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Abstract 

 Inherent uncertainties in the stock assessment for weakfish have precluded accurate and 

consistent advice concerning the management of commercial and recreational fisheries.  Error 

within ageing techniques, used to assess relative age frequencies within commercial and 

recreational harvest, has been cited as a potential source for uncertainty during assessments of 

the weakfish fishery.  The implications for age-reading error on weakfish stock assessment were 

explored using measurement-error growth models (i.e. Chapter 1), ageing error matrices within a 

statistical catch-at-age framework (i.e. Chapter 2), and  Monte Carlo simulations to gauge 

robustness of ignoring this type of uncertainty during fisheries stock assessment (i.e. Chapter 3).  

Measurement-error growth models typically resulted in weakfish that grew to reach larger sizes, 

but at slower rates, with median length-at-age being overestimated by traditional von Bertalanffy 

growth curves, at least for the observed age range.  Measurement-error growth models allow for 

incorporation of ageing uncertainty during nonlinear growth curve estimation, as well as the 

ability to estimate the ageing error variance.  Age-reading error was further considered during 

statistical catch-at-age analysis of the weakfish fishery, mainly through permutations of true 

catch-at-age via ageing error matrices constructed from estimates of the ageing error variance, 

thus reflecting changes in relative age compositions as a consequence of ageing uncertainty.  As 

a result, absolute levels of key population parameters were influenced, but general trends in those 

parameters tended to be similar, with strong congruency across models as to weakfish stock 

dynamics in most recent years.  Finally, Monte Carlo simulations showed that implications for 

age-reading error on weakfish stock assessment are varied, depending upon the direction and 
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magnitude of the ageing uncertainty.  However, relative trends of parameter estimates over time 

tended to be similar, resulting in proper allocation of weakfish stock status, regardless of the type 

of ageing error considered.  Furthermore, assuming negligible ageing uncertainty within fishery-

independent surveys appears reasonable, as simulations incorporating ageing error within indices 

of relative abundance showed similar patterns to situations that only considered observation 

noise. 
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Preface 

 

 “the most valuable information obtained from sampled catch, at least for 

temperate waters, is age.”   

-Hilborn and Walters (1992) 

 

The recursive collapse of commercial fisheries is ubiquitous in freshwater and marine 

environments (Pauly et al. 2002); with causes being attributed to overcapitalization, scientific 

uncertainty, and intricate ecosystem structure (Ludwig et al. 1993).  Historically, optimum 

fishing levels were determined by trial and error (Ludwig et al. 1993), with ecosystem effects of 

overexploitation being confounded by functional redundancy in complex aquatic food webs 

(Myers et al. 2007).  The sustained decline of marine fish stocks has since prompted novel 

approaches to fisheries management including marine protected areas (MPAs), catch shares (i.e. 

Individual Transferable Quotas), conservative biological targets, and ecosystem-based incentives 

(Weeks and Berkeley 2000; Pauly et al. 2002; Latour et al. 2003; Costello et al. 2008).  

Concurrently, the impact of uncertainty in fisheries stock assessment has led to the development 

of biologically risk-averse practices that account for scientific ambiguity regarding fish stock 

status and/or alternative management approaches (Jiao et al. 2005; Shertzer et al. 2008). 

 In the U.S., fishery status is largely determined by harvest control rules, which compare 

indicator reference points with target reference points established by managers (Jiao et al. 2009).  

Harvest control rules can incorporate multiple biological reference points elicited from risk 

analysis and/or fisheries stock assessment (Jiao et al. 2010).  Jiao et al. (2005) suggests choosing 

an appropriate level of risk tolerance and evaluating alternative management strategies through 



2 
 

risk analysis, instead of setting reference points based on inappropriate assumptions (e.g. F0.1 or 

FMSY).  For example, Patterson (1992) found that the exploitation rate of F0.1 may be too high for 

most fish populations (Hilborn 2002).  By using risk analysis, uncertainty surrounding the status 

of a fish stock can be explicitly incorporated into scientific advice concerning the management of 

commercial and/or recreational fisheries (Jiao et al. 2010).   

 Uncertainties in fisheries stock assessment can be allocated into five categories based on 

respective origin and include measurement error, process error, model error, estimation error, 

and implementation error (Rosenberg and Retrespo 1994).  Of particular concern is the influence 

of measurement error on fisheries stock assessment performance (i.e. accuracy and precision).  

Measurement error or uncertainty occurs when data used to fit a stock assessment model are 

measured with error (e.g. age), which can be further compounded by observation uncertainty in 

the misreporting of landed catch.  Chen (2003) and Chen et al. (2003) indicated that the quality 

and quantity of data used to fit a model can negatively affect the stock assessment process, 

leading to biased estimates of vital and/or auxiliary parameters.  This could potentially lead to 

flawed scientific advice and mismanagement of a fishery, resulting in overexploitation of a fish 

stock or loss of harvest opportunities by fishers (Chen 2003; Jiao et al. 2010). 

The application of mathematical models to the assessment of fish populations requires 

parameters to be estimated from observed data.  In age-structured analyses, parameters are 

approximated by some form of age-dependent estimation procedure (e.g. virtual population 

analysis).  The typical input required by these methods is a catch-at-age matrix, which includes 

catch by age for each year of the fishery to be covered by the assessment (Panfili et al. 2002).  

Compilation of catch-at-age data is rather intensive and requires the assignment of age to total 

catch based on sampled age proportions (i.e. age-length key).  Furthermore, age-length keys are 
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used to construct age-structured indices of catch-per-unit-effort (CPUE), stock weights-at-age 

and maturity at age (Reeves 2003; Bertignac and Pontual 2007).  If estimates of age are biased, 

then subsequent biological reference points will be skewed (Shepherd 1982), consequently 

influencing management decisions.  Our ability to assess and correct for age-reading error 

becomes pertinent, as harvest control roles that do not incorporate uncertainty may  lead to the 

overexploitation of fish stocks (Jiao et al. 2010).   

Campana (2001) delineates ageing error into two respective sources, including process 

and/or interpretation error.  Process error is the inability of an ageing structure to accurately 

record growth sequence information (Campana 2001).  In other words, it is the inability of 

ageing structures to form interpretable patterns of growth that correspond to the true age of the 

fish (Maceina et al. 2007).  Process error tends to be biased, leading to consistent over- or under-

estimation of age by readers.  On the other hand, interpretation error is the subjective assignment 

of age to individual fish based on presumed annular or daily increments (Campana 2001).  

Interpretation error can be either random or biased, depending upon the complexity of the ageing 

structure or the inability of the reader to accurately discern annual or daily growth rings.  In 

general, process error is assumed to be negligible in the production ageing process undertaken 

for fisheries stock assessment.  This is because age validation is a key consideration in the 

development of any successful ageing program (Campana 2001).  Regrettably, use of a validated 

technique does not guarantee accurate or reliable age estimates, as subjectivity is always inherent 

in the ageing of fishes (Buckmeier 2002).  

Systematic errors (i.e. bias) in the fish ageing process primarily arise from within and 

among reader variability (Kimura and Lyons 1991; Buckmeier 2002).  This variation can be 

attributed to the utilization of different preparation methods by ageing laboratories (Morison et 
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al. 2005) or to the unreliability of readers to precisely or accurately estimate age (Kimura and 

Lyons 1991; Buckmeier 2002).  Assessing the consistency of readers has gained much attention 

in the scientific literature, with various indices of precision being proposed to ensure consistent 

age interpretation (Beamish and Fournier 1981; Chang 1982; Campana et al. 1995; Campana 

2001).  Furthermore, quality control programs have been enacted to detect and correct for reader 

drift in the production ageing process (Morison et al. 1998), although the ability to fully 

attenuate age-reading error is impractical and investigating potential effects in a fisheries 

management context are vital. 

