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Abstract

Inherent uncertainties in the stock assessment for weakfish have precluded accurate and
consistent advice concerning the management of commercial and recreational fisheries. Error
within ageing techniques, used to assesgivel age frequencies within commercial and
recreational harvest, has been cisdc potentiadouice foruncertainty during assessments of
the weakfish fishery. The implications for ageding error on weakfish stock assessment were
explored using measementerror growth models (i.e. Chapter 1), ageing error matrices within a
statistical catctatage framework (i.e. Chapter 2), and Monte Carlo simulations to gauge
robustness of ignoring this type of uncertainty during fisheries stock assessmétapeer 3).
Measuremenerror growth models typically resulted in weakfish that grew to reach larger sizes,
but at slower rates, with median lengthage being overestimated by traditional von Bertalanffy
growth curves, at least for the observed ageaamgeasuremergrror growth models allow for
incorporation of ageing uncertainty during nonlinear growth curve estimation, as well as the
ability to estimateheageing error varianceAgereading error was further considered during
statistical catctatage analysis of the weakfish fishery, mainly through permutations of true
catchatage via ageing error matrices constructed from estimatég afieing error variance,
thus reflecting changes in relative age compositions as a consequence of ageiagtyncAd
a result, absolute levels of key population parameters were influenced, but generanh tileosks
parametersended to be similar, with strong congruency across modelsnaesatdish stock
dynamics irmost recent years. Finally, Monte Carimslations showed that implications for

agereading error on weakfish stock assessment are varied, depending upon the direction and



magnitude of the ageing uncertainty. However, relative trends of parameter estimates over time
tended to be similar, reging in proper allocation of weakfish stock status, regardieisetype

of ageing error considered. Furthermore, assuming negligible ageing uncertainty within fishery
independent surveys appears reasonable, as simulations incorporating ageingrenrordiges

of relative abundance showed similar patterns to situations that only considered observation

noise.
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ithe most valuable information obtained f
temperate waters, is age. o0

-Hilborn and Walters (192)

The recursive collapse of commercial fisheries is ubiquitous in freshwater and marine
environments (Pauly et al. 2002); with causes being attributed to overcapitalization, scientific
uncertainty, and intricate ecosystem structure (Ludwig et al. 1988)orically, optimum
fishing levels were determined by trial and error (Ludwig et al. 1993), with ecosystem effects of
overexploitation being confounded by functional redundancy in complex aquatic food webs
(Myers et al. 2007). The sustained declinenafine fish stocks has since prompted novel
approaches to fisheries management including marine protected areas (MPAS), catch shares (i.e.
Individual Transferable Quotas), conservative biological targets, and ecodyasechincentives
(Weeks and Berkele3000; Pauly et al. 2002; Latour et al. 2003; Costello et al. 2008).
Concurrently, the impact of uncertainty in fisheries stock assessment has led to the development
of biologically riskaverse practices that account for scientific ambiguity regardingtigck

status and/or alternative management approaches (Jiao et al. 2005; Shertzer et al. 2008).

In the U.S., fishery status is largely determined by harvest control rules, which compare
indicator reference points with target reference points establishetnagers (Jiao et al. 2009).
Harvest control rules can incorporate multiple biological reference points elicited from risk
analysis and/or fisheries stock assessment (Jiao et al. 2010). Jiao et al. (2005) suggests choosing

an appropriate level of kgolerance and evaluating alternative management strategies through

r



risk analysis, instead of setting reference pduatsed on inappropriate assumpti¢ag. k.1 0r

Fusy). For example, Patterson (1992) found that the exploitation ratg aidy be 6o high for

most fish populations (Hilborn 2002). By using risk analysis, uncertainty surrounding the status
of a fish stock can be explicitly incorporated into scientific advice concerning the management of

commercial and/or recreational fisheries (kaal. 2010).

Uncertainties in fisheries stock assessment can be allocated into five categories based on
respective origin and include measurement error, process error, model error, estimation error,
and implementation error (Rosenberg and Retrespo)1%¥particular concern is the influence
of measurement error on fisheries stock assessment performance (i.e. accuracy and precision).
Measurement error or uncertainty occurs when data used to fit a stock assessment model are
measured with error (e.gg@), which can be further compounded by observation uncertainty in
the misreporting of landed catch. Chen (2003) and Chen et al. (2003) indicated that the quality
and quantity of data used to fit a model can negatively affect the stock assessment process,
leading to biased estimates of vital and/or auxiliary parameters. This could potentially lead to
flawed scientific advice and mismanagement of a fishery, resulting in overexploitation of a fish

stock or loss of harvest opportunities by fishers (Chen;20a8 et al. 2010).

