
 

 The Effects of Ageing Error on Stock Assessment for Weakfish Cynoscion regalis 

 

Joshua Michael Hatch 

 

Thesis submitted to the faculty of the Virginia Polytechnic Institute and State 

University in partial fulfillment of the requirements for the degree of 

 

 

Master of Science 

In 

Fisheries and Wildlife 

 

 

Yan Jiao, Chair 

Donald J. Orth 

Eric P. Smith 

Robert O'Reilly 

 

 

12/18/2012 

Blacksburg, Virginia 

 

Keywords: Ageing error, Weakfish, Bayesian, Statistical catch-at-age, Simulation 

 

 

 

Copyright© 2012, Joshua Hatch 



 

The Effects of Ageing Error on Stock Assessment for Weakfish Cynoscion regalis 

 

Joshua Michael Hatch 

 

Abstract 

 Inherent uncertainties in the stock assessment for weakfish have precluded accurate and 

consistent advice concerning the management of commercial and recreational fisheries.  Error 

within ageing techniques, used to assess relative age frequencies within commercial and 

recreational harvest, has been cited as a potential source for uncertainty during assessments of 

the weakfish fishery.  The implications for age-reading error on weakfish stock assessment were 

explored using measurement-error growth models (i.e. Chapter 1), ageing error matrices within a 

statistical catch-at-age framework (i.e. Chapter 2), and  Monte Carlo simulations to gauge 

robustness of ignoring this type of uncertainty during fisheries stock assessment (i.e. Chapter 3).  

Measurement-error growth models typically resulted in weakfish that grew to reach larger sizes, 

but at slower rates, with median length-at-age being overestimated by traditional von Bertalanffy 

growth curves, at least for the observed age range.  Measurement-error growth models allow for 

incorporation of ageing uncertainty during nonlinear growth curve estimation, as well as the 

ability to estimate the ageing error variance.  Age-reading error was further considered during 

statistical catch-at-age analysis of the weakfish fishery, mainly through permutations of true 

catch-at-age via ageing error matrices constructed from estimates of the ageing error variance, 

thus reflecting changes in relative age compositions as a consequence of ageing uncertainty.  As 

a result, absolute levels of key population parameters were influenced, but general trends in those 

parameters tended to be similar, with strong congruency across models as to weakfish stock 

dynamics in most recent years.  Finally, Monte Carlo simulations showed that implications for 

age-reading error on weakfish stock assessment are varied, depending upon the direction and 
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magnitude of the ageing uncertainty.  However, relative trends of parameter estimates over time 

tended to be similar, resulting in proper allocation of weakfish stock status, regardless of the type 

of ageing error considered.  Furthermore, assuming negligible ageing uncertainty within fishery-

independent surveys appears reasonable, as simulations incorporating ageing error within indices 

of relative abundance showed similar patterns to situations that only considered observation 

noise. 
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Preface 

 

 ñthe most valuable information obtained from sampled catch, at least for 

temperate waters, is age.ò   

-Hilborn and Walters (1992) 

 

The recursive collapse of commercial fisheries is ubiquitous in freshwater and marine 

environments (Pauly et al. 2002); with causes being attributed to overcapitalization, scientific 

uncertainty, and intricate ecosystem structure (Ludwig et al. 1993).  Historically, optimum 

fishing levels were determined by trial and error (Ludwig et al. 1993), with ecosystem effects of 

overexploitation being confounded by functional redundancy in complex aquatic food webs 

(Myers et al. 2007).  The sustained decline of marine fish stocks has since prompted novel 

approaches to fisheries management including marine protected areas (MPAs), catch shares (i.e. 

Individual Transferable Quotas), conservative biological targets, and ecosystem-based incentives 

(Weeks and Berkeley 2000; Pauly et al. 2002; Latour et al. 2003; Costello et al. 2008).  

Concurrently, the impact of uncertainty in fisheries stock assessment has led to the development 

of biologically risk-averse practices that account for scientific ambiguity regarding fish stock 

status and/or alternative management approaches (Jiao et al. 2005; Shertzer et al. 2008). 

 In the U.S., fishery status is largely determined by harvest control rules, which compare 

indicator reference points with target reference points established by managers (Jiao et al. 2009).  

Harvest control rules can incorporate multiple biological reference points elicited from risk 

analysis and/or fisheries stock assessment (Jiao et al. 2010).  Jiao et al. (2005) suggests choosing 

an appropriate level of risk tolerance and evaluating alternative management strategies through 
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risk analysis, instead of setting reference points based on inappropriate assumptions (e.g. F0.1 or 

FMSY).  For example, Patterson (1992) found that the exploitation rate of F0.1 may be too high for 

most fish populations (Hilborn 2002).  By using risk analysis, uncertainty surrounding the status 

of a fish stock can be explicitly incorporated into scientific advice concerning the management of 

commercial and/or recreational fisheries (Jiao et al. 2010).   

