whose basis vectors vy are labeled by cosets gH € G/H, and the action of G is
the obvious one, g - vy g = v4e . The Frobenius algebra multiplication and comultiplication
are then given by the intertwiners pu(vgy ® vy u) = 0gm,9 HVgH, and A(vgr) = Vg @ VgH
from Vg,p @ Vg/u — Va/u and Vg — Vg ® Vg respectively. Over the course of
many examples in [8] and in the current paper, it has been demonstrated that the theory
obtained by gauging this A in Rep(G) is equivalent to the theory obtained by gauging the
subgroup H without discrete torsion in Vec(G).

Unfortunately, we don’t currently have an analogous construction for the Frobenius
algebras in Rep(G) that correspond to the Vec(G) gaugings corresponding to subgroups
H C G with discrete torsion turned on. What we can often do is work backwards. From the
dictionary of gaugings that we do know we can identify how the Vec(G) partial traces Zgy,
are related to the Rep(G) partial traces ZX p» and then by looking at the partition function
for the additional Vec(G) gaugings we can deduce the Frobenius algebra structure in Rep(G)
which leads to them. We implement this in the current paper in sections 3.2.5 and 5.

2.2 Discrete torsion

Discrete torsion was first described in [16] as a choice of modular-invariant phases that could
be added to orbifolds by finite groups, to generate new theories — essentially, a choice of
physically-inequivalent ways to gauge a finite group. These different gaugings were argued to
be classified by the second cohomology group H?(G,U(1)) of the orbifold group G. In [14],



discrete torsion was described as a consequence of a choice of G-action on the B field and
corresponding gerbe, the higher-categorical generalization of principal U(1) bundles, or more
precisely, discrete torsion is the difference between group actions on the B field. In this
section, for completeness, we briefly review its noninvertible version.

In the context of noninvertible symmetries described by a fusion category C, more than
one kind of structure has been referred to as the generalization of discrete torsion, most
notably either as part of the information specified by a choice of symmetric special Frobenius
algebra (A, u, A) in C [17, Equation 4.4], [18, section 4.2], or as a choice of a fiber functor
for C [19, slide 26]. While these two characterizations are clearly applicable to a wider
variety of symmetries, they do not obviously generalize some of the properties of group-like
discrete torsion, including in particular its classification by some cohomology group, and its
interpretation as a difference of actions on the B field.

In [13], these issues are resolved. The generalization above, characterized as the Morita
equivalence classes of symmetric special Frobenius algebra structures on a given object A
in the fusion category C (which for A = R the regular object in C this is the same as
the set of equivalence classes of fiber functors on C), is referred to as the set of discrete
torsion choices on A. Generally-speaking, these only form a set, hence the name. In the
current literature, what is predominantly referred to as “discrete torsion” is this notion. A
distinct yet complementary generalization of discrete torsion to noninvertible symmetries has
a cohomological classification by lazy cohomology group H EQ (C), a cohomological notion due
to [20] that is intrinsic to the fusion category C. This is referred to as the (cohomology) group
of discrete torsion twists which, as its name suggests, always forms a group. This cohomology
group is the group of equivalence classes of natural isomorphisms of the tensor product functor
of C satisfying a 2-cocycle condition, where the equivalence is given by some appropriate notion
of 2-coboundary natural isomorphism. In particular, this recovers the group cohomology
classification of discrete torsion for group-like symmetries by letting C = Vecq, but also
provides a classification of discrete torsion for categories of comodules C = Comod(H) of a
Hopf algebra H in terms of the more standard notion of the lazy cohomology group H 42 (H)
of H [21], which has been computed for several such algebras (see e.g. [22]).

These two notions are complementary in the sense that discrete torsion choices on any
object A in C form not only a set but more precisely a set equipped with a well-defined group
action by the discrete torsion twists. Indeed, different discrete torsion choices can turn out
to be related by these categorical twists, an example of which is the discrete torsion choices
on the regular object in Rep(A4) (cf. section 3.2.5).

Furthermore, it was shown in [13] that this second generalization of discrete torsion,
classified by lazy cohomology, also classifies (differences between) actions of a noninvert-
ible symmetry on a B field, generalizing the picture of [14] from ordinary orbifolds to
noninvertible ones.

These cocycles interact with a variety of mathematical structures relevant to global
symmetries and their gaugings, such as symmetric special Frobenius algebras (discrete torsion
choices) mentioned above, as well as fiber functors, and noninvertible actions on gerbes with
connection. The key observation is that discrete torsion acts on any choice of such structure
by what can be understood as a twist. In the context of actions on gerbes, this is compatible
with the characterization of discrete torsion as differences of actions previously described.



Strictly speaking, it was argued in [13] that the discrete torsion described by lazy
cohomology is not a choice of a symmetric special Frobenius algebra, or of a fiber functor, but
the possible twists that the category-theoretic cocycles can produce on such choices. (This is
closely analogous to ordinary orbifolds, where as discussed in [14], discrete torsion in ordinary
orbifolds is technically the difference between group actions on a B field.) As described in [13,
section 3], this subtle point is visible in many cases. For example, the category Rep(Dy)
admits several inequivalent fiber functors, which in turn, and as described further in section 5,
implies that its regular object admits several Morita-inequivalent symmetric special Frobenius
algebra structures. However, the corresponding discrete torsion group H 42(Rep(D4)) vanishes,
meaning there are no nontrivial discrete torsion twists. On the other hand, categories that
do not admit a fiber functor such as Vec& for [a] € H3(G,C*) a nontrivial associator class
in general have a nontrivial lazy cohomology group. Such cocycles can nevertheless still twist
algebra structures in these categories and even quasi-fiber functors, which in particular are
used to describe anomalous actions on other monoidal categories and gerbes.

3 Higher multiplicity example: Rep(A,4) gaugings
3.1 Rep(Ay)
We'll take the following presentation of Ay,
(a,b]a® =4 = (ab)* = 1). (3.1)

In terms of familiar cycle notation, we can think of @ = (123) and b = (12)(34). The
group splits into four conjugacy classes,

[1] = {1}, (32)
[a] = {a,ab,ba,bab} = {(123),(134),(243),(142)}, (3.3)
[a?] = {a?, a®b,aba,ba®} = {(132),(234),(124),(143)}, (3.4)
(6] = {b, a*ba, aba®} = {(12)(34), (13)(24), (14)(23)}. (3.5)

This means that A4 should also have four distinct irreducible representations which we will
label 1, X,Y, Z. The character table for these irreps is

[1] | [a] | [a®] | [0]
il 1111
xx | 1] ¢ ¢ |1
xy | 1| ¢ 1
vz 310l 0|1

where ¢ = ¢2™/3. From the character table we can obtain the fusion algebra,

X2=VY, Y?’=X, XY=YX=1, XZ=ZX=YZ=2Y=22Z>=1+X+Y+2Z
(3.6)



Crucially, there is a coefficient of 2 appearing in the Z? fusion. This means that we are
not in the multiplicity-free case anymore.

We'll need more explicit realizations of the different irreps. We can specify! each one
by its action on the generators a and b,

pi(a) =1, p1(b) =1, 3.7)
px(a) = ¢, px(b) =1, 8)
py(a) = (%, py (b) =1,
. ~1.0 0
pz(a)= | % 0], pz(b) =10 L 22 (3.10)
0 0 1 0 22 -1

We’ll denote the basis vectors for which the irreps take this form as e, ex, ey for the
one-dimensional irreps, and {ej,eq,e3} for Z.

Next we need to pick bases for the fusion intertwiners. It is a somewhat lengthy task to
determine the general form of these intertwiners, so we have relegated the calculations to
appendix A.1. Apart from making a canonical choice for fusions involving the trivial irrep,

AR ‘rlev) = /\g’l(ve) =, (3.11)

we make the most general choice possible. For the cases where the complex vector space
Hom(A ® B, C) of intertwiners is one-dimensional, the specification of our single basis vector
is determined up to a C* constant. This is then precisely the same procedure as followed
in [8], and results in )\XX, )\Xy, )\YX, Ayy, )\XZ, )\ZX, )\YZ, )\Zy, )\ZZ, /\ZZ, and /\ZZ,
being fixed in terms of parameters i1, -- , 511 respectively.

On the other hand Hom(Z ® Z, Z) is a two-dimensional vector space. In this case we
need to specify a pair of basis intertwiners, (A% )1 and ()\ Z. )2, and they are determined up

P12 P13

to a GL(2,C) matrix . These intertwiners are also worked out in appendix A.1

Bia Bis
and given in equations (A.114) through (A.122).

With this basis of fusion intertwiners established, we can construct additional intertwiners
for evaluation maps €4 € Hom(A @ A,1), €4 € Hom(A4 ® A, 1), co-evaluation maps y4 €
Hom(1,A® A), 7, € Hom(1,A® A), and a basis (55’0)1- for co-fusion intertwiners that span
the vector spaces Hom(A, B® C). Following the conventions in [8], these maps do not require
any additional parameters and are computed in appendix A.2.

Next we turn to computing the associator. These are determined by our choice of basis
()\(;L p)i for the fusion intertwiners, and are defined by the requirement

(8e);e (112 (Be), ) sanme = S FEIRT (), o (Mis), @10). (12

'To obtain the non-trivial form of the pz matrices, we can realize the action of A4 geometrically as the
rotational symmetries of a regular tetrahedron whose vertices (labeled 1, 2, 3, 4 respectively) sit at the points

1 1 1 1 1 1 1 1 V3
(2 =55 ~5e) (2755 ~3ve) (0 75 —5yp), and (0.0, 555).



as maps in Hom((A ® B) ® C, D). The FgggBkg)zD

maps are intertwiners, and the associator map ax pc € Hom((A® B) ® C,A® (B® (C))
is canonical, in the sense that simply

are complex coefficients. In Rep(G) these

aa,B,c((vav)ve) = va(vpue). (3.13)

This is enough information to compute the components of the F symbols, and this is
done in appendix A.3.

3.2 Subgroups of A4 and gaugings of Rep(A4)

Up to conjugation, Ay has five distinct subgroups (conjugation relates all four Zg subgroups to
each other, and all four Z3 subgroups to each other), 1, (b) & Zs, (a) = Z3, {1,b, a®ba, aba®} =
Zsy X Lo, and Ay itself. The cosets of each of these give gaugeable subsymmetries of Rep(Ay).

e H= Ay, Ay/H = 1. This is the trivial subsymmetry of Rep(A4). Gauging it of course
does nothing.

e H = 7y x Zsy. The cosets are Ay/H = {H,aH,a?H}. To identify the corresponding
representation we note that on the listed basis of cosets the action of a and b is
(e.g. b-aH = baH = a(a*ba)H = aH),

001 100
payu(a)=1100], pa, ) =1010 (3.14)
010 001

Taking inner products with the irrep characters, we deduce that this is the 1+ X +Y
representation. This is a group-like Z3 sub-symmetry.

e H = (a) = Z3. The cosets are Ay/H = {H,bH,abH,a’bH}. Here we have

1000 0100
0001 1000
payH(a) = o100l pay () = 0001 (3.15)
0010 0010
This implies that the representation is 1 + Z.
o H = (b) = Zy. The cosets are Ay/H = {H,aH,a’H,baH,abaH,a?baH}. Then
001000 100000
100000 000100
010000 000010
par@ = o oo001| PO =01 0000 (316)
000100 001000
000010 000001

Here we find the representation 1 + X +Y + Z.

o H =1. The cosets Ay/H = A, transform as the regular representation 1+ X +Y +37.

,10,



3.21 14+4X+Y

The coset representation has vectors vy, vam, and v,2y. When we decompose into irreps,
we can write

e = vy + VoH + V2 H, (3.17)
ex = UH"‘CQUaH"‘CUa?H, (3.18)
ey =vg + gvaH + CQUCLQH? (319)

where ¢ = e2™/3. From pi(vgm, vks) = g kmvgn (so in particular p(uv) = p(vu)), we have
wulev) = p(ve) = v as well as

ulexex) = ey, (3.20)
ulexey) = e, (3.21)
uleyey) = ex, (3.22)

or in components, i, = uil =1 and

px =Bt (3.23)
piy =B, (3.24)
pyx =Bt (3.25)
By = B (3.26)
Similarly for co-multiplication, A(vgy) = vgrvgH, We get
1
Ale) = 3 (ee +exey +eyex), (3.27)
1
Alex) = 3 (eex +exe+eyey), (3.28)
1
Aley) = 3 (eey +exex +eye), (3.29)
hence AIIL{A = Aﬁ’l = é and
AP = % (3.30)
AP = % (3.31)
Ay = B 3.32
X 361 (3.32)
Ay = 2 3.33
Y 304 (3.33)
Putting this together in Z = >4 p ¢ ,ug’BAg’AZXB gives
! 5
Zyixyy = 3 {Zil I DYy 2 I v Dy v 2+ Tt SZQY] '
3 ’ ’ PrBa B1584 534

In the simplifying gauge choice of appendix A.4, this simply looks like a group-like
Zs orbifold, as we expect,
1

Z14X+y = 3

[211,1 + Zl),(X + Z{Y + Z))((,l + Z}(/,X + Z)I(,Y + Z))f/,1 + Zil/,X + Z))f(,y} . (3.35)

— 11 —



3.22 14+ 7

The subgroup in this case is H = {1,a,a2} = Zs. We have four vectors in the coset

representation, vy, vpg, Vapg, and v,2p. To collect them into irreps we have

e =vg + UpH + VabH + Va2bH,

e1 = V2 (Vb — Va2pr)

2
ez =4[5 (20pH — VabH — Va2bH) 5

1
e = 7 (BVH — VbH — VabH — Va2bH) -

(3.39)

From here we can compute the Frobenius algebra multiplication and co-multiplication,

namely p(ev) = p(ve) = v and

(ere1) \F 1
=e— /g6 — —=€
plerer 3¢2 \/33,
2

perez) = plezer) = — 3¢
1
ere3) = uleser) = — —=eq,
p(eres) = p(eser) e
( ) +\/§ 1
€ene = € —e €
H{€2€2 3 2 \/3 3,
1
p(ezes) = pleser) = — B
2

M €E3€3) = € + —F=E€3,
and

1
Ae) = = (ee + e1e1 + egea + ezes)

4
() 11( ) 1( ) 11( )
Ae = eel + ere e1eg + ege 6€+€€,
1 1 1 2\/6 1€2 2€1 \/§ 1€3 3€1
A( )——71( + )——1 —|——1 e ——1 (e2e3 + e3ze2)
e ee €g€ ele (& y
2 4 2 2 2\/611 2\/622 4\/5 203 32
() 1( ) 1 1 1
Ae = — (eeg + e3e) — —=e161 — —=e€92€9 + ——=e3e3.
3 4 5 3 4\/311 4\/322 2\/§33

In components, pi', = p4, = 1, Ai{A = Ai’l = %a and

gz =By, -
(ugz)l = % (\2/%515 + \}gﬁm) )
(N%,Z)2 = % <—\2/%513 - \}gﬁm) ,

— 12 —

(3.40)

(3.41)
(3.42)
(3.43)
(3.44)

(3.45)

(3.46)

(3.47)
(3.48)

(3.49)

(3.50)

(3.51)

(3.52)



where Q = B12615 — 13614, and
1

A%Z — 150 (3.53)
(A?Z)l % <4f514 + 2fﬁ15> (3.54)
(A?Z)Q = % (—4\1/3512 — 2\/5513) . (355)

Thus we obtain

1 Bo o)
ZHZ:Z le—i—ZlZ—i—ZZl—i—ZZZ—l— 302 ((514—!—22515) (Zg,z)n

— (12 +2i613) (B + 285) ((72.2) , + (22.2),,,) + (Bre + 2800)" (22 2),, )]

(3.56)
Making the simple gauge choice of appendix A.4, this becomes
1 2
Zl+Z - Z |:Z11’1 + le,Z + Z§71 + Zé’z + ﬁ <Z§7z>11 (357)

323 1+ X4+Y +Z7

For H = {1,b} = Zs, the coset representation is six-dimensional, with basis v, vem, ve2m,
UbaH y Vabal, and vg2p,5. To organize into irreps, we change basis to

€ =vg +VgH + Vg2 + VbaH + VabaH + Vg2baH (3.58)
ex = v + Cvanr + (Va2 + CVbatr + CVabal + Va2barrs (3.59)
ey = vg + CUaH + <2va2H + gvbaH + <2vabaH + Va2bam (360)

3
er = \/;(_UaH + V2 + VbaH — VabaH ) 5 (3.61)
1
€2 = \ﬁ (2'UH — VUgH — Vg2 + VbaH + VabaH — 2va2baH) ’ (362>
€3 = vy + Vol + Vo2 — VbaH — VabaH — Va2baH - (3.63)

This leads to the Frobenius algebra structures p(ev) = u(ve) = v and (we won’t compute all
components, just enough to fix the Frobenius multiplication and co-multiplication coefficients)

ulexex) = ey, (3.64)
nlexey) = plevex) = e, (3.65)
') )
ulexer) = plerex) = — —e1 — —ea + es, (3.66)
2 2 2
pleyey) = ex, (3.67)
1 ) /)
pleyer) = plerey) = 51t 5er es, (3.68)
2
1 1
plerer) = e— 26X ~ 5eY, (3.69)
7 7
pleres) = p(ezer) = — 56){ + §ey, (3.70)
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as well as

1
A(e):6(66+€X6Y+6Y€X+6161+€2€2+€3€3),
1
A(ex) = 6 (66){ +exe+eyey
1 1 " 1 1 +1 " 1 " 1 n
—=e1e1 — <e1e —=e1e3 — —€2€ —ege —=ege —=e3e
211 212 \/51?’ 221 222 \/523 \/531
1
Aley) = g (eey +exex +eye
1 +i i +i +1 N 1 i N
——e1e —e16p — —=e€1€e —ege —ege —=e9€3 — —=e3e
211 212 ﬂl?) 221 222 \/523 \/531

Aler) 1( 1 +z‘ i 1 ) +z’
e1) = = |ee; — —exe —exes — —exe3 — —eye] — —eye —eye
1 6 1~ 5exert jexer ﬂX:z S EYelL — Sy e \/§Y3
1 1 i i 1 1
+eje — ~ejex — -ejey + séxex — -exey — —=ezex + 636Y> .
2 2 2 2 V2 V2

From these we extract the coefficients, ui' , = 4, = 1, Ai{A = Aﬁ’l =2,

Y -1
Hx x = By,
|
Uxy = By,
z -1
Hx.z = - B,
S |
Py x = 53 ,
X -1
Hyy = By
VA . —
1z = —iB
Z -1
Hz x = - B
/‘Lg,y = - iﬁglv
1 -1
Kz z = Pg
X |
Kz z = — 810 »
Y -1
Rz z= — Bt s
xy B3
Al - E’
vx B
Al = E’
zz  Bo
A]. = g,
AYY — ﬁ,

X 651
ALZ — _ @7
X 635
AXX — &,
Y 64

— 14 —

(3.71)

6362> 3

(3.72)

6362) 3

(3.73)

(3.74)

(3.89)
(3.90)

(3.91)



iy

AZ7 = ~ %5 (3.92)
A2 = 615190 (3.93)
AVZ — 67;;, (3.94)
AZX = — égz (3.95)
AZY = — 6%6 (3.96)
Note that (/‘ZZ) (AZZ)J =
Assembling the ingredients, we obtain the partition function
D4 X4Y+Z = 6 Ziz+Zix + 2y + Z{ g+ 23, + ﬁﬁ; Zxx +Zxy + ﬁzﬂ; Z% 2
+ZY,1 + Z)1/X + Bﬁ; ZYY + gﬁg ZYZ + ZZl + /BZB; Z x* 6;%91125,5/
+Zh .+ 55%90222 + 527%9 zy (3.97)

It is a highly nontrivial check on our methods that this (as with the other orbifold partition
functions listed in this section) is a sum of the modular invariant combinations found in
appendix A.5.