The application of mathematical models to the assessment of fish populations requires
parameters to be estimated from observed data. istaggured analyses, parameters are
approximated by some form of agependent estimation predure (e.g. virtual population
analysis). The typical input required by these methods is a eatelye matrixwhich includes
catch by age for each year of the fishery to be covered by the assessment (Panfili et al. 2002).
Compilation of catckat-age d#a is rather intensive and requires the assignment of dg&ato
catch based on sampled age jrtipns (i.e. agéength key). Furthermore, adength keys are

2



used to constru@gestructured indices of catgberunit-effort (CPUB, stock weightsatage

and maturity at agéReeves 2003; Bertignac and Pontual 2007 gstimates of age are biased,

then subsequemiological reference pointsill be skewed Shepherd 1982ronsequently
influencing management decisiorSur ability to assess and corréat agereading error

becomes pertinent, as harvest control roles that do not incorporate uncertainty may lead to the

overexploitation of fish stocks (Jiao et al. 2010).

Campana (2001) delineates ageing error into two respective sources, includirsg proce
and/or interpretation error. Process error is the inability of an ageing structure to accurately
record growth sequence information (Campana 2001). In other words, it is the inability of
ageing structures to form interpretable patterns of growttctiveéspond to the true age of the
fish (Maceina et al. 2007). Process error tends to be biased, leading to consistemtuowber
estimation of age by readers. On the other hand, interpretation error is the subjective assignment
of age to individualih based on presumed annular or daily increments (Campana 2001).
Interpretation error can be either random or biased, depending upon the complexity of the ageing
structure or the inability of the reader to accurately discern annual or daily growthlrings.
general, process error is assumed to be negligible in the production ageing process undertaken
for fisheries stock assessment. This is because age validation is a key consideration in the
development of any successful ageing program (Campana 2R6gjettably, use of a validated
technique does not guarantee accurate or reliable age estimates, as subjectivity is always inherent

in the ageing of fishes (Buckmeier 2002).

Systematic errors (i.e. bias) in the fish ageing process primarily arise from wuitd
among reader variability (Kimura and Lyons 1991; Buckmeier 2002). This variation can be

attributed to the utilization of different preparation methods by ageing laboratories (Morison et

3



al. 2005) or to the unreliability of readers to preciselgaurately estimate age (Kimura and

Lyons 1991; Buckmeier 2002). Assessing the consistency of readers has gained much attention
in the scientific literature, with various indices of precision being proposed to ensure consistent
age interpretation (Beamisimd Fournier 1981; Chang 1982; Campana et al. 1995; Campana
2001). Furthermore, quality control programs have been enaadtleteictand correct for reader

drift in the production ageing process (Morison et al. 1998), although the ability to fully

attenwate agereading error is impractical and investigating potential effects in a fisheries

management context are vital.

The most recent assessment of the weakfish stock used-atriagared model
(ADAPT-VPA) approved by the Stock Assessment Review Comen{8ARC) to explore
historical trends in abundance and fishing presshmiéal results demonstrated a severe
retrospective bias in estimates of fishing mortality (F) and spawning stoaiabs (SSB),
possibly due to insufficient data. The Weakfish Techl Committee (WTC) concluded that the
model was overestimating SSB and underestimating F in recent yeaigshaifin uncertainty in
parameteestimatesnd instability of results (ASMFC 20Q9Yhe WTC recognizetivo
potential causes for the unreliakck assessment: gdor biological sampling of commercial
and recreational catch addcard and 2) unrealistic assumptions of thesigectured model
(i.e. catchat-age matrix is errefree) (NEFSC 2009)This thesis, over three chapters, addresses
the concern of ageing error within catebage data and explores the influence of ageing
uncertainty during fisheries stock assessment for weakfish by: 1) incorporating and quantifying
ageing error during nonlinear growth curve analysis, 2) exploringsi@fuageing error
matrices within a statistical cat@tage framework and 3) simulating the potential effects of

ageing error during fisheries stock assessment.
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Chapter 1: Bayesian errorsin-variables approach to incorpgate ageing uncertainty
during nonlinear growth curve estimation for weakfishCynoscion regalis