The most recent assessment of the weakfish stock used an age-structured model 

(ADAPT-VPA) approved by the Stock Assessment Review Committee (SARC) to explore 

historical trends in abundance and fishing pressure.  Initial results demonstrated a severe 

retrospective bias in estimates of fishing mortality (F) and spawning stock biomass (SSB), 

possibly due to insufficient data.  The Weakfish Technical Committee (WTC) concluded that the 

model was overestimating SSB and underestimating F in recent years, citing high uncertainty in 

parameter estimates and instability of results (ASMFC 2009).  The WTC recognized two 

potential causes for the unreliable stock assessment: 1) poor biological sampling of commercial 

and recreational catch and discard and 2) unrealistic assumptions of the age-structured model 

(i.e. catch-at-age matrix is error-free) (NEFSC 2009).  This thesis, over three chapters, addresses 

the concern of ageing error within catch-at-age data and explores the influence of ageing 

uncertainty during fisheries stock assessment for weakfish by: 1) incorporating and quantifying 

ageing error during nonlinear growth curve analysis, 2) exploring the use of ageing error 

matrices within a statistical catch-at-age framework and 3) simulating the potential effects of 

ageing error during fisheries stock assessment. 
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Chapter 1: Bayesian errors-in-variables approach to incorporate ageing uncertainty 

during nonlinear growth curve estimation for weakfish Cynoscion regalis 

 

Abstract 

 

 Inferring growth for aquatic species is dependent upon accurate descriptions of age-length 

relationships, which may be degraded by measurement error in age estimates.  Ageing error 

arises from biased and/or imprecise age determinations as a consequence of misinterpretation by 

readers or inability of ageing structures to accurately reflect true age.  A Bayesian errors-in-

variables (EIV) approach (i.e. measurement-error modeling) can account for ageing uncertainty 

during nonlinear growth curve estimation by allowing observed ages to be parametrically 

modeled as random deviates.  Information on the latent age composition then comes from the 

specified prior distribution, which represents the true age structure of the sampled fish 

population.  In this study, weakfish growth was modeled by means of traditional and 

measurement-error von Bertalanffy growth curves using otolith- and/or scale-estimated ages.  

Age determinations were assumed to be log-normally distributed, thereby incorporating 

multiplicative error with respect to ageing uncertainty.  The prior distribution for true age was 

assumed to be uniformly distributed between ±4 of the observed age for each individual.  

Measurement-error growth models resulted in weakfish that grew to reach larger sizes, but at 

slower rates, with median length-at-age being overestimated by traditional growth curves for the 

observed age range.  In addition, measurement-error models produced slightly narrower credible 

intervals for parameters of the von Bertalanffy growth function, which may be an artifact of the 

specified prior distributions.  Subjectivity is always apparent in the ageing of fishes and it is 

recommended that measurement-error growth models be used in conjunction with otolith-
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estimated ages to accurately capture the age-length relationship that is subsequently used in 

fisheries stock assessment and management for weakfish. 

1.  Introduction 

 

 Effects of measurement error in solving nonlinear models have been well documented 

(Carroll et al. 2006), causing bias in parameter estimates (Solow 1998; Jiao et al. 2006; Biggs et 

al. 2009; Heery and Berkson 2009), confounding relationships among covariates (Walters and 

Ludwig 1981; Gustafson 2003), and exaggerating model selection uncertainty (Punt et al. 2008; 

Biggs et al. 2009).  Of particular concern is the role observation error plays in nonlinear growth 

curve estimation, as age-length relationships play a key role in eliciting biological reference 

points from age-structured stock assessment models.  While several methods have been 

constructed to account for gear selectivity and variable length-at-age in fitting nonlinear growth 

curves (Sainsbury 1980; Pilling et al. 2002; Taylor et al. 2005; He and Bence 2007; Alós et al. 

2010; Jiao et al. 2010), relatively few approaches have been developed to incorporate ageing 

error when inferring growth for aquatic species (Kimura 2000; Cope and Punt 2007; Schwarz 

and Runge 2009). 

 Ageing error is largely determined through multiple age reads of the same individual, 

with relative bias and imprecision being evaluated graphically through age-bias plots and/or 

various age-discrimination statistics (Chang 1982; Campana et al. 1995; Campana 2001).  If age 

validation data are available, then known biases can be corrected for during the model fitting 

process by calibrating observed ages to reflect true age estimates (Schwarz and Runge 2009).  

Unfortunately, the majority of age-length data sets used in fisheries stock assessment comprise a 

single age and length measurement per individual with true age being unknown (Cope and Punt 

2007; Punt et al. 2008).  A single age read per individual complicates the parameter estimation 
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procedure, as traditional methods for correcting age misclassification require an estimate of the 

ageing error variance, necessitating multiple age reads per individual and/or that observed ages 

are randomly distributed around the latent variable of true age (Cook and Stefanski 1994; Cope 

and Punt 2007; Punt et al. 2008).  As a consequence, most growth investigations assume ageing 

error is negligible or relatively non-influential, with respect to process noise, in describing the 

age-length relationship (Pondella et al. 2001; Harris et al. 2007).  Ignoring ageing error may be 

an unreasonable approach, as conventional methods tend to underestimate the uncertainty in 

parameter values, with respect to error in both the dependent and independent variables, leading 

to overconfidence in the description of growth and subsequent management decisions derived 

from growth curve analyses (Clark 1991).   

 Fisheries scientists have long recognized that most independent variables necessary for 

stock assessment are measured with non-negligible uncertainty, although most attention has been 

spent on estimating the degree of bias in parameter estimates instead of attenuating error through 

increased model complexity (Hilborn and Walters 1992).  Recent advances in computational 

techniques have led to increased utilization of measurement-error models that allow for 

uncertainty in both the dependent and independent variables (Clark 2005; Jiao et al. 2006), 

although it is still necessary to understand the tradeoffs between model articulation and 

descriptive accuracy (Costanza and Sklar 1985; Clark 2005; Biggs et al. 2009).  A Bayesian 

approach allows for stochasticity at multiple levels within a hierarchically structured framework 

for nonlinear regression, with presumed understanding of the independent variable’s distribution 

(i.e. true age) coming from the specified prior (Clark 2007).  Hence, Bayesian errors-in-variables 

(i.e. measurement-error) models allow for the fitting of nonlinear growth curves when the ageing 
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error distribution is unknown or inestimable using contemporary methods (i.e. one age read per 

individual).   

 Variability in age estimates for individual fish could be a consequence of 

misinterpretation by readers of ageing structures (e.g. scales and otoliths) or inability of ageing 

structures to accurately record growth sequence information (Neilson 1992; Campana 2001).  

While most calcified structures have the potential to provide accurate estimates of age (Campana 

2001), subjectivity is always apparent in the production ageing process undertaken for fisheries 

stock assessment (Kimura and Lyons 1991; Heifetz et al. 1998; Morison et al. 1998; Buckmeier 

2002).  Two of the most commonly used hard parts in the assignment of age to individual fish 

include otoliths and scales (Hilborn and Walters 1992), with the general understanding that 

otoliths provide more accurate and precise age estimates compared to scale-estimated ages 

(Lowerre-Barbieri et al. 1995; Maceina et al. 2007).  However, various sources of error still 

confound the assignment of age to individual fish for otolith-estimated ages (Neilson 1992; 

Pepin et al. 2001) and incorporation of measurement error into nonlinear growth curve analysis 

is still prudent. 

 Weakfish Cynoscion regalis are a marine finfish found along the eastern coast of the 

United States, ranging from Massachusetts to Florida (Shepherd and Grimes 1983).  Historically, 

weakfish have supported important commercial and recreational fisheries along the Northwest 

Atlantic (Nye et al. 2008), with recent landings in the commercial sector being relegated to 

bycatch.  While several studies have investigated the age and growth of weakfish at various 

spatial and temporal scales (Seagraves 1981; Shepherd and Grimes 1983; Hawkins 1988; Villoso 

1989; Lowerre-Barbieri et al. 1995), effects of ageing error on describing the age-length 

relationship are largely unknown (NEFSC 2009).  The goal of this study was to evaluate and 
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compare traditional and measurement-error growth models for weakfish Cynoscion regalis using 

otolith- and/or scale-estimated ages incorporating unbiased ageing error.  Length-at-age was 

calculated using the von Bertlanffy growth equation assuming a multiplicative error structure.  

Growth models considering ageing uncertainty allowed observed ages to follow a log-normal 

distribution, with the prior for true age being uniformly distributed between ±4 of the determined 

age for each individual.  A Bayesian estimator was used to solve the aforementioned traditional 

and measurement-error von Bertalanffy growth curves.    