In our simplified gauge of appendix A.4 we get

1
Z]_+X+Y+Z - 6 le,l +Zi(X +ZKY +Z1Z’Z + Z))g,l + Z))?,X +Z}(,Y + Z)Z(’Z +Z}¥’1 + Z}lﬁX

+Z§)f(,y + Z}%Z + Z§,1 + Zg,x + Zg,y + Zé,z + Z?,Z + Z}/,Z] . (3.98)

324 1+X+Y +3Z7

Finally we move to the case with the full regular represenation of A4. In this case we actually
have three different copies of the Z irrep appearing in the algebra object. We’ll label the
vectors for this as e;;, where this means the e; vector in the ith copy Z;. We can assemble
the vectors of the regular representation into component irreps (not uniquely, indeed there
is a (C*)3 x GL(3,C) worth of ambiguity in these choices, but that ambiguity drops out
of the final expressions for the partition function),

> v, (3.99)
gEA,
ex =v1+ CZUa + Can +up+ C2'Uab + <va2b + <2vba + Cvaba +Vg2pq + vaaQ + Vgpa2 + <2va2ba2 )
(3.100)
ey = U1+ Cva + §27)a2 +vp+ Cvab + C2va2b + vaa + C2vaba +Vg2pq + C2Uba2 T Vgpa2 + gv(ﬁbaz s
(3.101)
3
e =4[5 (—Uq 4+ Vg2 — Vab + Vg2 + Vba — Vaba — Vpa2 + Va2ba2 ) » (3.102)
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€12 = E (2'01 — Vg — Vg2 + 20p — Vah — Va2p + Vba + Vaba — 2fUaQba + Vpg2 — 2vaba2 + UaQbaQ) >

(3.103)
€13 = V1 +Vq + Vg2 + Vb +Vab + Vg2p — Uba — Vaba — Va2ba — Vba2 — Vaba? — Va2ba2 s (3'104)
3
€21 = \/g (Ul — Vg2 —Vp+Vg2p — Vaba T Va2bq T Vba2 — UabaQ) ) (3105)
1
€99 = 7 (—v1 4204 — Vg2 + Up — 20 + Va2p + 2V — Vaba — Va2ba T Vba2 + Vaba2 — 2Va2ba2 ) »
(3.106)
€23 = V1 + Vg + Vg2 — Up — Vap — Uyg2p + Vba + Vaba + Va2ba — Vba2 — Vaba? — Vaba? s (3.107)
3
€31 = \/; (_Ul + Vg +Vp — Vab — Vba T Va2bg — Vaba? T UaQb(ﬂ) ) (3108)
1
€32 = ﬁ (_Ul — Vg + 2042 +Vp + Vab — 2042 + Vba — 2Vaba + Va2ba + 2Upa2 — Vgpa2 — UaQbaQ) ’
(3.109)
€33 = V1 + Vg + Vg2 — Up — Vgh — Vyg2p — Vba — Vaba — Va2ba + Vba2 + Vaba2 + Va2ba? - (3.110)

The multiplication has as usual u(ev) = p(ve) = v and (only including enough examples
to determine all components)

plexex) = ey, (3.111)

ulexey) = uleyex) = e, (3.112)

ulexerr) = plenex) = ; %en + \;éelg, (3.113)
plexean) = plearex) = %C €21 — fC €22 + 74 €23, (3.114)
plexest) = p(esies) = ;@31 6632 + ﬁess, (3.115)

uleyey) = ex, (3.116)

pleyerr) = pleney) = — %611 + %612 - \2613, (3.117)
pleyear) = pleatey) = — %Cezl + %CGQQ — \%Cezg, (3.118)
pleyesr) = p(esiey) = — %@631 + %C2€32 - \%C2633, (3.119)
ulerrern) = e — %ex — ée% (3.120)

wlerers) = p(erzerr) = %ex — %6)/, (3.121)
p(erienn) = plearenn) = \}5632 - ;633, (3.122)
wuleriea) = p(eaerr) = \}5 \23633, (3.123)
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1 1
pleriest) = p(esienn) = Vs (3.124)
1 V3
plernesz) = p(eszern) = \@621 + e, (3.125)
1 1,
ulearenr) = e — igex - §C ey, (3.126)
7 7
p(earezn) = p(eaear) = ECGX - §§2€Y7 (3.127)
1 1
,u(621631) = u(631621) = — 5612 — 5613, (3128)
1 V3
[1,(621632) = u(632621) = — ﬁell — 7613, (3129)
1 1
M(€31631> = € — §C2€X — icey, (3.130)
7 7
,U,(631632) = M(632631) = §C26X — igey. (3131)

The non-zero coefficients are ,uf A= ,uﬁ 1 = 1, and

whox =B, pxy =B3" 1y x = B3, pyy =81t
(3.132)
Z -1 Z 25-1 z -1 Z el
lqu,Z1 = _/85 ’ MXZZQ - _C B5 ) MX?:Z3 = _Cﬁg) s :“’Y,lzl = —157 ,
:“)Z/,QZQ = _iC/B7_17 MYZ3 _ZC ﬂ7 )
Hzx == " n7Ex==Chsly =t ngy=—ibs"
7y = —iChs gy =—ic*B5t,
:u‘1Zl,Z1 = iu'lzz,Zz = M1Z3,Z3 = /89_17 M%(LZI = _i,Bl_()l, /_L%(27Z2 = —24/81_01, M§37Z3 = _iCQBl_Ol;
(3.133)
Woz =P Wz =—CB0Y, 1Yz =—CAT (3.134)
z ! 1 1
(’uZhZQ) (“Zz,zg = ('LLZg,Zl) = ( ¢?Pua -Hﬂls) (3.135)
Z 2 .z 2 2
(”Zf,Zg) = (MZ§,23> <ILLZ3, 1) = (C P12 — Z513) (3.136)
4 1 p 1 1
(“23,23) = (sz,zl) ('LLZ3 2) = ﬁ( (Bra +ibrs), (3.137)
Z 2 7 2 1
(sz,zg,) = (“Z;,ZJ (:U’Zg,Zg) Cﬁm —if13) . (3.138)

Similarly, for co-multiplication we find

Ale)= 10 —[ee+exey+eyex+eriern+erneiateizeizteaienr +exern+erzens
+es1e31+eszes2teszess], (3.139)
A( ) 1 [ n n 1 7 n 7 7 +1
e eex+exeteyey——ejierl——eje ej1e13——ej2e11+—eqoe
X)= 5 |eextex YY2111121112ﬂ11132121121212

1 L L Lo i 2 e
—=e€12€ —=e€13€ —=e€13€e12—=( €21€21—=( €21€ —( €eg1€
\/i 12€13 ﬂ 13€11 \/i 13€12 2 21€21 9 21622 ﬂ 21€23
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L Cement g Cement —=Cement—=Cexnent—=(
—( €22€2] €22€29 €22€23 €23€21 €23€22
2 \/> f \/>

1 7 1
—=(Cezies;— C€31€32+ C€31€33 C€32€31+ C€32€32+ C€32633

WC€53631+\1[C633632 (3.140)
Aey)= ! eey—&-exex-l-eye—}enen-l-i611€12—L€11613+i612€11+1€12€12+i612613
12 2 2 V2 2 2 2
) 1 1 ) ) ) 1
—ﬁemen—l—ﬁemeu—*C€21621+*C621622—7C621€23+*C622621+*C€22622
+\}§C622€23 \[@23621-1-\1[(623622— CCegresi+- C€31€32—7C €31€33
+;C2€32631+ ¢? 632632%—[( €32€33— \[C 633631+\1fC €33€32 (3.141)
Aerr) = ! 6611—16)(6114- '€X612—iexem—161/611—zey612+ieye13+6116—16116)(
12 2 2 V2 2 2 /2 2
) 1 /) 7 1
+§€12€X—ﬁemex—561163/—5612ey+ﬁel3ey—ﬁ€21632—5621633
1 V3 1 V3 1 1 1
—$622€31—7622633—56236314—7623632—ﬁ€31€22—§€31623—ﬁ632621
+\g§€32€23—;€33621—\f633622 ; (3.142)
1 1 )
Aleg1)= T 6621—*<€X6’21+ C€X€22—7C€X€23—*C €Y6’21—*C eye22+\[C ey €23
1 1 1 V3 1
*5611632*5611633*5612631+7612633*5613631*7613632+6216
1 i i 1, i o i
—§C€21ex+§C€2zex—\/5@236)(—§C 621ey—§C 612€Y‘|‘ﬁ< eazey
\2631612;631613\}5632611?632613;633611+\/§633612 ) (3.143)
A(es1)= 1 6631—1C2€X€31+£C2€X632—LC26X€33—1C€Y€31 C6Y632+ €€Y€33
12 2 2 /2 2 f
1 1 1 V3 1
\/5611622—2611623—\/5612621—7612623—5613621-1-7613622
1 1 1 V3 1
\/5621612 2621613 \/5622611-1-7622613—5623611—7623612-1—6316
;C 631€X+§C2€32€X \[C e33ex — o C€31€Y— C63zey+\[C€33€Y

(3.144)
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The corresponding nonzero coefficients are Ai"A = Aﬁ’l = 1—12 and
AX’Y _ @ YX @ AZI’ZI _ AZQ’ZQ _ AZ3’Z3 _ @ 14
2
A?Y ﬁ?’ 7 Z1,21 _ /89 )2(2722 — _C ﬁQ’ §(3,Z3 - _ Cﬁg 7 (3146)
1251 12/3 12035 1205
. . 2
. S R T U WY € R
12834 1237 127 127
AXZ _ Py vizi _ Do Zx _ 1P 2y _ P 5148
Z 12810 Z 12811 Z 1253’ Z 12536’ ( )
. 2 .
AXZ i¢fy 7 V2 _ ¢ By ’ ZX _ _2(52’ 2oy _ _(PBs (3.149)
2 1210 2 1211 2 1235 2 126
Xz By Y, 73 (B9 Zex 0P Zy (B3
Zs = T ) Zs = ) Zs = ) 7 =154 (3.150)
8 1210 3 1211 3 1233 3 1236
72,73\ ! Zs.70\ 1 7.7 Bo
(aZ) = (a27) = (A%7) = 15 (~CPu+ib), (3151)
WAY 73,71\ 2 7,2\2 _ B
(AZ7) = (a27) = (A07) = 155 (B — i), (3.152)
73,75\ 1 71,25\ 1 Z2,Z1\ 1 Bo
(aZ%)" = (a%%) = (a27) = 56 (~¢*Bua+ibis) (3.153)
2 B
(A%@) = (A%Zd) = (A%Zl) = 1;;2 (C2512 - 1513> (3.154)
Finally, assembling all the pieces gives us
1 31
4+ X+Y+3Z = 1 {211,1 + Zl),(X + Z%/Y + 3le,z + Z))((l + ﬁﬁ; ZXX + ZXY + 3 % ZXZ
B3 3if3 3if
A2 N Ty ¥ I A+ 2 ZE v 328+ 7
Y1 VX TR Avy g AV Z1t g3 Arx
3ify 319y 31y
+2 7z 437, + 27X =5 7y
Bspu 2Y 2727 BsBig 2z~ Brpu 27

36 .
> ((514 2if14P15 + 2515) (ZZ,Z)11
— (512514 — 112515 — 113514 + 2513515) ((Zgz) Lt (Zgz) 21)
2 o 2 Z
+ (8% — 2iB12Bus +26%) (252),,)] - (3.155)
Again, a very nontrivial check is that this combination of partial traces is completely modular

invariant.

In the nice gauge of appendix A.4,

1
Z14X+Y+32 = D [211,1 2+ Dy 43205+ ZX 1+ Zx x + Zxy +3Z% 51+ 23,
+Zyx+ 23y 328, + 325, + 325 x +3Z5y +3Zy ;+ 325 4

+37% ;+3V3 ((Zgz)11 - (Zgz)m)} . (3.156)
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3.2.5 Discrete torsion in Rep(A4) gaugings

So far, we have found five algebra objects for gauging Rep(Ay4), but this does not exhaust all
possibilities (see the discussion at the end of section 2.1). Recall that our strategy is that
every gaugeable subgroup H C G of G = A4 has an associated algebra object, thus a possible
gauging of Rep(A44). In the case of subgroup gauging H = Za X Zz and Ay, there exist
discrete torsion choices due to the fact H?(Zy x Za, U(1)) = H%(A4,U(1)) = Zg. Therefore,
it is easy to observe the other two gaugings:

o H = (Zy x Z2)qz+., namely gauging Zy x Zy C A4 with discrete torsion turned on. The
associated algebra object is (1 + X + Y + 3Z)q+., namely gauging the full Rep(A4)
category but with the discrete torsion turned on. Note that (1 + X +Y + 37)4;. gives
rise to a maximal gauging of Rep(Ay4), in the sense that it is given by a weighted sum
of simple objects by their quantum dimensions. For a given fusion category, the choice
of maximal gaugings correspond to the choice of its fiber functors. It is known that if a
group G has a Zg X Zgy subgroup, there is an additional fiber functor for Rep(G) [23].
In this case, we thus know that there exists a twisted gauging (1 + X +Y + 372)q+.
associated with the twisted gauging of Zy x Zy. This also matches the fact that Rep(Ay)
has two fiber functors? [18] (physically speaking, two SPT phases).?

From knowledge of the algebra object, and by knowing the relations between the
partition functions for orbifolds by A4 subgroups with or without discrete torsion, it is
possible to reverse engineer the form of the partition function in this case,

1 p
14 X+Y+32,dt. = 2 Zi A+ 28+ 2y +327 y+ 2% 1+6 ; Zx x+Zxy

3 3

+ﬁlg2 Z)Z(,Z+Z)}//1+Zil/,X+ ﬁﬁ; ZYY‘*’/BZgS Z€Z+3Z§,l
3159 3lﬂ9 3if9

7z 7z 437 4+ 2 gX

[3 Bro” X 5 B Y 2727 BB P
31/89 359 2 . VA

+ﬁ?/D)n 2yt 02 ((ﬂ14—21,314615+2ﬁ15> (ZZvZ>11

— (B12B14a—1f12815—1P13614+2513515) ((Z§Z) Lt (Zg,Z)m)
+ (5%2—2i512513+25%3) (Zg,z>22)} (3.157)
1
BED) [Z11,1+Z1),(X+ZKY+3ZIZ,Z+Z§((,1+Z§,X+Z)1(,Y+3Z)Z(,Z
+ 231+ 2y x + 2y +3Z3 743251 +325 x+325 v +325 4
+325 7432y ;—3V3 ((Ziz) 0 (Zf,z)m)] :

This differs from the 1 + X + Y + 3Z result without discrete torsion only in the sign of
the (Z g 7)i;j pieces. Note however, that we have not given the full Frobenius algebra
structure in this case.

?We thank R. Radhakrishnan for valuable discussions on this point.

3 Alternatively, one sees that the equivalence classes of fiber functors are in one-to-one correspondence
with the twists of C[G] modulo trivial twists [24]. In the case of G = A4, this class is specified by the lazy
cohomology with order 2 [22, Proposition 7.7].
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e H = (A4)qt., namely gauging A4 with discrete torsion turned on. The corresponding
gaugeable algebra object in Rep(Ay) is subtle to find from a 2D perspective. However,
from a 3D bulk perspective, it is shown in [18] that the algebra objects (1 + Z) admit
two Lagrangian algebras for the SymTFT. This thus provides two special symmetric
Frobenius algebra structures for (1 + Z). Therefore, we identify the only unknown
algebra object corresponding to H = (A4)q44. being (1 4+ Z)q+., namely gauging 1+ Z
with discrete torsion turned on. Again, combining knowledge of the algebra object with
knowledge of the form of the A4 orbifold partition functions allows us to write

1
Zi47d4. = — [211,1 +20,+ 725+ Zy

4
+% (@4 (Zg,Z)u — Hrafs ((Zg’z>12 + (Zg’z>21) + 01 (Zg’z>22)]

(3.158)

2 A

_ 1 1 Z Z 1
=7 {Zu + 2+ 2+ Dt (%%2),,

In the language of [13], the algebra structures (1+ X +Y +32)q:. = (1 + X +Y +
37, past., Adt.), and (14+ Zgt) = (14 Z, pqt., Aqt.) correspond to picking a different element
of the set of discrete torsion choices available for the objects 1 + X +Y + 37 and 1 + Z,
respectively. In particular, for the object 1 + X 4+ Y 4 37, this set of choices is equivalently
the set of equivalence classes of fiber functors on Rep(A44). However, here the story is richer
in the sense that these choices are moreover related by discrete torsion twists, which are
classified by the lazy cohomology group HZ(Rep(A4)) = Zg [22, Proposition 7.7]. In other
words, not only do we have a set of two distinct choices of algebra structures, but these
choices are furthermore in the same orbit of the twisting action by the cohomology group
of discrete torsion twists. We remind the reader that this twisting action is defined for all
algebra objects in the fusion category, not only for the regular object.

3.3 Summary of Rep(A4) gaugings

Now we are ready to summarize the gaugings of Rep(A44). We present all possible gaugings
of Rep(Ay4), and their corresponding subgroup gaugings of A4, as well as the dual categorical
symmetries, respectively, in table 1.

The rightmost column presents the dual categorical symmetries under gauging the
H subgroup of a A4 symmetric theory or gauging an associated algebra object of the
Rep(A4) symmetric theory. The dual categorical symmetry from gauging an algebra object
of Rep(A44) can be obtained from the corresponding subgroup H gauging of A4. Starting
with a A4 symmetry, gauging the full A4 and one of the non-normal subgroups Zs, all lead
to noninvertible Rep(A44) symmetry. When it comes to the Zs x Zo gauging, notice that
the A4 is a semi-direct product:

Ay =73 % L. (3.159)
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HC Ay Rep(A4) Algebra Object | Dual Categorical Symmetry
1 1+ X+Y +37 Ay
Zo 1+X+Y+2Z cT
Zs 1+ Z Rep(Ay)
Lo X Lo 1+ X+Y Ay
(Za % Za)qx. (1+X+Y +32)qs. Ay
Ay 1 Rep(A4)
(Ag)a.t. (1+Z)ax. Rep(As)

Table 1. Algebra objects for gaugings of Rep(Ay), their associated subgroups of A as well as the
resulting dual categorical symmetries.

In this case, gauging the Zy X Zs, one has a dual A4 symmetry. This is similar to gauging
a Zs3 subgroup of a S3 leads to a dual S3 symmetry discussed in [17].*

Gauging 1+ X +Y + Z of Rep(Ay), which is associated to gauging Zy C Ay, is special,
since it is the only case when the dual symmetry is neither A4 nor Rep(A4). Given that Zs
is a non-normal subgroup of A4, one expects it leading to a non-group categorical symmetry,
which we denote as CT. It was shown in [27] that C? is a noninvertible triality symmetry
with group-like Zy x Zo subcategory. The fusion rules are

Dyx D3 = g, g€ZLyx L,

Dy x D3 = 2D

8o 5 (3.160)
D3 x g =g x D3 =Ds,

'Dgxg:gx'bg:’by)

where D3 and Ds are triality defect and its orientation reversal. Physically speaking, this
categorical symmetry implies a triality symmetry for a theory under gauging Zo X Zo.

Based on all possible seven gaugings in table 1, we can build the generalized orbifold
groupoid [10, 28], mathematically as Brauer-Picard groupoid, for Rep(A4), with the Brauer-
Picard group reads [29]°

PBrpic(Rep(Ay)) = Dg, (3.161)

The Dg above denotes the dihedral group of order 12. See figure 3 for an illustration of
the resulting groupoid.®

*One should distinguish this case from the one in [25], where gauging H C G leads to a H x (G/H)
symmetry with a mixed anomaly (H 2 H is the quantum symmetry from gauging H). This mixed anomaly
shows up when G cannot be written as a semi-direct product by H and G/H. For H = Z3 C G = A4, one
has the anomaly counted by H*(Z3 x Z3,U(1)) = Z3 x Zz = H*(Z3,U(1)) x H3(Z3,U(1)). This implies all
possible anomalies for a Z2 x Zz symmetry are purely for Z2 or Zs, but not mixed. Therefore, the resulting
dual symmetry cannot be a mixed anomalous abelian one, but just an A4. This distinction can be shown
explicitly via SymTFTs for non-abelian finite symmetries [26].

5We review some background of BrPic group(oid) and computation of Brpic(Rep(A4)) in appendix B.

SStrictly speaking, we present not the full Brauer-Picard 3-groupoid but its 1-truncation.
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Figure 3. Brauer-Picard groupoid of Rep(A4) symmetry. We denote fusion categories as objects in
the groupoid with nodes. We use straight links to denote different categorical symmetries that are
connected via gauging, i.e., they are Morita equivalent to each other. The link attached to a single
node denotes the Brauer-Picard group Brpic(Rep(A4)) = De.

4 Applications of Rep(A,) gaugings: Exceptional ¢ = 1 CFT and duality
defects

In our previous paper [8] (see also [6, 27]), we considered ¢ = 1 CFTs enjoying multiplicity-
free noninvertible symmetries and discuss how the various gaugings can be identified as
connecting different points in the ¢ = 1 moduli space. Here we consider the realization of
Rep(Ay4) gaugings in ¢ = 1 CFTs.

Let us start with a compact boson whose target space is just a S with radius R. Using
left- and right-moving fields X, and Xpg, we define U(1)-valued fields as momentum and
winding variables
6, — XL+ Xgr

R
Different values of R correspond to theories on the circle branch of the ¢ = 1 moduli space,
related by T-duality

0., = R(X;, — Xp). (4.1)

R— %,
O < Ou, (4.2)
Xrp — — Xp.
At a generic R, the global symmetry enjoyed by the theory is
(UL)m x U(L)w) ¥ Za,r, (4.3)

where subindices m and w denote the momentum and winding symmetries, respectively,
and Zo, denotes the “reflection” symmetry:

Loy : (O, 00) = (—Opm, —0u). (4.4)

which sometimes is also referred to as “charge conjugation”.
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In order to realize a Rep(G) symmetry, a general strategy is to think of G as a subgroup
of (4.3). Then, by gauging the G, one ends up with a ¢ = 1 theory enjoying a noninvertible
Rep(G) symmetry. In many cases, this leads to theories on the orbifold branch, which is
defined by the Zs, orbifold at some radius R. For example, when G = Dy = Z4 X Zo,,
gauging G also includes gauging the Zs ,, which by definition results in a theory living on
the orbifold branch.

However, the finite subgroups of (4.3) do not include A4. In order to start with an
Ay symmetric theory and gauge it to get a Rep(A4) symmetry, one needs a larger global
symmetry group than (4.3) to start with. This leads us to consider the compact boson at the
T-duality self-dual point R = 1, known as the SU(2); theory. This self-duality point of the
¢ = 1 circle branch enjoys a enhanced global symmetry compared to (4.3) as

(SU(2) x SU(2))/Zs = SO(4). (4.5)
It was found in [30] that orbifolds of this self-dual theory admit an ADE classification:

o A-type. This a, class corresponds to Z, orbifolds, resulting in SU(2);/Z,, theories.
These theories live at R = n (or equivalently R = 1/n by T-duality) points in the circle
branch. One special case is when n = 2, where the resulting theory also belongs to the
orbifold branch, i.e. it is the intersection point of the circle and the orbifold branch.

o D-type. This 0, class corresponds to D,, (order-2n Dihedral group) orbifolds, resulting
in SU(2)1/D,, theories. These theories live at R = n (or equivalently R = 1/n by
T-duality) points in the orbifold branch. These theories can be derived as Zsg, orbifolds
of SU(2)1/Zy, theories.

o E-type. These three exceptional cases ¢g, ¢, and eg correspond to A4, S4 and As orbifolds,
respectively, resulting in the following three theories

SU(2): SU(2)1 SU(2) (4.6)

Ay 7Sy T As '
These three theories are isolated in the ¢ = 1 moduli space. Namely, they belong to
neither the circle nor the orbifold branch.

Recall the fact that gauging a G symmetry leads to a Rep(G) quantum symmetry; thus,
the three exceptional orbifold theories enjoy Rep(A4), Rep(Ss) and Rep(As) noninvertible
symmetries. This result was observed in [27].

4.1 Rep(A,4) gaugings of the SU(2);/A4 theory

Utilizing the result in table 1, it is straightforward to find various Rep(A4) gaugings of the
SU(2)1/A4 theory from gauging H C A4 subgroups of the SU(2); theory. We present our
results below and illustrate how these gaugings connect various theories in ¢ = 1 moduli
space in figure 4.
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( \(1+X+)’+37)dt
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1 2 3 Reircle 1 2 3 Reircle
SUQ2), KT. SU),/Z, SU2), K.T. SU(2),/Z,
(@) H C A, Gaugings of SU(2), (b) Rep(A,) Gaugings of SU(2),/A,

Figure 4. (a) Gauging various subgroups H C A4 of the SU(2); theory and (b) various Rep(A4)
gaugings of the exceptional orbifold theory SU(2);/A4 and the respectively resulting CFTs in ¢ = 1
moduli space.

H C A4 gaugings of the SU(2); theory. For H C A4 gaugings of the SU(2); theory, we
can use the ADE classification of its orbifold theories to read off the following results:

e H =75 and H = Z3 belong to the A-type orbifolds, and give rise to R =2 and R =3
theories on the circle branch respectively. In particular, R = 2 on the circle branch
is also R = 1 on the orbifold branch. These correspond to two curved red lines in
figure 4(a).

o H =75 x7Zo = Dy corresponds to the simplest D-type orbifold. The gauged theory is at
R =2 on the orbifold branch. This corresponds to the diagonal red line in figure 4(a).

o H = Ay is the eg type orbifold, by definition leading to our interested SU(2);/A4 theory.
This corresponds to the vertical red line in figure 4(a).

o H = (Zy X Z2)at. and H = (A4)qt., in general are distinct from Zo x Zg and Ay
gaugings, respectively. However, in this case, the 't Hooft anomaly for SO(4) global
symmetry’ provides a chiral Zs rotation which compensates this H?(Zy x Zs; U(1)) =
H?(A4;U(1)) = Zy choice of the discrete torsion. Therefore, they physically lead to the
same orbifold theories as H = Zgy x Zs and H = (A4) gaugings [27].

e Since A4 can be built as a group extension 1 — Zs X Zy — A4 — Z3 — 1, gauging Ay
can be performed in a two-step sequential gauging: first gauge Zo X Zo and then gauge
Zs. This tells us that the exceptional SU(2);/A4 CFT can also be derived from gauging
a Zs of the 4-state Potts model at R = 2 on the orbifold branch. This corresponds to
the horizontal red line in figure 5(a).

