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Empirical Evaluation of Models Used to Predict Torso Muscle Recruitment

Patterns

Miguel A. Perez

(ABSTRACT)

For years, the human back has puzzled researchers with the complex behaviors it

presents.  Principally, the internal forces produced by back muscles have not been determined

accurately.  Two different approaches have historically been taken to predict muscle forces.  The

first relies on electromyography (EMG), while the second attempts to predict muscle responses

using mathematical models.  Three such predictive models are compared here.  The models are

Sum of Cubed Intensities, Artificial Neural Networks, and Distributed Moment Histogram.

These three models were adapted to run using recently published descriptions of the lower back

anatomy.  To evaluate their effectiveness, the models were compared in terms of their fit to a

muscle activation database including 14 different muscles.  The database was collected as part of

this experiment, and included 8 participants (4 male and 4 female) with similar height and

weight.  The participants resisted loads applied to their torso via a harness.  Results showed the

models performed poorly (average R2’s in the 0.40’s), indicating that further improvements are

needed in our current low back muscle activation modeling techniques.  Considerable

discrepancies were found between internal moments (at L3/L4) determined empirically and

measured with a force plate, indicating that the maximum muscle stress selected and/or the

anatomy used were faulty.  The activation pattern database collected also fills a gap in the

literature by considering static loading patterns that had not been systematically varied before.
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 Chapter 1.  INTRODUCTION

1.1  Epidemiological Motivation

The human spine, including the muscles that act upon it, is a complex system that

includes structural body support as one of its many functions.  Injuries to this system that result

in pain are collectively identified as back pain, which is one of the most common and significant

musculoskeletal problems in the United States (Hollbrook, et al., 1984; Praemer, et al., 1992).

Estimates of its costs are on the order of tens of billions of dollars annually (NIOSH, 1997; Cats-

Baril and Frymoyer, 1991; Frymoyer et al., 1983), although the predicted amounts vary widely.

These costs are distributed over a large number of cases, with some epidemiological studies

estimating back pain as the prevalent symptom in around 50% of all reported musculoskeletal

diseases (NIOSH, 1997; Praemer, et al., 1992).

A subclass of back pain is Low Back Pain (LBP), which refers to pain in the lumbar

region of the spine.  The risk of LBP has been associated with industrial work for some time

(Andersson, 1981), especially with Manual Materials Handling (MMH) tasks, which include

lifting, lowering, pushing, pulling, holding and carrying materials (Marras, 1997).  Estimates of

the incidence of occupationally induced low back pain range from 1 to 15% annually, varying

with occupation (Kelsey and White, 1980).  MMH aspects that have been identified as risk

factors include the weight of the item being carried and the distance the object is held from the

body.  Both of these aspects directly affect the tissue loads in the lumbar spine area.  For

example, workers that are required to lift heavy loads develop low back disorders about eight

times more frequently than workers performing sedentary work (Chaffin and Park, 1973).

Partially to address the issue of LBP, NIOSH has created their Lifting Guides, which

attempt to quantify the risk of injury that MMH tasks pose to the persons performing them

(NIOSH, 1981; Waters, et al., 1993).  Not coincidentally, the Lifting Guides are designed in part

to assign lower injury risks to MMH tasks that result in lesser compression forces in the lumbar

spine.  These guides, however, have been criticized on their dependence on multiple criteria (i.e.

biomechanical, epidemiological, psychophysical, and physiological), thus, their validity depends

on the validity of the criteria used (Dempsey, 1998).  According to Dempsey (1998), validation

of criteria is one of the most critical MMH research needs.  He suggests that the validation

process must develop quantitative relationships between risk factors and the probability or
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severity of low back injury.  The next section presents an overview of the biomechanics field and

its approach to the development of these relationships.

1.2  Biomechanics

Biomechanics attempts to link task conditions with the loading of internal tissues.  When

the loading of the internal tissues is known, it can be compared against the tissue’s tolerance to

the loads.  The field combines knowledge of human anatomy, human tissue composition, neural

control theory, mechanics and dynamics (among others) to create models that mathematically

represent the inner workings of the human support and movement systems.  These models

include those that describe lumbar muscle recruitment patterns under different load conditions.

At this point, it is important to discriminate between the definitions of force, moment,

and load used in this work.  A force is a vector (i.e. with direction) quantity that describes the

linear (e.g. push, pull) effect of one body upon another.  A moment is also a vector quantity, but

it is the result of the torsional effect of a force over a certain distance.  Load will be the

combination of forces and moments that act upon a specific area.  Using this terminology, a force

in the hands of a person (e.g. the weight of an object) causes both a force and a moment on the

lumbar spine (due to the distance between the force and the spine).  The combination of this

force and this moment is the load on the lumbar spine.

The main problem faced by biomechanics when modeling the low back is the complexity

of this system.  Although spinal compression forces caused by external disturbances can be

easily and accurately calculated, the total compression in the spine is also a function of the

muscle reactions to equilibrate the external moment.  These muscle reactions (i.e. tension forces)

are relatively large because they must counteract the external moments using relatively small

moment arms (i.e. these muscles are significantly closer to the spine than is the external force).

However, the accurate calculation of muscular reactions is hindered by the complexity of the

spine.

The intricacy of the spine arises in part out of the large number of muscles that cross this

region and their multiple attachment points to the spine, which complicate the determination of

their lines of action (i.e. the direction of the force they generate).  These two factors, among

others, make the accurate prediction of muscular forces impossible without the use of

assumptions.  These assumptions, in turn, reduce the internal validity of the models developed,
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that is, their ability to represent the system using the system’s own parameters.  The ongoing

search in this area of biomechanics is, then, the development of models that require the least

number of assumptions, and whose assumptions are physiologically valid.  These models would

serve as ‘bridging technologies” between the risk factors present in a task and the probability of

injury the particular task represents.  These technologies, in turn, would partially fulfill

Dempsey’s (1998) requirement for quantitative relationships between risk factors and the

probability or severity of low back injury.

Currently, however, the low back injury mechanism remains unclear.  It is still unknown

whether low back injuries occur because of high tissue loads in the spine, or because of spinal

instability, or because of their combination (Cholewicki and McGill, 1996).  In this context,

“bridging technologies” are affected by several problems, including the validity issues discussed

above.  Section 1.4 addresses the current state of these technologies, with particular focus on new

developments.  Before exploring these models, however, it is useful to summarize our

knowledge of lumbar muscle recruitment patterns.

1.3  Lumbar Muscle Recruitment

The exploration of lumbar muscle recruitment is hindered by our inability to measure the

forces on the tendons of the muscles acting on this area.  The ethical dilemma of this

notwithstanding, this is very difficult for two main reasons.  The first is that a considerable

number of aponeuroses (i.e tendon-bone attachment sites) exist, some of them distributed over

several vertebra.  Thus, a large number of force transducers would have to be placed and

monitored.  This leads to the second problem, which is that such a procedure would be highly

intrusive and, thus, interfere with the natural recruitment patterns.  Research on animals using

this approach is limited, at least for the lumbar region, because no other animal has a vertebral

column that is both structurally similar to that of humans and used in a comparable fashion

(Bogduk, et al., 1992a).

We are, thus, currently limited in our ability to study these patterns to inferential

methods.  The main inferential method used for the determination of lumbar muscle recruitment

patterns is surface electromyography (EMG).  This technique involves the collection of an

electrical signal from electrodes placed on the skin over the muscle being studied.  This electrical

signal represents the combination of several muscle action potentials that are generated during
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the activation of the muscle.  Although the exact EMG-force relationship is unknown, it is

generally accepted that EMG signals, when properly collected and analyzed, are monotonically

correlated with force.  In this respect, the method is inferential, because the researcher must infer

that the muscle generates a certain amount of force based on the EMG signal.  It also requires the

assumption that the signal collected represents the overall activation of the muscle of interest.

These drawbacks notwithstanding, the technique is very useful to observe patterns of

activation instead of actual muscle forces, and has been widely used to study lumbar muscle

activity during static torso loading.  The best known studies of this region are those performed by

Lavender and colleagues.  In these studies, the EMG activity levels of the largest superficial

lumbar muscles were monitored while participants in symmetric and asymmetric postures

generated lumbar moments to counteract external loads varying in orientation (Lavender, et al.,

1992a, 1992b, 1992c, 1993a, 1993b, 1994, 1995).  Overall, the studies found that moment

magnitude and direction, as well as their interaction, significantly influenced the normalized

muscle EMG signals.  In addition, increased EMG activities were observed for asymmetric

postures.

The interpretation of EMG signals in dynamic tasks is much more difficult.  For example,

McGill (1992) found inconsistent changes in muscles activities as participants rotated their torso

against a load with different levels of spinal lordosis.  He attributed the inconsistency to an

increased effect of passive tissues when the participants deviated from a neutral upright position.

Usage of EMG signals in dynamic tasks is debatable, since any skin movement will affect the

position of the electrode with respect to the muscle, potentially altering the portion of the muscle

being sampled by the electrode, and, consequently, the resulting signal.  Still, Mirka (1991)

suggests that if the proper precautions are taken, EMG signals can be collected with confidence

in controlled dynamic exertions.  This idea, however, is not supported by some research, which

suggests that dynamic exertions require careful study of muscle force-length and force-velocity

relationships (Baildon and Chapman, 1983; Redfern, 1992).

Trunk muscle coactivation, or cocontraction, has also been found in studies of lumbar

muscle recruitment.  This phenomena refers to the observation of significant activity levels in

muscles that can’t, based on their lines of action, generate moments that counteract the external

moment applied to the spine.  Thus, these muscles generate moments that are added to the

external moment and therefore require additional activation in other muscles.  Mathematical
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definitions of the coactivation phenomenon have been proposed (see Hughes, 1991) due to the

fact that in complex motions, the muscles acting as agonists and antagonists may not be obvious.

The effect of cocontraction in lumbar muscles does not appear to be negligible.  Some

researchers estimate that coactivation may increase spinal compression as much as 45% (Granata

and Marras, 1995b).  The mechanisms that control it, however, are currently unknown, although

some association with spinal stability has been proposed.

Some researchers have collected their own lumbar EMG data to correlate it to their

lumbar model formulations (e.g. Ladin, et al., 1989).  However, usually the data is not

completely reported.  As is the case with the Lavender studies, only averages are reported (with

limited variability measures).  Other researchers have opted to use the Lavender data in the

development of their models (e.g. Nussbaum, et al., 1995; Raschke, et al., 1996).

Although these efforts have certainly been useful in our exploration of lumbar muscle

recruitment, drawbacks exist.  First, the report of averages, with limited data on variability,

makes evaluation of inter-subject differences in recruitment difficult.  In addition, lack of trial

repetitions eliminate any possible analysis of intra-subject differences in recruitment.  The range

of loads studied is also small; the upper load limits (based on Maximum Voluntary Exertions,

MVE’s) are completely avoided.  Furthermore, sample sizes are small (<10) and in some cases

limited to males only.  These characteristics restrict the generalization of the results.  Possibly

the largest drawback, however, is the limited inclusion of torsional moments in the experiments.

For our knowledge of lumbar muscle recruitment to be complete, data from combinations of

torsional moments with sagittal and frontal moments are needed.

The next section discusses some of the models that attempt to bridge the gap between

external loading and internal tissue reactions.  All of them relate to lumbar muscle recruitment in

one of two ways; they either use the empirical patterns obtained to estimate muscle forces or they

attempt to predict lumbar muscle activation patterns.

1.4  Low Back Muscle Activation Models

Although simple in principle, implementing the “bridging technology” approach

described before is extremely difficult (if not impossible) for two reasons, at least if an exact

solution is desired.  First, direct measurement of loads in vivo is difficult with current

technology, paradoxical in its approach, and unethical as judged by our society’s standards.  It
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would require intrusive instrumentation and major surgical procedures to implant the measuring

devices.  The paradox lies in that the particular subject in which the devices are implanted would

no longer be a healthy individual, and measurements taken would not be representative of a

standard population.

The second problem affects the use of exact mathematical approaches to obtain a solution

based on the laws of statics and dynamics.  Even simple anatomical models of the lumbar region

identify at least eight muscle groups.  Since only six equilibrium equations are available, the

system is statically indeterminate, and an infinite number of mathematical solutions exist.

Therefore, in vivo and exact mathematical approaches have to be discarded and other

approaches have to be used to predict muscle activation.  The development of these empirical

bridging technologies has been researched for quite some time, with models progressing from

static, two dimensional analysis, to dynamic, three dimensional computer models (Granata and

Marras, 1993; Chaffin and Andersson, 1991).

Contemporary lumbar biomechanical models are grouped into two main areas.  The first

area uses empirical measures of muscle activity (e.g. EMG data) to estimate resultant muscle

forces.  The second area involves the creation and validation of computer models that predict

muscle activation levels.

At this stage, a discussion on the validation of these models is warranted.  Direct

validation (in vivo) of these models is currently impossible, for all the reasons outlined before.

To a limited extent, indirect validation of predictive models can be performed if the assumption

of a monotonic EMG-force relationship is made (i.e. increasing EMG means increased force

levels).  Since these models are tailored to prediction of EMG signals, comparisons can be made

between empirical and computed values.  Force estimating models that use EMG as an input,

however, can’t be even indirectly validated with EMG, since they already are using the

validation measure as an input.  The creators are left with, as the only “validation” recourse, the

comparison of model parameters and results with known (or even estimated) physiological limits

(Granata and Marras, 1993; Granata and Marras, 1995a; McGill and Norman, 1985; McGill and

Norman, 1986), for example, muscle stress; or with the comparison between applied moments

and the reactive moments generated by the EMG model.  Given these difficulties Cholewicki and

McGill (1996) propose a validation approach that consists of component validation, internal

validity checks, sensitivity analysis, and judgmental evaluation.  Still, the reader should be aware
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of the difficulty (or even impossibility) in directly validating the models discussed next.

Although their creators may describe validation processes the models went through, these, at

best, are only indirect.

Three innovative predictive models have been proposed in recently published literature.

They are a modified feed-forward neural network with error back-propagation (Nussbaum, et al.,

1997; Nussbaum, et al., 1995), distributed moment histogram (Raschke, et al., 1996), and

optimization with a cubed muscle stress cost function (Crowninshield and Brand, 1981; Hughes,

et. al., 1994; van Dieen, 1997).  Each of these, together with EMG models, merits more detailed

consideration, presented in the following sections.

1.4.1    Models Based on Electromyographic Data.

Electromyography is the measurement of the electrical activity of a skeletal muscle using

an electrode placed on the skin or introduced into the muscle (Marras, 1997).  EMG-based

models use this data as a representation of muscle activity (Granata and Marras, 1993; Granata

and Marras, 1995a; McGill and Norman, 1985; McGill and Norman, 1986; Nussbaum and

Chaffin, 1998).  The EMG readings are usually normalized against individual maximum

voluntary exertions (MVE’s) and corrected for the effects of several muscle properties particular

to the situation under study (e.g. muscle length, contraction velocity).  Although continually

improving, these models suffer from two main drawbacks.  The first is their validation process,

discussed previously.  To further compound the validity problem, some of the EMG-based

models also include non-physiological parameters that compromise their internal validity (as

noted by Nussbaum and Chaffin, 1998).

The second drawback suffered by these models concerns their application.  In order to

gather input data to run an EMG-based model, participants have to be instrumented with

electrodes on several parts of their body.  Furthermore, these electrodes have to be connected to

sensitive electrical equipment.  These reasons make the use of EMG-based models in field

environments difficult.  This, combined with dependency on EMG measures, make their

usability in design situations very limited.

The main advantage of these models lies in their ability to develop muscle force estimates

that agree with EMG data for dynamic exertions (including antagonism). They are often singled

out as well for being able to capture the recruitment patterns of specific individuals.  However,
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since one of their inputs is the EMG data of a specific individual, such abilities exist only

because the force generation signal tracks the EMG signal.  Since predictive models do not have

this advantage, it can be argued that they have to model the underlying physiological control

mechanisms that direct dynamic exertions.  While criticized by some researchers for their poor

performance in dynamic exertions (Marras, 1997), it can be argued that, as the predictive models

evolve, they might model these physiological dynamic control mechanisms better.