2.  Materials and methods 

 

2.1 - Data 

 

 Age-length data for weakfish Cynoscion regalis were obtained from Wenner and Gregory 

(2000), with age for the same individual being estimated from sagittal otolith and scale readings.  

The otolith-scale age comparison database comprised 2,318 weakfish caught intermittently from 

five states (i.e. New York, Delaware, Maryland, Virginia, and North Carolina) for years 1989, 

1992, 1995, and 1996 (Table 1).  Individuals were pooled across states and years to fit von 

Bertalanffy and measurement-error von Bertalanffy growth curves using otolith- and/or scale-

estimated ages.  An age-bias plot (Figure 1) indicated ageing uncertainty for weakfish, with scale 

readings tending toward younger age estimates compared to otolith-estimated ages.  Also, 

percent agreement between ageing structures declined with age, suggesting error in the ability of 

readers to consistently discern age for older fish (i.e. multiplicative ageing uncertainty) (Figure 

2). 

 The weakfish age-length dataset was characterized by a lack of older, larger-sized 

individuals compared to the most recent investigation of age and growth (Lowerre-Barbieri et al. 
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1995).  Changes in weakfish age- and size-structure are most likely a culmination of several 

factors, including: residual effects of excessive fishing mortality (NEFSC 2009), gear selectivity, 

and seasonal variation in spatial distribution as a result of differential migration by size 

(Lowerre-Barbieri et al. 1995).  In order to avoid inflated estimates of asymptotic length (L∞), 

and consequent underestimation of the Brody growth coefficient (k), posterior values for L∞ were 

bounded by the specified prior distribution.   

2.2 - Nonlinear growth models 

 

 The von Bertalanffy growth function has a long history in fisheries science and has been 

used extensively to describe fish growth (i.e. length and weight) as a function of age (Haddon 

2001).  Despite criticisms (Roff 1980), the von Bertalanffy growth curve has been advocated as 

an appropriate growth model because of its ability to capture observed trends between length and 

age for a variety of fish species (Chen et al. 1992).  Weakfish growth is currently modeled using 

a von Bertalanffy growth function that can be written as 

 

(1)           
        

            

 

where Li is the length-at-age for the ith individual, L∞ is the asymptotic length, k is the Brody 

growth coefficient, to is the hypothetical length at age-0, and     
  is the observed age for the ith 

individual using the jth ageing structure.  Error εi is assumed to be independent and normally 

distributed with mean 0 and variance   
 . 

 Extending the von Bertalanffy growth model to incorporate measurement error is 

relatively straight forward, and can be written as 
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(2)                            

     
      

     

 

where ti is the true age for the ith individual.  The logarithm of observed age loge(    
 ) is assumed 

to be independent and normally distributed with mean loge(ti) and variance     
 .  In order to 

facilitate the use of a log-normal distribution for observed ages, a small constant (i.e. 10E-05) 

was added to age-0 individuals during model fitting.   

2.3 - Statistical estimator 

 

 A Bayesian estimator was used to construct the joint posterior probability distribution for 

parameters in the von Bertalanffy and measurement-error von Bertalanffy growth curves.  The 

full conditional distribution for the traditional von Bertalanffy growth model follows that  

 

(3)                    
                          

   
     

                                                            
                 

While the full conditional distribution for the measurement-error von Bertalanffy growth model 

follows that 

 

(4)              
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where      denotes the posterior probability,      denotes the likelihood function, and      

denotes the prior distribution.     

 As shown in equation 4, observed lengths (Li) are conditionally independent of observed 

ages (t’i,j), with the majority of information about true age (ti) coming from the prior, as well as 

feedback from both likelihood functions on the posterior.  At least for fish, length can be 

considered a loose proxy for age, and it is commonly assumed that lengths are weakly 

informative of ages (e.g. age-length keys).  Essentially, measurement-error growth models work 

to pull observations closer to the median of length-at-age, suggesting the need for an informative 

prior on true age for species that exhibit an asymptotic length early in life, relative to the 

maximum age, or have diffuse age-length distributions.  Otherwise, issues with identifiability 

will prevent effective estimation of variance parameters, resulting in non-convergence and/or 

poor mixing of Markov chains.  If an informative prior on true age is unjustifiable, then multiple 

age determinations will be necessary to estimate ageing-error variance(s) or a reference 

collection will be required, in which true age for a set of individuals is known, so that validation 

data can help calibrate the model during estimation.   

 Prior distributions were constructed around historic estimates of weakfish growth, 

thereby encompassing biological relevancy (Seagraves 1981; Shepherd and Grimes 1983; 

Hawkins 1988; Villoso 1989; Lowerre-Barbieri et al. 1995) (Table 2).  Age validation data were 

unavailable and consequently the latent variable of true age was assumed to follow a uniform 

distribution, with lower and upper bounds being defined by ±4 of the observed age for each 

individual, as the largest difference between otolith- and scale-estimated age was 3 years (Table 

3).  Truncation of the joint posterior distribution for L∞ and k was expected, as specified priors 

were used to constrain posterior draws to biologically reasonable values.  The age-length data for 



16 
 

weakfish fail to accurately capture the asymptotic length, leading to unrealistic estimates that are 

based on extrapolation of the age-length trend (Knight 1968).  A summary of prior distributions 

and parameter estimates can be found in Table 2. 

 All models were run with three Markov chains for 100,000 simulations per chain using 

the software packages WinBUGS version 1.4.3 and R version 2.13.1.  Convergence of the 

Markov chains to the stationary distribution was determined by monitoring trace plots and 

computing Gelman and Rubin diagnostics.  The first 50,000 iterations from each chain were 

discarded to allow for adequate burn-in and a thinning interval of 5 was used to reduce 

autocorrelation among iterative samples and improve computational efficiency.  A total number 

of 30,000 iterations were used to summarize the posterior distribution for each model. 

2.4 - Model selection criteria 

 

 Growth is a vital component in discerning the population dynamics of fishes and 

modeling age-length relationships requires the ability to effectively compare and discriminate 

among alternative hypotheses that represent biological realism.  In this study, model checking 

and discrimination were conducted using posterior predictive p-values and deviance information 

criterion (DIC), respectively.  While DIC has the potential to identify correct model structure for 

catch-at-age analyses (Wilberg and Bence 2008), its ability to select preferred models in an 

errors-in-variables context is less clear (Spiegelhalter et al. 2002; Celeux et al. 2006).  To 

circumvent this issue, posterior predictive model checks and model discrimination statistics were 

used in an effort to corroborate anecdotal beliefs regarding the applicability of measurement-

error models during nonlinear growth curve analyses. 

2.4.1 - Posterior predictive p-values 
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 Posterior predictive p-values were used to conduct posterior predictive model checks in 

evaluating the ability of posited models to replicate data similar to that observed.  Generally, a 

discrepancy statistic is used to assess model goodness-of-fit based on observed data and the 

posterior predictive distribution, where the posterior predictive distribution is defined as 

 

(5)                               

 

where p(y
rep

|θ) is the data distribution for replicated observations y
rep

 and p(θ|y) is the posterior 

distribution for the unknown parameter vector θ given the observed data y.  The discrepancy 

measure utilized in this study was the Bayesian residual sum of squares (Gelman et al. 1996), 

which can be written as 

 

(6)          
            

 

         
 
     

 

where E(∙) is the expectation, Var(∙) is the variance, and yi is the ith observation of the data y or 

simulated data y
rep

.  The posterior predictive p-value, then, is simply the proportion of times 

χ
2
(y

rep
; θ) ≥ χ

2
(y; θ).  The closer the posterior predictive p-value is to 0.50, the more adequate the 

model is at replicating data similar to that observed.   