“One way to understand this t Hooft anomaly is it inherits from the well-known mixed anomaly between
the U(1),, and the U(1),, symmetries for generic R on the circle branch.
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Rep(A4) gaugings of the SU(2)1/A4 theory. The above analysis of H C A4 gaugings
of the SU(2); theory allows us to further discuss Rep(A4) gaugings of the SU(2); /A4 theory.
In particular, from the dual categorical symmetries listed in table 1. we know that when
gauging 1+ Z,1+ X +Y + Z, and (1 + Z)q., the dual category is still Rep(A4). We thus
present the following results:

o Gauging 14+ X +Y +3Z: this is gauging the full Rep(A4) without discrete torsion; thus,
since it is the quantum symmetry, one recovers the SU(2); theory. This corresponds to
the vertical blue line in figure 4(b).

e Gauging 1+ X +Y and (1+ X +Y + 3Z)q+.: these are associated to Zg X Zy and
(Za X Z2)ays. gaugings of SU(2); according to table 1. Furthermore, as we discussed
above, the discrete torsion for Zs X Zg does not lead to a physically distinct orbifold
theory; thus, these two gaugings both take the SU(2);/A4 theory to R = 2 on the
orbifold branch. This corresponds to the horizontal blue line in figure 4(b).

o Gauging 1+ X +Y + Z: this is associated to the Zy gauging of SU(2);. In particular, the
resulting ¢ = 1 CFT at radius R = 2 has a noninvertible Rep(A4) symmetry according
to table 1. Note that this theory is the intersection point of the circle branch and the
orbifold branch. This aligns with the general belief that ¢ = 1 CFTs on the orbifold
branch enjoy a rich class of categorical symmetries.

o Gauging 1+ Z: this is associated to Zs gauging of SU(2);. In particular, the resulting
¢ =1 CFT at radius R = 3 enjoys noninvertible Rep(A4) symmetry according to
table 1. This is a remarkable result since this theory, i.e. SU(2)1/Zs, is on the circle
branch. To our knowledge, this is the first noninvertible symmetry other than the Zy
Tambara-Yamigami category found to appear on the circle branch.

o Gauging (1 + Z)q+.: this is associated to (A4)q+. gauging of SU(2);. However, as we
already pointed out, this discrete torsion for A4 gauging does not lead to a physically
distinct theory from the A4 gauging with trivial action. Therefore, the resulting theory
after gauging (1 + Z)qy+. is still the exceptional CFT SU(2);/Ay, i.e.,

SU(2)1 /Ay is self-dual under gauging (1 + Z)qy+..
We will investigate this self-duality in more detail in the following subsection.

Following similar steps, one can also build gauging patterns for the SU(2);/(Za x Zs)
(4-state Potts model) on the orbifold branch and those for the SU(2);/Z3 theories. The
starting point is to notice that SU(2);/(Za X Zg) enjoys a A4 symmetry, according to table 1,
since it is obtained from gauging a Zy X Zy C A4 symmetry of SU(2);. Gauging its Ay
symmetry is equivalent to a two-step sequential gauging: first gauging Zo X Zo and then
gauging Zs. This reproduces our result that the SU(2); /Z3 theory enjoys a Rep(A44) symmetry.
We can then conclude the various A4 and Rep(A4) gaugings for these two theories. See
figure 5 for an illustration.

Within these five theories connected via A4 and Rep(A4) gaugings, the Kosterlitz-Thouless
(K.T.) point is special since it enjoys neither A4 nor Rep(A4) symmetry, but a CT noninvertible
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Figure 5. (a) Gauging various subgroups H C Ay of the SU(2)1/(Z2 x Z2) theory and (b) various
Rep(A4) gaugings of the exceptional orbifold theory SU(2); /A4 and the respectively resulting CFTs in
¢ = 1 moduli space. Note that the self-duality of SU(2);/(Z2 x Z2) theory under gauging (Zs x Zsg )4 +.
matches the fact that the theory enjoys at least a Rep(Dy) symmetry [8].

triality symmetry (3.160). Furthermore, this triality symmetry is anomalous, due to the
fact that KT point does not admit a trivially gapped phase respecting this noninvertible
symmetry [27], thus we will not discuss its gaugings.

4.2 Multiplicity of noninvertible defects from self-dual gauging

If a 2D QFT is self-dual under gauging a (zero-form) global symmetry, then a noninvertible
duality defect constructed via the half-space gauging exists. Namely, performing the gauging
in half of the spacetime, the resulting topological interface separating the original and the
gauged theory is promoted to a defect due to the self-duality of the theory. The Kramers-
Wannier duality defect of the Ising CF'T is the simplest example of this type, implying the Ising
CFT is self-dual under gauging Zs symmetry [31]. Including this duality defect, one ends up
with a symmetry larger than Zo, which in this case is Zy Tambara-Yamagami fusion category.

In [8-10], the construction of noninvertible defects is generalized to self-dualities under
gauging noninvertible symmetries. This includes cases under gauging the full Rep(#) fusion
categorical symmetry as well as those under gauging an algebra object A as a subsymmetry
of a fusion category [8]. For a theory with a fusion categorical symmetry C, if it is self-dual
under gauging the algebra object A = ) .a;A;, where A; are simple objects and a; are
their multiplicities, the duality defect built from the half-space gauging enjoys the following
self-fusion rules,®

DxD=A (4.7)

To complete the fusion algebra, one must specify fusions of simple objects in A with the
duality defect D. In the case of A = Vecg, i.e. gauging invertible symmetries, the duality

8We restrict to the case D = D, where D is the orientation reversal of D, for simplicity.
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defect will simply absorb the simple objects in A, namely
Ai x D =D x Az = <A1>D (48)

Here, we use the notation (A4) := dimg(A) to mean the quantum dimension of A in the
fusion category C.

The fusion rule (4.8) could also be true for some special noninvertible cases. One simple
example is the self-duality of gauging Rep(Hsg) symmetry [8-10],

DxD=1+a+b+c+2m,
Dxm=mxD=2D, (4.9)
Dxg=gxD=D, g¢€{a,b,c},
where the new duality defect absorbs all Zy lines as well as the noninvertible m line when
fused with them.
However, in general, for self-dualities under gauging noninvertible symmetries, the fusion
rule (4.8) does not lead to associative fusion algebra and thus cannot be the correct result.
Interestingly, in many cases, for a certain self-dual gauging, one can obtain a consistent

fusion algebra only by introducing multiple defects. We next demonstrate this multiplicity
of duality defects through some explicit examples.

4.2.1 Revisit self-dual gaugings of Rep(S3) and Rep(D4)

Before discussing our central example SU(2); /A4, an exceptional CFT with self-dual Rep(A4)
gaugings, let us revisit the self-dualities of gauging simpler noninvertible symmetries, namely
Rep(S3) and Rep(Dy4) in SU(2)4/U(1) and SU(2)1/(Z2 x Z2), respectively, introduced in [8].
For ease of reading, we recall our notations for fusion rules of Rep(S3) as

YxY=1+X+Y,
YXxX=XxY =Y, (4.10)
X xX=1,

and those of Rep(Dy) are given by

mxm=1+a+b+c,
Xm=mxg=m,qg € {a,b,c},
9 9 g9 €{a,b,c} (4.11)
axa=bxb=cxc=1,
axb=bxa=c¢, axc=cxa=b bxc=cxb=a.
The self-duality of gauging noninvertible symmetries gives rise to the following duality
defects [8]

Rep(S3) : DxD=1+Y,

(4.12)
Rep(Dy) :DxD=1+b+m.

Motivated by completing the fusion rules for D’s, we will see each of these self-dual gaugings
lead to multiple duality defects.
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Two duality defects from gauging Rep(S3) in SU(2)4/U(1). Given the existence of
the duality defect D in SU(2)4/U(1) theory via gauging the 1 4+ Y algebra of Rep(Ss),

DxD=1+Y, (4.13)

we next must specify the fusion rule for fusing Y with D. Following (4.8), a naive guess
would be that D absorbs lines from gauging invertible symmetries, by multiplying their
quantum dimensions, so that in this case D x Y =Y x D = 2D. However, the resulting
fusion rule is not associative:

DxY =Y xD=2D
=(Y xD)xD=2DxD=2+2Y,
Y x(DxD)=1+X+2Y,
=Y xD)xD#Y x (D x D).

(4.14)

The correct procedure is to add another duality defect (simple object) D' = X x D =D x X,
with the same self-fusion as D, and with the following fusion rules

YxY=1+4X+Y, X xX =1,
DxD=D xD =1+Y,
XxD=DxX=T,
YxD=DxY=D+7D.

(4.15)

It is straightforward to check that the above fusion rules are associative. The Rep(Ss) is
realized as a subsymmetry (the first line in the above fusion rules) of this fusion categorical
Ssymmetry.

This tells us the self-duality of gauging 1+ Y of Rep(S3) implies two duality defects, with
the same self-fusion rule for condensing 1+ Y, and transformed to each other via fusion with
X. Furthermore, the quantum dimensions of these two defects are both (D) = (D') = /3.
This non-integer quantum dimension implies the whole fusion category containing D and
D’ is anomalous, i.e. obstructs the trivially-gapped phase.

Two duality defects from gauging Rep(Dy4) in SU(2)1/(Z2 X Z2). Given the existence
of the duality defect D in SU(2)1/(Za x Z2) theory via gauging the 1+b+m algebra of Rep(Dy)

DxD=1+b+m, (4.16)

we again want to determine the fusion rule for m x D. Similarly to Rep(S3), the naive
form (4.8) is not associative:

Dxm=mxD=2D,
=(bxD)xD=2DxD=2+2b+2m,

bx (DxD)=bx(1+b+m)=1+b+m,
=((bxD)xD#bx (D xD).

(4.17)
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The correct thing to do is to add another duality defect D',
D=axD=Dxa=cxC=Dxc, (4.18)
with the same self-fusion as D. The full fusion rules including D and D’ are given by

mxm=1+a+b+c,

gxm=mxg=m, g€ {a,b,c},
axa=bxb=cxc=1,

axb=bxa=c¢, axc=cxa=b bxc=cxb=a,
DxD=D xD =1+b+m,

DxD =D xD=a+c+m,
axD=Dxa=cxD=Dxc=D,
mxD=Dxm=D+7D.

(4.19)

In particular, the self-duality of gauing 1+ b+ m of Rep(D4) implies two duality defects,
transforming into one other under fusion with the Zy generators a and c. Furthermore, the
quantum dimensions of these two new defects are both (D) = (D) = 2.

This integral quantum dimension leads one to wonder whether this bigger noninvertible
symmetry, with Rep(Dy) as its subsymmetry, is non-anomalous. This is indeed the case. In
fact, one can further identify this extended noninvertible symmetry with fusion rules in (4.19)
as Rep(Ds), where Dg is the order 16 dihedral group.

4.2.2 Self-dual gauging of Rep(A4) and the resulting Rep(SL(2,7Z3)) symmetry
of SU(2)1/A4

. Now, let us return to the exceptional ¢ =1 CFT SU(2);/A4. As we already discussed, it
enjoys a C = Rep(A4) symmetry, and in particular, it is self-dual under gauging the algebra
object A = (1+ Z)q+.. Therefore, we can perform a half-space gauging of A and obtain at
least one new noninvertible duality line defect D with the self-fusion in the form of (4.7):

DxD=1+Z. (4.20)

If one assumes D is the only duality defect under this gauging, and it absorbs the Z defect,
then the fusion rules cannot be associative:

Dx Z=12ZxD=3D,
=(ZxD)xD=3DxD=3+3Z,

4.21
Zx(DxD)=Zx(1+2)=1+X+Y +3Z, (4.21)
=(Z xD)xD# Z x (D xD).
The correct result needs two more defects D' and D”, defined as
D'=XxD, D' =Y xD. (4.22)
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The full fusion rules read

XxX=Y, YxY=X XxY=YxX-=1,

ZIXZ=1+X+Y+27, XXxZ=ZxX=YXxZ=ZxY =1,
DxD=D xD'"=D"xD =1+ 2,

DxD =DxD"=D"xD=Y + Z, (4.23)
D'xD'=DxD' =D xD=X+Z,

XxD=DxX=D, YxD=DxY =D",
DxZ=ZxD=D+D +D".

We write the fusion rules so that from the first line to the last line, one can see how the
symmetry of SU(2);/A4 is extended.

e The first line is just a Zs invertible symmetry. If one does not know this theory is a Ay
orbifold, but only recognizes it as a Zs orbifold of the 4-state Potts model as shown in
figure 5(a), this will naively be the global symmetry as a quantum symmetry.

o Including the second line, one obtains a Rep(A4) symmetry. One can realize this global
symmetry by noticing the theory is a A4 orbifold.

¢ Including the third line, one finds out the non-trivial self-duality of this theory under
gauging an algebra object of Rep(A44). Thus, the global symmetry cannot just be

Rep(A4), but extended by the defect lines D, D’ and D".°

The quantum dimension (D) of D can be easily computed
(DV?=(1)+(Z)=4= (D) =2, (4.24)
which is an integer. This satisfies the necessary condition for a noninvertible symmetry to
admit a trivially gapped phase, i.e. to be non-anomalous. In fact, one can check further that
the extended noninvertible symmetry given by (4.23) is a group-theoretical fusion category
Rep(SL(2,Z3)). Namely,

SU(2)1/A4 theory enjoys a Rep(SL(2,Zs3)) symmetry.

This class of symmetry line defects for Rep(SL(2, Z3)) was found in [32] as local operators
associated with Verlinde lines of the SU(2); /A4 theory.!’ The identification of our topological

9This larger noninvertible symmetry can be regarded as a Zo-extended fusion category of the Rep(A4).
We refer the reader to [8, 9] for more details on extending categorical symmetries from self-dualities under
gauging noninvertible symmetries.

10We thank Y. Choi and B. C. Rayhaun for pointing out the reference and valuable discussions on this
point.
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defect lines and local untwisted sector operators in [32] are presented as follows,

X =1, (4.25)
Y = 1o, (4.26)
Z =j, (4.27)
D = do, (4.28)
D = ¢, (4.29)
D' = ¢, (4.30)
1=1 (4.31)

There are other local operators labeled by o, 7, wz?t, 92~i in [32], but they belong to twisted
sectors'! and so do not give rise to topological lines.!? Therefore, what we have obtained
from gauging Rep(A4) noninvertible symmetries are the complete set of Verlinde lines for
this theory. Therefore, Rep(SL(2,Z3)) is the full categorical symmetry for the SU(2);/A4
theory generated by topological lines. Further natural questions include how to gauge this
Rep(SL(2,Z3)) symmetry and what can be said about the resulting ¢ = 1 CFTs, which
we leave for future work.

We close this section by remarking that including duality defects from self-dual gauging a
noninvertible symmetry enjoys a elegant mathematical interpretation as a Zs-grading fusion
category C’ of the original fusion category C [33]. In the case of self-dual gaugings for Rep(Dy)
and Rep(Ay), this Zs-extension for the fusion category can be regarded as

Rep(Z2) < Rep(Ds) + Rep(D4),

(4.32)
Rep(Zsy) < Rep(SL(2,Z3)) + Rep(Ay),

aligned with the fact Dy = Dg/Zy and Ay = SL(2,Z3)/Zs, respectively. It would be
interesting to investigate this Zo-grading picture and duality defects systematically in ¢ =1
CFTs, which we leave for future work.

5 Multiplicity-free example revisited: Rep(D,) gaugings from D,
gaugings

In [8, section 3.2], partition functions for eight gaugings of theories with Rep(Dy4) symmetry
were constructed based on cosets from the eight (up to conjugation) subgroups of D4. This
does not capture all gaugings of Rep(Dy), however, because for each subgroup G of D4y we
also have the possibility of turning on discrete torsion, classified by H?(G,U(1)). In the case
at hand, the eight subgroups of Dy are the trivial group, three copies of Zs, two copies of
Zo X Za, one copy of Z4 and the entire group. Of these, we have the non-trivial cohomologies
H?(D4,U(1)) = H*(Zy x Z9,U(1)) = Zs, which means that there are three additional

"'We thank H.Y. Zhang for pointing this out.

2For simplicity, considering the Ising CFT, there are three untwisted sector primary operators 1,c, and e.
There are three Verlinde topological lines 1, A" and 7 corresponding to these three local fields. The fusion rules
of these lines, which is TY(Zz) in this case, can be reproduced by the OPEs of these local operators. There are
also twisted sector fields such as p, i.e., disorder operator, but they do not give rise to extra topological lines.
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gaugings of D4 which arise from turning on discrete torsion in the two Zs x Zo and the entire
Dy, bringing us to eleven total gaugings of Dy. Since gaugings of G and Rep(G) are known
to be in one-to-one correspondence [23], we should also expect eleven gaugings of Rep(Dy).

In this section, we will produce the remaining gaugings, based on the procedure outlined
in [34] and reviewed at the end of section 2.1. The strategy here will be to read off the
partial traces of the eleven D4-symmetric topological phases from the eleven D, gaugings,
map these to partial traces of the eleven Rep(D,)-symmetric topological phases, and use the
Rep(D4)XRep(D4) diagonal gauging to construct the eleven gaugings of Rep(Dy).

To begin with, we will establish notation for D, and write down the partition functions
for its various gaugings. Our notation will follow [8]. We present the group as

(@ vl =o* = (@y)* =1) (5.1)

with conjugacy classes [1] = {1}, [x] = {z,23}, [2?] = {22}, [y] = {y,2%y}, and [zy] =
{xy, z3y}. There are 40 commuting pairs of group elements, which naively would lead to
40 partial traces in a Dy gauging. However, Morita equivalence (which in this group-like
case is simply conjugation equivalence) reduces this number to 22. Making an arbitrary
choice of representative in each equivalence class, the partition function for gauging all of

Dy can be written as
1

3 (Zin+ (Zr2+ Zppg + Zy2 2) +2(Z1 0+ Zog + Zop + Zyp g2 + Zi2 g + Zy 1)
+ 2<Zlvy +Zy1+ Zy,y) + 2(Zl,avy + Zay1 + Z:vyvzy) + 2(Zx2,y + Zy,ﬂ + Zy,mQy) (5.2)

+ 2(ZIQ,xy + Zzy,x2 + Zmy,xSy)]
where terms in the same modular orbit have been collected in parentheses, and + provides

the Zo discrete torsion. With this notation, the remaining nine gaugings of D, are the
trivial gauging

VARE (5.3)
the three Zy gaugings
1
5 (Z10 + (Zya2 + Za2 g + Zy2 42)], (5.4)
%[Zl,l + (Ziy + Zy1 + Zy,y)]a (5.5)
%[Zl,l + (Z1ay + Zayy + Zayay)], (5.6)

the two Zy x Zg gaugings (each with Zg discrete torsion)

[Z11+ (Z1g2+Zy2 1+ 22 02) +2(Z1y + Zy1 + Zyy) £2(Zy2 4+ Z, 42 + Zyyxzy)] , (5.7)

e R o M

[2171 + (Z1’12 + Zx271 + Zz{ﬂ) + 2(Zl,my + Zmy,l + Z:ch,zy) + Q(ZmQ,xy + Zzy,x2 + Zmy,x3y)] )
(5.8)
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Table 2. Partial traces obtained when gauging D4-symmetric topological phases.

and the Z, gauging

1
4

Noting that these eleven gaugings are a result of taking the product of a D4-symmetric
theory with the eleven Dy-symmetric topological phases and gauging the diagonal D,, we
can deduce the partial traces of these phases under Dy gauging. Noting that the diagonal Dy
will have the form (5.2) where now each Z;, is the product of partial traces from the two
individual theories, we simply read off what the partial traces of the topological phases must

[Zl,l + (Z17x2 + Zx271 + ZIZ,SUZ) + Q(Zl,x + Z$71 + ijx + Zx7x2 + szjx + ijl,g)]

(5.9)

be to produce each of the eleven gaugings. The result of this exercise is given in table 2.

The next step is to relate the D4 partial traces to Rep(Dy) ones. Rep(D4) has five

simple objects which we will write as 1, a, b, ¢ and m, corresponding to the five irreps of
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D,. The characters for these irreps act as

1] | [°] | [2] | [y] | [=y]
x1 | 1 1 1 1 1
Xa | 1 1 1 | -1] -1 7 (5.10)
xp | 1 1 | =171 ] -1
Xe | 1 1 | =1]-1] 1
Xm | 2| =210 0 0
from which one can deduce the fusion rules
®1 1 a b ¢ m
111 a b ¢ m
ala 1 ¢ b m (5.11)
c 1 a m
clec b a 1 m
m|lm m m m l+a+b+c

Recall [8] that the partition function for gauging the regular representation of Rep(Dy) is
naturally expressed in terms of 28 partial traces as

1 b b

3 [211,1 + (21 + Zg1 + Z;,a) + (21 + Zp1 + Zl},b) +(Zic+ Zeq1 + Zg,c)

ProLe . B Be e | Bs Lo | Pu 11 a4
* <ﬁ259 dap B35 aet Bs510 Dot B2B7 oot B7B9 Zeat B3510 Zc’b>

b1 P18 P18 >

—Q(Zm +zm o+ 2zl zm VAL Ze

Lm TS L Smam g B T B1aBig T T BBy
Be B1s B8 )

Zn + zZm, + Z
Bsfra” ™ " Brafis” ™" BsPis ™™
B11 B1s B1s )}

zZm — zZm  — zZ€ 5.12
Bi2B1s " BisPir ¢ Piafir T (5.12)

where the complex parameters 3; correspond to gauge freedom in the Rep(D,) associator.!
In order to express the Rep(Dy) partial traces in terms of the D4 ones, we assume that
we have obtained our Rep(D4)-symmetric theory by (fully) gauging some theory with non-
anomalous D4 symmetry. We know, then, that the partial trace le71, which is just the

+2 (Zi’?m +Z0+ Ly +

+2 (Zf?m + 20+ Ty —

resulting partition function, must satisfy
1

S Zig+ (Zig2+ Zop2 g+ Zo2 2) + 2210 + Zopg + Zoo + Zy g2+ Zy2 o + Zy y3)

le,l =
+ 2(Z1,y + Zy,l + Zy7y) + 2<Zl,xy + ny,l + ny,xy)

+ 2(Z127y =+ Zy@z + Zy@zy) + Q(ZrQ,:cy + ny,xQ + Zmy,ﬁy)]-
(5.13)

3These 28 partial traces are not independent, but satisfy non-trivial relations, at least some of which can
be obtained by ‘nucleating’ bubbles involving noninvertible lines (see [34], appendix C). While we will not do
so explicitly, taking all such relations into account should cause the number of degrees of freedom in the D4
and Rep(D4) partial traces to match.
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We can obtain many other such relations by noting that the resulting Rep(Dy) is the quantum
dual to the original Dy, and as such we know its action on the Hilbert space of the Dy-
symmetric theory — it simply acts via characters. Take, for instance, the Rep(D,) partial
trace Z{ ,. This corresponds to a Hilbert space of states which are obtained by wrapping the
torus with an a line, which acts on the original D, states by applying x, to their twisted
sector label (the first subscript). Using the character table (5.10) we can conclude that
7

, must be expressible as
K

—_

Zil,a - [Zl,l + (Zl,:v2 + Z:c2,1 + Z:vz,arz) + 2(Z17$ + ZCCJ + ZSC,LZ‘ + Zx,$2 + Zz2,z + Z:v,$3>
+ Q(ZLy — Zy1 — Zy,y) + 2(Z1,ary — Zay,1 — nyxcy)

+ 2(Zx2,y — Zy’mz — Zy,mzy) + 2(Z332733y — Zzy,a:Q — Zmy,x3y)] .