 Uncertainties in fisheries stock assessment can be allocated into five categories based on 

respective origin and include measurement error, process error, model error, estimation error, 

and implementation error (Rosenberg and Retrespo 1994).  Of particular concern is the influence 

of measurement error on fisheries stock assessment performance (i.e. accuracy and precision).  

Measurement error or uncertainty occurs when data used to fit a stock assessment model are 

measured with error (e.g. age), which can be further compounded by observation uncertainty in 

the misreporting of landed catch.  Chen (2003) and Chen et al. (2003) indicated that the quality 

and quantity of data used to fit a model can negatively affect the stock assessment process, 

leading to biased estimates of vital and/or auxiliary parameters.  This could potentially lead to 

flawed scientific advice and mismanagement of a fishery, resulting in overexploitation of a fish 

stock or loss of harvest opportunities by fishers (Chen 2003; Jiao et al. 2010). 

The application of mathematical models to the assessment of fish populations requires 

parameters to be estimated from observed data.  In age-structured analyses, parameters are 

approximated by some form of age-dependent estimation procedure (e.g. virtual population 

analysis).  The typical input required by these methods is a catch-at-age matrix, which includes 

catch by age for each year of the fishery to be covered by the assessment (Panfili et al. 2002).  

Compilation of catch-at-age data is rather intensive and requires the assignment of age to total 

catch based on sampled age proportions (i.e. age-length key).  Furthermore, age-length keys are 
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used to construct age-structured indices of catch-per-unit-effort (CPUE), stock weights-at-age 

and maturity at age (Reeves 2003; Bertignac and Pontual 2007).  If estimates of age are biased, 

then subsequent biological reference points will be skewed (Shepherd 1982), consequently 

influencing management decisions.  Our ability to assess and correct for age-reading error 

becomes pertinent, as harvest control roles that do not incorporate uncertainty may  lead to the 

overexploitation of fish stocks (Jiao et al. 2010).   

Campana (2001) delineates ageing error into two respective sources, including process 

and/or interpretation error.  Process error is the inability of an ageing structure to accurately 

record growth sequence information (Campana 2001).  In other words, it is the inability of 

ageing structures to form interpretable patterns of growth that correspond to the true age of the 

fish (Maceina et al. 2007).  Process error tends to be biased, leading to consistent over- or under-

estimation of age by readers.  On the other hand, interpretation error is the subjective assignment 

of age to individual fish based on presumed annular or daily increments (Campana 2001).  

Interpretation error can be either random or biased, depending upon the complexity of the ageing 

structure or the inability of the reader to accurately discern annual or daily growth rings.  In 

general, process error is assumed to be negligible in the production ageing process undertaken 

for fisheries stock assessment.  This is because age validation is a key consideration in the 

development of any successful ageing program (Campana 2001).  Regrettably, use of a validated 

technique does not guarantee accurate or reliable age estimates, as subjectivity is always inherent 

in the ageing of fishes (Buckmeier 2002).  

Systematic errors (i.e. bias) in the fish ageing process primarily arise from within and 

among reader variability (Kimura and Lyons 1991; Buckmeier 2002).  This variation can be 

attributed to the utilization of different preparation methods by ageing laboratories (Morison et 
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al. 2005) or to the unreliability of readers to precisely or accurately estimate age (Kimura and 

Lyons 1991; Buckmeier 2002).  Assessing the consistency of readers has gained much attention 

in the scientific literature, with various indices of precision being proposed to ensure consistent 

age interpretation (Beamish and Fournier 1981; Chang 1982; Campana et al. 1995; Campana 

2001).  Furthermore, quality control programs have been enacted to detect and correct for reader 

drift in the production ageing process (Morison et al. 1998), although the ability to fully 

attenuate age-reading error is impractical and investigating potential effects in a fisheries 

management context are vital. 

The most recent assessment of the weakfish stock used an age-structured model 

(ADAPT-VPA) approved by the Stock Assessment Review Committee (SARC) to explore 

historical trends in abundance and fishing pressure.  Initial results demonstrated a severe 

retrospective bias in estimates of fishing mortality (F) and spawning stock biomass (SSB), 

possibly due to insufficient data.  The Weakfish Technical Committee (WTC) concluded that the 

model was overestimating SSB and underestimating F in recent years, citing high uncertainty in 

parameter estimates and instability of results (ASMFC 2009).  The WTC recognized two 

potential causes for the unreliable stock assessment: 1) poor biological sampling of commercial 

and recreational catch and discard and 2) unrealistic assumptions of the age-structured model 

(i.e. catch-at-age matrix is error-free) (NEFSC 2009).  This thesis, over three chapters, addresses 

the concern of ageing error within catch-at-age data and explores the influence of ageing 

uncertainty during fisheries stock assessment for weakfish by: 1) incorporating and quantifying 

ageing error during nonlinear growth curve analysis, 2) exploring the use of ageing error 

matrices within a statistical catch-at-age framework and 3) simulating the potential effects of 

ageing error during fisheries stock assessment. 
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Chapter 1: Bayesian errors-in-variables approach to incorporate ageing uncertainty 

during nonlinear growth curve estimation for weakfish Cynoscion regalis 

 