1.4.2    Feed-forward Neural Network with error Back-propagation

 Artificial Neural Networks (ANN’s) are an artificial representation of biological

networks of neurons.  They consist of a group of individual processing units that are highly

interconnected.  ANN’s are used in many different fields, but few applications have been

developed in biomechanics.  The applications in biomechanics that have been developed have

usually been restricted to the arm or leg (Lester, et al., 1997; Savelberg and Herzog, 1997).

Some earlier modeling work also shows some basic neural network implementation (Caldwell

and Chapman, 1991).

The first generation of the neural network described here (Nussbaum, et al., 1995) is a

standard multi-layer feed-forward neural network with error back-propagation.  It is shown in

Figure 1.  The network is fully interconnected.  The inputs to this network are the magnitudes of

the external moments, while the outputs are the muscle activation levels for each of the eight

lumbar muscles considered in this study.  Each of the nodes in the network receives several

signals, which the node combines to generate its output.  The input nodes receive only one

signal, however.  A unit’s net input (neti) is determined using the following formula.

∑ ←=
j

jiji wanet * (1)

where,
j indexes all units that connect to unit i
aj activation level of unit j
wi←j weight of connection from j to i

A unit’s output can be calculated once its neti is calculated.  Formula 2 shows the

activation function.

)(1

1
ii biasneti

e
a +−+

= (2)
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where,
i identifies the node
biasi variable term applied to unit i
neti see formula 1
ai resultant activation for node i

The activation process for the networks works as follows (see Figure 1).  Once an input

signal is provided to the input nodes, the signal is fed forward to the hidden layer, which

combines the inputs according to equation 1.  Once all the net inputs to the hidden layer are

calculated, the activation for each node is computed with equation 2.  These serve as input

signals to the muscle (output) layer, which use the same process to determine their activation.

Figure 1.  Illustration of the basic network model used (from Nussbaum, et al. 1995)

The model used in this manuscript is a modified multilayer feedforward network with

error back-propagation, fully described in Nussbaum, et al. (1997).  The network is illustrated in

Figure 2.  Several differences can be observed when it is compared to the first generation neural

network.  First, it has inputs for all three external moments.  Second, it adds another layer after

the muscle layer.  This layer represents the output (reaction) moments as determined by the

network.  Other differences can’t be observed based on the diagram.  First, the weights between

the muscle layer and the output layer are fixed, and predetermined, and represent each muscle’s

moment contribution for each direction.  Second, the nodes in the muscle layer have connections
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between themselves (Inhibition) and into themselves (Self-inhibition).  This is illustrated in

Figure 3.

Figure 2.  Modified multi-layer neural network (from Nussbaum, et al. 1997)

Figure 3.  Illustration of the Inhibition and Self Inhibition concepts (from Nussbaum, et al. 1997)

Based on these additions, the muscle layer calculation of its net input changes to the

following formula (equation 3):

i

ik

k

j

jiji SaIawanet ∑∑
≠

← −−= * (3)

where,
j indexes all units that connect to unit i
aj activation level of unit j
wi←j weight of connection from j to i
I Inhibition value
ak activation level of unit k
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S Self-Inhibition value
ai activation level of unit i

The activation equation (2) applies to all the layers except the output layer.  For the

output layer, the net input is the same as the output.  The process for determining the network’s

activation state follows.

The input units, located in the input layer, receive the external spine moments.  These are

transferred, through weighted connections, to the next layer (first hidden layer).  The units in the

first hidden layer take their inputs from all their input connections (equation 1), and pass the

result through an activation function (equation 2), which returns their activation level.  This

level, in turn, is passed through weighed connections to the second hidden layer.

The second hidden layer is different from the typical feedforward layer because it is

competitive (i.e. units are not only connected to the previous and next layers, but also between

themselves, as shown in figure 3).  Therefore, the activation of other units in the layer is

considered when determining the net input.  In addition, each unit has a connection, called by

Nussbaum, et al. (1997) Self-Inhibition, that goes into itself.  This connection is also considered

in determining each unit’s input.  Once again, once the input to each unit is calculated, it is

processed through an activation function.  Each unit in this layer represents a muscle group

which is previously known, as weights from this layer to the output layer are known and pre-

determined, and represent the moment contribution of each muscle group to each moment

direction.

Activation levels are passed through weighted connections to the output layer.  The

output layer, however, does not process its input through any activation function.  Thus, each

unit’s input is equal to its activation level.  Again, the activation of these units represents the

reaction moments predicted by the model.

Before this neural network is useful, however, it has to be trained.  The training process

involves the modification of the weights between layers.  The training process is described in

Nussbaum, et al. (1995, 1997).  It presents the network with a training pattern, determines unit

activation levels with the current weights, and propagates any errors backward in the network

(i.e. contrary to the direction in which the output was calculated), so the term back-propagation is

used.  Haykin (1994) discusses the algorithm, including its derivation, in detail.  The weight

modification process is performed based on equation 4, shown next.
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)()*()1( nwanw jijiji ←← ∆+=+∆ µδε (4)
where,

j indexes all units that connect to unit i
aj activation level of unit j
wi←j weight of connection from j to i
n cycle number
µ momentum term (effect of previous weight changes on current

weight changes
ε learning rate
δi error signal for the layer

Weights between the muscle layer and the output layer are not modified because they are

indicative of the anatomy assumed, which remains fixed.  It is important to emphasize that

training of a neural network is an iterative process.

ANN-based models are predictive, and have been proven to generalize particularly well

to loading conditions that were not included in their training set (Nussbaum, et al., 1995).  They

can be easily adapted to model individuals by modifying the fixed weights between the muscle

and outputs layers.  Their disadvantage lies in the computationally intensive training process they

have to go through.  Also, their performance with dynamic loading conditions is still untested.

However, the ANN approach described here has one advantage over the other models

considered: it is able to account for intra- and inter- subject variability in its current form.  Inter-

subject variability can be addressed with the use of different anatomies for different subjects.

Intra-subject variability is handled by randomness in the order of the determination of muscle

layer activation, combined with the Inhibition and Self-Inhibition parameters.  Although intra-

and inter- subject variability may be accounted for in the other models using other approaches

(see the discussion section for each, 1.4.3 and 1.4.4), they are unable to account for them in their

current forms.

1.4.3    Distributed Moment Histogram.

The Distributed Moment Histogram (DMH) proposed by Raschke, et al. (1996),

postulates that muscle activation patterns can be predicted by basing muscle recruitment on the

activity distributions exhibited by motor cortex neurons.  These neurons have been linked with

motor control functions (Brooks, 1986).   Georgopoulos, et al. (1983) studied the effects of

direction, amplitude and peak velocity of tracking arm movements on the firing rate of neurons
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in the motor cortex of primates.  They found statistically significant relationships between

neuron firing rates and these parameters, that is, the firing rate of specific neuron groups could be

correlated with movement characteristics.  Further investigation has allowed the classification of

neuron groups according to their “preferred direction”, that is, the movement direction of a

particular body part in which they fire at a peak rate (Brooks, 1986).  These neurons have also

been found to remain sensitive to a considerable range of orientations (300°, Brooks, 1986).

Later studies (Georgopoulos, et al., 1989) elaborate on these principles and correlated

arm rotations (on both primates and humans) with the rotation of what they call a neuronal

population vector.  This vector is the weighted sum of contributions of directionally tuned

neurons, that is, neurons that have been found to fire at a peak rate when the limb is oriented in a

particular direction.  The population vector is calculated by multiplying a normalized firing rate

by a vector representing the preferred direction of a particular neuron and summing the results

over a range of neuron cells.  This implies that neurons will fire even when the direction of

movement is not their “preferred” one.  This firing pattern is described by Brooks (1986) as

being bell shaped. The studies described previously, however, were performed only for limb

movements.  At the time of this writing, no study linking the lumbar spine and the motor cortex

could be found.

  Raschke (1994) suggests, based on these investigations, that the central nervous system

does not select individual motor units to perform a movement, but rather selects a distributed

pattern of them that follows the firing pattern distribution and centers around the desired force

direction.

The DMH model locates muscles on a polar graph according to their position on the

trunk’s circumference (see Figure 4).  The height of the polar vector representing each muscle in

the graph represents the product of the muscle cross-section, its moment arm, and its directional

component in the longitudinal axis (Equation 5).

hi = zi * CSAi * MAi (5)

where,

hi = polar vector magnitude for muscle i
zi = z component of the line of action of muscle i
CSAi = cross sectional area for muscle i
MAi = moment arm of muscle i for the given load direction
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Once the graph is set-up, a reaction moment equal in magnitude and opposed in direction

to that caused by the external loads (i.e. offset by 180 degrees) is plotted.  The distributed

moment histogram is then plotted with the reaction moment in its center  (see Figure 5).

a)

b)
Figure 4.  Transformation of global coordinates into a polar system. (a) illustrates the lumbar

cutting plane and angle definitions used.  (b) illustrates the hypothetical polar graph (from
Raschke, et al., 1996).
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Figure 5.  Distributed Moment Histogram superimposed on the vector magnitudes shown in
Figure 4b (from Raschke, et al., 1996).

The spread of the moment was chosen to be Gaussian with the width of the distribution

estimated using the myoelectric data of Lavender, et al. (1992c).  Raschke (1994) examined

spreads that ranged from 180° to 320° and concluded that the model was fairly insensitive to the

distribution width when examining the erector spinae, latissimus dorsi, external oblique and

rectus abdominis muscle groups.  In his subsequent testing with these muscle groups, he used a

spread of 300°.

Once the distribution is plotted according to its height and width characteristics, each

muscle’s internal moment contribution is calculated as the product of its magnitude in the polar

graph (hi) and the distributed moment histogram value at the orientation of muscle i (Equation

6).

SF = 

∑
=

n

i 1

i

AppliedMoment 

α
(6)

where,

SF = scaling factor
αi = product of hi and the distributed moment histogram value at angle of

muscle i
n = number of muscles included in the model
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The scaling factor is used to gradate the different muscle contributions to equilibrate the

moment applied (Equation 6).  The scaling factor accounts only for the arbitrary scaling of the

moment distribution curve, that is, it has no physiological association (Raschke, 1996).  Its use

seems to be justified based on the distributed moment histogram’s base on neural firing patterns.

The scaling factor could then be considered a relationship factor between these firing rates and

the actual activation of the muscle motor units.

After the scaling factor is found for the particular loading situation, the tensions of each

muscle are calculated using Equation 7.

Fi = 
i i

i

z *MA

 * SF α
(7)

where,

Fi = estimated tension of muscle I
SF = scaling factor
αi = product of hi and the distributed moment histogram value at angle of

muscle i
MAi = moment arm of muscle i for the given load direction
zi = z component of the line of action of muscle I

A computational problem may arise at this point, because the calculated muscle

activation may cause small reactive lateral and torsion moments that were not present in the

loading condition.  The solution used by Raschke (1999, Personal Communication) is to begin a

new iteration of the model with the lateral and torsion moments included until convergence is

found.

The DMH model described up to this point is able to handle moments from the sagittal

and lateral directions only (i.e. no “twist’ moment).  However, the mathematical implementation

of the model does handle twist moments (Raschke, 1999, Personal Communication).  When a

twisting moment is introduced, the model modifies activities of the oblique muscles, based on

the empirical findings of McGill (1992).

Raschke (1994, 1996) evaluated the model with participants performing a dynamic trunk

extension task (velocity less than 30°/s).  He reports that the model corresponded acceptably with

measured EMG data for the agonist muscles studied (erector spinae, R2=0.91; latissimus dorsi,

R2=0.4), even under these moderately dynamic conditions.  The DMH model also predicted to

some extent the antagonistic activation of the external oblique, although poorly (R2=0.07).
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Although the R2 value for this muscle was low, Raschke reports that the DMH model was able to

predict a baseline antagonistic activation.  These performance levels are similar to those reported

by Raschke (1994) for the Bean, Chaffin and Schultz (BCS; Bean, et al., 1988) model, an

optimization based model, in a comparison study, although the BCS model did not predict a

baseline activation for the external oblique.

Based on the previous discussion, the DMH model seems computationally simple, and

appears to have a direct physiologic analogy.  It has the capability to account for three-

dimensional moments (i.e. including twist), although the method used to account for twist

moments departs from the theoretical DMH model. Its performance for a wider set of muscles

and over a larger set of loading conditions remains to be tested, however.  In terms of inter-

subject variability, the model should account for these if different anatomy sets are used for each

subject.  Intra-subject variability, however, can’t be addressed by the model in its current form,

since the moment distribution is fixed for all runs.  The model might be able to account for this

type of variability with the introduction of a randomness element into its moment distribution

parameters.

1.4.4    Optimization with a Cubed Muscle Stress Cost Function (SCI model).

The optimization modeling approach assumes that the central nervous system optimizes

(by minimization or maximization) certain criteria, known as objective functions, while

complying with several constraints.  These constraints usually include a balance of moments or

forces on the spine, accompanied by certain others that vary depending on the objective function.

Mathematically, the general model is expressed as follows,

minimize ∑
=

n

j

jjxc
1

(8)

subject to:

∑
=

=≥
n

j

ijij mibxa
1

,...,2,1,

njxj ,...,2,1,0 =≥
where x  represents the variables of interest, c  represents a certain cost associated with each x,

and a represents constraint factors.

Throughout the years, many objective functions have been proposed, with different

degrees of success.  For instance, Seireg and Arvikar (1973) minimized the sum of contraction
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forces, Gracovetsky and Farfan (1977) minimized the shear forces on the spine, Crowninshield

and Brand (1981) minimized the sum of the cube of the muscle intensity, An et al. (1984) and

Crowninshield (1978) minimized the muscle intensity, Schultz et al. (1983) approximately

minimized the muscle contraction intensity and the spine joint compression force, and Bean, et

al. (1988) minimized two separate linear objective functions, muscle intensity and joint

compression force (based on Schultz et al., 1983).

The sum of cubed intensities (SCI) model presented in van Dieen (1997), which was

originally developed by Crowninshield and Brand (1981), uses a constrained non-linear

optimization process to solve the lumbar muscle recruitment problem and estimate muscle

activation and/or forces.  The SCI optimization process minimizes the sum of the cubed muscle

intensities.  The constraint function consists of zeroing the difference between the predicted and

actual spinal moments.  Hughes et al. (1994) and Hughes (1991) found the SCI optimization

model to perform best among several other optimization functions for the torso musculature.

The model’s mathematical formulation is shown next.

minimize ∑
=

m

j
jact

1

3 (9)

subject to:

∑
=

±×−=
m

j

jjjj tolactpcsag
1

]*)**[( rMnet τ

...mjjj 1,F   F,0F   max =≤≥

 ...mjpcsag jj 1,*F    max ==

where actj is the activation of muscle slip j, Mnet is the three dimensional joint torque, pcsaj is

the physiological cross sectional area of muscle slip j, ττ j represents the direction of the muscle’s

line of action, rj is the moment arm of the muscle with respect to a center of vertebral rotation,

tol is the error limit, g is the maximum stress allowed at the muscle slips, Fj is the predicted

force, Fmaxj is the maximum force that can be produced, and m is the number of muscles used in

the model.

Optimization models have been criticized in the literature because of their alleged lack of

ability to predict cocontraction.  However, although this might have been a problem with other
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optimization models, the SCI model has been shown to predict cocontraction of trunk muscles

under certain conditions (van Dieen, 1997; Hughes, 1991).  It is possible, then, that previous

optimization models failed to predict coactivation because they optimized the incorrect objective

function.  Optimization models are also criticized for being generally poor predictors of muscle

activation when dynamic conditions exist (Mirka and Marras, 1993; Marras and Mirka, 1992;

Marras and Mirka, 1990).  Still, the model described here has been proven to correlate very well

with real EMG data (van Dieen, 1997) collected during static exertions, which will be the focus

of this work.  The implementation of the model is relatively simple if one has the non-linear

optimization routines available.  Inter-subject variability can be accounted for in the SCI model

by changing the anatomy used.  Intra-subject variability, however, can’t be addressed by the SCI

model in its current form, because it will return the same muscle activation patterns for all trials

of the same loading condition.  Three dimensional loads can be handled by the model.