8

(5.14)

By this method we can obtain any partial trace where one of the indices is the identity:

1
al =g (210 + (Zrg2 + Za2 g + Zy2 02) + 2210+ Zopg + Zog + Zpa2 + Zo2 o + Zy03)
+ 2(_Zl7y + Zy,l - Zy,y) + 2(_Zl,wy + Zwy,l - Zry,wy)

+2(=Zozy + Zy a2 — Zyazy) + 2= Loz oy + Ly a2 — Zayaty)],

(5.15)
1
Zyo= 3 (Z11 4+ (Zraz + Zy2y + Zy2 12) + 2(Z1g + Zay + Zag + Zopo2 + Zy2 g+ Zyp 13)
+ 2(_Zl,y - Zy,l + Zy,y) + 2(_Zl,xy - ny,l + ny,xy)
+ 2(—Z$27y — Zng -+ Zy,a:2y> + 2(—Z$27xy — Zwy7$2 + Z;vy,x3y)]7
(5.16)

1
Z0, = 3 (Z10 4+ (Zyaz + Zy2 g + Za2 02) + 2(Z1 g — Zag — Zag — Zpa2 + Zy20 — Zp 43)

+ 2(Zl,y +Zy1+ Zyvy) + 2(Zl,wy — Zay1 — Zwy,a:y)
+ Z(ZzQ,y + Zy,:p2 + Zy,zQy) + 2(Zx2,a:y - Z:By,av2 - Zwy,z3y)]v
(5.17)
1
= g [Zl,l + (ZLxQ + Zx271 + 212712) + 2(—21733 + ZIJ — ZI@ + ZLIQ — Z:pQ,az - Zm,x3)
+ 2(Z1,y +Zya + Zy,y) + 2(_Zl,zy + Zay1 — Zfry,my)
+2(Za2y + Zyo2 + Zyay) + 2= L2 0y + Zoya> — ny,x3y)]’
(5.18)
1
ngb = 3 [Zl,l + (Zsz + Zx271 + Zx27$2) + 2(—21@ —Zg + Ly — ZxJz — Zx27x + me‘s)

+ 2(Zl,y + Zy,l + Zy,y) + 2(_Z1,xy - ny,l + ny,xy)
+ 2(Zx2’y + Zy7z2 + Zy’xgy) -+ 2(—Z$27zy — ny@z -+ Zmy@sy)],
(5.19)
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1

Zf,c = g [Zlyl + (ZLxQ + Zx2,1 + 212712) + 2(21@ — Zx71 — Z:):,x — ijxQ + ZxQ,x — Zx,x3)
+ 2(Z1,y - Zy,l - Zy,y) + 2(Zlyrry + Z:ry,l + Zﬂcy,wy)
+2(Zo2y — Zyaz — Zyazy) + 2 a2 oy + Zyyp2 + Zuyary)],
(5.20)
1
CCJ = 3 [Zl,l + (Zsz + Zx271 + Zx27$2) + 2(—21@ +Zg1 — Lgx+ Zx7$2 — Zx27x — me‘s)

+ 2(_Zl,y +Z 1 Zy,y) + 2(Zl,xy + ny,l + ny,xy)
+ 2(—Z$27y + Zng — Zy,w2y> + 2(Z$27zy -+ Zmy@z -+ nyyxay)],

(5.21)
71, = %[ZL1 + (Zya2 + Zarg + Zapg2) + 2(=Z10 = Zo + Zoo = D — D g+ Do)
+2(=Z1y— Zy1+ Zyy) + 2(Z1 gy + Zay1 + Zayay)
+2—Zy2y — Zypo + Zy ) + 2 Zg2 gy + Zuy o2 + Zy )
(5.22)
A %[Zm +(Z1a2 = Zu2y = Zo2a2) + 2210 — Zy2 2) + 2(Z1y) + 2(Z1,2y) (5.23)
- 2(Zm2,y) - 2(Zx2,xy)]v
mo= i[zl,1 + (=212 + Zo2 ) = Zo222) + 21 = Zog2) + 2(Zy1) + 2(Zay,1) (5.24)
= 2(Zyq2) = 2(Zyy 02)],
Zm = 3[21,1 T (—Z1p2 = Zp21 + Zy232) + 2~ Zoa + Zyp23) + 2(Zyy) + 2(Zay.ay) (5.25)

- Q(Zy,ny) - 2(ny,m3y)] :

Now we require similar relations for the remaining 15 partial traces with mixed (non-trivial)

indices. A sensible guess is that we can get e.g. Z7",

by taking Z7",, and acting on the
second index in each D, partial trace with x,.'* The factors of 3 out front can be fixed by

comparing to the full Rep(Dy) partition function. This gives

BapP13
Zgrfm = 4/81 I:ZLI + (Zl,x2 - ZzQ,l - Z272,122) + 2<lex - Z;E2’z) o 2(Zl’y) (526)

- Q(Zl,my> + 2(Z12,y) + 2(Z:52,:cy)}a

B13519
pa = T (Z11 4+ (—Z1 g2 + Zyo ) — Zy2 2) +2(Zup — Zyg2) — 2(Zy1) (5.27)
_ Q(Zzy’l) + Q(Zy7m2) + Q(Zmy,xz)},
Baf19
T = — 5y (Zv0 + (=21 42 — Zyo ) + Zy2 g2) + 2(—Zag + Zypas) — 2(Zyy) (5.28)

- 2(Z:cy,xy) + Q(Zy,:czy) + 2(Zzy,x3y)}7

This corresponds to acting on the m-twisted Hilbert space with a. Since the m-twisted states are given
via partial traces as linear recombinations of the original states, and we know how a acts on those states, the
same method applies. The fact that we will (below) end up correctly recovering all of the gaugings of Rep(D4)
using these partial trace relations serves as a post hoc consistency check of this calculation.

— 37 —



Bsfa
b = hgy 1Z1+ B = Ziay = Zip ) 4 20 Bra b 2 ) 2 500) o

= 2(Z12y) — 2(Zy2 ) + 2(Zy2 1))
m B1aB16
Zmy = 1Gis (Z11 4 (=Zy g2+ Zy2y — Zy2 42) + 2(—Zag + Zyg2) + 2(Zy1) (5.30)
- Q(Zﬂfy,l) - Q(Zy,xQ) + 2(Z:cy,x2)}7

BsB16
Zb = o (210 + (= 2102 — Zo2 ) + Za2 2) + 2(Zojp — Zyg3) + 2(Zy ) (5.31)

- 2(Z27y,90y) - 2(Zy,x2y) + 2(ny,z3y)}>
B12515
A Z11+ (Z - Z - Z +2(—Z1.+ 2 —2(7
c,m 4811 [ 1,1 ( 1,2 z2,1 x2,12) ( 1z xQ,x) ( 172/) (5.32>
+ Z(Zlyxy) + 2(Z:1:2,y) - 2(Zx2,my)}7

gm 615/617 [ 1+ (—Z17$2 + Zac2,1 — Zx27$2) + 2(—Zz71 + Zzyxz) — 2(Zy71)

T AP (5.33)
+ 2(29531,1) + 2(Zy,a:2) - Q(Z:cy,xQ)}a
Bi2B17
o = — 10+ (=L g2 —Zy2q + Zy2 02) + 2 Zpe — Ly 23) — 2(Z4,y,
’ 4P18 it (=4 5 a2) ¥ 2 wt) = 2(Zy) (5.34)

+ 2(Zzy,93y) + 2(Zy,m2y) - 2(Z:ry,m3y)}

for the partial traces involving m and

Zg,b /6;369 [Zl 1 +(Zl 2 +Za:2 1 +Zz2 x2)+2(Zl x— 4xl— Z Zx,m2 +Zx2,x_Zx,x3)
+2(_Zlvy+Zy,1_Zy,y)+2(_Zlyxy_Zﬂcy,1 +Zwy,wy)
+2(_ZzQ,y+Zy,x2 _Zy,ny)+2(_Zw2,:py_Zwy,zQ +Z zy,23y )]
(5.35)
g 305, z z z Ny — Tt — T — 2. Z Z
a,c — 8ﬁ [ 11+( 1:1:27L x21+ x2x2)+ ( e = “z,1— “zx,x ™ z,x2+ z2x x,x3)
+2(_Zlyy_Zy,1 +Zy7y)+2(_ZLwy+Zwy,1_nywy)
+2(_Zac2,y - Zy,$2 +Zy,a:2y) +2(_Z1’2,xy +Z1’y,a:2 - Z:L’y,a:3y)]7
(5.36)
ze = BB, z z Z =Tyt Zo1— Zput+ 7 Z z
ba ™ g3, (210 +(Zy g2+ Zy2 )+ Zy2 02) + 2= 20+ Zut — Zna+ Zp a2 — Za2 0 — Zp 03)
+2(Z1,y_Zy,1_Zy7y)+2(_Zl,wy_Zwy,1+Zwy7:vy)
+2(Zo2y = Zy 2 = Zyary) + 2= o2 0y = Zay w2 + Zay any)]
(5.37)
B2B7

zy
bC 856

[Zl 1+ (Zl 2+ 22 1 +Z,2 xQ) +2( Zl,oc — Zz*,l +Zx,x — Zx7x2 — Zx27x +Zx,x3)

+2(Z1,y_Zy,1_Zy,y)+2(_Zl,xy+ny, _Zmy,xy)
+2(Z$27y—Zy7$2 —Znyzy)—i-Q(—sz@y—i—Z y,z? Z$y7I3y)],
(5.38)
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B759

Z!, = 3, (Z11+(Zy g2+ Zaz 1+ Zy2 12) +2(— 210+ Zog — Zoa+ Ly g2 — Za2 o — Ly 03)
+2(_Zlyy_Zy,1+Zy7y)+2(zlyry_zry7l_Zzy,xy)
+2(_Zac2,y - Zy,:c2 +Zy,a:2y) +2(Zx2,xy - Zacy,x2 - Zacy,x?’y)]?
(5.39)
ga = BP0, z VA Z N g —Twr+ Zpw— 7 Z VA
cb — Sﬁll [ 1,1+( 1,1‘2+ 932,1+ m27332)+ (_ Lo~ Lzl +ZLypx— z,x2 T r2,z+ 17113)

+2(=Z1y+ Zy1 = Zyy) + 2212y — Zay) — Zayay)
+ 2(—Zm2’y + Zy@z — Zy,ny) + 2(Zz2,my — ny,:r2 — ny,:r3y)]

(5.40)
for the remainder. Using the 28 above relations, we can transform the D, partial traces of
table 2 to their Rep(Dy) equivalents, given in table 3.

Knowing that the diagonal Rep(D4) X Rep(D4) gauging must reduce to the gauging (5.12)
of the regular representation of Rep(D,) when one of the theories is the Rep(Dy) SPT phase
which corresponds to the trivial Dy gauging, we can infer the form of the diagonal gauging.
Specifically, assume L and R are Rep(D,)-symmetric theories, with partition functions Zp,
and Zr and whose junction vector spaces have coefficients ,BZ-L and BZ-R. Then, the diagonal

gauging of L ® R has partition function

1 B B
Zaing, = g |Bla+ Blat 2y + Zio+ B+ Zia+ Zaat g Zan+ g B
Bg
Zm zZb Z€ zZ} Z —zZ"
84313 + b1+B5B ba+ bb+BB bc 88814 b,m
B s B11 1 B11

Z¢ Z Z4 + Z m
+ el + B Bg Ga B BlO C’b e * 612815 ’

Bis m Big m Bis zm

iz (5.41)

345192 ™ BgBig ™™ BiaBir ™™
where ZJ, = (Z1,)(Z{,)r are products of the partial traces we would have found from
gauging the individual Rep(D4) symmetries and B; = 5757 are the products of the individual
beta coefficients. Now, plugging the values from table 3 into (5.41) produces the partition
functions for the eleven physically distinct gaugings of Rep(Dy).

We find that there are three gaugings for which the regular representation is the algebra
object, the partition functions for which can be written as

1
3 [Zil + (Zlat Zig + Zaa) + (Zlo+ Zoa+ Zyy) + (Zic+ Zia + Zee)

B e B Be e B6 q Bi1 b1 a
* (5 Bo Zapt B30s et BsB10 Zoa B237 Zoe T BBy ¢ Zea 53510 ¢ b)
p1 m B1g zm B1s 7a >

Bafiz” ™ Biafrg ™ +54519 e

Bs  m B8 m Big
ﬂsﬁuz’ * 5145162 o ﬁsﬂlﬁzmm>

Bi1 B1s B1s
+2C<Zm+zm + Zpm — A zm . — ng” 5.42
Te\ 1 ! Bi2B15 © BisBir T Brefir (542)

+ 27, <Zf}m I A T —

2% (20 + Z0 1+ Zm
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Table 3. Partial traces obtained when gauging Rep(Dy)-symmetric topological phases, obtained by
duality from D4. Each phase is labeled by its corresponding D4 gauging.

where (74,7, %) can take the values (—1,1,1), (1,—1,1) or (1,1 — 1). The remaining eight

gaugings have unique algebra objects. We have

e 14+a+m:

1
4

+ (2 + 23,

+ Z}

m,m

- [Zil + (280 + 281+ Zg )

A1

P18

m

27 _
Bafiz " Pigbig

— 40 —

m

B1s

Za

ot Baby mm) ]

(5.43)



14+b+m:

1
1 [211,1 + (Zfb + Z[l;,l + Zl},b)

5.44
+<Zm+zm + 2 P Zm+518 zm, 4+ D8 g ﬂ o4
Lm 1 m 58514 bm T B1aBis” ™ BeBe ™
l1+c+m:
1 1 c c 1
Z Zl,l + (Zl,c + Zc,l + Zc,c)
(5.45)

n <Zflm+Z$ Ty Bi1 gm B18 m B1g e )]

Brafis” ™ BisPir "¢ Prabir
l+a+b+c:

1

$|2h @z v 2L ¢ (B B+ 2 + (2 220+ 2L

516511, ﬁGcﬁa&b Bu
* (52/3 Zap /33ﬂ5Z ’ /35ﬁ102’ * B237 et B9 Zeat B3510 Zc’b) }

(5.46)

14+ a:

1 1 a a 1

5 |:Zl71 + (ZLa + Za,l + Za,a)} (547)
14 6: )

5 |2+ (20, + 20, + 24| (5.48)
1+4+¢:

1 1 c c 1

5 [Zl,l + (Zl,c + Zc,l + Zc,c)} (549)
1:

1
3 {52%,1 + (20t Zig + Zaa) + Ly + Zpa + Zog) + (ZEc + Ziy + Ze)

Br e B Bs e Bs B Bii e
(5259 Zap B35 Zac 55510 Zba 52ﬁ7 Ban Zbe t B759 deat B3510 Zc’b> }

(5.50)

These eleven gaugings are collected along with their corresponding gaugings of D, in table 4.

The results match those found in [10, table 2]. We also list the Rep(D4)-symmetric topological

phase, using the naming convention of [35, appendix C.3].

The partition function (5.50) for the trivial Rep(D4) gauging deserves further comment.

One would likely expect the trivial gauging to have trivial partition function le71, rather than

the expression above. As explained in [34], one can reconcile these two expressions by noting

that (5.50) is the partition function for gauging an algebra which is Morita equivalent to the

trivial one, so physically (5.50) and Z11,1 lie in the same equivalence class. In fact, the partial
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D, Gauging Rep(D,4)-symmetric Phase | Rep(D4) Algebra Object
1 SPT l1+a+b+c+2m
(Zs X )@Y SPT l+a+b+c+2m
(Zs x L)) SPT l+a+b+c+2m
(Dy)— Zo SSB 14+a+m
VA Zy SSB 1+b+m
Zy? Zy SSB l4+c+m
7z Rep(Dy)/(Zy x Z3) SSB l+a+b+ec
Zy Zo x Zo SSB 1+a
(Za x Z5)& Y Zs x Ty SSB 1+b
(Za x Zg) Y Zs x Ty SSB 1+c
(D4)+ Rep(D4) SSB 1

Table 4. Relation between gaugings of Dy, topological phases carrying Rep(D,) symmetry and the
algebra objects of the corresponding gaugings of Rep(Dy).

trace constraints imposed by Morita equivalence explain why there is no choice of discrete
torsion when gauging the Zs x Zy subcategory of Rep(Dy). Following the construction
in [34, appendix D], the Morita trivial algebra with object m®@ 1®@m =14+ a+b+ ¢
has a partition function that would correspond to one of the two naive choice of discrete
torsion in Zgo x Zo C Rep(Dy).

The results of this section have been derived in a general gauge, parameterized by the
coefficients. To match with the choice more commonly made in the literature, we can set

e _ B _ _ _ B _ _ B
p1=01, B3=—-, Bs=—P2, Be=PBi,  Br=——7, Ps==xbs, Bo=——7",
B2 B2 B2
2 4 2 2
510227 ﬁnz—gz? 512=¥gz7 Pr3=—B4, Bra==xPa, /315=¥gz7
ﬁ17—ﬁ2£167 P1s==+Baf16, B19==Pi6- (5.51)
Then all components of the associator are equal to +1 except for
~m.i .M . . r-m o . ]- . .
Kj,n%(m7m) = Kn;,j(mﬂn) = x(4,]) Km:m (i,J) = §X(Z7J)7 (5.52)
where ¢ and j run over 1,a,b,c and
11 1 1
11 —-1-1
x(i,7) = , 5.53
(4,7) L1 (5.53)
1-1-11

is the non-trivial bi-character for Z3. In such a gauge, the partition function for gauging the
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regular representation (with choice of discrete torsion) of Rep(Dy) takes the form

1

S|2h (B 2+ 2L+ (B4 2y 2y + (24 220+ 21
—(Zey+ 2o+ Ziu+ Zi o+ 220+ 22)
+ 230 (20 + Zis + Zisn + Ziton + Zina+ Zinn)

+ 2’717 (ZTm + Z?nl,l + anl,m + Zle + Zg;,b + an,,m)
+ 270 (Z{?m + Zx,l + Z71n,m + Z?,lm + Zg,c + Zrcn,m) :| (554>
where again we have (v4,7,7.) equal to (—1,1,1), (1,—-1,1) or (1,1 —1).

6 Decomposition

6.1 General framework

Recall that decomposition [11, 12] is the statement that a local d-dimensional quantum field
theory with a global (d — 1)-form symmetry is equivalent to a disjoint union of quantum
field theories. One realization is in two-dimensional gauge theories in which a subgroup of
the (zero-form) gauge group acts trivially. Such theories have a global one-form symmetry,
and so decompose.

In our previous paper [8], we considered decomposition in the special case that the entire
gauged noninvertible symmetry acted trivially. For ordinary finite groups, this correspoinds
to the case that the entire finite group acts trivially — known as Dijkgraaf-Witten theory.
More formally, this corresponds to a fiber functor

F:C — Vec
or more suggestively a sequence
¢4 e L Ve
resembling the setup of a trivially acting group
Ga—1

In this section, we generalize to cases in which only part of the gauged symmetry acts
trivially. In other words, in terms of ordinary finite groups, in this section we consider the
generalization of the case that only a normal subgroup of the gauge group acts trivially.

To that end, we need to define the noninvertible generalization of “normal subgroup”.
This should be captured by a similar sequence of fusion categories

NS o

where 7 : C — Q is a fiber functor to some other fusion category, such that w(N) C (1g) = Vec.
This is to be thought of as the analogue of a trivially-acting normal subgroup

N — G — G/N
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where one thinks of the fusion category Q as a “quotient” C/N (much as we think of Vec,
the trivial linear category, as C/C).

In our work, we only consider gauging fusion categories of the form Rep(#), for H some
Hopf algebra. One way to define analogues of normal subgroups is via Hopf ideals Z, see
for example [36, prop. 4.2], [37]. One way to describe an analogue of a normal subgroup

is to start with a Hopf ideal Z defining a short exact sequence'®

IT—H—H/T
from which we get an appropriate sequence of representation categories
Rep(H/Z) — Rep(H) — Rep(Z)

so that we can take only Rep(#/Z) to act trivially.

Now, to be clear, this is not the most general case since Rep(#) still admits a fiber
functor (see for example [38] for quotients in greater generality). That being said, we do
need the trivially-acting subcategory to admit a fiber functor, since by definition of exact
sequence of functors one gets a fiber functor, see aroung [36, Def. 4.2]. We will consider
such a more general example in section 6.4.2.

As one computes partition functions, an important point is that a monoidal functor
Rep(H) — Rep(Z) will relate the associators in Rep(#) and Rep(Z). Specifically, recall that
a monoidal functor [39, Definition 2.4.1] from C to C’ is a pair (F,J) where F : C — '
is a functor, and

J={Jxy: FX)®FY) =5 F(X®Y)|X,Y € C} (6.1)

is a natural isomorphism (a set of intertwiners), such that F(1) is isomorphic to 1’, and
the following diagram holds

AR (X),F(Y),F(Z)

(F(X)®F(Y))® F(Z) FX)® (F(Y)® F(2))

JX,Y®idF(Z)J/ J{idF(X)®JY,Z
F(X®Y)® F(Z) FX)®F(Y ® Z) (6.2)
JX@Y’Z\L lJX,Y@)Z

F(X®Y)® 2) FX® (Y ®2)

Flax,y,z)

For example, consider gauging Rep(G) for G a finite group. Let N be a normal subgroup
of G. Then, Rep(G/N) is a subcategory of Rep(G), which for example we could take to act
trivially. Then, Rep(NN) is the quotient. Schematically:

1 — C[N] — C[G] — C|G/N] — 1, (6.3)
hence, using Rep(G) = Rep(C[G]),

Rep(C[G/N]) — Rep(C[G]) — Rep(C[N]) (6.4)

5See e.g. [40] for more information on short exact sequences of Hopf algebras.
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Next, we consider computing a partition function when a subalgebra of the gauged
Frobenius algebra acts trivially. Formally, given a partition function

Z = > ps Abze, (6.5)

a,b,c

the monoidal functor (F,.J) maps it to'¢

— a,c F(c
Z (Jb,alAI;’ Ma,bJa,b) ZF((ag,F(by (6.8)
a,b,c
which is of the form
F(c) F(b),F(a) »F(c)
Zbl Hpia), Fo)DFe)  LFa)Fb)- (6.9)

The partial traces Zl{f((g; F(p) A€ computed using standard methods; applying J’s as above
specifies how to map the coefficients.

We consider some examples in the next subsections.

6.2 Trivial example: trivially-acting subcategories of Vec(G)

Let us apply this reasoning to ordinary orbifolds by a finite group G. As discussed in [8], in the
current language, this means we consider gauging Vec(G) = Rep(C[G]*), where C[G]* is the
Hopf algebra dual to the group Hopf algebra C[G]. For a normal subgroup of G, a subcategory
is Vec(N), with coset Vec(G/N). In a little more detail, we have the exact sequences

1 — CI|N] — C[G] — C|G/N] — 1, (6.10)
1 — C[G/N]" — C[G]* — CIN]* — 1, (6.11)

hence
Rep (C[N]*) — Rep (C[G]*) — Rep (C[G/N]*). (6.12)

In this case, if N acts trivially, then the monoidal functor is generated by the map that
sends g € G (identified with a representation of C[G]*) to gN € G/N, and we can'” take the
natural transformations J to all be trivial. Since the J’s are trivial, the coefficients ugbegva
are unmodified (and in any event, also trivial, as discussed in [8]), and so describing partition
functions of orbifolds in which subgroups act trivially immediately reduces to standard old
computations, see for example [41-43].