Abstract 

 

 Inferring growth for aquatic species is dependent upon accurate descriptions of age-length 

relationships, which may be degraded by measurement error in age estimates.  Ageing error 

arises from biased and/or imprecise age determinations as a consequence of misinterpretation by 

readers or inability of ageing structures to accurately reflect true age.  A Bayesian errors-in-

variables (EIV) approach (i.e. measurement-error modeling) can account for ageing uncertainty 

during nonlinear growth curve estimation by allowing observed ages to be parametrically 

modeled as random deviates.  Information on the latent age composition then comes from the 

specified prior distribution, which represents the true age structure of the sampled fish 

population.  In this study, weakfish growth was modeled by means of traditional and 

measurement-error von Bertalanffy growth curves using otolith- and/or scale-estimated ages.  

Age determinations were assumed to be log-normally distributed, thereby incorporating 

multiplicative error with respect to ageing uncertainty.  The prior distribution for true age was 

assumed to be uniformly distributed between ±4 of the observed age for each individual.  

Measurement-error growth models resulted in weakfish that grew to reach larger sizes, but at 

slower rates, with median length-at-age being overestimated by traditional growth curves for the 

observed age range.  In addition, measurement-error models produced slightly narrower credible 

intervals for parameters of the von Bertalanffy growth function, which may be an artifact of the 

specified prior distributions.  Subjectivity is always apparent in the ageing of fishes and it is 

recommended that measurement-error growth models be used in conjunction with otolith-
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estimated ages to accurately capture the age-length relationship that is subsequently used in 

fisheries stock assessment and management for weakfish. 

1.  Introduction  

 

 Effects of measurement error in solving nonlinear models have been well documented 

(Carroll et al. 2006), causing bias in parameter estimates (Solow 1998; Jiao et al. 2006; Biggs et 

al. 2009; Heery and Berkson 2009), confounding relationships among covariates (Walters and 

Ludwig 1981; Gustafson 2003), and exaggerating model selection uncertainty (Punt et al. 2008; 

Biggs et al. 2009).  Of particular concern is the role observation error plays in nonlinear growth 

curve estimation, as age-length relationships play a key role in eliciting biological reference 

points from age-structured stock assessment models.  While several methods have been 

constructed to account for gear selectivity and variable length-at-age in fitting nonlinear growth 

curves (Sainsbury 1980; Pilling et al. 2002; Taylor et al. 2005; He and Bence 2007; Alós et al. 

2010; Jiao et al. 2010), relatively few approaches have been developed to incorporate ageing 

error when inferring growth for aquatic species (Kimura 2000; Cope and Punt 2007; Schwarz 

and Runge 2009). 

 Ageing error is largely determined through multiple age reads of the same individual, 

with relative bias and imprecision being evaluated graphically through age-bias plots and/or 

various age-discrimination statistics (Chang 1982; Campana et al. 1995; Campana 2001).  If age 

validation data are available, then known biases can be corrected for during the model fitting 

process by calibrating observed ages to reflect true age estimates (Schwarz and Runge 2009).  

Unfortunately, the majority of age-length data sets used in fisheries stock assessment comprise a 

single age and length measurement per individual with true age being unknown (Cope and Punt 

2007; Punt et al. 2008).  A single age read per individual complicates the parameter estimation 
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procedure, as traditional methods for correcting age misclassification require an estimate of the 

ageing error variance, necessitating multiple age reads per individual and/or that observed ages 

are randomly distributed around the latent variable of true age (Cook and Stefanski 1994; Cope 

and Punt 2007; Punt et al. 2008).  As a consequence, most growth investigations assume ageing 

error is negligible or relatively non-influential, with respect to process noise, in describing the 

age-length relationship (Pondella et al. 2001; Harris et al. 2007).  Ignoring ageing error may be 

an unreasonable approach, as conventional methods tend to underestimate the uncertainty in 

parameter values, with respect to error in both the dependent and independent variables, leading 

to overconfidence in the description of growth and subsequent management decisions derived 

from growth curve analyses (Clark 1991).   

 Fisheries scientists have long recognized that most independent variables necessary for 

stock assessment are measured with non-negligible uncertainty, although most attention has been 

spent on estimating the degree of bias in parameter estimates instead of attenuating error through 

increased model complexity (Hilborn and Walters 1992).  Recent advances in computational 

techniques have led to increased utilization of measurement-error models that allow for 

uncertainty in both the dependent and independent variables (Clark 2005; Jiao et al. 2006), 

although it is still necessary to understand the tradeoffs between model articulation and 

descriptive accuracy (Costanza and Sklar 1985; Clark 2005; Biggs et al. 2009).  A Bayesian 

approach allows for stochasticity at multiple levels within a hierarchically structured framework 

for nonlinear regression, with presumed understanding of the independent variableôs distribution 

(i.e. true age) coming from the specified prior (Clark 2007).  Hence, Bayesian errors-in-variables 

(i.e. measurement-error) models allow for the fitting of nonlinear growth curves when the ageing 
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error distribution is unknown or inestimable using contemporary methods (i.e. one age read per 

individual).   