Abstract

Inferringgrowth for aquatic species is dependepon accurate descriptions of dgegth
relationshipswhich may be degraddxy measurement erram age estimatesAgeing error
arises from biased and/or imprecise age determinations as a consequence of misinterpretation by
readers or inability of ageing structures to accurately reflect truefagayesian errorin-
variables (EIV) approachi.e. measuremergrror modelingan account for ageing uncertainty
during nonlinear growth curve estimation by allowing observed ages to be parametrically
modeled asandom deviatesinformation on the latent age composition then comes from the
specified prio distribution, which represents the true age structure of the sampled fish
population. In this study, weakfish growth was modeled by mesrigaditional and
measuremergrror von Bertalanffy growth curves using otoliind/or scalestimated ages.
Age determinations were assumed to bemogmally distributed, thereby incorporating
multiplicative error with respect to ageing uncertaintyne prior distribution for true age was
assumed to be uniformly distributed between +4 of the observed age fondiaatual.
Measuremenerror growth models resulted in weakfish that grew to reach larger sizes, but at
slower rates, with median lengétage being overestimated by traditional growth curves for the
observed age range. In addition, measurer@eot models produced slightly narroweredible
intervals for parameters of the von Bertalanffy growth fun¢trdmch may be an artifact of the
specified prior distributions. Subjectivity is always apparent in the ageing of fishes and it is

recommended that@asuremererror growth models be used in conjunction with otelith



estimated ages to accurately capture theleggth relationship that is subsequently used in

fisheries stock assessment and managefoenteakfish

1. Introduction

Effects of measureme error in solving nonlinear models have been well documented
(Carroll et al. 2006)causing bias in parameter estimates (Solow 1998; Jiao et al. 2006; Biggs et
al. 2009; Heery and Berkson 2009), confounding relationships among covariates (Walters and
Ludwig 1981; Gustafson 2003), and exaggerating model selection uncertainty (Punt et al. 2008;
Biggs et al. 2009). Of particular concern is the role observation error plays in nonlinear growth
curve estimation, as agength relationships play a key role iiicging biological reference
points from agestructured stock assessment models. While several methods have been
constructed to account for gear selectivity and variable lestedlge in fitting nonlinear growth
curves (Sainsbury 1980; Pilling et al. 20T aylor et al. 2005; He and Bence 2007; Alés et al.
2010; Jiao et al. 2010), relatively few approaches have been developed to incorporate ageing
error when inferring growth for aquatic species (Kimura 2000; Cope and Punt 2007; Schwarz
and Runge 2009).

Ageing error is largely determined through multiple age reads of the same individual,
with relative bias and imprecision being evaluated graphically throughiagelots and/or
various agaliscrimination statistics (Chang 1982; Campana et al. 1995; Can20é1). If age
validation data are available, then known biases can bected for during thenodel fitting
procesdy calibrating observed ages to reflect true age estimates (Schwarz and Runge 2009).
Unfortunately, the majority of agength data ssetused in fisheries stock assessment comprise a
single age and length measurement per individual with true age being unknown (Cope and Punt

2007; Punt et al. 2008). A single age read per individual complicates the parameter estimation

9



procedure, as tradinal methods for correcting age misclassification require an estimate of the
ageing error variance, necessitating multiple age reads per individual and/or that observed ages
are randomly distributed around the latent variable of true age (Cook and i9t@88%5 Cope

and Punt 2007; Punt et al. 2008). As a consequence, most growth investigations assume ageing
error is negligible or relatively nemmfluential, with respect to process noise, in describing the
agelength relationship (Pondella et al. 200X rHs et al. 2007). Ignoring ageing error may be

an unreasonable approach, as conventional methods tend to underestimate the uncertainty in
parameter values, with respect to error in both the dependent and independent variables, leading
to overconfidencén the description of growth and subsequent management decisions derived
from growth curve analyses (Clark 1991).

Fisheries scientists have long recognized that most independent variables necessary for
stock assessment are measured nattknegligibleuncertainty, although most attention has been
spent on estimating the degree of bias in parameter estimates instead of attenuating error through
increased model complexity (Hilborn and Walters 1992). Recent advances in computational
techniques have led tocreased utilization of measurememtor models that allow for
uncertainty in both the dependent and independent variables (Clark 2005; Jiao et al. 2006),
although it is still necessary to understand the tradeoffs between model articulation and
descriptve accuracy (Costanza and Sklar 1985; Clark 2005; Biggs et al. 2009). A Bayesian
approach allows for stochasticity at multiple levels within a hierarchically structured framework
for nonlinear regressiomith presumed understanding of the independenteab | e 6 s di st r i
(i.e. true age) coming from the specified prior (Clark 2007). Hence, Bayesianierarsables

(i.e. measuremerdrror) models allow for the fitting of nonlinear growth curves when the ageing

10



error distribution is unknown or inestable using contemporary methods (i.e. one age read per
individual).