1.4.5    A note on model anatomy.

As may be inferred from the previous discussion, all biomechanical models have, in one

way or another, a direct dependency on anatomical data of the low back region.  McMulkin

(1996) evaluated several optimization models while using two different anatomies of the lumbar

region.  He found significant differences in optimization models predictions when the two

anatomies were varied.  When the models described before have been published in the literature,

their anatomical assumptions are not always clear.  Therefore, anatomy may present a large

confounding factor if direct comparison of these models is made out of their published forms

without any regard for the anatomy used.

To minimize the effects that anatomy might have in the comparison between the models,

all three, ANN, DMH and SCI, will use the same anatomical database.  This database is

described by van Dieen (1997).  The joint center of rotation coordinates, as well as the data for

the back muscles and psoas major muscle were derived from studies by Bogduk, et al. (1992a,

1992b), based on the compilation of Stokes and Gardner-Morse (1995).  Data from the rectus

abdominis and oblique abdominal muscles were derived from McGill (1996).  Data for the

latissimus dorsi was derived from Cholewicki and McGill (1996).

The anatomy used in this work will consider 7 pairs of muscles: internal oblique, external

oblique, rectus abdominis, multifidus, longissimus thoracis, latissimus dorsi, and iliocostalis
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lumborum. The relevant anatomical data for the muscles mentioned above is shown in table 1.

The muscles chosen are based on version A of the models evaluated by van Dieen (1997).

Although he includes the psoas major in the group, this muscle will not be considered here due to

its low generation of significant spinal moments (Bogduk, et al., 1992b) and difficulty in

measuring its EMG activity with surface electrodes.  The latissimus dorsi muscles are included

because of the low correlation the ANN, DMH, and SIC model predictions have had with its

EMG data.  The muscle might show interesting behaviors when twisting moments are applied.

Table 1.  Anatomical data for the muscles used in the present study.  The muscles shown are

located in the right side of the body.  Coordinates for the left side are obtained by reversing the

sign of the Y coordinate.  Positive X points laterally to the right, positive Y points anteriorly, and

positive Z points upward.  The origin of the coordinate system is the L3/L4 intervertebral space.

Muscle Label CSA (cm2 ) X Y Z X Y Z
Multifidus MU 13.489 -0.0510.039 -0.075 -0.205-0.328 0.922

Longissimus Thoracis LO 24.383 -0.0580.026 -0.101 -0.220-0.002 0.976

Iliocostalis IL 19.487 -0.0500.069 -0.074 -0.105-0.058 0.993

Rectus Abdominis RA 8.500 0.0780.030 -0.198 0.0200.132 0.991

External Oblique EO 16.000 0.0330.099 -0.059 -0.4430.209 0.872

Internal Oblique IO 19.500 0.0220.122 -0.063 0.579-0.618 0.531

Latissimus Dorsi LD 8.000 -0.0670.024 -0.034 0.1830.347 0.920

Moment Arms (m) Normalized Lines of Action
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Chapter 2.  RESEARCH OBJECTIVES

2.1        Rationale for the study

As discussed in the previous chapter, back pain is a prevalent disease in our society.  Not

only is its frequency considerable, but treatment is expensive as well.  Despite decades of

extensive scientific study of the spine system, occupationally induced back diseases are still

frequent.  It can be argued that the scientific community has made little progress in gaining

knowledge about the spine system with the necessary degree of applicability (Leamon, 1994).

The number of muscles included in models has increased, the detail of the anatomy used has

increased, and the number of parameters (e.g. vertebrae stiffness, ligament passive forces,

vertebrae displacements) included has increased.  Have those advances brought us any closer to

understanding the mechanism of injury in that body region?  Although some theories regarding

injury mechanisms on the lumbar spine are available, we are really not much closer to

confirming or disproving them than we were ten years ago.  The question is, then, what needs to

be done?

Even though they don’t seem to have been completely successful so far, the predictive

models described before may provide one piece of the puzzle.  These models are needed due to

the unavailability of practical (i.e. low cost, high ruggedness, and low intrusiveness) instruments

to measure torso muscle recruitment patterns on the field.  If we had this ability, and assuming

spine compression (as calculated from the muscle recruitment patterns measured) is related to

LBP, we could directly redesign the field tasks to reduce the risk of LBP.  Since we don’t have

this ability, and it is unlikely we will have it in the near future, we need predictive models to

produce realistic sets of muscle recruitment patterns that might occur in a given task.  If we

assume the models are a fair representation of these patterns, then the spine compression can be

calculated, and the redesign process completed.  The main limit on this approach is that some

predictive models, it has been argued (Nussbaum, et al., 1997), may have reached a practical

predictive limit with the use of current technology under static postures and loads.  However, for

this to be truly the case, predictive models have to be compared against EMG data obtained over

a bigger range of loading magnitudes, loading directions (including axial twisting), and a larger

number of subjects than the data currently available.
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Even more importantly, intra- and inter- subject variability has to be measured and

published.  As difficult as the analysis of such variability may be, it is very possible that therein

lies the link between biomechanics and epidemiology.  If we are able to link particular groups of

individuals that are different from the norm to low back disease, then we might be able to locate

what aspects of or changes in behavior provoke injury.  If an individual significantly changes

their recruitment patterns from one trial to another, is it representative of random variation?

Could that variation be caused by another mechanism?   Can we accurately model these

variations?  Data is needed in order to answer these questions.

The weakest point of any of the models described before, and most biomechanical

models for that matter, is the issue of model validation.  Seldom can we take direct

measurements of physiological processes in the human body.  If this is the case, how can lumbar

muscle recruitment models be validated?  Two well thought out answers seem to be provided in

Cholewicki and McGill (1996) and Hughes (1991). Cholewicki and McGill (1996) propose a

validation approach that consists of component validation, internal validity checks, sensitivity

analysis, and judgmental evaluation.  Hughes (1991) proposes validation by subjecting a model

to the greatest amount of testing possible.  As the model continues to pass tests that it has a

chance of failing, confidence in the model increases.  If the model fails a test, reasons for this

failure can be discovered and adjustments can be made.

ANN’s, DMH, and SCI represent three recent and very different attempts to model

human behavior.  Based on the published data for each, they also appear to be well correlated

with experimental EMG data.  Nevertheless, a direct comparison between these models based on

the published data may confound the results with other artifacts, such as the anatomy assumed.

Therefore, the question whether one of these models is better remains to be answered.  The

importance of this comparison, especially when EMG data resulting from significantly different

loading conditions is used, is that it provides for the indirect validation of the models.  If the

models pass tests with “flying colors”, then confidence in the models increases.  Models that fail

tests can be studied for the cause of failure and improvements may result.  In the long run (i.e.

over several experiments), and as models evolve, we might come closer to finding a method that

accurately models the actual body mechanisms responsible for lumbar muscle activation

patterns.



23

In summary, this experiment attempts to increase the scientific body of knowledge on

lumbar mechanics with three main contributions.  First, EMG data was collected from several

lumbar muscles using larger loading magnitudes than those generally reported in the literature.

Second, EMG data was collected for the same set of lumbar muscles over biplanar loading

conditions that include torsional moments, instead of just the usual sagittal and frontal moments.

The data collected is used in the assessment of the relative performance (third contribution) of

ANN, DMH and SCI models under different sets of loading conditions.

2.2        Research Question

The present work statistically tests a set of EMG data collected experimentally against

the muscle activation patterns predicted by the models under various experimental loading

conditions.  The experimental question tested is:

Across all the loading conditions tested, across all participants, and across

experimental replications, a single model, either ANN, DMH, or SCI, will emerge

as the best predictor of lumbar muscular recruitment patterns as quantified using

correspondence with the collected EMG data.
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Chapter 3.  EXPERIMENTAL METHODS

3.1        Experimental Design

The research presented here consists of two different phases.  The first phase involved

human participants that statically resisted several loads applied to their upper torso.  EMG data

measured from several lumbar and abdominal muscle groups were collected.  This data was used

as inputs in the second phase of the research.  This second stage involves the statistical

comparison of model predictions against the actual EMG values, as well as comparisons between

models in terms of their predictive ability.

3.1.1    Phase I: EMG Data Collection.

The first phase obtained EMG data from anterior and posterior torso muscles in human

participants.  The goal of this phase was to obtain muscle recruitment data to be used in the

evaluation of the predictive models.

3.1.1.1 Participants.   A total of 8 participants were selected from a University student

population.  None of the participants had a previous history of back pain, back injury, or other

disorders that would prevent them from resisting torques applied to the torso.  These conditions

were self-reported in a pre-experimental health questionnaire, shown in Appendix B, which also

recorded age and gender.  Weight and height were recorded by the experimenter before the

experimental protocol is started.  To avoid the process of scaling the models to account for

subject variation, only participants falling within a ±10% range of the 50th male height and

weight percentiles were selected.  Although accurate scaling models do exist (e.g. Nussbaum and

Chaffin, 1996a), their use would introduce an additional and undesired confounding factor in the

experimental process.  The male height and weight are considered because the anatomical studies

used in the models are based on the male anatomy.  Therefore, all measures reported in those

studies should approximate the 50th percentile (average) male physique.  It is assumed here that

women with the same height and weight measures will also be described by the anatomical

measures used if they fall in the same height and weight range.  The height and weight values

required range from 173.9-177.3 cm and 75.3-81.7 kg, respectively (calculated from data

reported by Gordon, Churchill, Clauser, Bradtmiller, McConville, Tebbets, and Walker, 1989;
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and Kroemer, 1981).  A summary of the biographical data collected from the participants is

presented in Table 2.

Table 2.  Participant’s Data

Participant: Gender: Weight (kg): Height (cm): Age:
L3/L4 Height 

(cm):

1 M 77.27 173.0 21 125.5
2 M 80.45 173.5 29 125.0
3 F 75.45 174.5 25 129.0
4 M 75.91 173.0 24 121.5
5 M 81.82 173.0 26 125.0
6 F 76.82 174.0 27 122.0
7 F 75.91 177.0 28 123.0
8 F 81.00 175.0 24 126.0

Average (SD): -- 78.08 (2.58) 174.13 (1.38) 25.50 (2.56) 124.63 (2.43)

Participants started the experimental process after signing an informed consent form (see

Appendix A), if they chose to participate.  To protect the participants, the experimental protocol

was approved by the Virginia Tech Institutional Review Board (IRB).  Participants were

monetarily compensated for their participation at a rate of $5.00/hr., and were free to withdraw

from the study at any time without penalty.

3.1.1.2 Apparatus and Instrumentation.  The participants performed the required

exertions while standing.  While completing the experimental trials, their feet were separated at

about shoulder width, with both feet completely touching a force platform (Bertec).  To prevent

involuntary movement of the legs and pelvis during the exertions, the participant’s ankles, knees,

and pelvis were attached via straps to a rigid fixture bolted on top of the force plate.  This

approach has previously been used successfully in several studies (e.g. Granata, Marras and

Fathallah, 1996; Raschke, 1994).

The participants resisted the moments applied through a shoulder harness. According to

McMulkin, et al. (1998) and McMulkin (1996), this type of loading produces lower muscle

activation levels than the use of hand-held loads.  They concluded that the difference might be

due to the activation of shoulder muscles in the hand-held situation.  Since such activity was not

monitored, the shoulder harness method was deemed preferable.  Figure 6 sketches the

experimental setup used, while Figure 7 illustrates the actual setup. The centerline of the harness

went across the torso circumference at approximately the nipple level.  The harness had load

attachment points at the front (center of the chest), rear (over the spine), and sides (on a

horizontal cable that crosses over each arm and is attached to the harness).  This approach was
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also used in Lavender, et al. (1992a, 1992b).  The distance from the strap’s centerline to the

L3/L4 interspinous process was measured as the load’s moment arm for the sagittal and frontal

moments.  The distance from the strap’s lateral attachment to its center was considered the

moment arm for the horizontal plane moments.

Force to produce
extension moment

Force to produce
flexion moment

Force to produce
lateral bending

Force to produce
twisting

Padded
Restraining Jig

Force Platform

Figure 6. Experimental setup.  Red circles are load attachment points.  The forces will be

generated through vertical loads redirected through pulleys and attached to the harness via

cables.
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Figure 7. Actual experimental setup.

Surface-EMG recordings were obtained from selected trunk muscles using bipolar

disposable electrodes.  Before placing the electrodes, the skin was lightly rubbed and cleansed

with alcohol.  The surface signals  were transmitted through short (<30cm) leads to preamplifiers

(100x gain).  EMG signals were then hardware amplified, band-pass filtered (30-1000 Hz), RMS

converted (100ms time constant), AD converted (512 Hz), and stored on disk.

3.1.1.3 Electrode Placement.  Electrodes were placed over seven muscle pairs (a total of

14 electrode placement sites), as described by van Dieen (Personal Communication, August

1997) and Biedermann, et al. (1990) for the longissimus thoracis, iliocostalis lumborum and

multifidus muscles; McGill (1992) and Lavender (1992a) for the rectus abdominis, internal

oblique, and latissimus dorsi; and Kelaher, et al. (1995) and Cram, et al. (1998) for the external

oblique.  Table 3 indicates the muscle pairs, the acronym used for their identification, the

orientation of the electrode (with respect to the horizontal) and the electrode location used.

3.1.1.4 Independent Variables.  Data in this phase was collected using a 2X2X3X5 mixed

factor design using 8 participants.  The four independent variables were gender, load magnitude,

load plane, and load orientation.  Gender was the only between subject variable.  Each

participant represented a blocking variable.  Each participant also performed two trials for each

of the treatments.  A total of 22 treatments, illustrated in Table 4, was performed to complete the
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experiment.  The total is different from that suggested by the within subject independent

variables (30) due to the duplication of several loading conditions.  A description of the within

subject independent variables and the procedure used for treatment ordering follows.

Table 3.  Electrode placement

Muscle Pair Acronym Orientation Electrode Location

Longissimus Thoracis LO 90° 3 cm lateral of the L1 spinous process

Iliocostalis Lumborum IL Parallel to the

line described in

the next column

1 cm medial to a line from the ipsilateral

posterior superior iliac spine to the lateral

border of the iliocostalis at the twelfth rib

at the level of the L2/L3 interspinous

space.

Multifidus MU Parallel to the

line described in

the next column

Medially to a line from the ipsilateral

posterior superior iliac spine to the L1-

L2 insterspinous space at the L4-L5

interspinous space.

Rectus Abdominus RA 90° 3 cm lateral to the umbilicus

External Oblique EO 72° Lateral to the Rectus Abdominus,

directly above the anterior superior iliac

spine, halfway between the iliac crest and

the ribs.

Internal Oblique IO 45° Below EO dorsal electrode; superior to

inguinal ligament

Latissimus Dorsi LD 45° ~14 cm lateral to T9 spinous process

over muscle belly

Load orientation.  The direction was varied in five equally spaced steps between 0 and

180 degrees.  This is an approach similar to the one used by Lavender, et al. (1992b), although

they used seven equally spaced orientations in that range.  For sagittal-frontal plane loading, 0°

represents applied flexion, 90° represents right lateroflexion, and 180° represents applied
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extension. For sagittal-horizontal plane loading, 0° represents applied flexion, 90° represents

counterclockwise twisting, and 180° represents extension. For frontal-horizontal plane loading,

0° represents counterclockwise twisting, 90° represents right lateroflexion, and 180° represents

clockwise twisting.

Table 4.  Experimental Treatments.

Treatment Load Magnitude

(% MVE)

Load Plane Load Orientation

1 50% Sagittal-frontal 0°
2 50% Sagittal-frontal 45°
3 50% Sagittal-frontal 90°
4 50% Sagittal-frontal 135°
5 50% Sagittal-frontal 180°
6 90% Sagittal-frontal 0°
7 90% Sagittal-frontal 45°
8 90% Sagittal-frontal 90°
9 90% Sagittal-frontal 135°

10 90% Sagittal-frontal 180°
11 50% Sagittal-horizontal 45°
12 50% Sagittal-horizontal 90°
13 50% Sagittal-horizontal 135°
14 90% Sagittal-horizontal 45°
15 90% Sagittal-horizontal 90°
16 90% Sagittal-horizontal 135°
17 50% Frontal-horizontal 45°
18 50% Frontal-horizontal 135°
19 50% Frontal-horizontal 180°
20 90% Frontal-horizontal 45°
21 90% Frontal-horizontal 135°
22 90% Frontal-horizontal 180°

Load magnitude.  Load magnitude was varied as a percentage of the vector combination

of the MVE’s each participant was able to generate at each particular load direction.  Figure 8

shows the interpolation method used for determining biplanar strengths from the uniplanar

MVE’s collected (the sagittal-frontal planes are considered in the figure).  The axes are scaled in

such a way that the participant’s uniplanar MVE’s are equidistant from the origin.  The

concentric circles indicate the combination of uniplanar loads that will approximate the intended

load at any specific orientation (e.g. the outer circle indicates 90% MVE).  A specific load

orientation is shown for 45°.  For any combination involving the sagittal plane, in which flexion

and extension moments are not resisted by the same set of muscles (as opposed to right vs. left
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twist, or right vs. left lateral moments), the loads for flexion and extension loads were calculated

from the appropriate efforts (i.e. flexion or extension).  The levels of this factor will be 50% and

90% of each participant’s MVE’s.