2.4.2 - Deviance information criterion 

 

 Deviance information criterion was used to compare model goodness-of-fit, as 

measurement-error models are hierarchically structured and the number of parameters is difficult 

to enumerate (Spiegelhalter et al. 2002; Ward 2008; Wilberg and Bence 2008).  Like other 
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information-theoretic approaches, DIC penalizes overparamaterization and descriptive accuracy 

in order to select effective models with high explanatory power.  DIC can be written as 

 

(7)               

               

                     

 

where      is the deviance defined as -2 times the log-likelihood of the data y given the 

unknown parameter vector θ,    is the posterior mean of the deviance,       is the deviance 

evaluated at the posterior mean of θ, and pD is the effective number of parameters in the 

Bayesian model as formulated by Spiegelhalter et al. (2002).  While Celeux et al. (2006) 

recommend alternatives to this definition of DIC for missing-data models, of which errors-in-

variables regression is a subset; our approach is to use the most commonly encountered form 

within fisheries science.  Given that the observed outcomes (i.e. length) are conditioned on the 

missing data (i.e. true age), the default calculation of DIC by WinBUGS is appropriate. 

3.  Results 

 

3.1 - Model discrimination 

 

 According to the DIC statistic, traditional von Bertalanffy growth curves outperformed 

measurement-error growth models for both otolith- and scale-estimated ages (Table 3).  

Alternatively, posterior predictive p-values for measurement-error growth curves were 

substantially closer to 0.50 (Table 3 and Figure 3), suggesting improved adequacy of errors-in-

variables models to reflect observed trends in the age-length relationship for weakfish.  
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However, all growth curves considered in this study had posterior predictive p-values < 0.50, 

possibly suggesting underparameterization in the ability of formulated models to partition the 

overall variance to its respective sources (i.e. variability in age or length).  Nonetheless, 

predictive approaches to model comparison may be beneficial for errors-in-variables regression, 

as the utility of information-theoretic-based methods for measurement-error model selection are 

still circumstantial (Jiao et al. 2009).  

3.2 - von Bertalanffy growth curve parameters 

 

 Growth models considering ageing error resulted in higher posterior mean values for L∞ 

and to (Table 2 and Figures 5a and 5c), while producing lower posterior mean values for k and σL 

(Table 2 and Figures 5b and 5c).  As a consequence, measurement-error models demonstrated 

growth patterns where weakfish grew to reach larger sizes, but at slower rates, with traditional 

von Bertalanffy growth curves overestimating median length-at-age for the observed age range 

(Figure 4).  In addition, 95% prediction intervals were wider for traditional von Bertalanffy 

growth models, compared to their measurement-error analogs (Figure 4).  The growth curve 

incorporating ageing uncertainty, while simultaneously considering otolith- and scale-estimated 

ages (M5), produced comparable posterior mean values of 1189.599 for L∞, 0.063 for k, and -

2.526 for to.  However, using M5 resulted in higher posterior mean values of 0.357 and 0.565 for 

the ageing-error standard deviation (σA), regarding otolith- and scale-estimated ages respectively, 

and a lower posterior mean value of 0.140 for the standard deviation in predicted lengths (σL) 

(Figure 5).  Generally, measurement-error growth models produced slightly narrower credible 

intervals for parameters of the von Bertalanffy growth function, with less difference between 

posterior mean values for biologically relevant parameter estimates using different ageing 

structures or a combination thereof (Table 2 and Figure 5).  
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4.  Discussion 

 

 Conceptually, the errors-in-variables approach is trying to correct the misallocation of 

younger, smaller-sized individuals to older age classes and older, larger-sized individuals to 

younger age classes, resulting in higher estimates for L∞ and lower estimates for k.  While the 

biological association between maximum size and growth rate may be plausible for weakfish, it 

is most likely a consequence of the von Bertalanffy growth equation imposing a negative 

correlation between L∞ and k, which is further confounded by diffuse length-at-age distributions 

(Schwarz and Runge 2009).  Similarly, narrower credible intervals for measurement-error 

models are most likely an artifact of prior constraints on posterior values, so as to coerce 

biologically meaningful patterns for weakfish growth.  Typically, Bayesian errors-in-variables 

regression can better approximate uncertainty in parameter estimates, with respect to variation in 

both the response (i.e. length) and predictor (i.e. age) (Carroll et al. 2006).  In this instance, 

credible intervals for posterior estimates of L∞ and k are lessened, as estimators consistently 

propose values for L∞ near the upper boundary of the prior, reflecting perceived increases in 

asymptotic size as a consequence of incorporating ageing error during nonlinear growth curve 

analysis. 

 Measurement-error growth models can account for variability in age determinations, but 

may overestimate the variability in predicted lengths if multiple age reads per individual are 

unavailable.  Calibration data allows the errors-in-variables approach to draw on information 

from multiple age reads to estimate and adjust for measurement error.  Consequently, variance in 

predicted lengths appears to be overestimated if ageing error is not considered when fitting 

nonlinear growth curves, as the model is using discrepancies associated with age to amplify 

variability in predicted lengths (Figure 4).  That being said, using repeated measures of age via 
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different ageing structures to calibrate the measurement-error growth model assumes that both 

hard parts are unbiased estimators and multiple age reads will provide information on the true 

age for each individual.  If multiple age reads are in any way biased or correlated, measurement-

error growth curves will be unable to attenuate ageing error without validation data (i.e. 

reference collection), in which age for a subset of individuals is known (Punt et al. 2008).  As 

such, it is recommended that otolith-estimated ages be used in conjunction with measurement-

error growth models for weakfish, as scales tend to negatively bias age estimates (Lowerre-

Barbieri et al. 1994).  Moreover, scale-estimated ages were treated as unbiased during model 

fitting, which may have contributed to the large discrepancy between estimates for σA across 

models considering one versus two age reads (i.e. M3-M4 vs. M5 in Figure 5e).   

 The Bayesian errors-in-variables (EIV) approach avoids several issues associated with 

previous methods to account for measurement error in age estimates during nonlinear growth 

curve estimation.  First, it avoids uncertainty in the specification of an error variance ratio 

necessary for errors-in-variables functional regression as proposed by Kimura (2000).  Second, 

the Bayesian EIV approach allows for greater flexibility in modeling ageing uncertainty and can 

alleviate issues with calculating a coefficient of variation for ageing error when age-length data 

only constitute a single age read per individual (Cope and Punt 2007).  Finally, estimation of 

growth curve parameters, while simultaneously considering measurement error, may improve 

model goodness-of-fit compared to the external, prior adjustment of observed ages before 

estimating regression coefficients (Spiegelhalter et al. 1996; Schwarz and Runge 2009). 

 While the main focus of this study was to investigate the contributions of age-reading 

error on weakfish growth, other sources of variability and bias need to be addressed.  On purely 

empirical grounds, it appears that weakfish growth exhibits a strong linear component (see 
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Figure 4), although von Bertalanffy growth has been documented in the past (NEFSC 2009).  

This is likely a reflection of sampling bias, as weakfish age-length data came from multiple 

states over multiple years, which is further compounded by a protracted spawning season.  

Similarly, diffuse age-length distributions exhibited by weakfish likely contributed to the 

minimal improvement of measurement-error von Bertalanffy growth models over traditional 

methods.  However, fish species that are relatively long-lived and whom exhibit less variation in 

length-at-age may be more inclined to incorporate ageing error during assessments of growth, as 

ageing error may play a larger role in perceived growth trajectories.  Likewise, the von 

Bertalanffy growth function assumes continuous growth, yet age is often recorded in discrete 

time.  While this shortcoming is not unique to weakfish, it may introduce some bias into 

parameter estimates, but this aspect is beyond the scope of the current study. 

 Adjustment for measurement error during model fitting is imperative, as growth models 

are often used to assess the relative effects of environmental factors on size (Jiao et al. 2010).  By 

using a Bayesian EIV approach, the correlation between growth and environmental stochasticity 

can be discerned by removing the degrading effects of ageing error on the underlying age-length 

relationship.  This becomes increasingly pertinent as more and more management agencies take a 

holistic approach to the conservation of commercial and recreational fisheries, with need to 

determine driving factors behind spatiotemporal trends in fish growth and productivity.  

Similarly, per-recruit models and the biological reference points derived from these methods are 

highly susceptible to variations in growth caused by ageing error (Tyler et al. 1989), which could 

potentially cause overexploitation of commercially viable fish stocks and eventually lead to 

fishery collapse.  Bayesian EIV models, then, provide a comprehensive and flexible framework 
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upon which measurement error in observed ages can be quantified and adjusted for during model 

fitting, so that more accurate descriptions of growth can be used in fisheries stock assessments. 
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Legends of figures 

 

Figure 1-1: Age-bias plot for weakfish Cynosicon regalis using otolith-estimated and scale-

estimated ages obtained from Wenner and Gregory (2000).  Numbers correspond to sample size.  