Variability in age estimates for individual fish could be a consequence of
misinterpretation by readers of ageing structures (e.g. scales and otoliths) or inability of ageing
structure to accurately record growth sequence information (Neilson 1992; Campana 2001).
While most calcified structures have the potential to provide accurate estimates of age (Campana
2001), subjectivity is always apparent in the production ageing processaketeior fisheries
stock assessment (Kimura and Lyons 1991; Heifetz et al. 1998; Morison et al. 1998; Buckmeier
2002). Two of the most commonly used hard parts in the assignment of age to individual fish
include otoliths and scales (Hilborn and Walte®92), with the general understanding that
otoliths provide more accurate and precise age estimates compared-estosdéed ages
(LowerreBarbieri et al. 1995; Maceina et al. 2007). However, various sources of error still
confound the assignment of amgeindividual fish for otolithestimated ages (Neilson 1992;
Pepin et al. 2001) and incorporation of measurement error into nonlinear growth curve analysis
is still prudent.

WeakfishCynoscion regalisire a marine finfish found along the eastern coatsteof
United States, ranging from Massachusetts to Florida (Shepherd and Grimes 1983). Historically,
weakfish have supported important commercial and recreational fisheries along the Northwest
Atlantic (Nye et al. 2008), with recent landings in the commésector being relegated to
bycatch. While several studies have investigated the age and growth of weakfish at various
spatial and temporal scales (Seagraves 1981; Shepherd and Grimes 1983; Hawkins 1988; Villoso
1989; LowerreBarbieri et al. 1995), eft#s of ageing error on describing the dgyegth

relationship are largely unknown (NEFSC 2009). The goal of this study was to evaluate and
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compare traditional and measuremenbr growth models for weakfigbynoscion regalisising
otolith- and/or scaleestimated ages incorporating unbiased ageing error. Latgihe was
calculated using the von Bertlanffy growth equation assuming a multiplicative error structure.
Growth models considering ageing uncertainty allowed observed ages to follow@ hoal
distribution, with the prior for true age being uniformly distributed between +4 of the determined
age for each individual. A Bayesian estimator was used to solve the aforementioned traditional

and measuremesatrror von Bertalanffy growth curves.

2. Materials and methods

2.1- Data

Age-length data for wealdgh Cynoscion regalisvere obtained from Wenner and Gregory
(2000), with age for the same individualiggestimated from sagittal otoliind scale readings.
The otolithscale age@mparison datbase comprised 2,318 wéigh caught intermittently from
five states (i.e. New York, Delaware, Maryland, Virginia, and North Carolina) for years 1989,
1992, 1995, and 199G able 1) Individuals were pooled across states and years\oriit
Bertalanffyand measuremestrror von Bertianffy growth curves using otolitrandor scale
estimated agesAn agebias plot (Figure 1) indicated ageing uncertainty for weakfish, with scale
readings tending toward younger age estimates compared to-esilittated ges. Also,
percent agreement between ageing structures declined with age, suggesting error in the ability of
readers to consistently discern age for older fish (i.e. multiplicative ageing uncertainty) (Figure
2).

The weakfish agéength dataset was chatarized by a lack of older, largsized

individuals compared to the most recent investigation of age and growth (Léealieri et al.
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1995). Changes in weakfish aged sizestructure are most likely a culmination of several
factors, including: redual effects of excessive fishing mortality (NEFSC 2009), gear selectivity,
and seasonal variation in spatial distribution as a result of differential migration by size
(LowerreBarbieri et al. 1995). In order to avoid inflated estimates of asymptogthldmy),

and consequent underestimation of the Brody growth coeffidggmdsterior values fdrp were

bounded by the specified prior distribution.