Figure 8.  MVE interpolation method

Load plane.  Three different load planes were used.  These include sagittal-frontal,

sagittal-horizontal, and frontal-horizontal.  The loading planes were varied by changing the

load’s attachments to the harness (as shown in Figure 6).  Sagittal moments were produced by

attaching loads to the anterior or posterior sections of the harness, in a direction perpendicular to

the harness.  Frontal moments were produced by attaching loads to the sides of the harness, in a

direction perpendicular to the harness.  Horizontal moments were produced by attaching loads to

the sides of the harness, in a direction parallel to the harness.  Furthermore, horizontal moments

were produced by using coupled forces (i.e. forces acting on opposite directions on opposite

sides of the body).  This eliminated the production of moments in any other plane by the forces

used to produce the horizontal moment.

Order of treatments.  Whenever a within subjects variable is used, it is possible that

participants may learn to perform the experimental task better (e.g. reduced muscular activation

levels) as the experiment progresses.  Although there’s limited evidence as to the contrary
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(Nussbaum and Chaffin, 1997, consistent muscle behavior over two experiments; and Chaffin, et

al., 1998, consistent muscle behavior over repeated trial performance), learning effects should

still be accounted for if possible.  Learning might introduce an effect in performance that the

experimenter cannot control or quantify, and which usually differs between subjects.  To address

this issue in this particular experiment, each participant will receive a treatment order determined

at random, but different from the other participants.  Thus, sixteen different treatment orders, one

for each participant, have been generated using the random function in the SAS statistical

programming language.  Table 5 illustrates the 8 orders generated, please refer to Table 4 for a

description of the treatments.  To further reduce any effects of learning, enough practice trials to

familiarize the participant with the experimental protocol were performed.  This was intended to

stabilize any learning process before the experimental trials were started.  Trial repetitions were

completed on the reverse order shown in Table 5 (i.e. the last treatment suggested on the table

was performed first).

Table 5. Random treatment orders

SUBJECTS

Order S1 S2 S3 S4 S5 S6 S7 S8

1 22 19 2 7 16 4 1 4

2 16 3 16 10 14 15 11 10

3 10 20 18 22 11 20 6 21

4 8 7 3 1 1 18 18 11

5 11 10 1 17 9 22 9 7

6 14 9 11 4 6 12 5 18

7 7 18 14 9 8 13 12 12

8 9 6 22 13 20 8 19 16

9 21 8 21 15 10 6 14 19

10 20 22 7 18 3 14 2 6

11 4 1 9 6 12 16 4 22

12 17 14 20 3 5 21 3 20

13 2 15 8 2 17 5 7 13

14 15 16 15 19 4 11 16 2

15 1 4 4 5 7 7 15 9

16 6 17 6 14 18 1 8 5

17 18 12 5 8 15 3 20 15

18 5 13 12 11 22 17 21 3

19 19 5 19 12 2 10 22 17

20 13 11 17 20 13 9 10 1

21 12 21 13 16 21 2 17 14

22 3 2 10 21 19 19 13 8
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3.1.1.5 Dependent Variables.  The main dependent variable in this phase is the EMG data

for each of the sampled muscle pairs.  Although it is generally accepted that this measure does

correlate to muscle force generation, researchers disagree on the type of relationship (Redfern,

1992).  Some researchers report the relationship as linear in several muscle groups for static

efforts (Perry and Bekey, 1981; Hof and Van Den Berg, 1977; Stokes, et al., 1987).  Others

report the relationship as curvilinear (Lawrence and DeLuca, 1983; Stokes, et al., 1989).  Hatze

(1980) for example, has warned against the use of EMG for validation of force predictions,

especially during dynamic activities, because the relationship between EMG and muscle force in

dynamic activities is poorly understood.

In any event, only the limited assumption of a monotonic relationship between EMG and

force is required here, given the static exertions and unchanging postures (Hughes, 1991).  Please

refer to section 3.1.1.7 for further discussion on this dependent variable.

The second dependent variable collected here is the forces and moments transmitted to

the force platform.  This variable will be used to corroborate that the experimental loads were

transmitted properly to the participant.

3.1.1.6 Experimental Procedures.  Upon their arrival, the participants’ height and weight

were measured.  The experimenter then proceeded only if the participant’s height fell within a

±10% range of the mean population height and weight.  The participants then read the informed

consent form (see Appendix A) and signed it if they agreed to participate in the experiment.

They then completed a pre-experimental health questionnaire (see Appendix B).  After the

questionnaire was completed, participants were given descriptions of the efforts required.  They

were placed on the experimental apparatus and practiced MVE’s.  After doing so, they were

instructed to perform preliminary MVE’s for determination of the load magnitudes to be used in

the experimental conditions.  After performing these exertions, a future time was set for

completion of the remainder of the experiment.  The first session of the experiment took an

average of 45 minutes per participant.

After this first session was completed, the participant arrived to the next session, and the

electrodes had been placed on the participant, the experimenter instructed the participant on the

next part of the experiment, performance of maximum voluntary exertions, which was somewhat

different from those collected in the first day.  MVEs performed are adapted from those

described by McGill (1991) and McGill (1992).  The tests are:
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(1) A standard sit-up with additional manual resistance provided by one of the

experimenters (trunk angle with horizontal approximately 30°).

(2) Participants, leaning over the edge of a test bench with their legs restrained.  While

laying on the back supine, an isometric flexor efforts are performed with or without

twisting (three different efforts); and laying on the stomach prone, an extensor effort.

All these efforts were resisted by the experimenters.

(3) Maximum isometric exertions while standing in the restraint jig described in the

apparatus section. This category includes flexor, lateral bend (left and right),

extensor, and isometric twist (clockwise and counterclockwise) efforts, with the

resistance provided by the shoulder harness, whose respective attachment points were

fixed.

(4) While the participant is standing on the jig, without the harness in place, attempted

shoulder abduction.

The first and second exertions were used to set the EMG amplifier gains, and no data was

collected from them.  For any particular muscle, 100% MVE will be the maximum activity

observed during any of the third and fourth MVE strategies.  Two trials of each exertion (of the

third and fourth types) were performed, both before starting the experimental session.  Trials of

the first and second exertions were performed as many times as necessary to set the gains.

Section 3.1.1.7 explores the EMG data transformation process that makes use of the MVE data.

The maximum torque generated in the extensor, lateral to the left, and flexor efforts in the

first day was used for determination of the actual loads to use in the different levels of the load

magnitude dependent variable.  As mentioned before, each MVE effort was performed twice (on

both days), with each individual exertion lasting from 4 to 6 seconds and including periods of

ramp-up, peak, and ramp-down  (Chaffin and Andersson, 1991).  Exertions not exhibiting these

characteristics were not used and were repeated, after appropriate resting time was provided.

After the MVE’s were complete, as well as after each treatment, the experimenter let the

participant rest for a minimum of two minutes, to reduce the effects of fatigue in the

experimental trials.  This time period is in the range suggested by Chaffin and Andersson (1991).

The participant was encouraged to rest for longer periods if they felt it was necessary.  During

the period the participant was resting, the experimenter set-up the next experimental trial.  At all
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times, except when instructed otherwise by the experimenter, the participant remained standing,

strapped to the jig in the force platform.

All straps and the shoulder harness were as tight as possible without producing

discomfort in the participant. The experimenter instructed the participant to report any

discomfort of any kind immediately.

Before the participant was strapped into the jig, he/she was asked to lie down, face up, on

a padded bench.  For a period of four seconds after the participant complied, the experimenter

captured EMG data.  The data collected in this stage was used later to determine a resting EMG

value for each muscle.

The experimental treatments proceeded in the order determined by the randomization

process for each participant.  For each trial, EMG data was collected for at least two seconds on

each trial after the participant had stabilized his/her posture under the load.  To maintain

consistent postures throughout the experiment, the participant was asked to maintain torso

contact with appropriately placed bungee cord lines when performing an exertion, with as

minimum stretching of the lines as possible.  Three lines were adjusted to lightly touch the

participants when they were in a neutral (i.e. standing straight) posture, one in front of the

participant and one on each side.  The lines were on the participant’s line of sight.

Once the first pass through the experimental conditions was over (see Table 5) a second

pass was performed.  The order of the treatments for the second pass was the reverse of that used

in the first one.  Once the experimental treatments were over, the experimenter thanked the

participant for their time and effort and paid them the amount of money they had earned.  The

second experimental session lasted an average of 4 hours per participant.

3.1.1.7 EMG Data Processing.  At this stage, all EMG signals (i.e. Volts vs. time) were

available.  The EMG data processing effort uses the root mean square (RMS) transformation.

The result of this transformation is a measure of the electrical power in the signal (LeVeau and

Andersson, 1992).  Some researchers suggest that this transformation appears to have a linear

relationship with tension for brief isometric contractions (LeVeau and Andersson, 1992),

although, as discussed before, this is still an arguable statement.  The RMS processed EMG

signal was collected over a two-second window in which the participant is stable while resisting

the applied load.  One second of the data collected over this window was then averaged.  The

actual second of data that was selected for averaging was determined by the experimenter upon
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visual observation of the data, to ensure that it was as stable as possible (i.e. small fluctuations in

values).  An analogous process was performed for the MVE’s and the resting EMG measures.

However, only the peak sections of the EMG spectrum for the MVE’s were used.  These

transformed data were combined into a resulting value using equation 10.

valuerestingvalueMVE

valuerestingvaluetest
NEMG

i
i

__

__

−
−

= (10)

where i indexes each of the 14 muscles, test_valuei are the processed EMG data from the

experimental trials, MVE_value represents the processed EMG data for the MVE trials, and

resting_value represents the EMG data gathered with the participant restrained on the jig.  The

result, NEMG, is the normalized EMG signal, and represents the degree of average muscle

activation as a proportion of the maximum voluntary activation.  This approach was used by

Seroussi and Pope (1987) to study trunk muscle response to the application of static moments

(see also Mirka, 1991, for a broader discussion).

Once the EMG data was normalized, the resultant set of moments they would

theoretically generate was calculated, using the following formula:

∑
=
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1

*)**( rML3/L4 τ (11)

where g is the muscle’s gain (i.e. force generated per unit of area), actj is the activation of muscle

j, ML3/L4 is the three dimensional joint torque, pcsaj is the physiological cross sectional area of

muscle j, ττj represents the direction of the muscle’s line of action, rj is the moment arm of the

muscle with respect to the L3/L4 center of vertebral rotation, and m is the number of muscles

used in the model.  The calculation of the moment at L3/L4 is necessary to study the agreement

of the EMG data collected with the set of moments measured in the force plate.  Theoretically,

both moment calculations should closely agree if the parameters shown in equation 11 are

selected properly.

A note on muscle gain (g) is necessary at this point.  This parameter has been estimated

for different muscles under different conditions, and researchers disagree on an appropriate value

that encompasses all muscles.  However, most researchers agree that values falling in the range

of 30-100 N/cm2 appear physiologically valid.  In the selection of a value for this criterion in this

work, the sources presented in Table 6 were consulted.
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Table 6.  Gain values proposed in the literature

Reference
Force/area 

(N/cm 2):

McGill and Norman (1987) 30.0-90.0
Morris, et al. (1968) 39.2

Ikai and Fukunaga (1968) (as cited in 
McGill and Norman, 1987) 63.0

Farfan (1973) (as cited in McGill and 
Norman, 1987) 34.3-82.3

Weis-Fogh and Alexander (1977) (as 
cited in McGill and Norman, 1987) 30.0

Schultz, et al. (1982) 100.0
Granata and Marras (1993) 30.0-100.0

Bogduk, et al. (1992) 46.0
Narici, et al. (1988) 70.5-80.1
Narici, et al. (1992) 25.0

Based on the values found in the literature for this parameter, a range of 25-100 N/cm2

was deemed acceptable.  The gain used for the generation of muscle forces (from the EMG data)

was then determined by minimizing the sum-of-squares difference between the L3/L4 moment

predicted by the EMG data and the L3/L4 moment determined from the force plate data.  The

value that minimized the average error was near 30 N/cm2.  This is the value used in the rest of

this work.  While a gain value could be calculated for each participant, for sets of muscles

(Nussbaum and Chaffin, 1998), or even for each individual muscle, it is not appropriate to do so

in this work, since the predictive ability of the models would be directly dependent on a

parameter calculated from individuals’ data.

3.1.1.8 Force Plate Data Processing.  Data collected from the force plate consisted of the

forces and moments applied on it.  To transform this data into suitable inputs to the models, a

modification of the technique suggested by Granata, et al. (1996) was employed.  Instead of

utilizing the moments at the force plate as a starting point (i.e. a bottom-up approach), the

applied forces were used as the starting point (i.e. a top-down approach).  This approach was

employed because it is computationally easier than the Granata, et al. (1996) approach, which for

the current experiment would have required the determination of the instantaneous center of

pressure at the surface of the force plate.  The calculation of the center of pressure would have

been required because the disagreement between forces and moments collected is arguably the

result of vertical forces that were not directed through the center of the force plate.  Thus, these

forces caused a reaction moment in the force plate that affected the moment data collected. The

moment arms through which these vertical forces acted would have to be calculated using the
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center of pressure approach requiring further computations, and, thus, the top-down approach

was employed.  Equations 12,13, and 14 show the manipulation described here mathematically.

)4/3(*)( LLSHF yFP −=L3/L4(x)M (12)

)4/3(*)( LLSHF xFP −=L3/L4(y)M (13)

))( zFPM=L3/L4(z)M (14)

where,

ML3/L4() estimated moment at the L3/L4 joint

FFP() measured force at the force plate

SH measured strap height

L3/L4 measured height of L3/L4 (assumed at iliac crest level)

3.1.2    Phase II: Model Evaluation.

The second phase compared lumbar muscle recruitment patterns predicted by the ANN,

DMH, and SCI models against those that can be inferred from the surface EMG collected during

Phase I of the experiment.  To reduce confounding effects, each model used, to the extent they

required it, the same geometric database described in Table 1.  Each model was tested as close as

possible to its published form (e.g. similar parameters to those published were chosen).

3.1.2.1 Simulation procedure.  All models were prepared for pattern generation as

necessary.  Moments at the L3/L4 disc (determined from Phase I) were then used as inputs for

each of the models.  Each of the models then produced muscle activation patterns for each of the

moments inputted.  These were translated, as necessary, into activation patterns (percent of

maximum) by dividing the predicted muscle force over the muscle’s cross-sectional area and the

maximum stress level (30 N/cm2).  Thus, for each model, 4928 (14 muscles X 11 loading

orientations X 2 loading magnitudes X 2 repetitions X 8 participants) output values were

obtained.
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Chapter 4.  RESULTS

4.1        Phase I:  EMG Data Collection

The first phase obtained EMG data from anterior and posterior torso muscles in human

participants.  The goal of this phase was to obtain muscle recruitment data to be used in the

evaluation of the predictive models.

In this phase of the experiment, NEMG values were the main dependent variable.  An

ANOVA analysis was performed on the NEMG values considering the following factors and all

their interactions: gender, load magnitude, load direction, muscle, and task repetition, where

gender is the only between subject factor.  The resulting ANOVA table is presented in Table 7.

The load direction factor is the combination of the load direction and load plane factors

discussed previously.  Recall that the experimental design allowed the elimination of certain data

points that were duplicated, resulting in 22 trials (11 loading directions X 2 magnitudes).  For the

rest of this document, these 11 loading directions are considered one factor (with eleven

elements) and separated from the loading magnitude factor.