 Variability in age estimates for individual fish could be a consequence of 

misinterpretation by readers of ageing structures (e.g. scales and otoliths) or inability of ageing 

structures to accurately record growth sequence information (Neilson 1992; Campana 2001).  

While most calcified structures have the potential to provide accurate estimates of age (Campana 

2001), subjectivity is always apparent in the production ageing process undertaken for fisheries 

stock assessment (Kimura and Lyons 1991; Heifetz et al. 1998; Morison et al. 1998; Buckmeier 

2002).  Two of the most commonly used hard parts in the assignment of age to individual fish 

include otoliths and scales (Hilborn and Walters 1992), with the general understanding that 

otoliths provide more accurate and precise age estimates compared to scale-estimated ages 

(Lowerre-Barbieri et al. 1995; Maceina et al. 2007).  However, various sources of error still 

confound the assignment of age to individual fish for otolith-estimated ages (Neilson 1992; 

Pepin et al. 2001) and incorporation of measurement error into nonlinear growth curve analysis 

is still prudent. 

 Weakfish Cynoscion regalis are a marine finfish found along the eastern coast of the 

United States, ranging from Massachusetts to Florida (Shepherd and Grimes 1983).  Historically, 

weakfish have supported important commercial and recreational fisheries along the Northwest 

Atlantic (Nye et al. 2008), with recent landings in the commercial sector being relegated to 

bycatch.  While several studies have investigated the age and growth of weakfish at various 

spatial and temporal scales (Seagraves 1981; Shepherd and Grimes 1983; Hawkins 1988; Villoso 

1989; Lowerre-Barbieri et al. 1995), effects of ageing error on describing the age-length 

relationship are largely unknown (NEFSC 2009).  The goal of this study was to evaluate and 
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compare traditional and measurement-error growth models for weakfish Cynoscion regalis using 

otolith- and/or scale-estimated ages incorporating unbiased ageing error.  Length-at-age was 

calculated using the von Bertlanffy growth equation assuming a multiplicative error structure.  

Growth models considering ageing uncertainty allowed observed ages to follow a log-normal 

distribution, with the prior for true age being uniformly distributed between ±4 of the determined 

age for each individual.  A Bayesian estimator was used to solve the aforementioned traditional 

and measurement-error von Bertalanffy growth curves.    

2.  Materials and methods 

 

2.1 - Data 

 

 Age-length data for weakfish Cynoscion regalis were obtained from Wenner and Gregory 

(2000), with age for the same individual being estimated from sagittal otolith and scale readings.  

The otolith-scale age comparison database comprised 2,318 weakfish caught intermittently from 

five states (i.e. New York, Delaware, Maryland, Virginia, and North Carolina) for years 1989, 

1992, 1995, and 1996 (Table 1).  Individuals were pooled across states and years to fit von 

Bertalanffy and measurement-error von Bertalanffy growth curves using otolith- and/or scale-

estimated ages.  An age-bias plot (Figure 1) indicated ageing uncertainty for weakfish, with scale 

readings tending toward younger age estimates compared to otolith-estimated ages.  Also, 

percent agreement between ageing structures declined with age, suggesting error in the ability of 

readers to consistently discern age for older fish (i.e. multiplicative ageing uncertainty) (Figure 

2). 

 The weakfish age-length dataset was characterized by a lack of older, larger-sized 

individuals compared to the most recent investigation of age and growth (Lowerre-Barbieri et al. 
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1995).  Changes in weakfish age- and size-structure are most likely a culmination of several 

factors, including: residual effects of excessive fishing mortality (NEFSC 2009), gear selectivity, 

and seasonal variation in spatial distribution as a result of differential migration by size 

(Lowerre-Barbieri et al. 1995).  In order to avoid inflated estimates of asymptotic length (LÐ), 

and consequent underestimation of the Brody growth coefficient (k), posterior values for LÐ were 

bounded by the specified prior distribution.   

2.2 - Nonlinear growth models 

 

 The von Bertalanffy growth function has a long history in fisheries science and has been 

used extensively to describe fish growth (i.e. length and weight) as a function of age (Haddon 

2001).  Despite criticisms (Roff 1980), the von Bertalanffy growth curve has been advocated as 

an appropriate growth model because of its ability to capture observed trends between length and 

age for a variety of fish species (Chen et al. 1992).  Weakfish growth is currently modeled using 

a von Bertalanffy growth function that can be written as 

 

(1)  ὒ ὒ ρ Ὡ ȟ ɇὩ  

 

where Li is the length-at-age for the ith individual, LÐ is the asymptotic length, k is the Brody 

growth coefficient, to is the hypothetical length at age-0, and ὸȟ is the observed age for the ith 

individual using the jth ageing structure.  Error Ůi is assumed to be independent and normally 

distributed with mean 0 and variance „ . 