2.2- Nonlinear growth models

The von Bertalanffy growth function has a long history in fisheriesse and has been
used extensively to describe fish growth (i.e. length and weight) as a function of age (Haddon
2001). Despite criticisms (Roff 1980), the von Bertalanffy growth curve has been advocated as
an appropriate growth model because of itgtgtiib capture observed trends between length and
age for a variety of fish species (Chen et al. 1992¢akfish growth is currently modeled using

a vonBertalanffy growth function thatan be written as

@ o0 0 p Q ° ¢Q

wherel, is the lengtkhat-age for theth individual,Lp is the asymptotic lengtlk,is the Brody
growth coefficientf, is the hypothetical length at afeandoy, is the observedge for theith
individual using theth ageing structureError(is assumed to be independent and normally
distributed with mean 0 and variance.

Extending the von Bertalanffy growth model to incorporate measurement error is

relatively straighforward, and can beritten as
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wheret; is the true age for thi¢h individual. The logarithm of observed age K@y ) is assumed

to be indepedent and normally distributed with mean d@g and variance . In order to

facilitate the use of a legormal distribution for observed ages, a small constant (i.e05)E

was added to ag@ individuals during model fitting.

2.3- Statistical estimator

A Bayesian estimator was used to consttiaetjointpogerior probability distribution for
parameters in theon Bertalanffy and measuremestra von Bertalanffy growth curves. The

full conditional distribution for the traditional von Balanffy growth model follows that

B /0 RMhH sO @ B flOsd hto h,
S I O Lo
While the full conditional distribution for the measumamherror von Bertalanffy growth model

follows that

(4 no0 hwh h s 6 B  fl0sh ioh M fl ofsoh,

" " F] 0 “ TQ “ ‘O “ b
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wheren ¢ denotes the posterior probabilify,¢ denotes the likelihood function, athdg
denotes the prior distribution

As shown in equatio4, observed lengthg;f are conditionally independent of observed
ages §;), with the majority of information about true agg ¢oming from the prior, as well as
feedback from both likelihood functions on the posterior. At least for fish, leagtbe
considered a loose proxy for age, and it is commonly assumed that lengths are weakly
informative of ages (e.g. adength keys). Essentially, measuremeror growth models work
to pull observations closer to the median of leragthge, suggestintpe need for an informative
prior on true age for species that exhibit an asymptotic length early in life, relative to the
maximum age, or have diffuse algmgth distributions. Otherwise, issues with identifiability
will prevent effective estimation efariance parameters, resulting in rynvergence and/or
poor mixing of Markov chainslf an informative prior on true age is unjustifiable, then multiple
age determinations will be necessary to estimate agenog variance(s) or a reference
collectionwill be required, in which truage for a set of individuals kis1own, so that validation
data can help calibrate the model during estimation.

Prior distributionsvereconstructed around historic estimates of weakfish growth,
thereby encompassing biologl relevancy $eagraves 1981; Shepherd and Grimes 1983;
Hawkins 1988; Villoso 1989; LowernBarbieri et al. 199p(Table2). Age validation data were
unavailable and consequently the latent variable of true age was assumed to follow a uniform
distribution, with lower and upper bounds being defined by 4 of the observed age for each
individual, as the largest difference between otebitind scaleestimated age was 3 years (Table
3). Truncation of the joint posterior distribution floy andk was expectedasspecified priors

were used t@onstrainposterior draws to biologically reasonakidues. The ageength data for
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weakfish fail to accurately capture the asymptotic length, leading to unrealistic estimate®
based on extrapolation tife agdength trend (Knight 1968)A summary of prior distributions
and parameterséimates can be found in Talde

All models were run with three Markov chains for 100,000 simulations per chain using
the software packages WinBUGS version 1.4.3 and R versi@n12 Convergence of the
Markov chains to the stationary distribution vd@sermined by monitoring trace plasd
computing Gelman and Rubin diagnostid$e first 9,000 iterations from each chain were
discarded to allow for adequate bunmmand a thining interval of Svas used to reduce
autocorrelation among iterative sampdesl improve computational efficiency total number

of 30,000 iterations were used to summarize the posterior distribution for each model.

2.4 - Model selection criteria

Growth is a vital component in discerning the population dynamics of fishes and
modeling agdength relationships requires the ability to effectively compare and discriminate
among alternative hypotheses that represent biological realism. In this studi/cheméng
and discrimination were conducted using posterior prediptiv@ues and deviance information
criterion (DIC), respectively. While DIC has the potential to identify correct model structure for
catchat-age analyses (Wilberg and Bence 2008)atiility to select preferred models in an
errorsin-variables context is less clear (Spiegelhalter et al. 2002; Celeux et al. 2006). To
circumvent this issue, posterior predictive model checks and model discrimination statistics were
used in an effort taorroborate anecdotal beliefs regarding the applicability of measurement

error models during nonlinear growth curve analyses.