As expected, the main effects of and interactions between load magnitude, load direction,

and muscle were significant at α = 0.05.  Gender and repetition, as well as their two-way

interactions with other factors, were not significant.  The only interaction in which Gender

becomes significant is the four-way interaction Magnitude*Direction*Muscle*Gender, and any

explanation of its significance is not attempted here.  The interaction of Repetition*Gender,

although not significant, is close enough to being significant to merit attention.  Upon further

examination, the almost-significant interaction is the result of a larger difference between male

and female average activation levels during the first repetition than during the second repetition.

This finding cannot be explained physiologically without the significance of any of the main

effects involved.  The non-significance of Repetition and its interactions indicates that intra-

subject differences are undetectable, and, thus, repetition data are pooled from this point on.

Graphs of the average activation patterns per muscle and loading condition are presented

in Figures 9 to 19.  Each graph contains the activation pattern for the 50% load and the 90%

load.  The line representing the 50% magnitude also includes error bars that indicate one

standard deviation of the sample (inter-subject differences).  The graphic accompanying each

figure indicated the loads applied to the participant.
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Table 7.  ANOVA for NEMG

Source DF SS MS F

Between Subject
Gender 1 1.952 1.952 0.280 0.614
Subject(Gender) 6 41.515 6.919

Within Subject
Magnitude 1 4.797 4.797 82.600 0.000 *
Magnitude*Gender 1 0.044 0.044 0.750 0.420
Magnitude*Subject(Gender) 6 0.348 0.058

Direction 10 21.884 2.188 14.870 0.000 *
Direction*Gender 10 0.363 0.036 0.250 0.990
Direction*Subject(Gender) 60 8.833 0.147

Muscle 13 21.723 1.671 4.480 0.000 *
Muscle*Gender 13 4.153 0.320 0.860 0.601
Muscle*Subject(Gender) 78 29.096 0.373

Repetition 1 0.069 0.069 0.610 0.466
Repetition*Gender 1 0.583 0.583 5.100 0.065
Repetition*Subject(Gender) 6 0.686 0.114

Magnitude*Direction 10 1.487 0.149 3.500 0.001 *
Magnitude*Direction*Gender 10 0.407 0.041 0.960 0.490
Magnitude*Direction*Subject(Gender) 60 2.552 0.043

Magnitude*Muscle 13 0.442 0.034 2.230 0.016 *
Magnitude*Muscle*Gender 13 0.165 0.013 0.830 0.627
Magnitude*Muscle*Subject(Gender) 78 1.192 0.015

Magnitude*Repetition 1 0.006 0.006 0.280 0.614
Magnitude*Repetition*Gender 1 0.001 0.001 0.040 0.840
Magnitude*Repetition*Subject(Gender) 6 0.131 0.022

Direction*Muscle 130 34.671 0.267 9.270 0.000 *
Direction*Muscle*Gender 130 3.930 0.030 1.050 0.344
Direction*Muscle*Subject(Gender) 780 22.445 0.029

Direction*Repetition 10 0.253 0.025 0.430 0.924
Direction*Repetition*Gender 10 0.650 0.065 1.120 0.365
Direction*Repetition*Subject(Gender) 60 3.491 0.058

Repetition*Muscle 13 0.355 0.027 0.900 0.560
Repetition*Muscle*Gender 13 0.416 0.032 1.050 0.416
Repetition*Muscle*Subject(Gender) 78 2.378 0.031

Magnitude*Direction*Muscle 130 3.454 0.027 3.400 0.000 *
Magnitude*Direction*Muscle*Gender 130 1.379 0.011 1.360 0.008 *
Magnitude*Direction*Muscle*Subject(Gender) 780 6.098 0.008

Magnitude*Direction*Repetition 10 0.650 0.065 1.280 0.260
Magnitude*Direction*Repetition*Gender 10 0.647 0.065 1.280 0.263
Magnitude*Direction*Repetition*Subject(Gender) 60 3.037 0.051

Direction*Repetition*Muscle 130 1.303 0.010 0.780 0.959
Direction*Repetition*Muscle*Gender 130 1.541 0.012 0.930 0.706
Direction*Repetition*Muscle*Subject(Gender) 780 9.992 0.013

Magnitude*Repetition*Muscle 13 0.063 0.005 0.800 0.661
Magnitude*Repetition*Muscle*Gender 13 0.086 0.007 1.090 0.380
Magnitude*Repetition*Muscle*Subject(Gender) 78 0.474 0.006

Magnitude*Direction*Repetition*Muscle 130 0.796 0.006 0.920 0.733
Magnitude*Direction*Repetition*Muscle*Gender 130 0.799 0.006 0.920 0.723
Magnitude*Direction*Repetition*Muscle*Subject(Gender) 780 5.216 0.007

Total 4927 246.549
(*) denotes significance at a = 0.05

P
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Figure 9.  Muscle activation pattern for applied flexion
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Figure 10.  Muscle activation pattern for applied flexion and lateral bending
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Figure 11.  Muscle activation pattern for applied lateral bending
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Figure 12.  Muscle activation pattern for applied extension and lateral bending
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Figure 13.  Muscle activation pattern for applied extension
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Figure 14.  Muscle activation pattern for applied flexion and clockwise twisting
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Figure 15.  Muscle activation pattern for applied clockwise twisting
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Figure 16.  Muscle activation pattern for applied extension and clockwise twisting
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Figure 17.  Muscle activation pattern for applied lateral bending and clockwise twisting
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Figure 18.  Muscle activation pattern for applied lateral bending and counterclockwise twisting
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Figure 19.  Muscle activation pattern for applied counterclockwise twisting

In the loading condition presented in Figure 11 (applied lateral bending), the muscle

activation pattern appears to be low.  To further examine whether different inter-subject patterns

were responsible, graphs for this condition were generated per individual.  The resulting graph is

shown in Figure 20.  The graph shows considerable differences between the pattern of activation

followed by the participants, especially for subjects 2 and 7.  The reason for this difference

cannot be explained from any of the data gathered.  However, the differences between this pair

of participants and the others continued over most of the other loading conditions.  Participant 1

also behaved out of the norm for some conditions, although the differences were only for a small

set of muscles.

The inter-individual differences shown in Figure 20, however, do not explain the low

overall activation levels observed in Figure 11.  One plausible explanation is that participants did

not perform to their maximum for these trials.  The discussion section goes into further detail

regarding this result.

The second dependent variable collected were the forces and moments measured on the

force plate.  These forces and moments were manipulated to obtain the corresponding values for
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the L3/L4 disc.  An ANOVA was performed on the L3/L4 moments, and its results are shown in

Table 8.

The ANOVA shows that the main effects of Magnitude (50% or 90%), Direction

(combination of orientation and plane), Type (whether estimated from the EMG data or obtained

through the force plate data), and Moment (sagittal, frontal or horizontal) are significant, while

Repetition, and Gender are not.  The Type factor was also significant in some of the two-way

and higher interactions, however, indicating that variations in some of the other factors were

better explained when the level of Type was considered.  This result would have probably varied

if the gain parameter had been modified individually for each subject to minimize the error

between moment calculations, or if different gains were calculated for the flexor and extensor

muscles (Nussbaum and Chaffin, 1998).  However, such a minimization process would require

extensively utilizing individual participant’s data, which would limit the generalizability of the

models analyzed here, since they would not be entirely predictive.
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Figure 20.  Inter-individual differences in applied lateral bending.
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Table 8.  ANOVA for L3/L4 Moments

Source DF SS MS F

Between Subject
Gender 1 38 38 0.01 0.926
Subject(Gender) 6 19637 3273

Within Subject
Magnitude 1 4546 4546 13.37 0.01 *
Magnitude*Gender 1 538 538 1.58 0.26
Magnitude*Subject(Gender) 6 2040 340

Direction 10 479336 47934 59.54 0.00 *
Direction*Gender 10 5779 578 0.72 0.70
Direction*Subject(Gender) 60 48304 805

Repetition 1 0 0 0.00 1.00
Repetition*Gender 1 914 914 10.58 0.02 *
Repetition*Subject(Gender) 6 519 86

Moment 2 117738 58869 12.78 0.00 *
Moment*Gender 2 3918 1959 0.43 0.66
Moment*Subject(Gender) 12 55288 4607

Type 1 41604 41604 10.59 0.02 *
Type*Gender 1 4003 4003 1.02 0.35
Type*Subject(Gender) 6 23568 3928

Magnitude*Direction 10 30726 3073 12.35 0.00 *
Magnitude*Direction*Gender 10 2196 220 0.88 0.55
Magnitude*Direction*Subject(Gender) 60 14931 249

Magnitude*Repetition 1 1 1 0.02 0.88
Magnitude*Repetition*Gender 1 54 54 0.89 0.38
Magnitude*Repetition*Subject(Gender) 6 367 61

Magnitude*Moment 2 3937 1968 8.53 0.01 *
Magnitude*Moment*Gender 2 164 82 0.35 0.71
Magnitude*Moment*Subject(Gender) 12 2769 231

Magnitude*Type 1 219 219 2.61 0.16
Magnitude*Type*Gender 1 763 763 9.10 0.02 *
Magnitude*Type*Subject(Gender) 6 503 84

Direction*Repetition 10 1287 129 0.67 0.75
Direction*Repetition*Gender 10 1966 197 1.02 0.44
Direction*Repetition*Subject(Gender) 60 11556 193

Direction*Moment 20 1031615 51581 67.41 0.00 *
Direction*Moment*Gender 20 23569 1178 1.54 0.08
Direction*Moment*Subject(Gender) 120 91824 765

Direction*Type 10 165752 16575 12.00 0.00 *
Direction*Type*Gender 10 7584 758 0.55 0.85
Direction*Type*Subject(Gender) 60 82902 1382

Repetition*Moment 2 568 284 1.34 0.30
Repetition*Moment*Gender 2 226 113 0.53 0.60
Repetition*Moment*Subject(Gender) 12 2544 212

Repetition*Type 1 44 44 0.20 0.67
Repetition*Type*Gender 1 374 374 1.74 0.24
Repetition*Type*Subject(Gender) 6 1290 215

Moment*Type 2 116662 58331 28.25 0.00 *
Moment*Type*Gender 2 7955 3978 1.93 0.19
Moment*Type*Subject(Gender) 12 24777 2065

Magnitude*Direction*Repetition 10 837 84 0.48 0.89
Magnitude*Direction*Repetition*Gender 10 1800 180 1.04 0.42
Magnitude*Direction*Repetition*Subject(Gender) 60 10362 173

Magnitude*Direction*Moment 20 65292 3265 28.97 0.00 *
Magnitude*Direction*Moment*Gender 20 3692 185 1.64 0.05
Magnitude*Direction*Moment*Subject(Gender) 120 13523 113

P
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Table 8.  ANOVA for L3/L4 Moments (cont.)

Magnitude*Direction*Type 10 6416 642 3.40 0.00 *
Magnitude*Direction*Type*Gender 10 1787 179 0.95 0.50
Magnitude*Direction*Type*Subject(Gender) 60 11316 189

Magnitude*Repetition*Moment 2 60 30 0.64 0.55
Magnitude*Repetition*Moment*Gender 2 16 8 0.17 0.84
Magnitude*Repetition*Moment*Subject(Gender) 12 564 47

Magnitude*Repetition*Type 1 0 0 0.00 1.00
Magnitude*Repetition*Type*Gender 1 112 112 2.21 0.19
Magnitude*Repetition*Type*Subject(Gender) 6 304 51

Magnitude*Moment*Type 2 6025 3012 20.99 0.00 *
Magnitude*Moment*Type*Gender 2 274 137 0.96 0.41
Magnitude*Moment*Type*Subject(Gender) 12 1722 144

Direction*Repetition*Moment 20 1925 96 0.80 0.71
Direction*Repetition*Moment*Gender 20 2848 142 1.18 0.28
Direction*Repetition*Moment*Subject(Gender) 120 14470 121

Direction*Repetition*Type 10 966 97 0.49 0.89
Direction*Repetition*Type*Gender 10 1931 193 0.98 0.47
Direction*Repetition*Type*Subject(Gender) 60 11812 197

Direction*Moment*Type 20 249569 12478 13.62 0.00 *
Direction*Moment*Type*Gender 20 14608 730 0.80 0.71
Direction*Moment*Type*Subject(Gender) 120 109951 916

Repetition*Moment*Type 2 403 202 3.65 0.06
Repetition*Moment*Type*Gender 2 591 296 5.36 0.02 *
Repetition*Moment*Type*Subject(Gender) 12 662 55

Magnitude*Direction*Repetition*Moment 20 1768 88 0.93 0.55
Magnitude*Direction*Repetition*Moment*Gender 20 1508 75 0.79 0.72
Magnitude*Direction*Repetition*Moment*Subject(Gender) 120 11425 95

Magnitude*Direction*Repetition*Type 10 1150 115 0.73 0.69
Magnitude*Direction*Repetition*Type*Gender 10 3212 161 1.29 0.20
Magnitude*Direction*Repetition*Type*Subject(Gender) 60 9459 158

Magnitude*Direction*Moment*Type 20 10273 514 4.12 0.00 *
Magnitude*Direction*Moment*Type*Gender 20 3024 151 1.21 0.26
Magnitude*Direction*Moment*Type*Subject(Gender) 120 14957 125

Magnitude*Repetition*Moment*Type 2 270 135 3.82 0.05
Magnitude*Repetition*Moment*Type*Gender 2 124 62 1.76 0.21
Magnitude*Repetition*Moment*Type*Subject(Gender) 12 424 35

Direction*Repetition*Moment*Type 20 1967 98 1.20 0.26
Direction*Repetition*Moment*Type*Gender 20 2221 111 1.36 0.16
Direction*Repetition*Moment*Type*Subject(Gender) 120 9800 82

Magnitude*Direction*Repetition*Moment*Type 20 1228 61 0.83 0.67
Magnitude*Direction*Repetition*Moment*Type*Gender 20 1025 51 0.69 0.83
Magnitude*Direction*Repetition*Moment*Type*Subject(Gender) 120 8876 74

Total 2111 3056305

(*) denotes significance at a = 0.05

A third dependent variable was analyzed as well.  Since participants had to develop

MVE’s on two different sessions, it was possible that different MVE levels were developed on

each day.  If this were the case, the loads applied on the second day (which where determined

from the MVE’s obtained on the first day) might differ significantly from the desired levels (i.e.
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50% and 90% of MVE).  Table 9 shows the results of the ANOVA on MVE’s.  The only

significant main effect or interaction was Direction, which includes flexion, extension, lateral

bending and twist, and was expected to be significant.

Table 9.  ANOVA for MVE’s

Source DF SS MS F

Between Subject
Gender 1 128 128 0.11 0.75
Subject(Gender) 6 6780 1130

Within Subject
Direction 3 1762090 587363 69.93 0.00 *
Direction*Gender 3 31845 10615 1.26 0.32
Direction*Subject(Gender) 18 151187 8399

Repetition 1 60 60 0.12 0.74
Repetition*Gender 1 601 601 1.22 0.31
Repetition*Subject(Gender) 6 2966 494

Day 1 216 216 0.56 0.48
Day*Gender 1 343 343 0.88 0.38
Day*Subject(Gender) 6 2328 388

Direction*Repetition 3 1798 599 1.27 0.31
Direction*Repetition*Gender 3 448 149 0.32 0.81
Direction*Repetition*Subject(Gender) 18 8477 471

Direction*Day 3 11275 3758 0.91 0.46
Direction*Day*Gender 3 5962 1987 0.48 0.70
Direction*Day*Subject(Gender) 18 74443 4136

Repetition*Day 1 143 143 1.83 0.23
Repetition*Day*Gender 1 99 99 1.27 0.30
Repetition*Day*Subject(Gender) 6 469 78

Direction*Repetition*Day 3 544 181 0.92 0.45
Direction*Repetition*Day*Gender 3 433 144 0.73 0.55
Direction*Repetition*Day*Subject(Gender) 18 3538 197

Total 127 2066172

(*) denotes significance at a = 0.05

P

4.2        Phase II:  Model Data Collection

The data gathered in Phase I were used as inputs to the each of the models, which

returned a predicted muscle activation pattern.  Each model’s output will be analyzed here

against the EMG data collected, alternating between both quantitative and qualitative methods,

as described in more detail in Nussbaum (1994) and Nussbaum and Chaffin (1996b).