6Roughly, we can think of
Aop € Hom(Ly ® L2, Ly ® L1), (6.6)

SO
F(Aop) € Hom(F(L1 ® L2), F(L2 ® L1)). (6.7)

However, we want something in Hom(F'(L1) ® F'(L2), F(L2) ® F(L1)), and the J’s perform that conversion.
17One can make other choices, but in this case, that choice exists and is clearly preferred.
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6.3 Example: trivially-acting Rep(Zg) of Rep(Zpq)

In this section, we will consider a family of examples involving a Rep(Zy) symmetry with
a trivially-acting Rep(Zg) symmetry. Now, Rep(Zy) = Vec(Zy), so in principle these
examples are equivalent to ordinary orbifolds; however, we will use nontrivial intertwiners
in our description of Rep(Zy), so as to give a nontrivial demonstration of the underlying
technology.

Because these examples are, in principle, equivalent to ordinary orbifolds, we will be able
to compare the results of our computations to known results for decomposition in ordinary
cyclic orbifolds, which will provide a solid consistency check on our methods.

6.3.1 Setup

We begin by considering Rep(Zy) with nontrivial intertwiners. In this section we will establish
basics, then compute partition functions for gauged Rep(Zy) theories for various Frobenius
algebras, then turn to the analysis of the case that a Rep(Z¢) subcategory acts trivially.

Let a denote the generator of Zy. Write Rep(Zy) = {1,X,---, XV}, where X
generates the irreducible representations of Zy, and where

X(ak) = ¢€F, (6.13)

for £ = exp(2mi/N).
We will work with a nontrivial associator in Rep(Zy), defined by

exk @ exm = B mexhtm, (6.14)
where

Bor = Bro = 1, (6.15)

and the sum k& + m is mod N.

6.3.2 Frobenius algebras

Now, since gaugings are determined by Frobenius algebras, let us compute possible Frobenius
algebra structures that can be gauged in Rep(Zy), in order to eventually see the effect of
the trivially-acting subalgebra in various examples of gaugings.
As discussed in [8], to gauge Rep(H), we put a Frobenius algebra structure on H*. Here,
we wish to gauge Rep(Zy) = Rep(C[Zy]), so we put a Frobenius algebra stucture on C[Zy]*.
We begin with the Frobenius algebra for the regular representation of Zy, and then
discuss other choices.

Following the conventions of [8], for g,h € Zy, we let v, denote elements of a basis

for C[Zy]*, defined by
Ug(h) = 5g,h‘ (616)
The Frobenius algebra structure is defined by

ps(vg @ Up) = 0gnvg, Ar(vg) = vy ® vy. (6.17)
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We relate this to the representation basis via characters, as

N—-1
exr = Z XXT(a )vaka
k=0
where
xxr(aF) = exp <2mr>
Then,
N-1
p (xv» ® €xa) = Xxr (") xxa (") e (Vgr ® vge)
k,0=0
N—
= XXP(CL )qu(a )Uaka
k=0
N—-1
= Z XXPJF‘?(CL )Uak7
k=0
= €xp+q.

(6.18)

(6.19)

(6.20)

(6.21)

(6.22)

(6.23)

In components, if we use a basis for Hom(X? ® X9, X") given by the intertwiners, namely

exr @ exa = ,Bp,q €Exrta,
we have

X _ r _ 6r,p+q
HXP,X‘Z - :U‘p,q -
B
b,q

Similarly, the comultiplications are given by

AF (eXp) = Z XXp AF U k)
k=0

N-1
= XXp<ak) ak & Vgk,
k=0
= exp (27”' ) ok @ Ugk,
k=0
1 A q(l — k)
= — 2mi— 2y ———=
NM:OGX (m ) z_:exp(m w7 )
1 N—-1 N-1
= N Xxr-a( qu( Z) Vak @ Vgt
4=0 k,0=0
1 N-1
= == exr—a ® exa,
N =0
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(6.24)

(6.25)

(6.26)

(6.27)

(6.28)

(6.29)

(6.30)

(6.31)

(6.32)



To compute the corresponding components Aﬁ’ L,» We need to pick a basis for Hom(XP, X"
® X?). We pick a basis'® by rewriting (6.24) as

expr = €xp—q X €xaq. (633)
Bp—aq
In terms of that basis, the comultiplication components are then
X", X4 Bp—q,
A = A = e, P (030

Next, let us discuss other choices of subalgebras. Suppose N is divisible by some integer
m < N, so that we have

1 — Zpy — ZN — Lnjm — 1, (6.35)

hence
Rep(Zn/m) — Rep(Zn) — Rep(Zpm). (6.36)

Following [8, section 2.5, let K = Z,,, and we use a basis vgx for C[Zy/Zy,]|*, The Frobenius
algebra structure is defined by

ps (Vg @ VhK) = OgrhKVgK, AF (Vgr) = Vgr & VgK. (6.37)
The action of a € Zy is defined by
a: Vgg — VagK, (6.38)

and it is straightforward to check that the {vyx} form a basis for the regular representation
of Znm = ZN /Zy,. We relate this to the representation basis via characters, as

N/m—1
exrm = Z XXTm(ak)’UakK, (639)
k=0

where for simplicity we have chosen x to be a character of the Zy representation:

k
xxrm(a®) = exp (27T2' ZT> (6.40)

18Tn the computations in our previous paper [8], we frequently constructed such a basis by rewriting
the comultiplication as the product of a coevaluation and an ordinary multiplication. For example, the
comultiplication component AET’LS is computed using

L3

L2 L2 Ll

Here, we pick a different basis, for simplicity.

— 48 —



Then, more or less repeating the computations for the previous case, it is straightforward

to compute

o (eXmP ® €qu) = Exm(p+a),
hence, using the same basis as before,

er

. mr 57‘7P+q
:uXmP,X"“Z - Aump,mp -

Brmpmg
Similarly, the comultiplications are computed to be
N/m—1

Ap (exmp) = N Z €xmip—q) & €xma,
q=0

with components

xmr.xme mr,mq __ ﬁmpfmq,mq
A - Amp7 - 57“7p—q

xme N/m

6.3.3 Partition functions

(6.41)

(6.42)

(6.43)

(6.44)

Next, we compute partition functions, for each of the two Frobenius algebras.

e A=1+ X4 X2%2+... the regular representation of Zy.

Here, the nonzero multiplication (6.25) and comultiplication (6.34) components are

ptg _ 1 AP~04 — Br-a.q
» .

Hpq = Boa’ N

(6.45)

hence the T2 partition function of an A-gauged theory has the form [8, equ'n (2.91)]

N-1
_ p+q A 9P p+q
Z = Z Hpg Bptq Zpg”s
p,g=0

N-1
1 @ Zp+q

N: p,q °
N p,q:0 IBP,l]

(6.46)

(6.47)

(We remind the reader that although this is in principle equivalent to a Zy orbifold, we

are taking into account possible nontrivial intertwiners, defined by the £, 4.)

e A, =1+X"™4 X?" 4 ... the regular representation of ZNm-

Here, the nonzero multiplication (6.42) and comultiplication (6.44) components are

mptmg _ 1 Amp-mamq _ Pmp-mamg
mp

N/m

:ump,mq )

ﬂmp,mq

, (6.48)

hence the T2 partition function of an A,,-gauged theory has the form [8, equn (2.91)]

N/m—1
WS R
p,q=0

N/m—1

mp+mgq “mp,mq >

/qu,mp Zmp+mq
mp,mq

p,q=0 5mp7mq
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Next, we shall take into account the fact that Rep(Zg) acts trivially, first by constructing
a monoidal functor Rep(Zy) — Rep(Zp), then by simplifying the partition functions in the
various Frobenius algebras, comparing to standard results for decomposition in cyclic orbifolds.
6.3.4 Monoidal functor Rep(Zyx) — Rep(Zp)
Now, suppose that Rep(Zy) has a trivially-acting Rep(Zg), where N = PQ. Given
1 — Zp=(b) — Zn={a) — Zg — 1, (6.51)

P

where a© = b, we have

Rep(Zg) — Rep(Zn) — Rep(Zp). (6.52)

Recall Rep(Zy) = {1,X,---, XV~!}, where X generates the irreducible representations
of Zy, and where

X(a¥) = ¢, (6.53)

for &€ = exp(27i/N). Let Z generate the irreducible Zp representations, so that Z7 = 1.

To describe the decomposition of a theory in which a Frobenius algebra associated
to Rep(Zy) has been gauged, we must construct a monoidal functor (F,J) : Rep(Zn) —
Rep(Zp), which we do next. This functor has the property that F(X®) = 1. For simplicity,
we assume that P divides (), then two simple possibilities for F' are determined by

o F(X)=1Z,or
. F(X)=1.

We assume the former option, so that F' is nontrivial.
Now, we assume that the associator in Rep(Zp) is trivial, but recall there is a nontrivial
associator in Rep(Zy), defined by

exk @exm = Brmexktm, (6.54)

where
Bor = Bro = 1. (6.55)

Then, for example,

exrt ® (exe @ exm) = Pomexk @ xeim, (6.56)
= Bem Bk t+m €xhtetm, (6.57)
(exr @ exe) @ exm = Broexrte ® exm, (6.58)
= Bt Brte,m €xhtorm. (6.59)

The natural transformations Jxy : F(X) ® F(Y) — F(X ® Y) are taken to be

Jexk,exz = By : Fexr) @ F(exe) = Fexr ®exe),
Jexk@)exhexm = ﬂkJr[’m : F (exk & 6X4) ® F (eXm) — F((eXk & exz) & exm), (6.60)

Jexk7€X£®5Xm = Bk’g+m . F <exk) ® F (GXz ® €Xm) — F(exk ® (6Xe ® €Xm)) .
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Then, using the fact that

F(a): F((exr Qexe) @exm) — F(exs @ (exe @ exm)) (6.61)
is given by
Be,m Bk t+m
Plm Phttm 6.62
Bt Br+e,;m (6.62)

from equations (6.56), (6.59), and also using the fact that the associator in Rep(Zp) is trivial,
it is straightforward to check that (6.2) commutes, and so (F,J) define a monoidal functor.

6.3.5 Decomposition

To understand the decomposition of the gauging of a Frobenius algebra in Rep(Zy) with
trivially-acting Rep(Zq), we turn to the partition functions on T2. Recall that to interpret
the results, we map a partition function

Z = g A7, (6.63)
a,b,c
to
— a,c F(c
Z (Jb,alAI;’ Ma,bJa,b) ZF((ag,F(by (6.64)

a,b,c
using the monoidal functor (F,J) constructed previously.
We will do this for each of the Frobenius algebras in turn.
e A=1+ X+ X%+ ... the regular representation of Zy.

Recall from section 6.3.3 that here the T2 partition function is

1 = 5q,p Xpta
Zr2 ([X/A]) = = > Z3v xa- (6.65)
N p7q:0 6p7q
Further, from (6.60), we have
Jpq: Flexr) @ F(exa) — J(exr ®exa) (6.66)

is given by J), 4 = Bp.q. Since F(X) = Z, we have that, with the trivial Rep(Zq) action,
the partition function should be reinterpreted as

N-1
1 1B +
Zp2 ([X/A]) = N Z Jq,z}ﬂi’pjp,q Z%;)’qu, (6-67)
P,q=0 pa
1 e p+q
= N Z ngvzq, (6.68)
P,q=0
2 P-1
- % 3 Zgafzbb (6.69)
a,b=0
= QZr ([X/Zp)]), (6.70)
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where we have used the fact that Z” = 1. This suggests that the original theory,
the A-gauged theory with trivially-acting Rep(Zq), is equivalent to @ copies of a Zp
orbifold.

Identifying Rep(Zy) with Zj, this result is exactly as expected from [11] for a cyclic
orbifold. In the language of ordinary orbifolds, this is a Zy orbifold with a trivially-
acting subgroup Zg, where N = PQ. From [11], this should be equivalent to a disjoint
union of ) copies of a Zy/qg—p orbifold, as we computed above.

As a very technical aside, the different copies of the orbifold (the different universes)
can differ by e.g. Euler number counterterms. This is standard in decomposition, see
for example [11, sections 5.2, 5.4, appendix A] for a discussion in the original paper on
the subject, or [49] for a more recent discussion of constraints imposed by locality on
differences of such counterterms between universes. As such Euler number counterterms
can be universally added to any QFT, without changing the physics, we ordinarily
suppress them.

Ay =14+ X™+ X?" 4 ... the regular representation of ZNjm-

Recall from section 6.3.3 that here the 72 partition function is
N/m 1 3
Zra ([ X/ Ap) Z S . (6.71)
Proceeding as before, we have that, with the trivial Rep(Z¢) action, the partition
function should be reinterpreted as

N/m 1
5m m mp+m
Z2 ([X/Am]) = Z Jmé,mpﬁ L mep,mq ng;:,Z”?‘Z? (672>
Pg=0 mp,mq
N/m 1 ,
ma-+m
=5 > Z . gmss (6.73)
a,b=0

Now, let us interpret this result in special cases, to compare against expectations. For
simplicity, assume that ) and P have no common divisors greater than one.

— If m = @, so that gauging A;, corresponds to gauging Zy/,,—p, then the partition
function above becomes

P—
Zr2 ([X/A = Z ma,mb — zZ ([X/ZPD) (674)
a,b=0

consistent with the statement that the QFT of [X/A,,] matches that of a single
Zp orbifold, which is consistent with expectations from [11], since no part of the
Zp need act trivially.

— If m = P, so that gauging A, corresponds to gauging Zy/,,—q, then the partition
function above becomes

2
ZT2 ([X/A Z ma,mb — CC?‘?Zl,l QZ (HX) 6 75

abO
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consistent with the statement that the QFT of [X/A,,] matches that of a disjoint
union of @) copies of X, which is consistent with expectations from [11], since all
of the orbifold group acts trivially.

6.4 Examples: trivially-acting subcategories of Rep(S3)

In this section, we will outline examples of decomposition under trivially-acting noninvertible
symmetry groups, for subcategories of Rep(S3). In these examples, we will only compute
part the pertinent monoidal functor directly to compute the result.

There is a procedure, given in [35], to calculate the possible ways in which noninvertible
symmetries can act non-faithfully. The method used there involves identifying gapless phases
carrying the symmetry in question. These exist in addition to the more thoroughly studied
gapped topological phases. In particular, symmetric phases with a single ground state exist
for each consistent action of that symmetry, i.e. there is one in which the symmetry acts
trivially, one in which it acts completely faithfully, and all possibilities in between.

When applied to Rep(S3)-symmetric theories, which is done in [35, section VI], we learn
that there are four (gapped plus gapless) Rep(.S3)-symmetric phases with a single ground state,
thus four possible actions of the Rep(S3) symmetry. These include the two cases in which
Rep(S3) acts totally trivially and totally effectively. In one of the remaining intermediate
cases, the group-like Zo subcategory generated by X acts trivially. The remaining effective
symmetry is a Zsg for which Y acts as the sum of the two non-trivial group elements. The
final case is one in which the Y line is not independent of the other two simple lines, but
instead acts as 1 + X. This is a type of non-faithful action that is unique to the noninvertible
case, since in the group-like case every simple object is weight one and the only option is
for certain group elements to act as the identity. Below we examine the two intermediate
cases using the technology developed in this section.

6.4.1 Trivially-acting subcategory Rep(Zz) of Rep(S3)
Consider gauging Rep(S3), and above, and take N = Zs, then as S3/Zs = Zs, we have

Rep(Zg) — Rep(S3) — Rep(Zs). (6.76)

Label the simple objects of Rep(Zsa) by {1, X'}, the simple objects of Rep(Ss) by {1, X, Y},
and the simple objects of Rep(Zs3) by {1, Z, Z?}. The functor

Rep(Za) — Rep(Ss) (6.77)

sends X to X. We need to construct a symmetric monoidal functor (F,.J) : Rep(S3) —
Rep(Z3). If we make the ansatz F(X) = 1, F(Y) = aZ + 372, then from requiring
compatibility with the fusion products

XX =21, XY 2Y, YY Z21+X+4Y, (6.78)
we find the consistency condition
FYY)=FY)oFY)= F1)+ FX)+F(Y) =2+ F(Y), (6.79)

which implies, after evaluating on the ansatz, a = 8 = 1, so that F(Y) = Z + Z2.
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Now, to finish constructing the monoidal functor, we also have to specify natural
transformations J. However, in this example, working out all of the J’s is an extremely
laborious exercise. Instead, below we list some of the J’s which can be determined, which
will be sufficient for our computations.

Jig: F(e)® F(e) — F(e®e), 6.80)
Jix F(e)® F(ex) — F(e®ex), 6.81)
Jiy : F(e)® F(ey1) — F(e®ey1), 6.82)

F(e) ® F(ey2) — F(e® eya), 6.83)

Jx.1: Flex)®@ F(e) — F(ex ®e), 6.84)

Jxx: Flex)® F(ex)— p1F(ex ®ex),
Jxy: Flex)® F(ey1) = P2 F(ex ®ey1),
Flex) ® Fleys) = —B2 Flex ® eya),
Jyq F(ey1) @ F(e) — Fl(ey1 ®e),
F(eys2) ® F(e) —» F(eys ®e),
Jyx : F(ey1) ® F(ex) — [3F(ey1 ® ex),
F(eys) ® F(ex) = —fB3F(eys ®ex),

)
Natural transformations such as Jxgy,x (which should be distinguished from Jy, x in general)

are determined by the J’s above. We can safely denote F(K(3)) = K () since F' is faithful.
Then, for example, the (X, X,Y) diagram is

(Flex) @ Fex)) ® F(ey1) ————— Flex) © (F(ex) ® F(ey1))

JX,X®idF(Y)i lidF(X)@)JX,Y
biF(ex ® ex) ® F(ey1) BoF(ex) ® Flex ® ey1)
JX®Y,Y\L g2 l
F(K)=—352

BiF((ex ® ex) ® ey1) ——————— —fB3F(ex ® (ex @ ey1))

Next, let us compare T? partition functions. We will do this for each of the Frobenius
algebras one can gauge, as listed in [8, section 3.1]. In each case, in the partition function, we
will replace ZX g by Zg((g)) F(B)" Specifically, this means we set X to 1 (since X acts trivially,
so the corresponding line is equivalent to the identity defect), and set Y to F(Y) = Z + Z2.
Since each partial trace is a correlation function, the partial traces are linear in their indices,
meaning'?

Z¥po = ZRe+ ZBc. (6.94)

19As a consistency check, this is also consistent with behavior of hemisphere partition functions. The
hemisphere partition function Z for D-branes A, B obeys

Z(A® B) = Z(A) + Z(B). (6.92)

Furthermore, if A and B are bound via e.g. the cone construction, the same result holds. If C is such a cone,
a condensation of some tachyon A — B, then

Z(C) = Z(A) + Z(B). (6.93)
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In addition, in the present case, since Rep(Zs) = Vec(Z3), we can interpret the image
as an ordinary orbifold, and simplify using the fact that in an ordinary orbifold, Z7, # 0
only when ¢ = ab. Putting this together, we find, for example,

7737 ZIZ+ZZZ2 + 285 + 225, 6.95

1,Z2+722 —

= le+Z1 72 6.96

(6.95)
(6.96)
2
Z§I§2 siz2 = 257+ 252+ 25 g+ 22 g2 + ZZZ + Zgz? + 7% 27+ z% 22,(6.97)
= Zj2 g0 + ZZ Z (6.98)
In the Rep(Zs3) = Vec(Zs) orbifold, we will often omit superscripts, as they are redundant.
With these simplifications in mind, we can now simplify 72 partition function expressions
for each of the gauged Frobenius algebras considered in [8, section 3.1].

e A=1+ X. First, we consider gauging the Frobenius algebra A =14 X. As discussed
in [8, section 3.1.5], the partition function is

1
Ziox =5 |2+ 25 + 28, + Zk - (6.99)

If we take X to act trivially, then each of the partial traces Z , reduces to Z11,1- Further-
more, all but one of the relevant J natural transformations (6.80), (6.81), (6.84), (6.85)
is trivial. The only nontrivial one, (6.85), appears together with its inverse, and so
cancels out. As a result, when reinterpreted, the partition function reduces to reduces to

1
Zipx = B [4211,1] = 271, (6.100)
consistent with a disjoint union of 2 copies of the original theory:

[T/A] = HT (6.101)

Since the gauged Rep(Zz2) = Vec(Zsy), and all of it acts trivially, this decomposition
is consistent with expectations. This also matches results from our previous work [8,
section 5.4.1], where we computed [7/(1 + X)] in the case that both X and Y act
trivially, and there also, recovered a disjoint union of two copies of 7, matching the
result above.

e A=1+4Y. As discussed in [8, section 3.1.6], the partition function is

Z1+Y - - le+Z1Y+ZY1+ZYY+ 2%2ZYY (6102)

w

Taking X to act trivially, we can expand as above. As we do not have the Jyy natural

transformations, we will leave the coefficients of the (images of the) Z%/’Y and Z%Y

Ultimately this is because the hemisphere partition functions only depend upon topological K theory classes.
(We would like to thank J. Knapp for an explanation of this point.) For this reason, in the partial traces, we
take Z fig,c 4 p to expand linearly across the terms, as assumed above.
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terms undetermined, denoting those coefficients merely with the symbol #. As the J 1,
J1y, and Jy,1 natural transformations are trivial, the partition function reduces to

Zity = {Zl 1+ (Z1 z + 27 Z?) (ZZ \+ 2% 1) +# (ZZ 7zt Zé%z)

3
+# (282 + 2% 12) }

Modular invariance constrains the result and determines the coefficients # to be 1. This
is one copy of the T2 partition function of an ordinary Vec(Z3) = Rep(Z3) orbifold,
suggesting that for A=1+Y,

[T/A] = [T /Rep(Zs)]. (6.103)

Since the Frobenius algebra A =1+ Y does not involve the trivially-acting Rep(Z2),
this is consistent with expectations — we are simply reinterpreting the Rep(.S3) orbifold
in this special case.

This is also consistent with results from our previous work [8, section 5.4.1], where it
was argued that if everything acts trivially, then

[T/(1+Y)] ]_[T (6.104)

Here, if everything acts trivially, then Rep(Zs) = Vec(Zs) acts trivially, and a trivially-
acting Zs orbifold should just return a disjoint union of three copies of the original
theory. Thus, our result above in equation (6.103) correctly specializes to the results
in [8, section 5.4.1].

A =14 X 4 2Y: recall that the general expression for a gauged Rep(S3) correlation
function, for the full Frobenius algebra A =1+ X +2Y, is [8, equ'n (3.211)]
_1a P
Zi4x42y = 6 Zig+ (ZlX + 234 +ZXX) +2( 20y + 2y + Zyy + 232 %y
5

25 B2ba _ B3Bax  B2BsPa,y
B2/33 B156 7, 5136 Ay 23132 ZY’YH

(Z}QY (6.105)

For trivially-acting Rep(Zsy) C Rep(S3), we can simplify this as before. We use # to
denote coefficients that depend upon Jy,y, and which we cannot therefore describe.