2.4.1- Posterior predictive p-values
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Posterior predictiv@-values were used to conduct posterior predictive model checks in
evaluating the ability of posited models to replicate data similar to that observed. Generally, a
discrepancy statistic is used to assess model goediiisbased on observed data and the

posterior predictive distribution, where the posterior predidis&ibution is defined as

G no B  Ne ¢&N-WO—

wherep(y"®?| )ds the data distribution for replicated observatigfsandp ( dis$ tiye)posterior
distribution for the unknown parameter veatiagiven the observed daya The discrepancy
measue utilized in this study was the Bayesian residual sum of squares (Gelman et al. 1996),

which can be written as

6 ..o B ——

whereE ( i&the expectatiorV/ a r i§ tAe)variance, ang is theith observation of the dateor
simulated datg®". The posterior predictivie-value, then, is simply the proportion of times
Yy dy X yo d) . The cl os pvaluetistae0.5p, the moecradequate ther e d i ¢

model is at replicatig data similar to that observed.

2.4.2- Deviance information criterion

Deviance information criterion was used to compare model goodfidissas
measuremergrror models are hierarchically structured and the number of parameters is difficult

to erumerate (Spiegelhalter et al. 2002; Ward 2008; Wilberg and Bence 2008). Like other
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informationtheoretic approaches, DIC penalizes overparamaterization and descriptive accuracy

in order to select effective models with high explanatory power. DIC camitbenras

(7) 0086 O 1
N o o-f

O¢ ¢l T Cas—

whereO ¢ is the deviance defined a&times the logikelihood of the daty given the

unknown parameter vectdr'Ois the posterior mean of the devian@e;+ is the deviance
evaluated at the posterior meardp&ndpp is the effective number of parameters in the

Bayesian model as formulated Spiegelhalter et al. (2002 While Celeux et al. (2006)

recommend alternatives to this definition of DIC for missilaga models, of which errems-
variables regression is a subset; our approach is to use the most commonly encountered form
within fisheries science. Given that the observed outcomes (i.e. length) are conditioned on the

missing data (i.e. true age), ttiefault calculation of DIC by WinBUGS is appropriate.

3. Results

3.1- Model discrimination

According to the DIC statistic, traditional von Bertalanffy growth curves outperformed
measuremergrror growth models for both otolitland scaleestimated age(Table3).
Alternatively, posterior predictivp-values for measuremeatror growth curves were
substantially closer to 0.50 (Tal8eand Figure 3), suggesting improved adequacy of emers

variables models to reflect observed trends in thdeggthrelationship for weakfish.
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However, all growth curves considered in this study had posterior pregetaiges < 0.50,
possibly suggesting underparameterization in the ability of formulated models to partition the
overall variance to its respective soes (i.e. variability in age or length). Nonetheless,
predictive approaches to model comparison may be beneficial for-erreasiables regression,
as the utility of informatiortheoretiecbased methods for measuremenbr model selection are

still circumstantial (Jiao et al. 2009).

3.2- von Bertalanffy growth curve parameters

Growth models considering ageing error resulted in higher posterior mean valugs for
andt, (Table2 and Figures 5a and 5c), while producing lower posterior mean valuearidei.
(Table2 and Figures 5b and 5c). As a consequence, measuremaniodels demonstrated
growth patterns where weakfish grew to reach larger sizes, Hatatrsates, with traditional
von Bertalanffy growth curves overestimating median lewadidige for the observed age range
(Figure 4). In addition, 95% prediction intervals were wider for traditional von Bertalanffy
growth models, compared to their mea&suenterror analogs (Figure 4). The growth curve
incorporating ageing uncertainty, while simultaneously considering otalith scaleestimated
ages (M5), produced comparable posterior mean values of 1189.999 €063 fork, and-

2.526 fort,. However, using M5 resulted in higher posterior mean values of 0.357 and 0.565 for
the ageineprror standard deviationi{), regarding otolithand scaleestimated ages respectively,
and a lower posterior mean value df4D for the standard deviation in predicted lengfi)s (

(Figure 5). Generally, measurementor growth models produced slightly narrower credible
intervals for parameters of the von Bertalanffy growth function, with less difference between
posterior mea values for biologically relevant parameter estimates using different ageing

structures or a combination thereof (Tabkend Figure 5).
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4. Discussion