When correctly evaluating the performance of predictive models of any kind, it is

necessary to do so under a wide array of conditions.  However, this poses a paradox in that the

more data available, the harder it becomes to differentiate between models of similar

performance, a problem first noted for some of the models in question by Hatze (1980).  The

difficulty arises in that the processing of large amounts of data tends to decrease the sensitivity of
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any test used, and this has indeed been the case for the models tested here.  According to Hughes

(1991), excessive data collection can be avoided to a certain extent by determining specific data

points in which the model predictions differ from each other, prior to data collection.  Detailed

testing is then performed on those points to determine which model, if any, provides a better

approximation.

However, for this particular work, the development of a comprehensive database was also

a goal.  Therefore, data was collected for a wide number of loading conditions, and is used here

as a starting point for the model’s comparison.

Tables 10 and 11 show the coefficients of determination and correlation between the

models and the EMG data grouped by muscle and loading condition, respectively.  Figures 21-31

show the average predicted patterns against the 50% average pattern for all loading conditions.

Table 10.  Coefficients of determination and (Correlation) of each model against the EMG data,
grouped by muscle.  Averages are calculated for the coefficients of determination.

DMH Actual 0.00     (0.06)   0.52     (0.72)   0.63     (0.79)   0.64     (0.80)   0.20     (0.45)   0.36     (0.60)   0.69     (0.83)   0.27     (0.52)   
SCI Actual 0.37     (0.61)   0.35     (0.59)   0.88     (0.94)   0.58     (0.76)   0.08     (0.28)   0.47     (0.69)   0.65     (0.80)   0.24     (0.49)   
ANN Actual 0.64     (0.80)   0.32     (0.57)   0.88     (0.94)   0.25     (0.50)   0.31     (0.56)   0.57     (0.76)   0.53     (0.73)   0.21     (0.46)   
Average 0.34     0.40     0.80     0.49     0.20     0.47     0.62     0.24     

Right Iliocostalis Left Iliocostalis
Right Rectus 
Abdominis

Left Rectus 
Abdominis

Right 
Longissimus Left Longissimus Right Multifidus Left Multifidus

Average
DMH Actual 0.03     (0.18)   0.31     (0.56)   0.46     (0.68)   0.79     (0.89)   0.62     (0.78)   0.03     (0.16)   0.40
SCI Actual 0.04     (0.19)   0.20     (0.45)   0.33     (0.57)   0.61     (0.78)   0.45     (0.67)   0.29     (0.54)   0.40
ANN Actual 0.01     (0.08)   0.25     (0.50)   0.25     (0.50)   0.28     (0.53)   0.36     (0.60)   0.20     (0.44)   0.36
Average 0.03     0.25     0.35     0.56     0.48     0.17     

Right Latissimus Left Latissimus
Right Internal 

Oblique
Left Internal 

Oblique
Right External 

Oblique
Left External 

Oblique
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Table 11. Coefficients of determination and (Correlation) of each model against the EMG data,
grouped by loading condition.  Averages are calculated for the coefficients of determination.

DMH Actual 0.33     (0.57)   0.52     (0.72)   0.41     (0.64)   0.30     (0.55)   0.59     (0.76)   0.32     (0.57)   
SCI Actual 0.57     (0.75)   0.44     (0.66)   0.31     (0.55)   0.40     (0.63)   0.56     (0.75)   0.54     (0.73)   
ANN Actual 0.07     (0.26)   0.04     (0.19)   0.22     (0.47)   0.38     (0.62)   0.23     (0.48)   0.19     (0.44)   
Average 0.32     0.33     0.31     0.36     0.46     0.35     

45° - Sagittal 
Horizontal

0° - Sagittal 
Frontal

45° - Sagittal 
Frontal

90° - Sagittal 
Frontal

135° - Sagittal 
Frontal

180° - Sagittal 
Frontal

Average

DMH Actual 0.46     (0.67)   0.18     (0.43)   0.58     (0.76)   0.15     (0.39)   0.18     (0.43)   0.37
SCI Actual 0.48     (0.69)   0.31     (0.55)   0.47     (0.68)   0.41     (0.64)   0.47     (0.69)   0.45
ANN Actual 0.35     (0.59)   0.21     (0.45)   0.23     (0.48)   0.31     (0.56)   0.35     (0.59)   0.23
Average 0.43     0.23     0.43     0.29     0.33     
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Figure 21.  Model predictions against EMG Data
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Figure 22.  Model predictions against EMG Data
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Figure 23.  Model predictions against EMG Data
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Figure 24.  Model predictions against EMG Data
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Figure 25.  Model predictions against EMG Data
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Figure 26.  Model predictions against EMG Data
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Figure 27.  Model predictions against EMG Data
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Figure 28.  Model predictions against EMG Data
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Figure 29.  Model predictions against EMG Data
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Figure 30.  Model predictions against EMG Data
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Figure 31.  Model predictions against EMG Data
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Some researchers have tried to define muscle activation patterns in terms of the activation

state of the muscle (i.e. active or silent), and the specific loading patterns from which a muscle

goes from the silent state to the active state or vice-versa (see Ladin, et al., 1989).  One drawback

of this technique is that an activation level, usually arbitrarily picked, must be defined as the

threshold.  Nevertheless, an accurate model should be able to predict active-silent states.

The qualitative technique used to summarize the activation state information uses truth

tables, which consist of four cells of data that show the agreement between the measured muscle

state and the predicted muscle state.  Table 12 shows the results of this analysis for the models

under study.  For the truth tables shown, the threshold level selected was 5%, therefore, a muscle

activation higher that 5% indicates an active muscle.

Table 12.  Truth tables for the models under consideration.  Each entry indicates the percentage
of occurrences in each category as a function of the total number of entries in the column.  The

threshold selected was 5%

Active Silent
Active 64.82% 41.05%
Silent 35.18% 58.95%

DMH
Measured

Predicted

Active Silent
Active 54.60% 23.39%
Silent 45.40% 76.61%

SCI
Measured

Predicted

Active Silent
Active 41.37% 12.16%
Silent 58.63% 87.84%

ANN
Measured

Predicted

The final testing category used here consists of model adherence to constraints imposed

by their inputs.  All models were input moments, and their resultant activation levels, when

properly transformed, should equilibrate those moments as closely as possible.  Tables 13 and 14

show the average coefficients of determination, correlation coefficients, and equilibration errors

per model.  A particular variable of interest when using these models are compression

predictions for the joint under study.  Average compression predictions for each loading
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condition, grouped by model, are presented in Table 15.  The next chapter discusses the results

presented in this chapter in further detail.

Table 13.  Average equilibration errors per model and moment plane (Nm)

Model
DMH SCI ANN

Sagittal 10.28 0.00 21.13
Plane Frontal 15.47 0.00 11.88

Horizontal 8.39 0.00 17.67

Table 14.  Coefficients of determination and correlation for moment equilibration, organized per
model

Model
DMH SCI ANN

R-square 0.94 1.00 0.87
Correlation 0.97 1.00 0.93

Table 15.  Compression force predictions.  The p-values indicate significant difference against
EMG estimate.

1 2 3 4 5 6 7 8 9 10 11 p-value
EMG 1132.4 1209.8 610.7 752.7 750.4 1840.8 1277.5 1251.1 1195.1 1244.0 1303.1
DMH 1129.0 1031.6 511.4 1116.0 1856.4 1223.2 765.0 1088.3 654.8 923.1 868.2 0.95
SCI 1116.0 1012.8 507.2 845.5 997.5 1206.4 501.3 769.4 524.5 645.7 540.1 0.023
ANN 775.7 805.8 401.7 839.5 766.0 933.2 650.0 818.9 596.1 444.3 244.3 0.0004

Loading Condition (50% Magnitude)

1 2 3 4 5 6 7 8 9 10 11 p-value
EMG 1902.8 1508.6 707.3 707.9 908.7 2493.0 1855.8 1814.7 1665.5 1577.0 1721.8
DMH 1917.1 1669.8 939.8 1962.8 2987.1 2045.7 1176.5 1899.4 976.5 1657.2 1252.2 0.95
SCI 1860.6 1605.7 889.0 1188.4 1503.1 1896.0 862.5 1143.0 747.9 1154.4 837.6 0.023
ANN 1307.4 1348.6 761.4 1178.0 1035.6 1497.4 955.9 1091.0 922.5 927.5 560.4 0.0004

Loading Condition (90% Magnitude)
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Chapter 5.  DISCUSSION

5.1        EMG Data Collection

In general, the cross-section of loading conditions in this study that were compatible with

the Lavender, et al.  (1992a, 1992b) studies showed similar muscle activation patterns.  This

agreement is important because to a limited extent it supports the rest of the data collected here,

for which there is no published comparison.  The main difference between the current study and

the Lavender, et al. studies is the magnitude of the activation.  However, this is expected, since

the magnitude of the moments applied here is higher than the one used by Lavender, et al.  While

the average L3/L4 flexion moment applied in the low magnitude condition in the current study

was 74.98 Nm, the largest moment applied by Lavender, et al. was 50 Nm.  Thus, the current

database builds onto the Lavender, et al. database for combined loading in the sagittal and frontal

planes.  Figures 32-39 illustrate the current database’s predictions against the Lavender, et al.

(1992a, 1992b) studies.  Since the Lavender studies did not divide the erector spinae muscles

into its component parts, comparison of this set of muscles is drawn against the longissimus

muscle in the current study, based on similar electrode placements.  No comparisons could be

drawn for the internal oblique, multifidus, and iliocostalis muscle pairs because the placement of

the electrodes in Lavender’s studies was not compatible with detection of EMG signals from

these muscles.
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Figure 32. Lavender’s data vs. the current database.  Right Latissimus muscle.
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Figure 33. Lavender’s data vs. the current database.  Left Latissimus muscle.
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Right Longissimus
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Figure 34. Lavender’s data vs. the current database.  Right Longissimus muscle.
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Figure 35. Lavender’s data vs. the current database.  Left Longissimus muscle.
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Figure 36. Lavender’s data vs. the current database.  Right External Oblique muscle.
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Figure 37. Lavender’s data vs. the current database.  Left External Oblique muscle.
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Right Rectus Abdominis
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Figure 38. Lavender’s data vs. the current database.  Right Rectus Abdominis muscle.
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Figure 39. Lavender’s data vs. the current database.  Left Rectus Abdominis muscle.
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Several specific results from the ANOVA performed on the activation patterns are of

particular interest.  Two factors that were non-significant offer the biggest insight here:

Repetition and Gender.  The non-significance of Repetition suggests that intra-subject

differences (i.e. differences between repetitions of the same exertion) may not have to be

considered when appropriate resting time is allowed between exertions of the type studied here.

However, further study under other conditions (e.g. dynamic, bent-posture) is needed before it

can be disregarded as an important modeling parameter.

The non-significance of Gender is important when viewed in combination with other

results.  Gender was not significant in any of the ANOVA’s completed for this study, including

EMG activation patterns, calculated L3/L4 moment, and calculated MVE moment (at L3/L4).

Thus, matching female height and weight to the male height and weight seems to have

minimized the differences between these two groups to the extent that there were no differences

among them in terms of the dependent variables analyzed here.  To a limited extent, this result

also supports our assumptions that normalizing applied loads to the participant’s MVE would

serve as well to normalize the muscle activation patterns and that females would behave similar

to males when appropriate allowance is made for anatomical differences.  Any differences

reported in other studies may be due to differences in muscle geometry.

However, the real effect of our normalization process is observed better in the variances

plotted in Figures 9 to 19.  Although some large standard deviations occur, especially as

activation levels increase, their average value is 15.72% activation, with a minimum value of

7.56% and a maximum value of 25.22%.  Although this is not an indication that inter-subject

differences should be taken lightly, it does indicate that their variation can be quantified,

although no inferences about control of inter-individual differences can be taken at this point,

since no other studies, to the author’s knowledge, have looked at this important measure from

this perspective.

Another interesting result of the EMG ANOVA corresponds to the Magnitude variable.

Although expected to be significant (as it was), the overall expectance is for muscle activation

levels for agonist muscles to be near the 50% mark when 50% exertions are performed and near

the 90% mark when 90% exertions are performed.  As can be seen in Figures 9 to 19, this was

not the case.  However, when the differences between the Magnitude levels for the agonist

muscles in each exertion are calculated, some 40% differences do exist.  The occurrence of the
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agonist activation differences, however, is not common enough to support the correct application

of the loads.

Since further study of the disagreement between applied load magnitude and agonist

activation magnitude was warranted, measured participants’ MVE’s were analyzed.  The

ANOVA for this dependent variable is shown in Table 9, and it was performed to determine if

any of the factors that may have affected the collection process of MVE measures were

significant.  This was not the case, with the only significant variable being Direction (i.e. flexion,

extension, lateral bending, or twist).  Thus, any theory that the lower than expected activation

levels were a result of differences between the MVE’s on the first and second days is

unsupported.  Another explanation is that there are significant differences between the activation

patterns when a person is performing a MVE, which might alter the normalization process.

However, this hypothesis cannot be tested with the current data.  A third possibility is simply that

the peak EMG value (i.e. voltage) selected as the maximum is overshooting the true maximum.

This effect might be mitigated by averaging values on a window of a predetermined width that

covers the maximum EMG signal area of an MVE exertion.  The magnitude of this EMG

processing modification, however, would most likely be of limited impact, since peaks were

taken at the maximum points in the signal that followed the usual ramp-up, peak, ramp-down

effort, whose value would not be affected greatly by averaging around a small window centered

at the maximum.  For the current analysis, EMG MVE values were selected from the peak of the

RMS waveform, while averages of the complete RMS waveform were calculated for resting and

experimental conditions.  While this process might introduce a mismatch in the data processing

approaches used, it is not considered to considerably affect the resultant NEMG calculations, and

has been used widely in the literature.

Previous studies (e.g. Kumar, 1996) have established MVE databases.  To study the

current data’s feasibility, the MVE’s obtained were compared against studies by Kumar (1996).

The current averages of 151.0, 148.6, 72.93, and 39.62 Nm (flexion, extension, lateral bending,

and twist, respectively) are for the most part lower than those in Kumar (1996, male and female

average), 130, 206.5, 118.5, and 52.5 Nm.  Several notable differences, however, do exist

between the studies.  In Kumar (1996), participants are seated, while they are standing here.  The

protocol in Kumar (1996) also allows for a wider variety of body heights and weights, with the

possibility that their participants were stronger than participants here.  The most troubling data
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point concerning MVE’s in this study is the virtual equality of the flexion and extension MVE’s.

It was expected that extension MVE’s would be significantly larger that flexion MVE’s.  One

plausible explanation for the difference is that, when performing extension exertions, participants

were able to look at the experimental setup they were pulling on, and might have been

unconsciously restraining their effort out of fear of pulling anything out of the experimental

apparatus.

A troubling result concerns the activation pattern for the lateral bending trials which

appear to be too low for the loads applied.  The most likely explanation for this effect is that

participants were slightly adjusting their posture to allow vertical support of what was supposed

to be primarily a horizontal force.  Although posture was monitored by the experimenter and the

participant was provided feedback regarding their position, there is certainly a possibility of

occurrence of the situation.  This is supported if another look is taken from the Lavender data

(Figures 32-39).  At this data point (90°), differences between the data sets become smaller.  In

some instances, the activation from the Lavender data set surpasses the activation currently

measured.

Another interesting result meriting discussion is the significant difference between L3/L4

moments calculated from the force plate and L3/L4 moments calculated from the EMG data.

The average (S.D.) errors among these measures across all loading conditions and subjects (with

the muscle gain set at 30 N/cm2) were 33.9 (10.5) Nm for the sagittal plane, 16.0 (8.6) Nm for

the frontal plane, and 14.5 (7.4) Nm for the horizontal plane.  Participant eight had considerably

higher average errors than the others, with errors of 59.3 Nm, 28.3 Nm, and 27.9 Nm, for the

sagittal, frontal, and horizontal planes, respectively.  Upon examination of this participant’s data,

no particular source for the difference could be identified, and thus the data for this participant

were not excluded from the analysis.