1
Z1y X 42y = 6 [42171 +2 (ZLZ + Z1,22 +Zz1+ ZZ2,1 + #ZZ,Z2 + #ZZQZ)

+# (ZZ2,Z2 + ZZ,Z) - Jﬁ( ( ﬁﬁ; ) Jxy (21 z+ 2 ZZ)
_J);}Y ( 552 ) Jy, x (ZZ 1+ Z g2 1) +# (ZZ,Z2 + ZZ2,Z)

+# (ZZ2,Z2 + Zz,z) (6.106)
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Next, let us compute the coefficients involving J’s. Since Y is two-dimensional, we
should check two possibilities for each. For the functor J;& oao Jxy, we have

—1

J a J
Flex)® F(eyi) == Flex ® eyi) — Fley; ® ex) —> F(eyi) ® Fex) (6.107)

for ¢ € {1,2}. Depending upon the value of i, each J will differ by a sign; however, the
signs cancel out so that J;k oo Jyy involves multiplication by f2/fs. In particular,

_ B ) 5j!
Jy s (2 Jxy = 2=5. 6.108

VX B2Bs ’ 33 ( )
The remaining S-dependence is a consequence of the fact that a basis was chosen in [§]
arising from composition with coevaluation. In [8, section 3.5.1] it was observed that
the standard choices of 8 are 51 = B3 = —1, for which

_ B > B
Jy 4 (2 Jxy = 25 = —2. 6.109
v ) Y T R (6:109)
Similarly,
_ Ba > B4
Jx} (2 Jyx = 2 . 6.110
XY\ Bas) K P26 ( )
Proceeding as before, with the choices By = B4 = +1, B = —1 yields
_ B4 ) B4
Jx5 (2 Jyx = 2 = —2. 6.111
XY\ "B ) B256 ( )
Assembling the pieces we then have
1
Zl+X+2Y - 6 |:4Z171 + 2 (ZLZ + Zl,Z2 + ZZ,l + Zz271 + #ZZ,Z2 + #Zz27z)

+# (ZZ2,22 + szz) —(-2) <Z1,Z + Zl,Zz)
—(=2) (ZZJ + ZZ2,1) + # (ZZ,Z2 + ZZ2,Z)

+# (222,22 + ZZ,Z) , (6.112)
2
= 3 [Z1,1 + 21,7 + Zl,Z2 +Zz1+ ZZ2,1
+#Zy g2+ H# 22 g+ H#Z g2 g2 + #2177 (6.113)

(Note that for readability we have absorbed normalization factors into the “#,” so
that their values have changed between the two equations above.) As before, modular
invariance uniquely determines the values of #, so we see that from the T2 partition
function Z11 x 12y, gauging A =1+ X + 2Y with trivially-acting X, is equivalent to a
disjoint union of two copies of an ordinary Vec(Zs3) = Rep(Z3) orbifold:

[T/A] = [][T/Rep(Zs)]. (6.114)

2

This also is consistent with expectations. After all, we have in effect gauged both
Rep(Zs) = Vec(Zs2), and also Rep(Zs) = Vec(Zs). The former acts trivially, and so
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should result into a decomposition into two universes. The latter does not act trivially,
so each universe should involve a Rep(Z3) orbifold.

As another consistency check, let us also compare to results from our previous paper [8,
section 5.4.1]. There, we argued that if everything acts trivially, then [T /(1 + X + 2Y)]
is equivalent to a disjoint union of six copies of 7. Here, if the Rep(Z3) = Vec(Z3)
orbifold acts trivially, then it should be equivalent to a disjoint union of three copies
of T, so that a disjoint union of two copies of the Rep(Zs) orbifold is equivalent to a
disjoint union of a total of six copies of 7. Thus, our result in equation (6.114) correctly
specializes to results in [8, section 5.4.1].

6.4.2 Y =1+ X in Rep(S3)

So far we have studied examples where the action of some of the simples is identical to
the action of (sums of) the identity operator. Here, motivated by [35], we analyze a slight
generalization of this situation, where the action of a particular simple object can be expressed
as the action of a sum of other simple objects. In particular, in this example, the trivially-
acting subsymmetry is not of the form Rep(H/Z) for any Hopf ideal Z.

Recall that an endomorphism of Hopf algebras f : H — H induces a tensor endofunctor
of representation categories

F : Rep(H) — Rep(H),

which at the level of objects is simply given by precomposition with f. That is, given a
representation (V,p : H — End(V)), the functor F' maps this to (V,po f).

Depending on the endomorphism f, it can be the case that the induced functor F' factors
through a subcategory ¢ : C <— Rep(H), meaning there exists a tensor functor

G :Rep(H) — C,

such that F' & 10 G as tensor functors.
In particular, an irreducible representation R of H that is not fixed by f will map to a sum
of other irreducible representations. This has the interpretation of R acting non-faithfully.
Let us now specialize to H = C[S3]. A simple example is given by the trivial endomorphism

f253—>53
g— 1.

Clearly, the induced tensor endofunctor acts at the level of objects as
F(R) = dim(R)1
for 1 the trivial representation of S3. Hence we obtain a tensor functor
G : Rep(S3) — Vec,

where 1 : Vec — Rep(S3) is the subcategory of Rep(S3) generated by the trivial representation.
The functor G is simply the fiber functor that witnesses the whole category acting trivially.
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Now we analyze the case where f raises every element of S3 to its third power:

f: 53—>53,
a—ad=a,
b b =1.

The one-dimensional irrep X is characterized by
px(a) =—1, px(b) =1,
so that its image under the induced endofunctor F' is
(po f)(a) = pla) = =1, (po £)(b) = p(1) =1,

meaning X is fixed by F.
On the other hand, the two-dimensional irrep Y is described by

py(a) = (_01 (1)) )= (

(oy © F)(a) = py(a) = (;1 (1)) L (v o ) = py(1) = ((1) f) |

so that its image is

This identifies the image of Y as
FY)=ZX+1. (6.115)

Noting that the image of all simples, and hence of the whole category, factors through the
1 : Vec(Zz) — Rep(S3) subcategory spanned by the simples (1, X), the restriction of F' to
such a subcategory gives a tensor functor

G: Rep(S3) — Vec(Zyz), (6.116)
(LX) YY)~ (1,X, 1+ X), (6.117)

which we interpret as Y having a non-faithful action.
The fact that Y could in principle admit an action identical to that of 1 + X is suggested
by this replacement being consistent with the fusion rules

VOV Z1+X4+Y=(1+X)@(1+X) 21+ X+ (14 X).

However, the perspective described above ensures that this can be done consistently at the
level of fusion categories. In particular, the existence of a tensor functor G allows us to
map partition functions:

As before, to specify the modular functor, we need to specify more than just F', we need
to specify natural isomorphism J. As we take the target to have trivial associators, we can
use the same natural isomorphism J (for cases listed) in equations (6.80) through (6.91).
This list is not complete, but will suffice for our computations here.

With these simplifications in mind, we can now simplify 72 partition function expressions
for each of the gauged Frobenius algebras considered in [8, section 3.1].
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e A=1+4 X. First, we consider gauging the Frobenius algebra A =1+ X. As discussed
in [8, section 3.1.5], the partition function is (6.99), which we repeat below:

1
Zipx =5 [211,1 + 28 + Zx, + Z}QX] : (6.118)
Mapping Y to 1 + X has no effect on this partition function. We see that in this case,

[T/(1+X)] = [T/Zs)]. (6.119)

Now, let us compare to results from our previous work [8, section 5.4.1]. There, when
both X and Y act trivially, we found

[T/(1+X)] ]_[ T. (6.120)

Comparing our result above, when the Zy acts trivially, the Zs orbifold should be
equivalent to a disjoint union of two copies of T, and so we see that the result above,
equation (6.119), correctly specializes to the results in [8, section 5.4.1].

e A=1+4Y. As discussed in [8, section 3.1.6], the partition function is (6.102), which
we repeat below:

b } (6.121)

Zl+Y_|:Z11+ZlY+ZY1+ZYY+ ZYY
3 2/35

As the Ji1, Jiy, and Jy;; natural transformations are trivial, the partition function
reduces to

1 X X
Ziyy = 3 [211,1 + 20k + 20 o Zipxaex + 0221y 1+X] (6.122)
where a2 are constants whose determination requires knowledge of the remaining J’s.
Simplifying, this becomes
1
Zivy = 5|2+ (2L + 20) + (200 + 280) + on (200 + 2k x)

taz (281 + 2% + 2% + Zh x) |- (6.123)

Since the image is an ordinary Zs orbifold, modular invariance relates ZlXX, Zf(( 1, and
Z)l( v, which must appear with the same coefficient. This implies that a; = 1, so we
can write the partition function as

1

Zivy = 5|37y + (700 + 285 + 28, + Zk x)
taz (Z11,1 +Z0x + 730 + Z)I(,X)]a (6.124)
oo +1
= 211+ (=2 ([T/Za)). (6.125)

Now, the coefficients of each term need to be integers, so we require that

1
ap = F ; (6.126)
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for some integer k. This implies that

k+1

Zivy = Z (TH[T/ZQ}) : (6.127)

consistent with the statement that
(T/A] = T [[1T/Z2], (6.128)
k+1
for some integer k.

Now, let us compare to results from our previous work [8, section 5.4.1]. There, when
both X and Y act trivially, we found

[T/0+Y) =17 (6.129)
3

Here, if the Zy acts trivially, then [T /Zs] is equivalent to a disjoint union of two copies
of T, so equation (6.128) correctly specializes to our previous results [8, section 5.4.1] if
k=0.

Thus, after comparing to previous results, we conclude that here,
[T/ +Y)] = TIIT/Zs). (6.130)

A =14 X 4 2Y: recall that the general expression for a gauged Rep(S3) correlation
function, for the full Frobenius algebra A =1+ X +2Y, is (6.105), [8, equ'n (3.211)],
which we repeat below:

1

Ziyxyoy = 5

{211,1 + (Zf,(x + Z))((J + Z)I(,X) +2 (ZKY + Z}X,I + Zyy + P ngf,y)

282
_ 26 Pabs B3Ba ,x  BoP3fay
B S Pany - A e

As the Ji1, J1, x, J1,y, Jx,1, and Jy,1 natural transformations are trivial, and the Jx x

Y
Zyx —

(Z§,Y +

natural transformation is just a multiplication by a scalar, this expression reduces to

1
Ziyxy2y = = {211,1 + (Zf,(x + Z})((,l + Z)l(,X) + 2Z%,L)-(X + 221148((71

6
1 1+X 1+X 1+X
taiZi xiex T2 x4 x T O32x (1 x Tl x

+as 20y xarx + 4621 X1 x | (6.132)

= é [Zil + (2% + 251+ Zhox) +2 (2L + Zi%) +2 (21, + 2%))
tor (ZL) + Zkx ) + oo (210 + 2% + 2, + Zh x)
+as (Zﬁ{l + Z}(’X) + oy (foX + Z}(’X)

vas (2% + 280) + o (2L + 2%+ 28+ Zhx) |, (6133)
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where «a_g are constants whose determination requires knowledge of the remaining
natural transformations J.

As before, as this reduces to a Zs orbifold, we can apply modular invariance: the same
number of Z1XX, Z))(( 1, and Z}( y should appear. Counting terms above, there are

— 5+ a1 + oz 4 ag copies of Z] |,
— 3+ ag + a4 + as + ag copies of foX,
— 3+ ag + ag + as + ag copies of Zf((’l,

— 1+ a1 + as + az + ag + ag copies of Z)l(yx.

Given that the number of copies of ZlXX, Zf(( 1, and Z)l( y should match, we find the
constraints

— Q3 = Oy,

—art+az+as=2+a3+ a5 =2+ a4 + as, or more simply, a1 + az = 2 + as.

Altogether, this means that the partition function Z;y x 2y consists of

2 1

6(1+a1+a2+a3+a4+a6) = 5(3+a2+a3+o¢5+a6) (6.134)
copies of the partition function of [T /Zs], and

1
[(5-1—011 +a2+a6) — (1+Oz1 +ag+a3+a4—i—a6)] = 5(2—043) (6.135)

D=

copies of the partition function of 7, or more simply,

T/A+x+2v) = [ T 11 [T/ Zs). (6.136)

(1/3)2-a3)  (1/3)B+aztaz+as+as

Since (2 — a3)/3 must be a positive integer, we see
as = as = 23k (6.137)

for some integer k > 0. Similarly, we require

1

3 B+ar+as+as+ 046) = { € Z>y, (6.138)

so that altogether

[T/A+X +2Y)] = [[T [I[T/%). (6.139)
k J4

Now, let us compare to previous results. From [8, section 5.4.1], if both X and Y act
trivially, then

[T/0+X+2v)] = []T. (6.140)
6
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Specializing equation (6.139) to this case, and using the fact that a trivially-acting Zs
orbifold is equivalent to a disjoint union of two copies of the original theory, we find
that [7/(1 4+ X + 2Y")] specializes to a disjoint union of

k420 (6.141)

copies of 7. Thus, we find that equation (6.139) will correctly specialize to results in [8,
section 5.4.1] if k, ¢ take any of the values listed in the table below:

k /¢
0 3
2 2
4 1
6 0

Of course, the correct choice is ultimately dictated by the correct natural transformations
J, but as the complete computation is extremely laborious, we leave it for future work.

We close this section with an intuitive argument justifying a conjecture for the result.
The functor Rep(S3) — Rep(Zz) is obtained by precomposing every representation with
the power map, which sends the order-two generator of Ss to itself, and the order-three
generator to 1. Now, gauging Rep(S3) should give a theory with S3 symmetry, but
the fact that the action Y = 1+ X comes from sending the order-three generator to
1, suggests that the action of the quantum symmetry Ss also factors through that
power map, so that only the order-two generator acts nontrivially and the order-three
generator acts trivially. The only way for the order-three generator to act trivially is to
have three copies of a single theory, which in terms of the structure above suggests that
k=0and ¢ =3:

[T/ + X +2Y)] = []IT/Z2). (6.142)
3

In other words, the order-two generator acts nontrivially on each orbifold theory [T /Zs]
as a Zo quantum symmetry, whereas the order-three generator just permutes the three
different copies of [T /Zs).

6.4.3 Completely-trivially-acting Rep(Ss3)

For completeness, in this subsection we review the case that all of the Rep(S3) acts trivially.

This case was previously discussed in [8]; we briefly outline the results and discuss relations

to the results of this section.

Briefly, in the case that all of Rep(S3) acts trivially, we previously argued that [8,

section 5.4.1]

[T/0+x)] =117, (6.143)
2

[T/+Y)] =1, (6.144)
3

[T/0+X+2Y)] =[] (6.145)
6
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In section 6.4.1, we computed decompositions when X acts trivially, but not necessarily
Y, and we checked that the results obtained were consistent with the results above when
the rest of Rep(S3) also acts trivially.

In section 6.4.2, we computed decompositions when Y = 1 4+ X, another special case.
Here, we were not able to uniquely determine decompositions using our (limited) knowledge
of the J natural transformations and modular invariance alone, but we were able to use the
results above to determine a prediction for the results for decomposition.

7 Conclusions

In this paper, we have extended our previous work [8] on gauging noninvertible symmetries
in two dimensions to include non-multiplicity-free cases, and have studied explicitly the
example of Rep(A4). We apply these gaugings to ¢ = 1 CFTs and find theories enjoying
Rep(A4) symmetry, even on the circle branch. We find that for a self-duality under gauging
noninvertible symmetries, one generally introduces not only a single duality defect but
multiple new defects. We obtain the self-duality under gauging Rep(A44) in the exceptional
SU(2)1/A4 CFT implies a larger symmetry than Rep(A4), namely Rep(SL(2,Z3)). We have
also further discussed decomposition in theories with trivially-acting gauged noninvertible
(sub)symmetries.

One matter to which we hope to return in the future is to compute the analogues of twist
fields in ordinary orbifolds. For noninvertible symmetries, this needs an explicit computation
for the corresponding defect Hilbert spaces.

Another matter to which we hope to return is to check explicitly at the level of partition
functions that orbifolding by a quantum symmetry returns the original theory. This is
well-known for abelian orbifolds, and has been argued abstractly [17] for nonabelian orbifolds
(where the quantum symmetry is a noninvertible symmetry of the form Rep(G) if the original
orbifold was a G orbifold); however, we would also like to compute this explicitly at the
level of partition functions.

Based on the Rep(A44) symmetry we find on the circle branch (which previously are not
expected to enjoy a rich noninvertible symmetry structrue), as well as the multiplicity of
defects built via self-dual gauging noninvertible symmetries, we hope to perform a systematic
investigation of Zy-graded fusion categories and its interplay with other noninvertible defects
in the context of ¢ = 1 CFTs.
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A Details of A, calculations

A.1 Fusion intertwiners

For any fusion involving the trivial irrep we have a canonical choice,
R _ R _
ALR(ev) = )\R’l(ve) = .

For the fusions of the one-dimensional irreps, our task is easy

Ay x(exex) = Biey,
Ay (exey) = fee,
Ay x (eyvex) = Bse,
)\{/{Y(eyey) = Byex

For fusions involving the Z irrep, it will be useful to specify two alternative bases in

which pz(a) and pz(b) are diagonalized. For the former, we take {u1,uo,e3}, where

1 )
Uy = E (e1 —iea),
1 .
Uy = % (e1 + iea),
or inversely,
1
el = ﬁ(u1+u2),
ey = %(ul—uﬁ.

(A.8)

(A.9)

The eigenvalues of u1, uz, and e3 under pz(a) are respectively ¢, ¢?, and 1 (in particular

they are all distinct). To diagonalize pz(b) we take {ej,v1,va} where

2 1

U1 = \/geQ + ﬁei‘]?
1 2

Vg = %62 - \/ge&

(& (% (Y
2 31 327

1 2
—V2.

= —UV1 —
V3o Vs

or

€3

The eigenvalues of ey, v1, and vy under pz(b) are respectively —1, 1, and —1.

(A.10)

(A.11)

(A.12)

(A.13)

Because the pz(a) eigenvalues are distinct, it is useful to first parameterize each fusion in

terms of the {u1,us, es} basis and then switch to the {e1,v1,v2} basis to determine further
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restrictions on the coefficients. Thus we will need to go back and forth between the two bases,

1 1
e1 = —ug, A.14
1 \/§ \/5 2 ( )
v = ! Lu + Le (A.15)
1 \/g \/?: 2 \/g 37 *
) 7 2
Vg = — —ug — {/ =es3, A.16
= S = e =3 (A16)
or
1 i i
= e — ——v] — ——9, A7
U1 \/561 3'U1 6U2 ( )
u—ie —i—iv —|—LU (A.18)
1 2
€3 — \/gvl gvg. (A.lg)
For example, consider the fusion X Z — Z. By considering the action of a, we determine
A zlexur) = ayug, (A.20)
)\_?{ z(exuz) = ages, (A.21)
)‘X z(exes) = asui. (A.22)

Here the «; are undetermined complex constants and we have matched eigenvalues under
the action of a (acting as px(a) ® pz(a) on the left-hand side and pz(a) on the right-hand
side). In terms of the other basis we then have

1 1 1 1
M zlexer) = ﬁ/\)zqz(exul) + EA)Z(,z(exw) = ﬁalm + 502

= e+ (pont gt (Gpm - g (A2
)\)Zgz(exvl) = \}galug \ifozgeg + \}§OK3U1
(\} >61+< ;1 ;QQ—;OZ:’,)U
( T (A24)

\Z o - i i \/5
exv —(Q2€3 — —Q3U

<2 1>+ 1 i +\/§z'

(& — a1 — (0% a3 | v
237 T 3™ 3v2 ' 3v2 o 3 )
_|_

1 . .
<—Oz1 + ! -+ Ozg) (A.25)

6 3 3

Now exe; and exwvs should both have eigenvalue —1 under the action of b, and hence should
get mapped to a linear combination of e; and vy, but the coefficient of v; should vanish,
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while exv; has eigenvalue +1 and so should map to a multiple of vy, with the coefficients of

e1 and v vanishing. These considerations give four equations,

—=a1; + —=ag =0,
\/’ \/>
1 ) n 21 0
o — o a3 =0,
3v2 L 32 3
1
— as =0,
R
1 21
- a1+\[zoz Caz=0

These equations are not all independent, and the general solution is simply

ar = Ps, ag = —if3s, ag = —if3s.

So we conclude that the most general intertwiner )\)Z( 5 is

M ) = 1 +1 5( +7L v )

exe o oge e1+ -ex— —=e3 |,

x,z\€x€1 \/»12 \[23 5 1T 562 \/53
f

1 5( 1 1 )
e —e; — -ex — —=e3 |,
\/523 554 2 3

1
)\)Z(,Z(eXe3) = aguy = fB5 (—\/561 — \/562> .

The calculation for ZX — Z is identical, leading to

/\X zlexes) = —=ajug —

27 V2

)
Mg x(erex) = Bg ( er1+ 5 \/563) :

Z
2
) 1 1
A7 x(ezex) = Bg <€1 562 ﬂezs) :

A7 x(esex) = 56( 7 \}562>

For computing the YZ — Z fusion we start with

)\}Z/’Z(e u1) = aqes,

Y
/\)Z/Z(eyug) = (U1,
/\)vaz(eyeg) = Q3us.

Then

1 1
/\yz(eyel) \/506163 + \/iagul

= ;04261 + <\1[ f > v1 + <\}§a1 - Q\i/goq) U2,

1 1

XY = —> +
Y,Z(eYUl) /3 Qi€é3 — \/3 QU \/3
) 1 7 1 7
( \/6042 + — \[ ) e + (3a1 — §a2 + 3@3) 1

—i——ﬁa—ia—i—ia v
3 M 3\/52 3\@3 2,

—=Q3U2
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(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

(A.31)
(A.32)

(A.33)

(A.34)
(A.35)

(A.36)

(A.37)
(A.38)
(A.39)

(A.40)

(A1)



1 1 2
)\yz(eyvz) \/éaleg — \/6042?11 — §Oé3u2

i 1 i 1 V2i
( ENCARRV )“ 3v2 Tz 3 “3>”1
+

A
(—501 - 502 — 50 ) e (A.42)

Demanding the correct behavior under the action of b fixes
o =Pr,  ay=—ify,  az=pfr, (A.43)

and we have

M zlever) = \1[04163 + \}Qazm = Br <_;61 ; \}5 ) : (A.44)
A)Zf,Z(EY@) \fale?’ \i@azm = B ( ;el + ;62 + — \[ ) ) (A.45)
)\1Z/’Z(6Y63) = aguy = [y (\}561 + \;562> . (A.46)

Similarly,
Ag,y(eley) = Ps <—;61 - %62 + \263) , (A.47)
A%,Y(‘f?eY) Bs ( % er+ %62 + \%€3> ) (A.48)
Agy(egey) = Bs <\/§el + \;562) . (A.49)

Next we need to consider the various ZZ fusions, starting with the case where the fusion
product is a one-dimensional irrep. In this case many of the fusions (in the {u1, us,e3} basis)
must vanish. For instance, for ZZ — 1, we have only

Az (uiug) = aze, (A.50)
)\12,2(“2711) = age, (A.51)
>\IZ7Z(6363) = age, (A.52)

with other products necessarily mapping to zero since they are not invariant under the action
of pzz(a). Switching to the {eq,v1,v2} basis then, we find that some combinations should
vanish (since they are not pzz(b) invariants). Computing only as much as we need,

l i

0=\, (erv :<a +a)e, A.53
z.z(e1v1) VY (A.53)

1 1 V2
0=X, z(v1v2) = | —=a1 + —=ap — ~—a3 | e. A.54
2,2(v1v2) <3\/§1 ok 33> (A.54)

This is already enough to conclude that we must have

arp = ag = az = fy, (A.55)
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This determines

—%al + 042> e=0,
0,
i
(—2a1 + 2042) e =20,
1
<2a1 + 2a2) e = fPoe,
0,
0,
0,
age = fPoe,

which we probably could have simply guessed.
For ZZ — X we start with

And then

X
A2,z

0= )\%{Z(elvl)

1
0= X3 ,(vie :(—Zoz —l—ou)e ,
7.z(vie1) 5T ) ex

which is already enough to determine

and hence

(ures) = aqex,

(ugug) = azex,

(egul) = Q3€x.