Dotted line indicates 1:1 agreement between ototlith- and scale-estimated age. 

Figure 1-2: Percent agreement between otolith- and scale-estimated ages as a function of otolith-

estimated age for weakfish Cynoscion regalis.  Only ages 0-5 were used for comparison due to 

limited sample size of older individuals (see Figure 1).  Dotted line indicates general trend. 

Figure 1-3: Scatterplot of realized and predicted discrepancies used in calculating Bayesian 

posterior predictive p-values for models M1-M5.  Solid line indicates zero difference between 

the discrepancy statistic evaluated at the observed and replicated data.   

 

Figure 1-4: von Bertalanffy growth curves using a) otolith-estimated and b) scale-estimated 

ages.  Solid lines correspond to median values of length-at-age from traditional von Bertalanffy 

growth models, whereas dashed lines correspond to median values of length-at-age from growth 

curves considering ageing uncertainty.  The light-shaded regions correspond to 95% prediction 

intervals for traditional von Bertalanffy growth models, whereas the dark-shaded regions 

correspond to 95% prediction intervals for growth models considering ageing uncertainty.  

Circles correspond to observed data. 

Figure 1-5: Marginal posterior distributions of the traditional (M1-M2) and measurement error 

(M3-M5) von Bertalanffy growth curve parameters: (a) L∞; (b) k; (c) to; (d) σL; and (e) σA.  M1, 

solid line; M2, small-dashed line; M3, dotted line; M4, dotted-dashed line; and M5, large-dashed 

line.    

Legends of tables 

 

Table 1-1: Summary of weakfish Cynoscion regalis age-length data used in constructing 

traditional and measurement error von Bertalanffy growth models (Wenner and Gregory 2000). 

 

Table 1-2: Parameter estimates from von Bertalanffy (VBGF) and measurement error von 

Bertalanffy (MEVB) growth models using otolith-estimated and scale-estimated ages (i.e. M1-

M4); including posterior mean and standard deviation (S.D.). 

 

Table 1-3: Model comparison of traditional (VBGF) and measurement error (MEVB) von 

Bertalanffy growth models using posterior predictive p-values and deviance information criterion 

(DIC).  See materials and methods section for descriptions of posited models.     is the posterior 

mean of the deviance and pD is the effective number of parameters.
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Appendix 

 

Table 1-1 

  1989 1992 1995 1996 Total 

New York 0 0 114 0 114 

Delaware 0 0 1139 150 1289 

Maryland 0 0 0 95 95 

Virginia 83 74 0 0 157 

North Carolina 0 0 142 521 663 

Total 83 74 1395 766 2318 
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Table 1-2 

 

    Otolith Scale 

Model Parameters Prior Mean SD Mean SD 

VBGF L∞ U(300,1200) 1177.780 21.982 1179.558 19.132 

 

k U(0,1) 0.068 0.002 0.076 0.002 

 

to U(-3,1) -2.347 0.054 -2.116 0.045 

 

σL U(0.0001,10) 0.190 0.003 0.180 0.003 

MEVB L∞ U(300,1200) 1187.649 11.840 1187.139 12.671 

 

k U(0,1) 0.062 0.001 0.068 0.001 

 

to U(-3,1) -2.596 0.053 -2.359 0.047 

 

σL U(0.0001,10) 0.153 0.004 0.142 0.003 

 

σA U(0.0001,10) 0.275 0.010 0.281 0.010 
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Table 1-3 

Scenario Data Model p-value    pD DIC 

M1 Otolith VBGF 0.05 25662 3 25665 

M3 

 

MEVB 0.31 24813 2112 26935 

M2 Scale VBGF 0.04 25419 3 25421 

M4 

 

MEVB 0.43 24145 2136 26281 

M5 Otolith & Scale MEVB 0.35 28651 2107 30759 
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Figure 1-1 
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Figure 1-2 
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Figure 1-3 
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Figure 1-4 
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 1 

Figure 1-5 2 
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Chapter 2: Integrated population dynamics modeling for age-based assessments with 

measurement error in observed ages 

 

Abstract 

 Contemporary approaches for assessing fish populations include age-structured models 

that implicitly assume negligible uncertainty in catch at age.  Ignoring measurement error in 

observed ages could bias estimation of key population parameters (full fishing mortality, age-

specific selectivity, spawning stock size, and recruitment) and subsequent perceptibility of stock 

status (i.e. overfishing and/or overfished).  Recent declines in weakfish abundance have raised 

concern among stakeholders, with respect to sensitivity of current stock assessment methods and 

violations of error-free catch at age.  Population dynamics of weakfish were explored using 

Bayesian statistical catch-at-age models that explicitly incorporate ageing uncertainty into the 

analysis of the weakfish fishery.  Several ageing error matrices were constructed to reflect 

various hypotheses concerning age estimation error, including unbiased and systematic over- and 

under-ageing.  Absolute levels of spawning stock size and recruitment were influenced by age-

reading error, although general patterns tended to be similar.  The effects of ageing error on 

estimates of full fishing mortality were minimal, but large differences were observed for age-

specific selectivity.  Furthermore, the risk of overfishing and being overfished were altered by 

age-reading error, along with disparate estimates for biological reference points.  In summary, 

relative support exists for negatively biased catch at age and differential ageing uncertainty for 

weakfish.  Here, model comparison avoids overconfident statements regarding the "true" status 

of the weakfish fishery, especially when the exact form of age-reading error is uncertain.  A 

model-averaging technique can help alleviate concerns for selecting a best model in this 

situation, and may provide robust inference for management advice. 
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1. Introduction 

 

 Weakfish Cynoscion regalis are a marine sciaenid found along the eastern coast of the 

United States, being most abundant within the Mid-Atlantic Bight (Shepherd and Grimes 1983; 

Lowerre-Barbieri et al. 1995).  Estuarine dependent, weakfish migrate extensively from offshore, 

overwintering grounds to feed and spawn in nearshore habitats during protracted spawning 

seasons (Shepherd and Grimes 1983; Lowerre-Barbieri et al. 1995; Lowerre-Barbieri et al. 

1996).  Coupled with high variation in individual growth, early maturity, and indeterminate 

fecundity, weakfish exhibit diffuse length-at-age distributions and are relatively short-lived 

(Shepherd and Grimes 1983; Lowerre-Barbieri et al. 1995; Lowerre-Barbieri et al. 1996; Kahn 

2002; Nye and Targett 2008).  While weakfish demonstrate high spawning-site fidelity (Thorrold 

et al. 2001) and latitudinal clines in growth (Shepherd and Grimes 1983; Lowerre-Barbieri et al. 

1995), they are currently considered a single unit stock by the Atlantic States Marine Fisheries 

Commission (ASMFC) (Graves et al. 1992; Cordes and Graves 2003; NEFSC 2009).    

 Historically, weakfish have supported important commercial and recreational fisheries 

from Massachusetts to Florida, with approximately 70-90% of commercial harvest occurring in 

New Jersey, Virginia, and North Carolina (NEFSC 2009).  Declining trends in weakfish 

abundance and subsequent reductions in commercial and recreational landings have been 

attributed to increases in natural mortality rates, with unknown mechanisms inhibiting the 

translation of age-0 recruits into exploitable biomass (NEFSC 2009; Jiao et al. 2012).  

Furthermore, concern has been raised regarding the use of traditional stock assessment methods 

for estimating weakfish abundance and instantaneous fishing mortality, with particular emphasis 

on ageing error within the catch-at-age matrix (NEFSC 2009). 
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 Contemporary approaches for assessing fish populations include age-structured models 

that implicitly assume negligible uncertainty in catch-at-age data (e.g. ADAPT-VPA).  These 

methods are collectively referred to as Virtual Population Analysis (VPA) and utilize recursive 

algorithms to sequentially calculate abundance at age given catch by age and year and an index 

of relative abundance from fishery-dependent and/or -independent surveys (Megrey 1989; 

Hilborn and Walters 1992).  Unlike VPA, statistical catch-at-age models (SCA) allow for the 

incorporation of measurement error in catch and relative abundance indices and provide a 

flexible framework to incorporate multiple data sources (Fournier and Archibald 1982; Megrey 

1989; Hilborn and Walters 1992).  In addition, SCAs allow for uncertainty in estimated age 

compositions, while simultaneously considering stochasticity imposed by the sampling process 

on relative age frequencies observed within the fishery (Fournier and Archibald 1982; Conn and 

Diefenbach 2007). 