To further explore the effects of the main experimental factors on the error, an ANOVA

analysis was performed.  The magnitude of the error was significantly influenced by load

magnitude (higher loads had larger errors, p-value = 0.01), moment type (see above, p-value =

0.001), and loading direction (p-value < 0.001).  The loading direction factor merits further

discussion at this point.  Detailed observation of this factor uncovered that loading conditions

which included applied flexion exhibited significantly higher error magnitudes than any of the

other conditions.  This indirectly supports the maximum muscle stress determination approach
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followed by Nussbaum and Chaffin (1998), that assigns separate muscle stress parameters to

flexor and extensor muscles.  The validity of the last statement, however, depends upon further

examination and manipulation of the data with the purpose of determining whether error

magnitude is decreased with this approach in this dataset as well.  This finding, however, is not

useful for error minimization for the present investigation, in which gain values could not be

directly manipulated.

The errors described above are probably due to the combination of two factors.  The first

has been suggested before, and entails the gain parameter.  Although it is accepted that this

parameter varies between individuals and sets of muscles, such variability has not been

incorporated into the models studied here.  Thus, introducing gain values that are based on data

obtained on any individual would affect each model’s predictive ability, since it would require a

data collection process before the model is used.  The approach selected here was to use gain as a

term to minimize average error between the force plate data and the EMG estimated data.

Further study should center around the establishment of appropriate values for this parameter for

the muscles in the lower torso area.

The second factor is the anatomy used.  Even when the participant’s height and weight

were matched, people have different body sizes and shapes, which fixed average values for

muscle moment arms and lines of action cannot accurately model.  Errors caused by anatomical

differences are combined as well with our simplification of the actual anatomy of the area, which

consists of hundreds of muscles slips connected to different spinal sites, into only 14 different

muscle groups.  More study is needed in this area, both to determine the sensitivity of activation-

force functions to anatomy changes, and to add inter-individual variability to available

anatomical data.

5.2        Model Data Collection

No specific model outperformed the others across a majority of the tests completed.

Thus, none of the models can be proclaimed winner nor any of them fulfill the requirements of

the research question motivating this investigation.  The performance of the ANN, DMH, and

SCI models ranged from satisfactory to dismal depending on the test applied.  Therefore, none of

the models can be recommended, at this stage of development, as an “all-around” lumbar muscle
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pattern prediction tool.  That said, it is still informative to examine in detail the results of the

tests completed.

All coefficients of determination when the models were examined by their performance

across muscles were lower than 0.88, with average coefficients of determination (R-square) for

the particular models (when calculated per muscle) ranging from 0.36 to 0.40 (see Table 10).

The best modeled muscle was the right multifidus, with an average coefficient of determination

of 0.80.  The right rectus abdominis had the second highest R-square value at 0.62.  The right

latissimus muscle was the worst modeled muscle, with an average R-square of 0.03.  These

results tend to be lower than equivalent data presented in other studies.  However, this is

expected, given the larger set of loading conditions considered here.  The best performing

models when average R-square values are taken across muscles are the SCI and DMH models

(average R-square: 0.40), with the ANN model not far behind with a R-square of 0.36.

It is important to note in the results averaged by muscle that muscle data over all the

loading conditions was used in the calculation of the parameters.  It is possible, therefore, that a

particularly bad performance in any condition might hurt overall muscle performance for any

particular model.  Therefore, coefficients of determination and coefficients of correlation were

calculated for each model and loading condition (Table 11).  Under this grouping situation,

performance differences between the models were a bit more marked.  The SCI model was the

best performer (R-square: 0.45), followed by the DMH model (R-square: 0.37), and the ANN

model (R-square: 0.23).  The best performance was obtained in the applied extension loading

condition, followed by the 90°-Sagittal/Horizontal (applied clockwise twisting) and the 45°-

Frontal/Horizontal (applied lateral bending and clockwise twisting).  Overall, model performance

across loading conditions had a higher degree of uniformity than model performance across

muscles.  Sagittal/Frontal loading conditions, which comprise the majority of published studies,

were on the average better modeled than more “complex” conditions (i.e. those involving axial

twisting).  However, the difference between “complex” and other conditions is not large enough

to suggest a conclusion of better performance for any specific set of conditions.  This finding is

encouraging.  A finding of better model performance for the Sagittal/Horizontal plane would

have implied that models could be good predictors in that plane, but did not have the resources

and/or correct technology to be useful predictors in other loading planes.  Similar model

performance between planes thus implies that the modeling technology may at least partly be in
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place.  The low R-squares obtained, however, imply that adjustments in the modeling technology

are still necessary to achieve satisfactory performance levels.

In the interest of thoroughness, performance of the models was assessed against each

participant’s data, grouped as well per muscle and per loading condition.  R-square values

remained similar to the results for pooled data, with average values across all muscles in the

0.40’s (0.20’s across loading conditions).  The poorest performance per participant occurred for

participants 2 and 7,  which had shown some divergence from the norm in the activation patterns

(see Figure 20).  The experimental observations do not provide any clues as to possible causes of

the differences, therefore, their data is kept, and their variation has to be regarded as a possible,

albeit not common, variation between individuals.

Since R-square and correlation values appear not to differentiate between any of the

models, pattern of activation graphs were developed (Figures 21 to 31) for the different loading

conditions.  The graphs confirmed the lack of fit between models and the activation patterns.

However, the graphs show that the ANN and DMH models have the greatest lack of fit in the

abdominal muscles, while the ANN models the back muscles closer.  The activation levels of the

abdominal muscles predicted by the ANN and DMH models are also particularly high, with the

DMH predicting activation levels higher than 100% for these muscles in one loading condition.

These models would certainly benefit from utilizing different (i.e. smaller) gain parameters in the

flexor muscles, since lower gain values might help reduce the considerable amount of error for

these muscles.  The change in flexor muscle gains is certainly supported if the effect of loading

direction on the moment agreement error is recalled.  Larger errors were observed in loading

conditions that primarily required the activation of flexor muscles.

Interestingly, if magnitude effects are taken aside, the patterns these models predict are

close to what the actual pattern is.  Again, this might indicate that the main source of error is in

the gains selected or in the anatomy used.  Recall the disagreement between the L3/L4 moments

calculated from the force plate and the L3/L4 moments calculated from the EMG signal (R-

square: 0.19).  Significant differences were found among both.  If the EMG signal cannot be

directly manipulated (i.e. calculation of moments caused by muscles’ activation) to produce a set

of feasible moments, it is unlikely that models using the same anatomy and parameters will

produce accurate patterns.
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The effect of large errors in the magnitude of the muscles’ activation is further noticed in

the analysis of truth tables (Table 12).  The truth table analysis establishes a better performance

of the DMH model when muscles are active.  It predicts a muscle active 64.82% of the time it

actually is.  However, the SCI and ANN models are better at predicting muscle silence, doing so

correctly 76.61% and 87.84% of the time (threshold set at 5% activation).  The better

performance of the DMH model when predicting activity, however, might be in part caused by

its over-prediction for many muscles; it tends to predict higher activation levels than were

observed.  The analysis, however, still makes a selection of the best difficult, since no particular

model performed well on both active-active and silent-silent predictions.

Another criteria a model should comply with is to produce muscle activation patterns that

become reaction moments that equilibrate the moments used as inputs to the model.  Again, all

models used here, ANN, DMH, and SCI, received a set of moments as their inputs, and returned

a muscle activation pattern.  Predictive reaction moments can be calculated from these patterns,

from which an error can be calculated (when appropriately subtracted from the input moments).

The average errors produced by the different models were shown in Table 13, with R-square

values and correlation coefficients shown in Table 14.  The largest errors occurred for the sagittal

plane (average, 10.47 Nm), while the horizontal plane had the smallest (average, 8.69 Nm).  The

best performer in this criterion, as expected, was the SCI model (R-square, 1.00), since one of its

constraints is that any solution it provides has to create a reactive moment equal to the input

moment.  The DMH model performed better that the ANN model in the sagittal and horizontal

planes, with the ANN modeling the frontal plane more closely.  The R-square and correlation

values for the DMH model were also higher than the values obtained for the ANN model.

Overall, however, and compared with the total moment amounts that were applied, moment

equilibration errors were low, and do not point to any specific factors in the error minimization

algorithms used by the models that might have influenced the results.

One of the most important aspects of muscle activation pattern modeling, at least from a

practitioner’s point of view, is the disc compression force predicted by any particular model.

Table 15 showed the average compression forces per loading condition and magnitude predicted

by each model and estimated from the EMG measure.  The DMH model predicted the highest

compression levels, but also the closest to those estimated from the EMG data (p-value, 0.95, no

significant difference).  The SCI and ANN models predicted forces significantly different
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(lower) from those estimated from the EMG data.  Based on the EMG data, the highest

compression occurred in the condition involving applied flexion and clockwise twisting (average

across subjects, 2493 N), while the smallest compression occurred for the cases involving

applied lateral bending and applied lateral bending with applied flexion.  The compression values

for the cases involving lateral bending, however, are affected by the low activation values

obtained, which were discussed above.

Qualitatively speaking, ease of use and speed are also significant criteria when evaluating

models of this type.  If at any point in time any of these models is to be used in an application

oriented environment, these criteria take on added importance.  Based on the author’s

experiences with the models, SCI is easier to use than any of the other two, since it does not have

as many adjustable parameters, other than those inherent to the optimization process.  The DMH

and ANN models have more parameters that can be adjusted to fine tune the model, which

makes them harder to “tune” correctly.  In terms of speed, however, the DMH model is better,

since it doesn’t require costly non-linear optimization operations (i.e. SCI), or a long training

process (i.e. ANN).  If the training process is obviated, however (a possibility since once the

network is appropriately trained it can be used on an infinite number of occasions), then the

ANN model is faster, since it only requires straightforward mathematical operations and no

iteration process to minimize error.
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Chapter 6.  CONCLUSIONS

Although the lumbar region of the spine is the source of many occupational illnesses,

significant in terms of their frequency, cost, and morbidity, the details of its physiological

operation are still for the most part unknown.  The costs of back pain have been placed on the

order of tens of billions of dollars annually (NIOSH, 1997; Cats-Baril and Frymoyer, 1991;

Frymoyer et al., 1983), with the associated costs including lost workdays, decreased

productivity, personnel retraining and medical expenses, among others.  These costs are

distributed over a large number of cases, with some estimates placing its incidence as high as

50% of all reported musculoskeletal diseases (NIOSH, 1997; Praemer, et al., 1992).

In part as a result of these motivations, research on the spine, specially its lumbar region,

has been performed over the last four decades.  An important aspect of this research is the

attempted modeling of the lumbar muscle activation patterns.  The significance of this type of

research resides in the possible key it holds to understanding the muscle activation patterns our

body uses to counteract external loads that are transferred to the spine region.  Once those

activation patterns are at least understood, better attempts to establish injury mechanisms to the

lumbar spine based solely on biomechanical factors can be made, especially for situations in

which large loads are present.

There is still no single model in the scientific literature that, under a wide range of

loading conditions, is able to predict lumbar muscle activation variability accurately enough.

Thus, their current use as design tools available to ergonomic practitioners is limited, because the

models are not well suited to handle the variety of tasks involving the use of the back that are

present in occupational environments.  Traditionally, the models used in this field are grouped

between EMG based models and predictive models.  EMG models take surface EMG signals and

translate them to muscle forces that counteract the applied spinal load.  Predictive models

attempt to approximate the neural control structures used by the human motor control system

through the use of mathematical functions, outputting predicted muscle activation patterns.

Although each technique has pros and cons, both are hindered by the fact that no direct

validation is possible at the present.

Testing of these models is also hindered by the limited data available on surface EMG of

the lumbar muscles when resisting combined frontal, sagittal, and horizontal moments.
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Although data is available on combined frontal and sagittal loading, horizontal (twisting)

moments are seldom considered. Even when they are considered, they are not systematically

varied.  Furthermore, available data seldom includes inter- or intra- subjects variability measures,

and the experiments collecting the data used fixed loads, with little, if any, regard for the

normalization of those loads against the participant’s MVE’s.

Despite these drawbacks, in the recent biomechanics literature several predictive models

have been created and/or updated which show promise in terms of their performance and

simplicity of use (ANN’s, DMH, and SCI).  They use physiologically valid parameters, and, to

varying degrees, have associated physiological processes to which they relate.  Their reported

performance levels support the idea of looking further in the operation of these models to obtain

possible clues about the behaviors our body follows in lumbar muscle recruitment.

This process, however, should be preceded by a through comparison of the model’s

performance.  Such a comparison is performed in this manuscript.  In order to perform the

comparison, surface EMG data of several trunk muscles were collected, while attempting to

address the drawbacks of current data that were outlined before.

The dataset of lumbar muscle activation patterns obtained is comparable to some datasets

collected before in pattern shape, but adds to them patterns arising out of higher load levels.  It

also adds to the literature the patterns of activation for a wider set of moment combinations in the

three axes of three-dimensional motions.  There appears to be considerable variability in the way

different individuals recruit the lumbar muscles studied, even though considerable efforts were

employed in using participants similar in height and weight, and in normalizing the loads

applied.  Variation within specific individuals was small enough to remain non-significant.

It is important to keep in mind that whenever EMG data is collected, several potential

problems exist, which might be present in the current dataset.  First, the EMG data is normalized

against the activation levels obtained in MVE exertions.  Several problems exist with MVE

exertions.  Since they are voluntary, they are directly dependent on the participants will to do

them.  This “desire” might change from day to day, or even from exertion to exertion.  To

mitigate this effect in the current investigation, the number of MVE’s required were kept to a

minimum and performed at the beginning of the session.  Practice is also necessary in order to

learn to perform MVE’s correctly.  Although practice was provided in the current experimental

protocol, participants were by no means experts in performing them after completing the
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experiment.  The main effect of wrong MVE values would be inaccuracies in the activation

levels reported.

Second, the issue of selecting a voltage value from any MVE EMG spectrum represents a

potential trouble source.  Different researchers select this value differently, and their choice is

not always apparent.  Among the options available in the selection of this parameter are to select

solely the maximum voltage value in the spectrum, to average values across a small window

centered at the peak, or to use a filtering scheme across the curve and then pick the resultant peak

(point of zero tangent).  In the current research, the first alternative was selected, taking care to

ensure that the peak selected was part of the MVE.  The selection of this alternative might have

driven activation levels down somewhat, at least keeping them lower than the values expected.

Electrode cross-talk is a third potential problem with the data collected.  Any surface

electrode used might pick signals not only from the muscle of interest, but from nearby muscles

as well.  Although it is currently impossible to eliminate this effect completely, its effect can be

mitigated by measuring muscle activation levels resulting from functional exertions before the

actual data is collected.  Functional exertions were, to a limited extent, part of the experimental

protocol followed here.  Electrode cross-talk can also be minimized with the use of indwelling

electrodes, but their use was not considered here due to the complexity they add to the

experimental protocol.

The models’ provided poor predictions against the dataset collected.  However, they did

demonstrate limited predictive ability on a set of loading conditions that included systematically

varied axial moments.  The difference between measured and estimated L3/L4 moments (when

using force plate data against EMG data), combined with the observation regarding the match in

patterns of activation, suggests that the models’ performance was largely and adversely affected

by the physiological parameters selected (i.e. anatomy and gain).

It is quite impressive, despite the model’s performance, how a set of three models that are

based on completely different technologies and underlying assumptions can predict patterns that

are as close to each other.  Although points where the model predictions’ differ do indeed exist,

those points in which they do not differ are the most puzzling.   How can this be the case?  How

can completely different algorithms, implementing completely different approaches, be so

similar in the way they distribute the loads to the torso?  Part of the answer does lie in the fact

that these models were built with the purpose of simulating existing data as closely as possible.
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However, the fact that their performance has proven to be similar across loading conditions

fundamentally different from those they were intended to simulate is certainly puzzling.

Based on the analysis performed in this work, no model can be proclaimed a better

performer. It is clear, however, that further work is needed in this area before we are able to

accurately predict arbitrary lumbar muscle activation patterns from sets of three-dimensional

moments.  The use of these models to make engineering decisions, although possible, should at

this point be cautious.  Although some models predicted considerably well the activation of

specific muscles or loading conditions, none of the models performed consistently well.