 Extending the von Bertalanffy growth model to incorporate measurement error is 

relatively straight forward, and can be written as 
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(2)  ὒ ὒ ρ Ὡ ɇὩ  

 ὸȟ ὸɇὩȟ 

 

where ti is the true age for the ith individual.  The logarithm of observed age loge(ὸȟ) is assumed 

to be independent and normally distributed with mean loge(ti) and variance „ȟ.  In order to 

facilitate the use of a log-normal distribution for observed ages, a small constant (i.e. 10E-05) 

was added to age-0 individuals during model fitting.   

2.3 - Statistical estimator 

 

 A Bayesian estimator was used to construct the joint posterior probability distribution for 

parameters in the von Bertalanffy and measurement-error von Bertalanffy growth curves.  The 

full conditional distribution for the traditional von Bertalanffy growth model follows that  

 

(3)        ὴὒȟὯȟὸȟ„ȿ ὒ  θБ flὒ ȿ ὒȟὯȟὸȟ„  

                                                        “„ “ὒ “Ὧ“ὸ  

While the full conditional distribution for the measurement-error von Bertalanffy growth model 

follows that 

 

(4)  ὴὒȟὯȟὸȟ„ȟ„ ȟὸȿ ὒ  θ Б Б flὒ ȿ ὒȟὯȟὸȟ„ȟὸflὸȟ ȿ ὸȟ„ȟ   

                                                                  “„ “„ȟ“ὒ “Ὧ“ὸ“ὸ  
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where ὴɇ denotes the posterior probability, flɇ denotes the likelihood function, and “ɇ 

denotes the prior distribution.     

 As shown in equation 4, observed lengths (Li) are conditionally independent of observed 

ages (tôi,j), with the majority of information about true age (ti) coming from the prior, as well as 

feedback from both likelihood functions on the posterior.  At least for fish, length can be 

considered a loose proxy for age, and it is commonly assumed that lengths are weakly 

informative of ages (e.g. age-length keys).  Essentially, measurement-error growth models work 

to pull observations closer to the median of length-at-age, suggesting the need for an informative 

prior on true age for species that exhibit an asymptotic length early in life, relative to the 

maximum age, or have diffuse age-length distributions.  Otherwise, issues with identifiability 

will prevent effective estimation of variance parameters, resulting in non-convergence and/or 

poor mixing of Markov chains.  If an informative prior on true age is unjustifiable, then multiple 

age determinations will be necessary to estimate ageing-error variance(s) or a reference 

collection will be required, in which true age for a set of individuals is known, so that validation 

data can help calibrate the model during estimation.   

 Prior distributions were constructed around historic estimates of weakfish growth, 

thereby encompassing biological relevancy (Seagraves 1981; Shepherd and Grimes 1983; 

Hawkins 1988; Villoso 1989; Lowerre-Barbieri et al. 1995) (Table 2).  Age validation data were 

unavailable and consequently the latent variable of true age was assumed to follow a uniform 

distribution, with lower and upper bounds being defined by ±4 of the observed age for each 

individual, as the largest difference between otolith- and scale-estimated age was 3 years (Table 

3).  Truncation of the joint posterior distribution for LÐ and k was expected, as specified priors 

were used to constrain posterior draws to biologically reasonable values.  The age-length data for 
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weakfish fail to accurately capture the asymptotic length, leading to unrealistic estimates that are 

based on extrapolation of the age-length trend (Knight 1968).  A summary of prior distributions 

and parameter estimates can be found in Table 2. 

 All models were run with three Markov chains for 100,000 simulations per chain using 

the software packages WinBUGS version 1.4.3 and R version 2.13.1.  Convergence of the 

Markov chains to the stationary distribution was determined by monitoring trace plots and 

computing Gelman and Rubin diagnostics.  The first 50,000 iterations from each chain were 

discarded to allow for adequate burn-in and a thinning interval of 5 was used to reduce 

autocorrelation among iterative samples and improve computational efficiency.  A total number 

of 30,000 iterations were used to summarize the posterior distribution for each model. 

2.4 - Model selection criteria 

 

 Growth is a vital component in discerning the population dynamics of fishes and 

modeling age-length relationships requires the ability to effectively compare and discriminate 

among alternative hypotheses that represent biological realism.  In this study, model checking 

and discrimination were conducted using posterior predictive p-values and deviance information 

criterion (DIC), respectively.  While DIC has the potential to identify correct model structure for 

catch-at-age analyses (Wilberg and Bence 2008), its ability to select preferred models in an 

errors-in-variables context is less clear (Spiegelhalter et al. 2002; Celeux et al. 2006).  To 

circumvent this issue, posterior predictive model checks and model discrimination statistics were 

used in an effort to corroborate anecdotal beliefs regarding the applicability of measurement-

error models during nonlinear growth curve analyses. 