= (5= e

ai = o, az = —iSo, as = o,
)‘)Z(,Z(elel) = %a26x = —%ﬁloex,
Ay z(eres) = — %0426)( = —55106)(7
)‘)Z(,Z(ele?;) = \}?alex = \}5510620
Ay z(eser) = — %042€X = _%BlOeXa
A7 z(eze2) = — Soeex = %51062(7
)‘)Z(,Z(62€3) = \;5016)( = \}55106)(7
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(A.65)
(A.66)
(A.67)

(A.68)

(A.69)

(A.70)

(A.71)
(A.72)
(A.73)
(A.74)
(A.75)

(A.76)



So

Following the same procedure for ZZ — Y,

A}Z/,Z(ulul) = ajey,
Ay z(uzes) = asey,

)\}Z/7Z(63u2) = asgey.

1 1
0= )\XZ/’Z(elvl) = (Oq + a2> ey,

V6 V6
7 1
0= )‘E,Z(Ulel) = <\/€Oél + \/6043> ey,
a1 = P11, ag = —if1, a3 = —iff11.
1 1
)‘}Z/,Z(elel) = gaey = 551165/7

v ? 1
Az.z(e1e2) = Jouey = §ﬁ11€%
7

1
Ay 4(e1e3) = —=asey = ——=Piey,
: V2 V2

7 7
AE,Z(€2€1) = 505165/ = 551163/7
1 1

)\g,z(@@z) = — ey = —§ﬁ11ey,

7 1
Ay slese3) = — —=aoey = ——=Priey,
z.z(€2e3) N Rt \/5511 Y

1

1
Ay z(eser) = ooy = _\/§/811€Y7

7

1
)‘)Z/,Z(€3e2) = - Eai’)eY = —55116}/7

)\}2/72(6363) = 0.

to the ZZ — Z fusion. We start with
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(A.77)

(A.78)

(A.79)

(A.80)
(A.81)
(A.82)
(A.83)

(A.84)

(A.85)

(A.86)
(A.87)
(A.88)
(A.89)
(A.90)

(A.91)
(A.92)

(A.93)

(A.94)

Finally we need to determine the two-dimensional space of intertwiners corresponding



Switching bases,

A5 z(erer)

A7 z(e1vr)

)‘g,z(elw) =

AG z(vier)=

A% 7 (v1v1)

A7 7 (v1v2)

A7 z(veer) =

/\g,z(vﬂl)

AF z(uses) = aguy, (A.100)
)\gz(egul) = aruq, (A.101)
A% 7 (esun) = asus, (A.102)
)\%}Z(Sgeg) = (Qg€g3. (A103)
+1 +a2+a4
e —« e
9 5U1 9 1U2 9 3
a1+aoas 10 +as+ag—ias 1o —2000—204 — 1005
e1+ v+ Vg, A.104
02 23 ! 276 ? ( )
C)t3—i0[5 ia1+a6 +—iOt2—|—iO[4 iOt1+053—iOé5+046
U es= e
N Y R 2.3 !
S Lo . B Vitvs — it —Vicn— .
" a1 —10g —103+10y a5+m601 a1 +2100 — 1003 — 2104 a5+za6v2, (A.105)
32 6
—2a3—1as 1o — 20 —tao+i0y 1o —2a3—105 — 204
U e3= e A.106
23 203 o o3 2/6 ! ( )
—al—ia2+21a3+ia4—a5—2ia6 —041+2i(¥2+2i0[3—2i0&4—0&5—2i0[6
v v
6 1 6\/§ 25
—ia5+a7 1o +ag 10— 10y it —tas+artag
u U e3= e A.107
NG 1 NG 2 NG 3 /3 1 ( )
—a1+iag —ioy — a5 —tar+iag +—a1—2ia2+2ia4—a5—ia7+iag
v V2,
32 ! 6 2
13— 107 —Q1 —10g—iag Qo+oy+ag
u e
3 ! 3 3 ?
—a1+ia3—a5—ia6+ia7—iage +—ial+a2+a3+a4+z’a5+a6+a7—|—ag+a9v
32 ' 3V3 '
—i0 —2 —2 ] —2
1001 — 2002+ a3 —204 105+ g +ar+asg ozgvz’ (A.108)
3v6
72110[37045+7;Oé7 70414’21'0(672'048 OLQ+04472O[9
u U e
32 ! 3v2 2 3v2
—a1—2ta3— a5+ 2iag+iar—iag n —ta1 g —2a3+ o+ 1o —206+ar+ag —2aq
e v
6 1 36 1
—ip —200—2003—2 jos — 2 4
1] — 2000 — 203 — 204+ — 206+ +ag+ agv% (A.109)
6v/3
77:04572047 ia172a8 iOéQ*Z'OL4 ’L'Oéliné5720t772Oég
U Ug+ e3= e A.110
2/3 1 23 T 23 2v6 ! ( )
—a1 g —ioy —as+2iar —2iag —a — 219+ 2104 — a5+ 21007 — 21008
v V2,
6 1 672 2
13—y —2iQ7 " —a1—tag+2iag Qo+ —209
U U e
32 ' 3v2 2 3v2
7&14*110[370[5775046727:0[7%*21‘0[8 7750[1+012+043+()é4+i045+a6720[7720[872019
€1 U1
6 3v6
—i0 —2 3—2 ) —2a7—2 4
n 101 — 202 +as3—204+ 105+ —207 —2a8+ agv% (A.lll)

6v/3
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721104370[57272017 7(11+2i046+2720t8 042+014+4069
u

Ag,z (vov9) = G 1 5 Ug 6 e3
—o —2iaz —as+2i0e—2iar +2iag +—za1 tar—203t+aytios—206—2a7 —2as+4ag
_ e
6v/2 ' 6v3 B
—ioy —209 — 23— 20(4"(;735_2046 2a7—208—8ayg vs. (A.112)

Demanding appropriate behavior under the action of pz(b) reduces us to a two-parameter
set of solutions, as expected,

a3 = (g = g = ’iOq — (9, a5 = —Qq, Qg = 7 = (g, Qg = —’iOq. (A.113)

Putting a; = B2, ag = (13 defines the first of our two fusion maps,

o o a9+« )
()\g’z)l (6161) = 75’M1+ ?171,2—1— 2 5 4 ,312 (\/5324— 263) (A.114)

—ia5 ’iOq —’iOéQ +ia4

(6162) = U1+7UQ+7 ﬁ12 <\/§€1163> *’L',Blgeg, (A.115)

1 2 2 2

(ere3) = \[ \[ =12 < el + ;€2> +i[13€2, (A.116)

—ias 109 —2044 1 .

= — _ A.117

) (e2e1) 5 Ul +2 5 Lug+ 5 = Sz (\[61 + 2€3> +if13es, ( )
—as —oq Qo+ Qy

(27)

(*22)

(27)

(2, (eae2) = 2w+ —Fun + = =es = o (—\%eﬁ;eg), (A.118)
(27)

(*22)

(27)

(

. . 1 . .
1 (6263) = %ul — % 512 ( —€1 + = €2> *1,81361, (A.119)

(ese1) = \[ \[ = f12 < ;eg> —ifi3e2, (A.120)

2

7 '5048

(ese2) = \[ \[ = b2 < e1+ 2'€2> +iP13en, (A.121)

A ,Z)l (ese3) = ages = —ifizes. (A.122)

For the second fusion map, ()\g 2)27 we will have the same form but with £19 replaced by

B14 and (i3 replaced by [is.
We have now parameterized a basis for the fusion intertwiners. g; through g1, are any

Bi2 B3

elements of C* = GL(1,C), while the matrix
P14 Pis

) should be an element of GL(2,C).

A.2 Evaluation, co-evaluation, and co-fusion maps

Following the conventions in [8], we can define a set of evaluation maps using the )\il =1 basis,

61(66) = ?1(66) =1, Ex(eyex) = Ey(eyex> = ﬂg, Ey(exey) = ?X(e)(ey) = 52, (A.123>

and for Z, we have

ez(eiej) = €Z(eiej) = 595ij, (A.124>
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where ¢ and j run over 1,2,3. This then also determines a set of co-evaluation maps,

x(1) =7y (1) = B3 lexey, w(1) =7x(1)

= Bgl(elel + egen + 6363).

vz(1) =77(1)

—1
= /82 €y ex,

(A.125)

(A.126)

Using the fusion basis and the evaluation and co-evaluation maps, one can define a

corresponding co-fusion basis (the definition is somewhat conventional) by

(51§f’R3)i (v1) = K()‘%,R;L ® 1R3) ° 041}},3;,33} (v1 ® g, (1)), wv1 € Ry, (A.127)
If either superscript is 1, then the intertwiner is trivial,
gt w) =ev, 5t (v) = ve, (A.128)
and for the remaining cases we find
57" (€)= B3 'exey, (A.129)
57" (e)= By 'evex, (A.130)
51ZZ(€):5 (ere1+ezeateses), (A.131)
X' (ex)= BB 'evey, (A.132)
(e)—ﬂ/B (ee%—‘ee lee—i—iee—lee—lee—iee—lee)
X )= PsPy tertgeiea Tpeiestgeacl— 5 ety a3 T R esel T peses |,
(A.133)
07X (ey)= BBy 'exex, (A.134)
7% (ey) = BBy (—‘66—1e€+1ee—1ee+iee+Zee—i-lee—&-iee)
v 709 e geeat Tpaies g ecit et perest Tpeset Tpeses |,
(A.135)
] 1 1
0% (e1) = P10y < 2€X61—26’X6’2+\/§€X6’3>, (A.136)
1 1 1
0% (e2) = B105g ( 2 X61+2€X€2+ﬂ€X€3>7 (A.137)
1 ]
657 (e3)= ProBy <2 X6’1+\/§€X€2> (A.138)
X . .
5§Z(61):611ﬁ9 <2eY€1+;€Y€2—\%6Y63)7 (A.139)
1 1
077 (e2)= BBy <Z€Y€1 2€Ye2_\/§€Y€3)a (A.140)
1
077 (es)= PuBy ( ﬁeyel ﬂey€2>, (A.141)
Z,X 1 1 >
— A.142
07" (e1)= Bsfy < 5e1ex 2€2€X+\/§€3€X ) ( )
1 .
077 (e2) = BsBy <—2€1ex+;626x+ \%636)(), (A.143)
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(1 '

077 (es)= BsbBs (2€1€X+\;§€2€X)7 (A.144)
1(1 1 ]

07" (e1)= Bes " <2€1€Y+2€2€Y_\/§€3€Y>, (A.145)
_1(® 1 1

07" (e2)= BBy " (;€1€Y—2626Y—ﬂ63ey>, (A.146)

55’ (e3)= Bofs " (—ieley—lezfiy), (A.147)

V2 V2

and

_ i 1 ? 1 i 1
(5?2)1 (e1) = B12fq 1 ( 26162 + 26163 + \/56261 + 26263 + 26361 2€3€2>

+ Bi3By ' (iezes — ieges) , (A.148)
1 . ) 1 .
(55 Z)1 (62) /31259 (\}56161 26163 - %6262 + %6263 + 26361 + 26362)
+ BisBy " (- zeleg +ieser), (A.149)
Z,Z
(52 )1 (e3) = Pr2By "

2 1 1 . —1/. .
Jeter+ 6162 — ge2e1+ jezex —deses ) + B13By * (iereg —ieger),

€
(A.150)
(%

) ) 1 ) 1
ei1es + 6163 + —=eg€e1 + <ege3 + 6361 €3€2>

7,7
(52 )2 (e1) = Brafly V2 V2 2 2 2
+ Bi5By " (iezes — ieges) (A.151)

i 1 i i 1 '
(057), e = i (Jgener = gres = Jgenact geaeo s + 5sea)

+ BisBy " (—ieres + ieger) , (A.152)

_ 7 1 1 7 . 1. .
(5?2)2 (e3) = B1afBy* (26161 +5e1e2 — geser + oeaer — 16363> + Bi5By ! (iere — ieger) .
(A.153)

A.3 Computing the associator

If any of A, B, and C are the trivial representation 1, then the result is trivial. For instance,
if A =1 we have (applying the map to (evp)vc) the result ()\g C) (vpvc) on the left and
=g

Yoo FgJBB(g (Ag}c)e (vpve) on the right (note that we omit indices like ¢ if they can only
take one value, as happens in a fusion involving the identity). This determines

Fo s " = b0 (A.154)
Similarly if B = 1 we fix

Flody = du, (A.155)
and if C = 1 then

Figin = o (A.156)
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Next suppose we have A = B = C' = X. The fusion rules then fix D = 1 and also forces
FE = F =Y, with no multiplicities present. Then our defining equation is
My o (1X ® ,\)Y(,X) oaxxx =Foy VI x o (A}QX ® 1X) . (A.157)

Applying it to the basis vector (exex)ex, the left-hand side is

P\%{,Y o (1X ® )\}/(,X) o OéXJ(,X} ((exex)ex) = [)\}(,y o (1X ® A}/(’X)} (ex(exex))

(A.158)
= Ax.y(ex(Brey)) = B1Bze,
while the right-hand side (excluding the coefficient) is
Mix o (Mx @ 1x)] ((exex)ex) = Mox((Brev)ex) = Bifse. (A.159)
Comparing the two we conclude
Fys 0t = P2 (A.160)

- By

Similar calculations give us all the other components where A, B, C' are either X or Y,

FXX 5254 (A.161)
FY XX gi (A.162)
FYY %254 (A.163)
(X0X _ 5;54 , (A.164)
FYXY gi (A.165)
FYY Y 524 , (A.166)
FY Y gz (A.167)

Next let’s consider A= B = X and C'= Z. Then we must have D = F = Z and F =Y,
and we don’t have any multiplicities to worry about. Now there are three basis vectors we
could act on, but we only need one in order to fix the value of the associator component.
For instance, acting on (exex)e; the left-hand side gives

1 7 )
[)\)Z(—’Z o (1X ® )\)Z(—’Z) o OéX,X,Z} ((exex)ei) = ,Bg <—2€1 + 562 - \/563> , (A.168)

and the right-hand side gives

) 1
F(Z)’{YX z)Z p‘lZ/,Z o ()‘}/(,X & 12)} ((eXeX)el) = F(Z),{YX Z)ZBI/B7 (—261 B

1
262 -+ \/563) .

(A.169)
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Comparing the two fixes

(xx2z)yz P2 AT
= — . 170
2y B157 ( )
Similar calculations involving just one Z among A, B, and C give
F(Z{(lYZ)Z _ lﬁ5577 (A171)
B2
i
Fyxaz_ Wb (A.172)
B3
2
Fyy2z _ B A1T3
zx BaPs ( )
XZX)Z
Fo /7 =1, (A.174)
X2Y)Z
FXZVZ (A.175)
Fo /Y7 =1, (A.176)
Y ZY)Z
Fo /07 =1, (A.177)
zxx)z _ 1B1B
R, 7 = 52 (A.178)
6
(zZXY)z _ P2 A170
L7 Bes’ ( )
(zyx)z _ 03 A180
Lz Bels’ ( )
zyv)z _ BiBe
Fey 7 = 7 (A.181)

Next, suppose A = X but B = C = Z. Then D can be anything (since the fusion
X7Z? =1+ X +Y + 27 contains all possible irreps). If D = 1, then E =Y and F = Z
and we are still in the multiplicity free case. We have to compare

1
{A}X,Y o (lx ® /\12/72) o CMX,Z,Z} ((exer)er) = 5B2,3116’ (A.182)
to
1 Z 1
[/\Z,Z ° (/\X,z ® 12)} ((exer)er) = 5BsPe, (A.183)
which determines
FXZ2)1 _ /3’2511' Alsd
vz B559 ( )
Similarly,
(XZ2)X 159
F = , A.185
1.2 Bs 610 ( )
Fog DY = o, (A.186)
’ Bs P11
ez 1= Pao, (A.187)
’ B7B9
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(vz2z)x _ Pabn (A.188)

Vg BB’
O 22— B A.189
L2 B7611 ( )
Fy 520 = gS (A.190)
6
FY S 9% = g"’ (A.191)
6
F(ZZ,ZX A = gg) (A.192)
6
Foz = g7 (A.193)
8
Fy,y 9% = g7 (A.194)
8
Fy, Y = 57 (A.195)
8
zzx)1 _ Bebo
F - , A.196
ZY B3pP11 ( )
Fr 2% = - Zﬁgﬁm, (A.197)
9
F(ZZ,)?X)Y _ 2565117 (A.198)
B1510
(zzv)1 _ BB
_ , A.199
ZX B2/10 ( )
Py % = 58510, (A.200)
Baf11
FE Y = - Zﬂ;fn. (A.201)

More difficult is the case where A = X and B = C = D = Z. This case will be the
first to exhibit the intricacies of higher multiplicity. We will necessarily have £ = F = Z
and then the indices j and ¢ in (3.12) will run over two values (i and k will only take one
value each and will be omitted).

With a bit of hindsight, let’s apply (3.12) to the vector ((exei)es). For j = 1 the
left-hand side gives

[A)Z(,Z o (1X ® (A%Z)l) o OéX,Z,Z} ((exer)es) = A% 4 (BX (512 (\;561 - ;63> - i513€3)>

i 1 1 i
= Psf12 (ﬁel + 263) + BsB3 (—ﬂel + ﬂ62> : (A.202)
and 5 = 2 would give

[Ai,z o (1X ® (Ag,Z)J o aX,Z,Z} ((exer)e2) = A%z (ex (ﬁm (\%61 - ;€3> - i515€3)>

1

= P04 (ﬂel + ;eg) + B5615 (_\}éel + \}é@) . (A.203)

— 77 —



The right-hand side is a linear combination of two pieces (¢ = 1 and ¢ = 2),

(), 0 012)) Gexene = (), (3 (3 s Fge) )

V2

= B350 (16—16)+B5 <1e—ie> (A.204)

—512\/52 53 513\6123, .

1 i 1
[(/\g,z)Q o (/\)Z<,z ® lzﬂ ((exer)es) = (>\§z)2 <ﬁ5 (261 + e - ﬂe’g) 62>
1 1 1 7

_ e = e — — . A2
BsB14 (\/562 263) + B5P15 (\661 263> (A.205)
If we focus on just the coefficients of e;, we would have (with the vector components

corresponding to j)
% (P12 — Bra) | _ (FO727). Pl (A.206)
675(2/8 —B ) YA B5B15 ) .
/3 (P14 15 V2

where we have defined the two-by-two matrix

FXZ2)Z p(X22)Z

(Xz2)Z\ ._ 71,71 71,72
(FZ:Z ) '_ (F(XZZ)Z F(XZ2) Z) : (A.207)
z2,21 72,72

If we focus instead on the coefficients of ey we get
% (X22)2 /357\;3;2
2 _ X 2
iBsis | (F2777) Bbu |- (A.208)
V2 V2

Combining these, we can solve for (F(Z)’(ZZ Z)Z),

; —1
(F(XZZ)Z) . % (iB12 — P13) 15\5/%13 ﬁ5\/ﬁ§13 ﬁi[ﬁ;Q
z.Z = . .
% (iB14 — B15) 5\5/%15 Bsbrs Bsbra

V2 V2
_ 1 BisBia — iB12B1a +iB13fis  —Piabis + iBy — By
B12B15 — B13P14 BraBis —iB% +iB%  —PBiafis + iB12Bus — iB13fis |
(A.209)

As a check, if we had replaced either column by coefficients of es instead, we obtain the
same matrix. Moreover, if we had applied our equation to the vector (exej)e; instead of
(exe1)es we would have only found one independent relation (the reason is that (exe)e;
is invariant under the action of b and hence the result must simply be proportional to v1).
But of course things still work with our result, i.e.

[A)Z(,Z o (1X X ()‘%,Z) ) OaX,Z,Z] ((6)(61)61) =

i

(Aé,z<ex<5m<;§ez - ;e3>>>>
X z(ex (Bua(Jzez + 3e3)))

_ <55512 (—ﬁez - ;63)) | (A.210)
(~e2 3

)
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A7) (Bs(ze1+ sea — —=es)er)
(082),0 (4012 Cexenen = (5], (o035
i (A22), Bs(3er + ses = Les)en)
[ BsPr2 (%62 + %63) + B5513 (-\%62 - %63)
Bs514 (%62 + %€3> + B50515 (—%62 - %63)
(A.211)
Factoring out the vector Bg,(\%@ + %63), we get the equation
_1.512 _ (F(ZXZZZ)Z) ‘ 11512 — b3 ’ (A.212)
—if14 ’ if14 — Bis
which is consistent with the solution (A.209).
Similar steps lead to (we define the determinant Q = (12515 — $13614 # 0)
YZ2)z 1 [ —B12B15 + iB12Bia — iB13fis  Pr2fis — ifiy + B3
(F2z ") =4 o o , ’ , (A.213)
—B1abBis +iB1, —iBis  B13fra — iB12B14 +iB13B1s
(ZX2)2 Bs [ —B12B15 + iB12B1a — iB13fis  Pr2Bis — BTy + ifis
(FiZ,ZZ ) = 79 ) ) . . ’ (A214)
Pe —B1abBis +iB1, —iBis  P13fra — iB12B1a +iB13Pis
(2Y 2)2 Br [ Pr3Bia —iPraBa +ifisbis  —Pr2bis + BTy — ifis
(FiZ,ZZ ) = 79 ) ) . . ’ (A215)
Ps Brafis — 1By +iBis  —B12B15 + 12014 — 13615
(Z22X)2 1 [ B13fia — ifrafra +ib13fis  —PraPis + By — ifis
(FiZ,kZ ) ) 02 | ip2 : : , (A.216)
BraBis — 1By +iBis  —B12B15 +if12014 — 1813515

(F(ZZY)Z) 1 [ —Bi2B1s + iB12B1a — iB13Bis  Bi2bis — ity + 1673
1k —B1aPis +ifYy —iBs  Pi3Bua — iPr2Pua + iP13B1s

The case A= B = C = Z and D is a one-dimensional irrep is a similar level of effort.