Conceptually, the erroiim-variables approach is trying to correct the misallocation of
younger, sraller-sized individuals to older age classes and older, laiged individuals to
younger age classes, resulting in higher estimatds,fand lower estimates fér While the
biological association between maximum size and growth rate malpursblefor weakfish, it
is most likely a consequence of the von Bertalanffy growth equation imposing a negative
correlation betweehp andk, which is further confounded by diffuse lengahage distributions
(Schwarz and Runge 2009). Similarly, narrower credible intervals for measwemant
models are most likely an artifact of prior constraints on posterior values, so as to coerce
biologically meaningful patterns for weakfish growth. Typically, Bayesian eirow@riables
regression can better approximate uncertainty in parameter estimates, with respect to variation in
both the response (i.e. length) and predictor (i.e. @ga)yoll et al. BO6). In this instance,
credible intervals for posterior estimated gfandk are lessened, as estimators consistently
propose values fdrp near the upper boundary of the prior, reflecting perceived increases in
asymptotic size as a consequence of jporating ageing error during nonlinear growth curve
analysis.

Measuremengrror growth models can account for variability in age determinations, but
may overestimate the variability in predicted lengths if multiple age reads per individual are
unavailable Calibration data allows the erreérsvariables approach to draw on information
from multiple age reads to estimate and adjust for measurement error. Consequently, variance in
predicted lengths appears to be overestimated if ageing error is not cedsithen fitting
nonlinear growth curves, as the model is using discrepancies associated with age to amplify

variability in predicted lengths (Figure 4). That being said, using repeated measures of age via
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different ageing structures to calibrate the meamenterror growth model assumes that both
hard parts are unbiased estimators and multiple age reads will provide information on the true
age for each individual. If multiple age reads are in any way biased or correlated, measurement
error growth curvewill be unable to attenuate ageing error without validation data (i.e.
reference collection), in which age for a subset of individuals is known (Punt et al. 2008). As
such, it is recommended that otolgktimated ages be used in conjunction with measeme
error growth modie for weakfish,as scales tend to negatively bias age estimates (Lewerre
Barbieri et al. 1994). Moreover, scastimated ages were treated as unbiased during model
fitting, which may have contributed to the large discrepancy betwee st i muatress f or
models considering one versus two age reads (i.eMMI8s. M5 in Figure 5e).

The Bayesian errosim-variables (EIV) approach avoids several issues associated with
previous methods to account for measurement error in age &sidwing nonlinear growth
curve estimation. First, it avoids uncertainty in the specification of an error variance ratio
necessary for errofig-variables functional regression as proposed by Kimura (2000). Second,
the Bayesian EIV approach allows fyneater flexibility in modeling ageing uncertainty and can
alleviate issues with calculating a coefficient of variation for ageing error whelergih data
only constitute a single age read per individual (Cope and Punt 2007). Finally, estimation of
growth curve parameters, while simultaneously considering measurement error, may improve
model goodnessf-fit compared to the external, prior adjustment of observed ages before
estimating regression coefficients (Spiegelhalter et al. 1996; Schwarz and Z08ye

While the main focus of this study was to investigate the contributions etadang
error on weakfish growth, other sources of variability and bias need to be addressed. On purely

empirical grounds, it appears that weakfish growth exhibitsoaglinear component (see
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Figure 4), although von Bertalanffy growth heeendocumentedn the pas{NEFSC 2009).

This is likely a reflection of sampling bias, as weakfish-leggth data came from multiple
states over multiple years, which is furthempounded by a protracted spawning season.
Similarly, diffuse agdength distributions exhibited by weakfish likely contributed to the
minimal improvement of measuremestror von Bertalanffy growth models over traditional
methods. However, fish specibsit are relatively longjved and whom exhibit less variation in
length-atage may be more inclined to incorporate ageing error during assessments of growth, as
ageing erromayplay a larger rain perceived growth trajectoried.ikewise, the von

Bertdanffy growth function assumes continuous growth, yet age is often recorded in discrete
time. While this shortcoming is not upie to weakfish, it maytroduce some biaato

parameter estimatesut this aspect is beyond the scope of the current study.

Adjustment for measurement error during model fitting is imperative, as growth models
are often used to assess the relative effects of environmental factors on size (Jiao et al. 2010). By
using a Bayesian EIV approach, the correlation between growteremmdnmental stochasticity
can be discerned by removing the degrading effects of ageing error on the underhlamgtye
relationship. This becomes increasingly pertinent as more and more management agencies take a
holistic approach to the conservatwincommercial and recreational fisheries, with need to
determine driving factors behind spatiotemporal trends in fish growth and productivity.