 Ageing error matrices (AEM) are often used to account for ageing uncertainty during 

fisheries stock assessment and define age misclassification rates for the observed age range from 

sub-sampled harvest (Richards et al. 1992; Punt et al. 2008).  Basically, ageing error matrices 

define the probability of being aged a', given the individual is true age a.  Ageing uncertainty 

arises from the inability of ageing structures to accurately record true age (i.e. process error) 

and/or the inability of readers to provide accurate and consistent age estimates (i.e. interpretation 

error) (Campana 2001).  Prior to 1990, weakfish were aged using scale samples, until it was 

discovered that scales tend to negatively bias age estimates (Lowerre-Barbieri et al. 1994).  Since 

then, otoliths have been the primary ageing structure used to infer growth and relative age 

frequencies for weakfish (NEFSC 2009).  Unfortunately, various sources of error still confound 

the assignment of age to individual fish and incorporating ageing uncertainty into catch-at-age 
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analyses may still be necessary (Kimura and Lyons 1991; Neilson 1992; Pepin et al. 2001; 

Buckmeier 2002).  

 The effects of ageing error on age-structured population dynamics can be considerable, 

especially on the ability to estimate current stock status and subsequent biological reference 

points used for management.  Generally, ageing error leads to comparable trends in key outputs 

from stock assessment models (e.g. spawning stock biomass (SSB), instantaneous fishing 

mortality (F), recruitment), but affects absolute levels of estimated population parameters and 

has the potential to prejudice management actions (Reeves 2003; Bertignac and Pontual 2007).  

Reeves (2003) found that ageing error had little impact on estimates for SSB and mean F, but 

could lead to the underestimation of overall recruitment and consequently bias catch forecasts.  

This has the potential to hinder stock rebuilding programs, as the risk in evaluating alternative 

management strategies is misrepresented.  In contrast to Reeves (2003), Bertignac and Pontual 

(2007) found that systematic over-ageing led to differing trajectories for SSB, with relative 

trends in mean F and recruitment being broadly similar.  Hence, the potential effects of ageing 

error on fisheries stock assessment appear context-specific, with respect to data structure and 

how individual population parameters are treated during estimation.  

 The propagation of ageing uncertainty into catch-at-age data is not unique, and in fact 

many inputs for stock assessment models are likely to be impacted by age-reading errors.  For 

example, age-structured indices of relative abundance, lengths at age, weights at age, and 

maturity at age may all be affected by the misallocation of individuals to erroneous age classes.  

However, the influence of ageing error on estimates of auxiliary information is dependent upon 

data sources and whether or not these biological parameters are treated as fixed constants during 

model fitting.  While ageing uncertainty in age-structured indices of relative abundance may play 
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a significant role in driving the population dynamics of age-based assessments, the magnitude of 

these errors is likely to be survey-specific and information on ageing error for different states 

and/or laboratories is currently unavailable for weakfish.   

 The possible effects of ageing uncertainty on estimating historical trends in weakfish 

abundance and exploitation rates were explored using Bayesian statistical catch-at-age (SCA) 

models.  Empirical and theoretical ageing error matrices were constructed to reflect various 

hypotheses concerning the role of age estimation error on weakfish stock assessment.  Posited 

models include 1) a statistical catch-at-age model not considering ageing error in catch at age, 2) 

an SCA model considering ageing error in catch at age using an empirically derived ageing error 

matrix, 3) an SCA model considering unbiased ageing error in catch at age using a theoretically 

derived ageing error matrix, 4) an SCA model considering positively biased ageing error in catch 

at age using a theoretically derived ageing error matrix, and 5) an SCA model considering 

negatively biased ageing error in catch at age using a theoretically derived ageing error matrix.  

Model performance was compared using deviance information criterion (DIC) and posterior 

predictive p-values, which attempt to determine model adequacy through discrepancies in 

observed and predicted values. 

2. Materials and methods 

2.1 Data 

 

 Data used in this study were obtained from the Weakfish Stock Assessment Report of the 

Atlantic States Marine Fisheries Commission Weakfish Technical Committee (NEFSC 2009).  

Detailed information on the catch-at-age matrix and relative abundance indices are available 

from the same report and are only summarized here for brevity.  
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2.1.1 Catch at age 

 

 Catch-at-age data were available for years 1982-2007, including commercial and 

recreational harvest and discard.  Landings were high in the early 1980s, but declined steadily 

after 1998, reaching an all time low of 1.1 million pounds in 2008.  Catch at size was converted 

to catch at age using appropriate age-length keys developed from biological sub-sampling of 

landed harvest.  Error within ageing techniques, used to assess relative age frequencies within 

commercial and recreational catches, is considered to be a major source of uncertainty within the 

catch-at-age matrix (NEFSC 2009). 

2.1.2 Relative abundance indices 

 

 Seventeen fishery-dependent and -independent surveys were available for weakfish, of 

which six provided age-structured information, ten provided indices for tuning recruitment (i.e. 

age 1), and one provided an age-aggregated measure of relative abundance.  Out of all the 

fishery-dependent and -independent surveys available, the National Marine Fisheries Service 

(NMFS) Northeast Fisheries Science Center (NEFSC) Bottom Trawl Survey was deemed 

inappropriate for use as an index of weakfish abundance by the Weakfish Technical Committee 

(WTC) and was excluded.  Similarly, the Massachusetts Division of Marine Fisheries (DMF) 

Trawl Survey was determined to be a poor index of year class strength and was not included in 

the stock assessment for weakfish. 

2.2 Statistical catch-at-age model 

 

 The statistical catch-at-age model based on available weakfish fishery data can be written 

as: 
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(1)               
        

            
               

          

 
      

    
      

        
        

 

                         
    

  

     

            

                                 

where a' is observed age , a is true age, A is maximum true age, y is year, and j is the jth relative 

abundance index.  N is population size, C is catch, f is full fishing mortality, s is gear selectivity, 

and M = 0.25 is the natural mortality rate (NEFSC 2009).  I is the relative abundance index and q 

is the catchability coefficient used to describe the proportion of total weakfish caught per unit 

effort by fishery-dependent or -independent surveys.  p(a'|a) denotes the ageing error matrix and 

characterizes the probability of being aged a', given the individual is true age a.  Observed catch 

at age and indices of relative abundance were assumed to be log-normally distributed, 

           
   and            

  , as this is a standard assumption in statistical catch-at-age 

analyses (Quinn and Deriso 1999).  

 Selectivity-at-age and recruitment were treated as free parameters to be estimated within 

the statistical catch-at-age models.  This avoids any false perceptions in model output from 

functional misspecification of age-specific selectivity and the stock-recruitment relationship 

(Butterworth and Rademeyer 2008).  Similarly, only measurement error in catch (i.e. observation 
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and ageing uncertainty) and relative abundance indices (i.e. observation uncertainty) were 

considered, so as to avoid confounding effects of process error in weakfish abundance on 

discerning the influence of ageing uncertainty during fisheries stock assessment.   

2.3 Fishery status evaluation 

 

 Relative indicators of stock status were computed according to the method of Shepherd 

(1982), which combines spawner- and yield-per-recruit models with a stock-recruitment 

relationship to elicit biological reference points from age-structured analyses (i.e. FMSY and 

NMSY).  In this study, spawning stock size (SSN) was assumed to be the product of age-specific 

maturity and yearly abundance, while age-1 fish were treated as recruits.  The risk of overfishing 

and being overfished were evaluated using the joint posterior distribution for full fishing 

mortality (fy) relative to FMSY and spawner abundance (SSNy ) relative to NMSY, respectively (Jiao 

et. al 2010).  Model comparison was further augmented by contrasting biological reference 

points obtained from each scenario and their associated risks for stock status (i.e. overfishing 

and/or overfished).  