2.4.1 - Posterior predictive p-values 
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 Posterior predictive p-values were used to conduct posterior predictive model checks in 

evaluating the ability of posited models to replicate data similar to that observed.  Generally, a 

discrepancy statistic is used to assess model goodness-of-fit based on observed data and the 

posterior predictive distribution, where the posterior predictive distribution is defined as 

 

(5) ὴώ ȿώ ὴ᷿ώ ȿ—ὴ—ȿώὨ—  

 

where p(y
rep
|ɗ) is the data distribution for replicated observations y

rep
 and p(ɗ|y) is the posterior 

distribution for the unknown parameter vector ɗ given the observed data y.  The discrepancy 

measure utilized in this study was the Bayesian residual sum of squares (Gelman et al. 1996), 

which can be written as 

 

(6) … ώȠ— В
ȿ

ȿ
  

 

where E(Ā) is the expectation, Var(Ā) is the variance, and yi is the ith observation of the data y or 

simulated data y
rep

.  The posterior predictive p-value, then, is simply the proportion of times 

ɢ
2
(y

rep
; ɗ) Ó ɢ

2
(y; ɗ).  The closer the posterior predictive p-value is to 0.50, the more adequate the 

model is at replicating data similar to that observed.   

2.4.2 - Deviance information criterion 

 

 Deviance information criterion was used to compare model goodness-of-fit, as 

measurement-error models are hierarchically structured and the number of parameters is difficult 

to enumerate (Spiegelhalter et al. 2002; Ward 2008; Wilberg and Bence 2008).  Like other 
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information-theoretic approaches, DIC penalizes overparamaterization and descriptive accuracy 

in order to select effective models with high explanatory power.  DIC can be written as 

 

(7)    ὈὍὅ Ὀ ὴ  

  ὴ  Ὀ Ὀ—Ӷ 

 Ὀɇ ςÌÏÇ flώȿ—  

 

where Ὀɇ is the deviance defined as -2 times the log-likelihood of the data y given the 

unknown parameter vector ɗ, Ὀ is the posterior mean of the deviance, Ὀ—Ӷ is the deviance 

evaluated at the posterior mean of ɗ, and pD is the effective number of parameters in the 

Bayesian model as formulated by Spiegelhalter et al. (2002).  While Celeux et al. (2006) 

recommend alternatives to this definition of DIC for missing-data models, of which errors-in-

variables regression is a subset; our approach is to use the most commonly encountered form 

within fisheries science.  Given that the observed outcomes (i.e. length) are conditioned on the 

missing data (i.e. true age), the default calculation of DIC by WinBUGS is appropriate. 

3.  Results 

 

3.1 - Model discrimination 

 

 According to the DIC statistic, traditional von Bertalanffy growth curves outperformed 

measurement-error growth models for both otolith- and scale-estimated ages (Table 3).  

Alternatively, posterior predictive p-values for measurement-error growth curves were 

substantially closer to 0.50 (Table 3 and Figure 3), suggesting improved adequacy of errors-in-

variables models to reflect observed trends in the age-length relationship for weakfish.  
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However, all growth curves considered in this study had posterior predictive p-values < 0.50, 

possibly suggesting underparameterization in the ability of formulated models to partition the 

overall variance to its respective sources (i.e. variability in age or length).  Nonetheless, 

predictive approaches to model comparison may be beneficial for errors-in-variables regression, 

as the utility of information-theoretic-based methods for measurement-error model selection are 

still circumstantial (Jiao et al. 2009).  

3.2 - von Bertalanffy growth curve parameters 

 

 Growth models considering ageing error resulted in higher posterior mean values for LÐ 

and to (Table 2 and Figures 5a and 5c), while producing lower posterior mean values for k and ůL 

(Table 2 and Figures 5b and 5c).  As a consequence, measurement-error models demonstrated 

growth patterns where weakfish grew to reach larger sizes, but at slower rates, with traditional 

von Bertalanffy growth curves overestimating median length-at-age for the observed age range 

(Figure 4).  In addition, 95% prediction intervals were wider for traditional von Bertalanffy 

growth models, compared to their measurement-error analogs (Figure 4).  The growth curve 

incorporating ageing uncertainty, while simultaneously considering otolith- and scale-estimated 

ages (M5), produced comparable posterior mean values of 1189.599 for LÐ, 0.063 for k, and -

2.526 for to.  However, using M5 resulted in higher posterior mean values of 0.357 and 0.565 for 

the ageing-error standard deviation (ůA), regarding otolith- and scale-estimated ages respectively, 

and a lower posterior mean value of 0.140 for the standard deviation in predicted lengths (ůL) 