Future research in this area should follow several compatible but fundamentally different

directions.  It seems we have three distinct possibilities for sources of error.  The first is the

chance that the theory behind the models is faulty.  Researchers following this line of thinking

should strive to develop new models that simulate more closely the dataset presented here and

future datasets that become available.  The author feels, however, that the models evaluated here

can certainly be improved, which introduces the second possible source of error: parameters in

the models have to be adjusted.

Adjustment of parameters in the models has to be systematically studied to determine

their effects on model predictions.  Although a trial and error approach can be used, a more

efficient approach is to perform sensitivity analysis on the parameters.  A model parameter

deserving special consideration is the anatomy used in the model.  The human modeling field,

especially that related to the lumbar muscles, needs detailed anatomical models that not only

provide averages, but standard deviations, and that associates muscle parameters with

anthropometric data.

The third source of error is the data itself.  There is certainly a distinct possibility that the

measures under study are not appropriate for the applications under study.  There is also the

significant number of error sources the EMG signal itself can be affected by, which has been

discussed before.  Certainly as data capturing technology improves (e.g. sampling rates, number

of channels sampled, noise) researchers are able to extract more out of each measure under

study.  Perhaps it’s time to start focusing on some other aspect of the signals we collect.

In the long term, comparison efforts such as the one described here and others that

include dynamic conditions should result in the improvement of models, with the ensuing benefit

of an improved understanding on the behaviors of the human brain in muscle recruitment
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patterns.  This understanding will complement the concurrent developments on the mechanisms

involved in lumbar injuries, which directly translates into the better design of occupational tasks

that stress the low back.
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Project Title:  A Comparison Between Predictive Models of Torso Muscle Recruitment Patterns                                    

Source of Support: Departmental Research q Sponsored Research  q Proposal No. __________________________________

1. The criteria for "expedited review" by the Institutional Review Board for a project involving the use of human subjects and with minimal risk is
one or more of the following. Please initial all applicable conditions and provide a substantiating statement of protocol.

q a. Collection of:
1) hair or nail clipping in a non-disfiguring manner;
2) deciduous teeth;
3) permanent teeth if patient care indicates need of extraction.

q b. Collection of excreta and external secretions: sweat, uncanulated saliva, placenta removed at delivery, amniotic fluid obtained at time of
rupture of the membrane.

q c. Recording of data from subjects 18 years or older, using non-invasive procedures routinely employed in clinical practice. Exemption does not
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q d. Collection of blood samples by venipuncture (not exceeding 150 ml/8 week period, and no more than twice a week) from subjects 18 years or
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q e. Collection of supra- and subgingival dental plaque and calculus, provided the procedure is no more invasive than routine sealing of the teeth.

q f. Voice readings.

q g. Moderate exercise by healthy volunteers.

q h. Study of existing data, documents, records, pathological specimens or diagnostic specimens.

q i. Research on drugs or devices for which an investigational exemption is not required.

2. If the project involves human subjects who are exposed to "more than minimal risk" and are not covered by the criteria above (a to i), the IRB
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of protocol.
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Women___, Prisoners___, Mentally Retarded___, MentallyDisabled___.

Note that if children are involved in the research as human subjects, they may have to provide consent as well as their parents.
Whether or not the project may undergo "expedited review" or must be reviewed by the full Institutional Review Board, it is necessary that the
required informed consent forms also be reviewed. These should be submitted with the proposal.  However, if there is insufficient time to meet the
sponsor's deadline, submittal can be delayed up to thirty days after submittal of the proposal without jeopardizing the IRB certification to the
prospective sponsor.

*Minimal risk means that the risks of harm anticipated in the proposed research are not greater, considering the probability and magnitude, than those
encountered in daily life or during performance of routine physical or psychological examinations or tests.

**Subject at risk is an individual who may be exposed to the possibility of injury as a consequence of participation as a subject in any research,
development or related activity which departs from the application of those established and accepted methods necessary to meet his needs, or which
increases the ordinary risks of daily life, including the recognized risks inherent in a chosen occupation or field of science.
This is to certify that the project identified above will be carried out as approved by the Human Subject Review Board and will neither be modified
nor carried out beyond the period approved below without express review and approval by the Board.

___________________________________________________________________________________________________
Investigator(s)/Date

The Human Subjects Review Board has reviewed the protocol identified above, as it involves human subjects, and hereby approves the conduct of
the project for ____months, at which time the protocol must be resubmitted for approval to continue.

_______________________________________________
Departmental Reviewer/Date

_______________________________________________
Chair, Institutional Review Board /Date
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Justification of Project

Back pain is a very frequent disease in the American workforce.  It is one of the most

common occupational diseases, with billions of dollars in associated annual costs.  Researchers

on this area, despite significant efforts, have not yet been able to understand completely the

complex operation of the human spine.  The most common tools used for this purpose are

predictive modeling techniques.  These techniques take a particular loading situation to which

the body is exposed and attempt to simulate the way lumbar muscles are activated to counteract

the external load.  Three recently published models of the predictive type will be compared in

this thesis.  The results should allow a better understanding of these models and a determination

of their levels of performance under different loading conditions.  The physiological data

collected from the participants of the study will also contribute to the field by addressing

drawbacks of data that are currently available.

Procedures

Participants will be recruited from a university student population.  A total of 16

participants will be used, with an equal number of male and female participants. The participants

will report for the experimental sessions at the Industrial Ergonomics Laboratory, in the fifth

floor of the Whittemore building.  Participants will read an informed consent form and sign it if

they agree to participate in the experiment.  Afterwards, they will fill out a health questionnaire

(attached at the end of this package) and their height and weight will be measured.  These two

items will be used as screening tools.  If the participants are eligible to participate, they will be

instrumented with bipolar surface electrodes to obtain electromyography signals from some of

their muscles.  After the electrodes have been placed and tested, participants will perform a

series of Maximum Voluntary Exertions (MVE) which involve the voluntary maximal activation

of different sets of muscles.  Participants will then be secured to the data collection apparatus

(please see Figure 1) and will start performing the experimental treatments, with rest periods

between treatments, as instructed by the experimenter.  Once the experimental treatments are

finished, they will be compensated for the time spent in the experiment The process described

here should take an average of three hours, over two different days (one hour the first day, two

hours  the second day).
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Figure 1.  Data Collection Apparatus

 Risks and Benefits

This experiment should pose only minimal risks to participants.  The experimental tasks

are not a cardiovascular threat, and the measures taken are not invasive in any way.  There is a

small chance that participants may experience some back pain due to the use of this body part in

the experimental trials.  The risk of this happening, however, is no more than the normal risk

they would experience while performing normal activities.   If pain does develop, participants

will be instructed to stop their participation and withdraw from the experiment.  They would be

referred to the proper physicians in the University.

There is also a slight chance that some participants may experience some delayed muscle

soreness similar to that produced by physical exercise.  Some people may also have an allergic
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reaction to the adhesive used in the electrodes.  However, the Industrial Ergonomics lab at

Virginia Tech (i.e. where the experiment will be conducted) has employed similar procedures as

those described here in the past with no adverse effects.

Benefits of this research were outlined before, but, in summary, we expect to gain a better

understanding of the models evaluated, a determination of their levels of performance under

different loading conditions, and to produce a comprehensive database of lumbar muscle

activation patterns that can be used in future research.  The researchers consider that, given the

minimal risks associated with this type of experiment, they are outweighed by the benefits.  The

subjects may benefit from the understanding that they are helping to augment our knowledge of

the low back behavior, which should translate in the future to a lower incidence of diseases

affecting this region in occupational sectors.  However, no direct or implied benefits, other than

the monetary compensation they will receive, are proposed to the participants to secure their

participation.

Informed Consent

The informed consent form follows this document.

Anonymity

During the course of this experiment, the participant’s anonymity is guaranteed.  No

videotape equipment will be used.  All data collected during the course of the experiment will be

identified via a code.  For data collection purposes, only the experimenter will know the

relationship between that code and the participant’s identity.  Once the participant has finished

their participation, any existing evidence of this relationship will be destroyed, and the data

collected from the participant will only be referred to by using the code.

Biographical Sketch

The experimenter, Miguel A. Perez, is currently a Master’s level student in the Industrial

& Systems Engineering Department.  This is his second year of study in the Master’s program.

He has a Bachelor’s degree in Industrial Engineering from the University of Puerto Rico –

Mayaguez campus.  Through different courses, he has been exposed to the ethics of human

research and the proper research methods used in the Human Factors field.  He has also served as
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assistant to a number of experiments conducted in the University.  Miguel is a member of the Phi

Kappa Phi, Alpha Pi Mu, and Tau Beta Pi Honor Societies.  He is also an active member of

several other professional organizations.

The Faculty Advisor, Dr. Maury Nussbaum, is an Assistant Professor in the Industrial &

Systems Engineering Department and Director of the Industrial Ergonomics Laboratory at

Virginia Tech.  He obtained his graduate and undergraduate degrees in the University of

Michigan.  Dr. Nussbaum has more than 8 years of experience in ergonomics and biomechanics

research, with numerous publications in these fields and current direct involvement in several

research projects, in some of which he serves as the Principal Investigator.  He is currently a

member of the Institutional Review Board (IRB) that examines proposed research in the

University for compliance with the standards of protection to participants.
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VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY

Informed Consent for Participants

of Investigative Projects

Title of Project: A Comparison Between Predictive Models of Torso Muscle Recruitment

Patterns

Investigator(s):  Miguel A. Perez and Dr. Maury Nussbaum, Faculty Advisor

I. The Purpose of this Research/Project

The purpose of this research is to obtain data to compare models that predict the muscle

activation patterns in the low back.  This comparison should, in the long run, yield better models

that allow researchers to better understand the low back and to prevent its injury.  There will be a

total of 16 participants in this study.

II. Procedures

You will read this form and sign it if you agree to participate in the experiment.

Afterwards, should you decide to participate, you will fill out a health questionnaire and your

height and weight will be measured.  If you are found eligible to participate in the experiment,

you will follow these steps:

1. You will have electrodes placed on several muscles, which control your low back

movements.  These electrodes are used to collect information from muscles indicating

their activation levels.  The procedure for attaching these electrodes involves

cleansing a small patch of skin over the muscle area.  The electrodes are then placed

on the skin and remain in place with a safe adhesive.

2. You will be asked to wear clothing that allows placement of the electrodes on the

bare skin.

3. The investigator will then demonstrate several muscle exertions you will then

perform.  During these exertions you should try to develop as much force as you can

against the resistance provided.



Appendix A – IRB Approval Package

92

4. The investigator will then explain the different treatments you will participate in, and

the way the experimental apparatus works.

5. You will be secured to the experimental apparatus as tightly as possible without

causing you discomfort.

6. You will perform a series of trunk exertions, in which you will be instructed, and

asked resist a series of loads applied to your trunk through the experimental

apparatus.

The process described here should take an average of three hours, over two different days

(one hour the first day, two hours the second day).

III. Risks

This experiment should pose only minimal risks to you.  The experimental tasks will not

require prolonged exertions, and the measures taken are not invasive in any way.  There is a

small chance that you may experience some back pain due to the use of this body part in the

experimental trials.  The risk of this happening, however, is no more than the normal risk you

would experience while exercising.   If pain does develop, you will be instructed to stop your

participation and withdraw from the experiment.  You will be referred to the proper physicians in

the University.

There is also a slight chance that you may experience some discomfort related to the use

of some muscles.  Some people may also have an allergic reaction to the adhesive used in the

electrodes.

IV. Benefits of this Project

Your participation in this study will provide information that will be used to develop

better models of the low back.  These models may one day allow researchers to precisely

understand the way the human back works and, thus, to effectively prevent its injury.  It will also

serve as the basis for the research project I’m required to develop to obtain a Master’s degree in

Industrial Engineering at Virginia Tech.
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V. Extent of Anonymity and Confidentiality

During the course of this experiment, your anonymity is guaranteed.  No videotape

equipment will be used.  All data collected during the course of the experiment will be identified

via a code.  For data collection purposes, only the experimenter will know the relationship

between that code and your identity.  Once you have finished your participation, any existing

evidence of this relationship will be destroyed, and the data collected from you will only be

referred to by using the code.

VI. Compensation

You will be compensated at a fixed rate of five dollars per hour after each experimental

session you participate in.  If your participation extends over a fraction of one hour, you will be

paid half the hourly amount for less than half an hour, and the complete hourly rate for any

fraction greater than half an hour.

VII. Freedom to Withdraw

You are free to withdraw from this study at any time without penalty. If you choose to

withdraw, you will be compensated for the portion of the time of the study you participated in.

You are free not to answer any questions or respond to experimental situations that you choose

without penalty.

If for any circumstance the experimenter determines you should not continue to

participate, you will still be compensated for your time accordingly.

VIII. Approval of Research

This research project has been approved, as required, by the Institutional Review Board

for Research Involving Human Subjects and by the Department of Industrial & Systems

Engineering at Virginia Polytechnic Institute and State University.

IX. Participant’s Responsibilities

I voluntarily agree to participate in this study. I have the following responsibilities: report

any discomfort or pain to the experimenter immediately, perform all tasks to the best of my
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ability if I choose to perform them, and answer all questions asked by the experimenter to the

best of my knowledge, if I choose to answer them.

X. Subject's Permission

I have read and understand the Informed Consent and conditions of this project. I have

had all my questions answered. I hereby acknowledge the above and give my voluntary consent

for participation in this project.

If I participate, I may withdraw at any time without penalty. I agree to abide by the rules

of this project.

____________________________________ ________________

Signature Date

Should I have any questions about this research or its conduct, I may contact:

Miguel A. Perez (540) 552-5695

Investigator

Dr. Maury Nussbaum (540) 231-6053

Faculty Advisor

H. T. Hurd (540) 231-5281
Chair, IRB
Research Division
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Participant Screening Questionnaire

Name:                                                                                                                      

Telephone:                                                                               

E-mail:                                                                               

Gender:                           Date of Birth:                                        

Height:                           

Weight:                           

Please answer Yes or No to the following questions:

1. Have you ever had a hernia?                           

2. Have you had a back injury or back or spine operation?                           

3. Have you had any noticeable back pain during the last year?                           

4. Have you had any joint dislocations, broken bones, or other physical injuries in the last year?

                    

5. Have you had any serious musculoskeletal injury?                           

                                                                              

Signature and Date
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(540) 552-5695, mperez@vt.edu
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GPA: 3.98
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08/97 - Present Virginia Polytechnic Institute and State University, Blacksburg, VA

GRADUATE TEACHING ASSISTANT
Responsible for all homework grading for Industrial Engineering’s
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responsibility for lectures (on different topics) in which the course
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03/94 - 07/95 U. of Puerto Rico - Mayaguez: Solar Car Project, Mayaguez, PR
TEAM CAPTAIN
Managed a group of eight people during the design and manufacturing
stages of the project.  Directed all project related activities including work
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more than 50 percent, compared with previous races.
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PROFESSIONAL EXPERIENCE:
05/99 – 08/99 Engineering Animation, Inc., Ann Arbor, MI

SOFTWARE ENGINEER - INTERN
Improved modeling techniques used in the corporation’s Jack software,
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literature.  Developed code for the implementation of the CAESAR
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08/98 Titmus Optical, Petersburg, VA
ERGONOMICS CONSULTANT
Conducted an ergonomic audit in the manufacturing floor of a 300+
employees company.  Suggested improvements to then current
workstations and manufacturing problems.  The suggestions resulted in the
creation of “operator-friendly” workstations and reduced the probability of
product damage.
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PROJECTS ENGINEER
Performed operations analysis for all activities in the factory, including
inventory planning and control, quality control, materials handling, and
safety.  Developed corrective measures for faulty items.  Trained operators
in the above areas.  Developed layout for plant expansion already in
progress.

RESEARCH EXPERIENCE:
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THESIS RESEARCH
Developed ongoing research efforts to increment scientific knowledge of
the lumbar area of the spine.  The thesis intends to develop a
comprehensive database on lumbar muscle recruitment patterns in static
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design and construction of the apparatus, the selection and installation of
data collection equipment, and the conduction of the experiment.
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