2|

) . (A217)

For instance, taking D = 1, we must have £ = F = Z and j and k can run over two
values each. Computing (note that we need to go up to (ejeq)es and (ejes)es to get two
linearly independent results), we find

1

Mozo(1z® (Vz),) 0 azzz)| (erer)es) = 75Pebne (A.218)

[)xlz,z o (12 ® ()\g,z)l) o az,Z,Z: ((ere2)es) = (—;59612 - 2'69513) e, (A.219)

{)‘IZ,Z ° (()\g,z>1 ® 12): ((erer1)e2) = %595126, (A.220)

2
and similarly for j = 2 or k = 2 if we replace (B12,513) by (514, 015). Then

%59512 —2BoPr2 — iBoSi3 ﬁﬁﬂm —3BoBr2 — iBoPi3

(2o - (7 - o
” 5P9Pa —3BoB1a — iBoPis 5P9b1a —1B9B14 — iBofis 01
(A.222)

[/\12,2 © (()‘5,2>1 ® 12)} ((e1e2)es) = (—1/39512 - iﬂ9513) e, (A.221)
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Similar calculations yield

(F(ZZiZZ)X) _ 1 [ BisBra —iBr2fia +ifrsfis
” Q Biafrs — iBiy +iS%5

—B12B15 + 18126814 — 1513515
—B1aBrs + B3, — i3

—_

(FL107) -

o)

—Br2B13 + 1% — 1B

—B12B815 + 1812814 — iB13615

BiaB13 — B3y + 163

B13514 — if12514 + iP13515

) . (A.223)

) . (A.224)

Finally we turn to the case A= B=C=D=Z.If Fis1, X, or Y then ¢ and j only
take one label, while if £ = Z then ¢ and j can take two values each, and similarly for F', k

and £. All together, this means that (F(ZZ%)Z) will be a seven-by-seven matrix. To compute
it, we first need to compute ()\gE)Z o(lz® ()\gz)j) oy zz and ()\fﬂyz)g o ((Agz)k ®1z)

on seven different vectors.

To start, let’s evaluate each of these on the vector (ujuj)u;. Since this is an eigenvector

of p(a) with eigenvalue 1, each case must give a multiple of e3. Computing, we find

Ao (12 ® Alz,z) oazzz((uur)ur) = 0,

)\g,x o <1Z ® Yz{z) oazzz((wiu)u) = 0,

Ay o (12 ® AEZ) oazzz((uur)ur) = BsPries,
(Ag,z)l ° (12 ® (/\g,z)1> oazzz((wu)ur) = Prafrzes,
(Ag,z)l ° (12 ® (Aéz) 2) o azzz((urur)ur) = BizPraes,
(M), (128 (M.2),) o azzz((mu)um) = Buaprses,
(Aé,z)z ° (12 ® (Ag,z) 2) ©az,zz((uur)ur) = Prafrses,

and

Z
)\1,2 o

/N

Mgz ®1z

) (wrwa)u)

Mzo (/\)z(,z ® 12) ((uru1)ur)
Mozo (M2 ®1z) (mun)u)
(Ag,z% o ((Ag,z)l ®1z) ((wru1)ur)
()\é,z)z o (()‘gz>1 @ 17) ((ww)ur)
(Mz), o (Mz), @ 12) (wu)w)
(/\5,2)2 o ((/\g,z>2 ® 12) ((uru1)ur)
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This translates to an equation

0 0
0 0
Bs b1 BB
Br12b13 | = (F(ZZZ)Z) | Br2(if12 — Prs) (A.239)
B13B14 B12(iB14 — PBis)
B12615 B14(iB12 — B13)
B1aBis B14(iB14 — Pis)

Repeating this exercise with six more vectors ((ujui)ug, (uiuy)es, (uru2)uy, (uiug)usg,
(uiug)es, and (ujes3)uy) yields a matrix equation which can be solved for (F(#Z%)Z)

(F(ZZZ)Z) _
0 Bo 0 Bo 0 0 0
0 0 BsB10 0 —ifsB0 0 Bs 510
BsB11 0 0 0 0  —ifsfn 0
Br2613 Bi3(iBi2 — P13) Pr2(if12 — P13) (ifr2 — P13)? - Bl Pi2fis
B13B1a Bis(iBi2 — B13) Pr2(if1a — Bis) (iB12 — B13)(if1a — B15) —Pi2f1a Pi3fis P25
Bi2B15 B12(iB1a — Bis) Pra(ifia — Bis) (iBr2 — F13)(if1a — Pis) —Pi2B1a B1zfis Pi3Pia
BraPis Bis(iB1a — Pis) Pra(ifra — Pis) (iBra — B15)? 674 Bis  Prabis
0 0 0 B 8o o 0 -
0 0 0 0 0 0 085610
BrB11 —ifrf11 BB 0 0 0 0

X | Br2(ifra — B13) —Bia Bizbis Bis  Pi3(ifiz — Pis) —ibi2brs Br2(ifr2 — Pis)
Br2(if1a — P1s5) —Bi2fra Bi2fis Pi3fis B13(ifia — Pi5) —if13Pia Pra(ifiz — Pis)
Br4(ifi2 — P13) —Bi2b14 B13fia P13fis Pis(ifiz — F13) —if12P1s Pi2(ifia — Pis)
Bia(iBra — Bi5) =B Buabis B35 Bis(iBra — Bis) —iBrafis Bra(ibia — Bis

_ (AB> . (A.240)

C'D

where in the last line we have written the result as a block matrix. Here

1 iBoBs ' Pro iBoBr B

1
A= 3 —iBeBi0By " BeBs  BebioBr B | (A.241)
—iBsB11By " BsPi1Bs Bro  BsBrt
2(39b22 —Bo(b12 + ba1) —By(b12 + ba21) 2B9b11
B = iB6B10b22 156B10(—2b12 + ba1) ifsS10(bi2 — 2b21) iBsBiobin | (A.242)

302
i88f11b22 BsP11(b12 — 2b21) ifsP11(—2b12 + ba1) iFsS11b11
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—2B b1y i85 Big b1t Bz B b
O 1 — By H(bra + ba1) i85 Brg (—bia + 2ba1) 087 Bt (2612 — bay) (A.243)
3 =Byt (brg +ba1) iB5 Ao (2b12 — ba1) iB7 A (—bia + 2021)

285 2o i85 Bro bao i85 By bao

and

—C3 C2 C2 —C1

1 —Cy4 C3 C3 —C
D=—_| *2% %2 (A.244)

392 —Cyq4 C3 C3 —C3

—C5 C4 C4 —C3

where we have also defined

bin = By +iBr12Bis — B (A.245)
bi2 = 1214 + 1512815 — P13P1s, (A.246)
ba1 = B12B814 + 1513614 — P13P15, (A.247)
bay = By + iB1aPis — Bis, (A.248)
1 = By + 8iB, 13 — 6813815 + 4if12B35 — 2B1s, (A.249)
o = BB + 208315 + 6113514 — 3B%B13B15 — 3B12B1s P14 + 3iB12B15 P15
+ iBi3B14 — 2873815, (A.250)
c3 = B3, + 4163 B14P15 — BiaBis + 4if126138% — 4612513614515
+ 2if19813 0% — Bi38%, + 218281415 — 203583, (A.251)
c1 = P12f3y + 6iB125%4 P15 — 3B12B14 8% + iB12B5s + 2iPr13 By — 31384 P15
+ 3iBr13P1aBls — 2513555, (A.252)
5 = By + 8iBiyB1s — 6874815 + 4iB1aBis — 2815, (A.253)
For later reference, we also note that the inverse matrix is given by
-1 AB
(FZ2H2) " = |2, (A.254)
C'D
with
, 1 iBoBs By BBy B
A= 3 —iBsB0By "t BsBst BsBioBs B | (A.255)
—iBrB11By t BrBuBs B BrBit
) 2B9b22 —By (b1 + ba1) —By (b1 + ba1) 2B9b11
B =553 | 105010022 05010 (=2b12 + bar) 85510 (D12 — 2b21) if5510b11 | » (A.256)

iB7B11baa  iB7P11 (biz — 2b21) iB7P11 (—2b12 + ba1) if7511b11
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—284 b1 iBs *Bio-bi1 iBs 1B b1
& 1 —B5 " (bia + ba1) 85 Brot (—biz +2b21) B35 ' By (2b12 — bar) (A.257)
3 =Byt (b2 +b2) i85 By (2b12 — ban) iBg Byt (—bia + 2ba1) ,

—285 1bas iBg * Bro D22 iBg By D22
and l~) = D.

A.4 A simplifying gauge choice

Though we will leave the arbitrary constants f; explicit in all of our Rep(A4) calculations in
this paper, because we find they add a nice additional consistency check, it can be useful
to make simplifying choices for these numbers. In particular, some nice properties that we
might want to hold (see, e.g. the discussion in [10]) would be that the matrices (F(AB) D)

are all unitary, and that the pairing between ()\gy p)i and (55’0) ;j obeys the nice relation

(50), (327), -

CACB

8;;1de, (A.258)

where ¢4 is the quantum dimension of the simple line A. In A4 we have ¢; = cxy =cy =1
and cz = 3. These conditions do not fix a gauge - in fact they don’t even completely fix
the components of F - but reduce the choices significantly. Here we present one specific
gauge choice which satisfies the conditions above.

First, imposing (A.258), we require

B2 = 83 = B1Bs = —if s, BsB10 = P71 = B, (A.259)

and
2B12814 + iB12B15 + if13B1a — 2B13515 = 0, (A.260)

6%2 + 1812613 — 6%3 = /6%4 + 1614515 — /6%5 = \/g

- 55s. (A.261)

Before looking at conditions imposed by unitarity of F, we’ll make a couple of other choices.
Demanding that an alternative construction of the co-fusion basis (putting the co-evaluation
map on the other side of the incoming line) agrees with the given one requires that we have

Bs = Be, Br = Bs. (A.262)

And we would always have the freedom of rotating between the two basis vectors in the
Hom(Z ® Z, Z) space. We can use that freedom to set, e.g., f14 = 0. Then the conditions

above fix 13 = %512 and 3% = —%,6’%2 = @ﬁg. Once all of these choices are made, the only
additional requirement from unitarity is that |8152| = |Bs|>.
Defining w = — 182835 3 which should now be pure phase, the non-trivial (i.e. not equal

to 1) components of F are

XXZ)Z zZYY)Z YZZ)X ZZX)Y -

Foy D2 =FE V2 = pF7DX IOV =0, (A.263)
YYZ)Z ZXX)Z XZ2Z)Y ZZY)X

Fax 27 =FZX 07 —pQ7OY = FZ7V% 0, (A.264)
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_1 V3
(F(XZZ)Z):(F(ZYZ)Z):(F(ZZX)Z):<F(ZZZ)X>:( \/23 2177)7 (A.265)
—2 1 —3
_1 _ V3
(F(YZZ)Z) _ (F(ZXZ)Z) _ (F(ZZY)Z) _ (F(ZZZ)Y> _ (\@2 21 77) 7 (A.266)
2 3
1 1 1 1 1
i 3 35 » O 0 &
1 1 T _ 1 _ 1, 1, __1_
3 3 3 ov3 2 21 T34
1 1 r 1 1, 1. _ 1
3 3 3 o3 21 72 T3/
(Fer2) =l Fsmas b 0 0 - (4260
0 —3m g 0 -3 -3 0
0 3m —3m 0 —3 —3 0
1 1 1 _1 0 0 1
V3 2v3 23 2 2

where 7 = +1 appears in S5 = \[Znﬁlg Note that the two-by-two matrices all cube to the
identity matrix, while the seven-by-seven matrix squares to the identity.
A very concrete set of choices (corresponding to w = n = 1) would be

Pr=P2=pP3=031=1, Bs = Bs = —1, pr = Bs = —i, 592—\?,
Bro = \/231 P = \f (A.268)
Bi2 =1, P13 = %, B4 =0, Bis = \/252 (A.269)

A.5 Modular transformations of A4 partial traces

As explained in section 2, we can use the associators to compute the modular transformations
of our partial traces, using

-1

C = _ (ABA)B -
(ZA’B>U (T+1,7+1) = Dzk;e F L‘Cj,kDZ (Z5p),, (7, (A.270)
o 1 (ABA)B] ! ADpB)1] 7! D _
(ZA’B>ij( L/m—1/7) = Dkze:m [F L‘Cj,kDé [F LCB,Km (ZB,A)em (7, 7).
(A.271)
Plugging in the results for Rep(A4) gives us
Z1 (T4, 7+1) = Z4 4, (A.272)
Z¥x (r+1,7+1) = Z{x, (A.273)
ZYy(tT+1,7+1)= Zy, (A.274)
Z{ 7 (r+ 1,74+ 1) = Z7 4, (A.275)
ZX 1 (TH1,741)= Zx y, (A.276)
Z% x(T+1,7+41)= %ﬂ“zggl, (A.277)
2
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Zxy(T+1,741)=

Z% 5 (r+1,7+1)=
Zy (T+1,741) =

Zy x(T+1,7+1)=

Zyy(7_+1 T+1)

Z¢ 7 (r+1,741) =
ZZ (T+1,741) =

Z§7X(T+1,7i+1):

ZGy (T+1,74+1) =

Zy 7(T+1,741)=

Bo
302

+

ZZ Z(T+1,74+1)=

Zy 7 (r+1,7+1)=

(ZgZ)H (T+1,7+1)=

(242) ,(r+1.7+1)=

(242),, (r+1,7+1)=

Ba

7Y . A.278
22 (.27
72, (A.279)
Zy x, (A.280)

B3

B g A281
27y (251
b1 zy .. (A.282)

pg
7%, (A.283)
Zy 7, (A.284)
Be 275, (A.285)
Bs
B 7% (A.286)
57

i59 z 1'59 A

ZZ 4 <+ A.287

3|7t g o (4.287)
[21722 (Zz z) (512~|—b21) ((252)124'(25,2) )+2511( ZZ) }
Bs { 510 Bio .,z ] 135510 7

ey Z Zz A
3 Bo Z1T Be ZX+58511 Zy |t 302 {522< ZZ)
+(—2512+bz1)(Zz,Z)12 (b12—2521)(Z§7z)21+511( ) }

(A.288)
57{ 811 Bi1 .z - 1876811 7
Ll £ Z —7 b [ Z
3 Bo Zl+56/3 10 Z’XJrﬁs zy |t 302 { 22( Z’Z>11
+(b12—2b1) (ZZvZ) 12 +(=2b12+b21) (Zgz)21+b11 (ngz)w} ’
(A.289)
bll|: 2 ZZ Z Z Z
31 By %t 56510 %X /88/311 oy
z
392 [ ( ) 1+C2 (ZZvZ>12+02 (ZZ’Z)QI_CI (ZZvZ>22} ’
(A.290)
1[ bio+ba i(—b12+2b21) i(2b12—b21) 4 }
= L UT02T02) gz U TEn) g
[ Bo %1 Be 10 24X BsP11 2Y
1 z 7z A z
+@ {_64 (ZZ7Z)11+C3 (ZZvZ) 12—1_03 (ZZvZ)m_@ (ZZZ) 22} ’
(A.291)
L[ big+ba,,,  i(2b12—b21) i(—b1a+2b21) ., }
) zZ, 121270) gz | NTORTN) 4
3 { Bo %1 Beb10 aX BsB11 %Y
1 z z 7z A
+@ {_64 (ZZ’Z>11+63 (ZZvZ) 12+C3 (2272)21_62 (ZZvZ)m} ’
(A.292)
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7t ———

(25,2)2 (t4+1,74+1)= b22 [

P
31 B 7 56510 ’ 5851 Z4x
3Q2 [ ( gZ)11+C4 (Zg’z) e (ZZ’Z)21_63 (Zgz)w} :
(A.293)
and
Z{(=1)7,-1/7)= 2} |, (A.294)
Zix (11, —1/7)= Z% 1, (A.295)
Z¥y (=1)7,—1/7)= Zy,, (A.296)
ZIZ,Z(_1/77_1/%): Zgl? (A.297)
Zx1(~1/1,-1/7)= Z{y, (A.298)
Zx x(=1/7,—1/7)= 62542)1(% (A.299)
2
Zey (~1/r-1/7) = 25755y (A.300)
B184
Zx z( 1/77—1/)—§5§9 Zv (A.301)
2M11
Zy1(=1/7,=1/7)= Zi'x, (A.302)
ZY,X(—l/T 1/7)= 3, B4Z§,X7 (A.303)
Zyy(=1/7,—1/7)= 5;5423/,» (A.304)
281 /r 7 = T2 (A.305)
3M10

Z5(=1/7,=1/7)= 27y, (A.306)
~ B2B6b1o

Z% x(=1/7,=1/7)= Bs B B Z% 7 (A.307)
Z 1 4 P3BsPu g

Zzy(=1/7,-1/7)= 5657@) Zy. 7 (A.308)
Z%,z(—l/ﬂ—l/%)z ZZZ+B/;"OZZZ+B§; ZY 4 (A.309)

3% [21)22 (Zz,z) 11_(b12+b21) ((Z§Z> et (Zéz)m) +2b (Zgz) 22] ’

11 185510 B5810 35510
X 1 X 7z
Z7 7(=1/7,—1/7T) { Bo ZZ,Z+ZZ,Z+B7ﬁH Zz 7|+ 302 [522 (ZZ,Z>11

+(—2b12+b21) (Zg,z) 12+(b12_2b21) (Zgz)m—i_bu (ngz)m} ’

(A.310)
2y A r -y = g |- 2, §7§“ZZZ+ZZZ O (25,)
+(b12— 2521( ) 2b12+b21)(Z§,Z) +b11< zz) }
(A.311)
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(Zg’z>11(71/7-771/%) - b?% [529Z1 55510 ZZZ+5751 ZZZ
+3T1]2 [_03 (Zg’z>11+62 (Zg’z) 1272 (ZZ’Z>21_01 (Zg’z)m} ’

(A.312)

. 1] bia+ba i(—b1a+2b21) i(2b12—b21)
Z% ~1/7,-1/7)= [— ygt——— 7S 7Y
( Z’Z>12( / /7) 3 Bo 2,2 BsB10 %2z B7611 27

+37§122 [—04 (Zgz)n—mg (Zg’z) 12763 (Zg’z>21_62 (ZE’ZLJ ’
(A.313)

1 biatby i(2b12—ba1) i(—b12+2b21)
zZZ —1/7,-1/7)= {— pat—— Iy gt ——— L7} }
( ZvZ>21( / /7) 3 Bo zz BsB10 %z B7611 'z

+3T122 [_C4 (Z57Z>11+63 (Zgz) 12768 (Zgz>21_c2 (Zgz> 22} ’

(A.314)
(Zg’z>22(_1/77_1/%) - b3£ [_529Z1 55510 ZZZ+57[31 ZZZ
+3T112 [_C5 <Z51Z>11+C4 (Zg’z) 1o T4 (ZZ’Z>21_C3 (Zéz)m} :
(A.315)

One can then check that there are five independent modular invariant combinations

of these partial traces,

le,lv
1)) B3
Z§X+Z¥Y+Z§§,1+w ZXX+ZXY+ZY1+ZYX+M Z5y,
i52 i3 i3y 39
Zey+ 278+ S ZE 4+ 2+ T+ T E e + 7
1,7 Bﬁ X,Z ﬁﬂ Y, Z Zl ﬂﬁl Z,X B/B ZY YA
n 139 27X i3y

&&OZZ+55

302 [(’614 +2i61)* (222),,

(A.316)

(A.317)

(A.318)

- (512 + 2i513) (B1a + 2iP15) ((Zfz) LT (Zéz) 21) + (P12 + 2iB13)? (Z§7z>22} ;

By ,
[(514 211415 + 25%5) (Zg,z)n
— (B12B1a — iB12515 — 1513614 + 2B13015) ((Zgz) bt (Zg,z)2l>
2 _ o 2 Z
+ (512 2iP12513 + 2513) (Zzz) 22} .
If we make the simplifying gauge choice of the previous section, these become
le,17

Z¥% + Zy + ZX1+ Zx x + Zxy + Zy1 + Zi x + Ziy,
2l 4+ 287+ 28 5+ 250+ ZGx + 25y + 22+ Z5 5+ 2% 4,
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(A.319)

(A.320)

(A.321)
(A.322)
(A.323)



2
Z{y+ 25+ 2y 5+ 7 (Zg,z>11 ) (A.324)

- V3 (Zg’z)n +V3 (Zg’z>22 ' (A-325)

B Brauer-Picard group of Rep(Ay)

In this appendix, we briefly review some background on the Brauer-Picard group, which we
utilize in the main text to summarize the Rep(A4) gaugings. We refer the reader to [33]
for more details.

We start with the notion of the Brauer-Picard groupoid. The Brauer-Picard groupoid
of a fusion category C is a 3-groupoid.?’ It contains the following information

Objects (i.e., O-morphisms) are fusion categories that are Morita equivalent to C.

1-morphisms are invertible bimodule categories between such fusion categories.

2-morphisms are equivalences of such bimodule categories.

3-morphisms are isomorphisms of such equivalences.

From the physics perspective, we are interested in the 1-truncation of this 3-groupoid. Namely,
objects correspond to categorical symmetries connected by gaugings, while 1-morphisms
correspond to these gauging manipulations, or, equivalently, correspond to topological
interfaces via half-space gaugings.

Among all gauging manipulations, there are cases when the fusion category C is self-dual.
Mathematically, these self-dual gaugings are associated with C — C bimodule categories. For
a given object C in the Brauer-Picard groupoid, the equivalence classes of these bimodule
categories build the Brauer-Picard group, denoted as BtPic(C).?! An alternative way to
understand this group is by regarding it as the symmetry group of the 3D topological field
theory [45], also known as the symmetry theory. Mathematically, this is translated in

BrPic(C) = Aut™ (Z(0)). (B.1)

Z(C) is the Drinfeld center [46-48] for the fusion category C, which contains the information
of the 3D symmetry topological theory.
When C = Rep(G) with G is a finite group, one has the following condition

BrPic(Vecq) = BrPic(Rep(G)) (B.2)

where Vecg can be physically understood as the group G symmetry. Let L(G) denote the
categorical Lagrangian Grassmannian of Z(Vecg), and

Lo(G) = {L € L(G)|£ = Rep(G) as a braided fusion category}. (B.3)

20Groupoids can be understood as special cases of categories, where every morphism is invertible.
21Recall that a groupoid with only one object is equivalent to an ordinary group.
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The action of Aut® (Z(C)) on Lo(G) is transitive [29]. Therefore, the image of Aut®(Z(C)) is
a transitive subgroup of Sym(Lo(G)). Denote the stabilizer of the canonical Lagrangian sub-
category Rep(G) C Z(Vecg) in Aut®(Z(C)) as Gtab(Rep(G)), which can be computed by??

GStab(Rep(Q)) = HA(G,k*) x Out(G). (B.4)
This allows one to find the order of the Brauer-Picard group [29]
[Bespic(Rep(G))] = |HA(G, k)] x [0ut(@)] x [Lo(G)]. (B.5)
For our case of interest, G = Ay, for which
H?(Ay, EX) = 7y, Out(Ay) = Zs (B.6)
This gives rise to the stabilizer for Rep(Ay)
Stab(Rep(G)) = Zy X Zs. (B.7)
The set Lo(A4) consists of three Lagrangian subcategories [44]

L1y Lzoxzan) L2axzapu): (B.8)

In total, this Lo(A4) together with Gtab(Rep(G)) leads to a order 12 group. In [29], it is
shown that this group is Dkg.
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