(Figure 5).  Generally, measurement-error growth models produced slightly narrower credible 

intervals for parameters of the von Bertalanffy growth function, with less difference between 

posterior mean values for biologically relevant parameter estimates using different ageing 

structures or a combination thereof (Table 2 and Figure 5).  
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4.  Discussion 

 

 Conceptually, the errors-in-variables approach is trying to correct the misallocation of 

younger, smaller-sized individuals to older age classes and older, larger-sized individuals to 

younger age classes, resulting in higher estimates for LÐ and lower estimates for k.  While the 

biological association between maximum size and growth rate may be plausible for weakfish, it 

is most likely a consequence of the von Bertalanffy growth equation imposing a negative 

correlation between LÐ and k, which is further confounded by diffuse length-at-age distributions 

(Schwarz and Runge 2009).  Similarly, narrower credible intervals for measurement-error 

models are most likely an artifact of prior constraints on posterior values, so as to coerce 

biologically meaningful patterns for weakfish growth.  Typically, Bayesian errors-in-variables 

regression can better approximate uncertainty in parameter estimates, with respect to variation in 

both the response (i.e. length) and predictor (i.e. age) (Carroll et al. 2006).  In this instance, 

credible intervals for posterior estimates of LÐ and k are lessened, as estimators consistently 

propose values for LÐ near the upper boundary of the prior, reflecting perceived increases in 

asymptotic size as a consequence of incorporating ageing error during nonlinear growth curve 

analysis. 

 Measurement-error growth models can account for variability in age determinations, but 

may overestimate the variability in predicted lengths if multiple age reads per individual are 

unavailable.  Calibration data allows the errors-in-variables approach to draw on information 

from multiple age reads to estimate and adjust for measurement error.  Consequently, variance in 

predicted lengths appears to be overestimated if ageing error is not considered when fitting 

nonlinear growth curves, as the model is using discrepancies associated with age to amplify 

variability in predicted lengths (Figure 4).  That being said, using repeated measures of age via 
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different ageing structures to calibrate the measurement-error growth model assumes that both 

hard parts are unbiased estimators and multiple age reads will provide information on the true 

age for each individual.  If multiple age reads are in any way biased or correlated, measurement-

error growth curves will be unable to attenuate ageing error without validation data (i.e. 

reference collection), in which age for a subset of individuals is known (Punt et al. 2008).  As 

such, it is recommended that otolith-estimated ages be used in conjunction with measurement-

error growth models for weakfish, as scales tend to negatively bias age estimates (Lowerre-

Barbieri et al. 1994).  Moreover, scale-estimated ages were treated as unbiased during model 

fitting, which may have contributed to the large discrepancy between estimates for ůA across 

models considering one versus two age reads (i.e. M3-M4 vs. M5 in Figure 5e).   

 The Bayesian errors-in-variables (EIV) approach avoids several issues associated with 

previous methods to account for measurement error in age estimates during nonlinear growth 

curve estimation.  First, it avoids uncertainty in the specification of an error variance ratio 

necessary for errors-in-variables functional regression as proposed by Kimura (2000).  Second, 

the Bayesian EIV approach allows for greater flexibility in modeling ageing uncertainty and can 

alleviate issues with calculating a coefficient of variation for ageing error when age-length data 

only constitute a single age read per individual (Cope and Punt 2007).  Finally, estimation of 

growth curve parameters, while simultaneously considering measurement error, may improve 

model goodness-of-fit compared to the external, prior adjustment of observed ages before 

estimating regression coefficients (Spiegelhalter et al. 1996; Schwarz and Runge 2009). 

 While the main focus of this study was to investigate the contributions of age-reading 

error on weakfish growth, other sources of variability and bias need to be addressed.  On purely 

empirical grounds, it appears that weakfish growth exhibits a strong linear component (see 
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Figure 4), although von Bertalanffy growth has been documented in the past (NEFSC 2009).  

This is likely a reflection of sampling bias, as weakfish age-length data came from multiple 

states over multiple years, which is further compounded by a protracted spawning season.  

Similarly, diffuse age-length distributions exhibited by weakfish likely contributed to the 

minimal improvement of measurement-error von Bertalanffy growth models over traditional 

methods.  However, fish species that are relatively long-lived and whom exhibit less variation in 

length-at-age may be more inclined to incorporate ageing error during assessments of growth, as 

ageing error may play a larger role in perceived growth trajectories.  Likewise, the von 

Bertalanffy growth function assumes continuous growth, yet age is often recorded in discrete 

time.  While this shortcoming is not unique to weakfish, it may introduce some bias into 

parameter estimates, but this aspect is beyond the scope of the current study. 