 A key determinant of biological reference points used for fishery evaluation is the 

underlying stock-recruitment (S-R) relationship that attempts to describe the link between 

spawning stock size (SSN) and ensuing recruits (R).  However, various environmental factors 

may also drive fluctuations in year class strength, which is further confounded by mis-

measurement of spawner abundance and limited contrast in S-R estimates.  Misspecification of 

the stock-recruit functional form can have considerable effects on derived reference points used 

for management advice.  To circumvent this issue, a model-averaging approach was used to 

provide robust inference with respect to uncertainty in estimates of spawner abundance and 
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recruitment from stock assessment output.  Ricker and Beverton-Holt stock-recruitment 

relationships were fitted to annual estimates of SSN and R drawn from the joint posterior 

distribution for each scenario (i.e. M1-M5).  Fits were obtained by using maximum likelihood 

estimation assuming a log-normal error structure.  The Akaike information criterion (AIC) was 

then calculated for each S-R relationship to determine the "best" fit for each of the simulated 

SSN and R values, from which FMSY and NMSY were calculated.  If model selection uncertainty 

was high for a given set of SSN and R estimates (i.e. ∆AICi < 5), then Akaike weights were 

computed and the resultant FMSY and NMSY values were model-averaged at that iteration.  

2.4 Ageing error matrices (AEM) 

 

 An ageing error matrix characterizes the uncertainty in observed ages by outlining the 

misclassification rates for fish aged a', given true age a.  Typically, fish must be aged multiple 

times in order to estimate an ageing error matrix, with "true age" being defined as the mode or 

mean of multiple, independent age determinations (Heifetz et al. 1998).  Unfortunately, this 

method ignores the error imposed by assigning "true age" based on multiple observations of an 

ageing structure.  A Bayesian errors-in-variables (EIV) approach can incorporate uncertainty into 

the estimation of true age, given the observed age readings (Chapter 1).  Similar to the ageing 

error analysis proposed by Richards et al. (1992), the Bayesian EIV approach cannot reliably 

detect a systematic difference between observed and true age without prior knowledge on the 

distribution of the bias, as determined through known-age individuals (Heifetz et al. 1998; Punt 

et al. 2008; Schwarz and Runge 2009).  In this study, five ageing error matrices were developed 

to reflect various hypotheses regarding age-reading errors during weakfish stock assessment 

(Table 1). 
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2.4.1 Empirical AEM 

 

 Weakfish age-length data were obtained from Wenner and Gregory (2000), where age for 

the same individual was determined using saggital otolith and scale readings.  Assuming otolith-

estimated ages provide a more accurate and precise representation of true age, percent agreement 

between ageing structures was calculated and normalized for ages predominating commercial 

and recreational harvest (i.e. ages 1-6).  While otolith-estimated ages are thought to produce 

more accurate and precise age estimates, the prevalence of interpretation error during production 

ageing is not without influence (Kimura and Lyons 1991; Buckmeier 2002).   

2.4.2 Theoretical AEM 

 

 Richards et al. (1992) proposed a statistical method to estimate ageing error matrices 

based on the likelihood of observing age a', given true age a and a parameter vector θ.  In the 

commonly used “normal model”, θ specifies the age-reading error standard deviation (σA) or the 

parameters used in modeling σA.  In order to avoid true age estimates that deviate heavily from 

the observed age reading, the authors penalized the likelihood by the probability of true age for 

each individual within the aged sample.  From a Bayesian perspective, the penalty term becomes 

the prior and reflects the distribution of true ages in the sampled fish population.  Given the 

parameter vector θ=σA and the observed age classes a', the ageing error matrix is defined as 

(2)         
 
    

   

         
 
   

 

where xa',a (θ) is the discrete log-normal density function.  This approach is easily extended to 

incorporate known biases, although relatively few studies have utilized this technique (Heifetz et 

al. 1998; Punt et al. 2008).   
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 Following Richards et al. (1992), theoretical ageing error matrices were derived by 

discretizing the log-normal distribution over the age range currently observed in catch at age for 

weakfish, constraining             .  Uncertainty in estimating the age-reading error 

standard deviation (σA) was incorporated into the analysis by integrating over the marginal 

posterior distribution for σA, which was obtained from Chapter 1.  The marginal posterior 

distribution for σA was estimated using a Bayesian measurement-error growth model in 

conjunction with otolith-estimated ages assuming unbiased, log-normally distributed ageing 

errors (Wenner and Gregory 2000; Chapter 1).  For models considering a systematic difference 

between observed and true age (i.e. bias), a constant (i.e. 1) was added to (i.e. over-ageing) or 

subtracted from (i.e. under-ageing) the known age during construction of the ageing error matrix 

(Coggins and Quinn 1998).   

Inclusion of observed-age plus groups into theoretical ageing error matrices is relatively 

straightforward, and entails summing the proportion of p(a’|a) that is greater than or equal to the 

maximum observed age considered in the matrix, up to a pre-specified cutoff (i.e. longevity).  

However, the paucity of older individuals within aged samples for weakfish precludes this 

complexity (Chapter 1), as including an observed-age plus group slightly diminishes the 

potential for under-ageing in the oldest age class.  For similar reasons, true-age plus groups were 

not considered during construction of theoretical ageing error matrices.  In this case, considering 

plus groups within theoretical ageing error matrices is unlikely to change general conclusions, as 

only p(a’|a) for the oldest age class is substantially altered. 

2.5 Statistical estimator 
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 A Bayesian approach was used to construct the joint posterior probability distribution for 

parameters in the aforementioned statistical catch-at-age models.  Prior distributions were 

assumed to be vague and uninformative, with bounds being defined by biological expectations.  

For example, age-specific selectivity (sa) was constrained to be between 0 and 1.  The full 

conditional distribution for the parameter vector θ, where θ = Ry, Na,y=1982, fy, sa, qj,a, σj, σC, can 

be written as 

(3)                  

                                                                            

where      denotes the posterior probability,      denotes the likelihood function, and      

denotes the prior distribution.    

 All models were run with three Markov chains for 20,000 simulations per chain using the 

software packages WinBUGS version 1.4.3 and R version 2.13.1.  Convergence of the Markov 

chains to the stationary distribution was determined by monitoring trace plots and computing 

Gelman and Rubin diagnostics.  The first 10,000 iterations from each chain were discarded to 

allow for adequate burn-in and a thinning interval of 5 was used to reduce autocorrelation among 

iterative samples and improve computational efficiency.  A total number of 6,000 iterations were 

used to summarize the posterior distribution for each model.  A summary of prior distributions 

can be found in Table 2. 

2.6 Model performance 

2.6.1 DIC 

 

 Deviance information criterion (DIC) was used to compare model goodness-of-fit 

(Spiegelhalter et al. 2002; Ward 2008) and has been shown to be a reliable means of 
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discrimination in catch-at-age analyses (Wilberg and Bence 2008; Jiao et al. 2012).  Like other 

information-theoretic approaches (e.g. AIC), DIC penalizes overparamaterization and descriptive 

accuracy in order to select effective models with high explanatory power.  The DIC can be 

written as 

 

(4)            

               

                     

 

where      is the deviance defined as -2 times the log-likelihood of the data y given the 

unknown parameter vector θ,    is the posterior mean of the deviance,       is the deviance 

evaluated at the posterior mean of θ, and pD is the effective number of parameters in the 

Bayesian model as formulated by Spiegelhalter et al. (2002).  

2.6.2 Posterior predictive model checks 

 

  Posterior predictive p-values were used to conduct posterior predictive model checks in 

evaluating the ability of posited models to replicate data similar to that observed.  Generally, a 

discrepancy statistic is used to assess model goodness-of-fit based on observed data and the 

posterior predictive distribution, where the posterior predictive distribution is defined as 

 

(5)                               
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where p(y
rep

|θ) is the data distribution for replicated observations y
rep

 and p(θ|y) is the posterior 

distribution of the unknown parameter vector θ given the observed data y.  The discrepancy 

measure utilized in this study was the Bayesian residual sum of squares (Gelman et al. 1996), 

which can be written as 

 

(6)          
            

 

         
 
     

 

where E(∙) is the expectation, Var(∙) is the variance, and yi is the ith observation of the data y or 

simulated data y
rep

.  The posterior predictive p-value, then, is simply the proportion of times 

χ
2
(y

rep
; θ) ≥ χ

2
(y; θ).  The closer the posterior predictive p-value is to 0.50, the more adequate the 

model is at replicating data similar to that observed.   