Similarly, perrecruit models and the biological reference points derived from these methods are
highly suscepble to variations in growth caused by ageing error (Tyler et al. 1989), which could
potentially cause overexploitation of commercially viable fish stocks and eventually lead to

fishery collapse. Bayesian EIV models, then, provide a comprehensive ahteffexmework
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upon which measurement error in observed ages can be quantified and adjusted for during model

fitting, so that more accurate descriptions of growth can be used in fisheries stock assessments.
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Legends of figures

Figure 1-1: Age-bias plot for weakfisiCynosicon regalisising otolithestimated and scale
estimated ages obtained from Wenner and Gregory (2000nbaks correspond to sample size.
Dotted line indicates 1:1 agreement between otetitld scaleestimated age.

Figure 1-2: Percent agreement between otelahd scaleestimated ages as a function of otalith
estimated age for weakfisEynoscion regalis Only ages &b were used for comparison due to
limited sample size of older individuals (see Figure 1). Dotted line indicates general trend.

Figure 1-3: Scatterplot of realized and predicted discrepancies used in calciBatyegian
posterior predictivg-values for models MM5. Solid line indicates zero difference between
the discrepancy statistic evaluated at the obseamddeplicated data.

Figure 1-4: von Bertalanffy growth curves using a) otolgktimated and b) scaéstimated
ages. Solidihes correspond to mediaalues of lengtiat-age from traditional von Bertalanffy
growth models, whereas dashed sim®rresponto median values of lengtht-age fromgrowth
curves considering ageing uncertainfjhe lightshaded regions correspond &8 prediction
intervals for traditional von Bertalanffy growth models, whereas the stzakled regions
correspond to 95% prediction intervals for growth models considering ageing uncertainty.
Circles correspond to observed data.

Figure 1-5: Marginal postdor distributions of the traditional (MM2) and measurement error
(M3-M5) von Bertalanffy growth curve parameters: (8) (b) k; (c)t; (1d) amdd. Mle) 0
solid line; M2, smaldashed line; M3, dotted line; M4, dottddshed line; and M5, largiashed

line.

Legends of tables

Table 1-1: Summary of weakfisiCynoscion regalisgelength data used in constructing
traditionaland measurement error von Bertalanffy growth models (Wenner and Gregory 2000).

Table 1-2: Parameter estimates from von Bdahffy (VBGF) and measurement error von
Bertalanffy (MEVB) growth models using otoli#gstimated and scakstimated ages (i.e. M1
M4); including posterior mean and standard deviation (S.D.).

Table 1-3: Model comparison of traditional (VBGF) and measugetrerror (MEVB) von
Bertalanffy growth models using posterior predicivealues and deviance information criterion
(DIC). Seematerials andnethods section for descripti®af posited modelsOis theposterior
mean of the deviance and pD is thizefive number of parameters.
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Appendix

Table 1-1

1989 1992 1995 1996 Total

New York 0 0 114 0 114
Delaware 0 0 1139 150 1289

Maryland 0 0 0 95 95

Virginia 83 74 0 0 157

North Carolina 0 0 142 521 663
Total 83 74 1395 766 2318
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Table 1-2

Otolith Scale

Model Parameters Prior Mean SD Mean SD

VBGF Lp U(300,1200) 1177.780 21.982 1179.558 19.132
k u(0,1) 0.068 0.002 0.076 0.002
to U(-3,1) -2.347 0.054 -2.116 0.045
v U(0.0001,10) 0.190 0.003 0.180 0.003

MEVB Lo U(300,1200) 1187.649 11.840 1187.139 12.671
k u(0,1) 0.062 0.001 0.068 0.001
to U(-3,1) -2.596 0.053 -2.359 0.047
vy U(0.0001,10) 0.153 0.004 0.142 0.003
Ca U(0.0001,10) 0.275 0.010 0.281 0.010
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Table 1-3

Scenario Data Model p-value (0] pD DIC
M1 Otolith VBGF 0.05 25662 3 25665
M3 MEVB 031 24813 2112 26935
M2 Scale VBGF 0.04 25419 3 25421
M4 MEVB 0.43 24145 2136 26281
M5 Otolith & Scale MEVB 0.35 28651 2107 30759
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Figure 1-3
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