 Adjustment for measurement error during model fitting is imperative, as growth models 

are often used to assess the relative effects of environmental factors on size (Jiao et al. 2010).  By 

using a Bayesian EIV approach, the correlation between growth and environmental stochasticity 

can be discerned by removing the degrading effects of ageing error on the underlying age-length 

relationship.  This becomes increasingly pertinent as more and more management agencies take a 

holistic approach to the conservation of commercial and recreational fisheries, with need to 

determine driving factors behind spatiotemporal trends in fish growth and productivity.  

Similarly, per-recruit models and the biological reference points derived from these methods are 

highly susceptible to variations in growth caused by ageing error (Tyler et al. 1989), which could 

potentially cause overexploitation of commercially viable fish stocks and eventually lead to 

fishery collapse.  Bayesian EIV models, then, provide a comprehensive and flexible framework 
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upon which measurement error in observed ages can be quantified and adjusted for during model 

fitting, so that more accurate descriptions of growth can be used in fisheries stock assessments. 
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Legends of figures 

 

Figure 1-1: Age-bias plot for weakfish Cynosicon regalis using otolith-estimated and scale-

estimated ages obtained from Wenner and Gregory (2000).  Numbers correspond to sample size.  

Dotted line indicates 1:1 agreement between ototlith- and scale-estimated age. 

Figure 1-2: Percent agreement between otolith- and scale-estimated ages as a function of otolith-

estimated age for weakfish Cynoscion regalis.  Only ages 0-5 were used for comparison due to 

limited sample size of older individuals (see Figure 1).  Dotted line indicates general trend. 

Figure 1-3: Scatterplot of realized and predicted discrepancies used in calculating Bayesian 

posterior predictive p-values for models M1-M5.  Solid line indicates zero difference between 

the discrepancy statistic evaluated at the observed and replicated data.   

 

Figure 1-4: von Bertalanffy growth curves using a) otolith-estimated and b) scale-estimated 

ages.  Solid lines correspond to median values of length-at-age from traditional von Bertalanffy 

growth models, whereas dashed lines correspond to median values of length-at-age from growth 

curves considering ageing uncertainty.  The light-shaded regions correspond to 95% prediction 

intervals for traditional von Bertalanffy growth models, whereas the dark-shaded regions 

correspond to 95% prediction intervals for growth models considering ageing uncertainty.  

Circles correspond to observed data. 

Figure 1-5: Marginal posterior distributions of the traditional (M1-M2) and measurement error 

(M3-M5) von Bertalanffy growth curve parameters: (a) LÐ; (b) k; (c) to; (d) ůL; and (e) ůA.  M1, 

solid line; M2, small-dashed line; M3, dotted line; M4, dotted-dashed line; and M5, large-dashed 

line.    

Legends of tables 

 

Table 1-1: Summary of weakfish Cynoscion regalis age-length data used in constructing 

traditional and measurement error von Bertalanffy growth models (Wenner and Gregory 2000). 

 

Table 1-2: Parameter estimates from von Bertalanffy (VBGF) and measurement error von 

Bertalanffy (MEVB) growth models using otolith-estimated and scale-estimated ages (i.e. M1-

M4); including posterior mean and standard deviation (S.D.). 

 

Table 1-3: Model comparison of traditional (VBGF) and measurement error (MEVB) von 

Bertalanffy growth models using posterior predictive p-values and deviance information criterion 

(DIC).  See materials and methods section for descriptions of posited models.  Ὀ is the posterior 

mean of the deviance and pD is the effective number of parameters.
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Appendix 

 

Table 1-1 

  1989 1992 1995 1996 Total 

New York 0 0 114 0 114 

Delaware 0 0 1139 150 1289 

Maryland 0 0 0 95 95 

Virginia 83 74 0 0 157 

North Carolina 0 0 142 521 663 

Total 83 74 1395 766 2318 
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Table 1-2 

 

    Otolith Scale 

Model Parameters Prior Mean SD Mean SD 

VBGF LÐ U(300,1200) 1177.780 21.982 1179.558 19.132 

 

k U(0,1) 0.068 0.002 0.076 0.002 

 

to U(-3,1) -2.347 0.054 -2.116 0.045 

 

ůL U(0.0001,10) 0.190 0.003 0.180 0.003 

MEVB LÐ U(300,1200) 1187.649 11.840 1187.139 12.671 

 

k U(0,1) 0.062 0.001 0.068 0.001 

 

to U(-3,1) -2.596 0.053 -2.359 0.047 

 

ůL U(0.0001,10) 0.153 0.004 0.142 0.003 

 

ůA U(0.0001,10) 0.275 0.010 0.281 0.010 
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Table 1-3 

Scenario Data Model p-value Ὀ pD DIC 

M1 Otolith VBGF 0.05 25662 3 25665 

M3 

 

MEVB 0.31 24813 2112 26935 

M2 Scale VBGF 0.04 25419 3 25421 

M4 

 

MEVB 0.43 24145 2136 26281 

M5 Otolith & Scale MEVB 0.35 28651 2107 30759 
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Figure 1-1 
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Figure 1-2 
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Figure 1-3 

 

 

 

 












































































