3. Results 

 

 According to the DIC statistic, considering ageing error in catch at age did not increase 

model goodness-of-fit for weakfish (Table 3).  Resultant DIC values were comparable for 

statistical catch-at-age models utilizing theoretically derived ageing error matrices (M3-M5), 

while M1 and M2 produced smaller, and albeit, similar DIC estimates.  Still, hypotheses 

suggesting negatively biased catch at age (i.e. M2 and M5) appear to be the most supported, 

relative to other models incorporating ageing uncertainty.  Unfortunately, DIC was unable to 

identify whether or not considering ageing error in catch at age is beneficial for weakfish stock 

assessment, as the difference between DIC values for M1 and M2 is trivial (∆DICi = 0.9). 

 Model performance was further examined using posterior predictive model checks, where 

discontinuities between observed and predicted catch at age were determined through 
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comparisons with expected values.  Scenarios M1 and M4 produced posterior predictive p-values 

closest to 0.50, suggesting improved adequacy of these models to demonstrate posterior 

predictions in accordance with observed catch at age for the weakfish fishery.  However, p-

values for all models reflect typical discrepancies between observed and posterior predicted 

catch at age (Table 3), being unable to corroborate substantial improvements in model structure 

by accounting for age-reading error during statistical catch-at-age analysis for weakfish. 

 Trends in spawning stock size, recruitment, and fishing mortality were broadly similar for 

all 5 models, but absolute levels in weakfish abundance differed considerably (Figure 2).  

Comparable trajectories for population size across scenarios was expected, as all models were 

calibrated using the same set of relative abundance indices, of which none were assumed to have 

ageing uncertainty.  Statistical catch-at-age models utilizing theoretical ageing error matrices 

(M3-M5) suggest a decline in spawning stock size (SSN) within the last year of the time series 

(i.e. 2007), as indicated by the posterior mean for SSN2007, while M1 and M2 denote an increase.  

Although, there is some congruency among models as to the status of the weakfish stock in 2007, 

as indicated by the substantial overlap in 95% credible intervals for population size in the last 

year covered by the assessment.  Trends in recruitment were fairly analogous amongst models, 

with annual changes in year class strength hallmarking the difference between fits.  This is 

especially relevant during the early portion of the time series, where recruitment dynamics 

appear to be more variable for models incorporating ageing error in catch at age, regardless of 

the scenario considered (i.e. unbiased, over-ageing, or under-ageing) (Figure 3). 

 Estimates of full fishing mortality were fairly consistent across scenarios, with similar 

patterns being produced for selectivity-at-age,  except for M4 (Figures 2 and 4).  Adjusting for 

systematic over-ageing (M4) resulted in higher estimates for selectivity of younger ages and 
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lower estimates for selectivity of older ages, excluding the plus group (i.e. age-6+).  Still, models 

considering theoretical ageing error matrices generally allocated wider credible intervals for age-

specific selectivity, as well as other population parameters (Figures 2 and 4).  This is likely an 

artifact of greater ambiguity in observed age frequencies for theoretical ageing error matrices, 

which is perpetuated into posterior estimates of key outputs from stock assessment models, 

thereby reflecting uncertainty in age compositions as a consequence of age-reading error. 

 Relative indicators for stock status differed  substantially among scenarios, with M1 and 

M2 resulting in lower posterior median estimates for FMSY and higher posterior median estimates 

for NMSY (Table 4).  Conversely, estimates for FMSY were more variable for M3-M5, while M1 

and M2 proposed more precise values for NMSY (Table 4).  The greater precision in NMSY values 

for M3-M5 is likely a reflection of poor S-R fits to posterior estimates of SSN and R for M1-M2, 

resulting in higher variability for NMSY.  The risk of overfishing was high for all five scenarios, 

but declined for a short period during the mid-1990s (Figure 5).  Generally, M3-M5 

demonstrated a lower risk of overfishing throughout the time horizon, although all models were 

in strong agreement for year 2007.  The associated risk of the weakfish stock being overfished 

was more variable across scenarios, although all models were fairly congruent for the most 

recent years (i.e. 2002-2007).  Again, M1 and M2 generally resulted in a higher risk of the 

weakfish population being overfished, relative to M3-M5.   

4. Discussion 

 

 The most recent assessment of the weakfish stock inherently assumes negligible 

uncertainty in catch at age, namely as a consequence of age-reading error.  While otolith-based 

readings have been validated to provide more accurate estimates of age (Lowerre-Barbieri et al. 
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1994), within- and between-reader variability can still bias inference on population dynamics and 

exploitation rates (Kimura and Lyons 1991; Reeves 2003; Bertignac and Pontual 2007).  

Furthermore, ageing uncertainty has the potential to impact our perception of stock status and 

associated risks of overfishing and being overfished.   

 Although ageing error leads to comparable trends in weakfish abundance, the estimates 

for spawning stock size and recruitment differ substantially in terms of magnitude.  Generally, 

incorporating unbiased or systematic under-ageing led to more optimistic outlooks for population 

numbers, as well as higher uncertainty in the absolute level of the weakfish stock.  Recruitment 

dynamics also tended to be more variable, as statistical catch-at-age models considering ageing 

error strengthened cohorts formerly displaced over adjacent ages.  This is particularly relevant 

given the contemporary emphasis on climate change and ecosystem-based approaches to marine 

fisheries management, with need to identify correlative links between environmental covariates 

and the driving factors behind spatiotemporal patterns in fish productivity (Bradford 1991; Jiao 

et al. 2010; Jiao et al. 2012). 

 The effects of ageing uncertainty on estimates of full fishing pressure were minimal, with 

comparison among models yielding qualitatively similar patterns.  While annual exploitation 

rates (i.e. fy) appear to be unaffected by age estimation error, large differences in age-specific 

selectivity were observed.  For instance, systematic over-ageing led to relatively inflated 

estimates for year class strength and subsequent overestimation of spawning stock size.  

Basically, the model is associating higher numbers of recruits with lower fishing mortality via 

decreased age-specific selectivity, so as to reflect inability of fishers to effectively land age-1 

individuals.  However, adjusting for positively biased catch at age led to anomalous patterns for 

selectivity-at-age (Figure 4d), with increases in fishing mortality for younger ages.  This suggests 
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systematic over-ageing could potentially mask unsustainable fishing practices, as fishers 

preferentially select for younger ages as a result of declines in older individuals, although M4 

was not preferred in this case.  The effect of ageing uncertainty on selectivity-at-age is less 

pronounced for random and negatively biased scenarios, with M2, M3, and M5 producing 

similar selectivity patterns as M1.  At least for weakfish, the nominal effect of ageing uncertainty 

on estimates of yearly fishing mortality is promising, and harvest control rules that utilize annual 

exploitation rates may be relatively robust to error in age determinations. 

 Overall, there appears to be general concordance for negatively biased catch at age and 

concurrent differential ageing error for weakfish.  Scales were the primary ageing structure 

utilized for construction of age-length keys prior to 1990 and in effort to confer otolith-based age 

frequency to scale-estimated catch at age, a scale-otolith conversion matrix was applied to 

historical harvest (NEFSC 2009).  Unfortunately, weakfish age- and size-structure fluctuates 

extensively (Shepherd and Grimes 1983; Lowerre-Barbieri et al. 1995) and the ototlith-scale 

conversion matrix may have been misrepresentative of past stock dynamics.  It is possible that 

the model considering the empirical ageing error matrix (M2) is better able to reflect the 

underlying age-structure of the weakfish population, adjusting for measurement error imposed by 

former scale-estimated ages.  Although, the empirical ageing error matrix is merely a comparison 

between otolith- and scale-estimated ages and does not constitute a "true" ageing error matrix.  

As such, the empirical ageing error matrix may be preferred over scenarios utilizing theoretical 

ageing-error matrices, as it more closely resembles relative age frequencies already observed in 

the weakfish fishery.        

 When deriving theoretical ageing error matrices, uncertainty in estimated ages was 

assumed to be age-invariant, although the magnitude of the error was allowed to increase with 
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age (i.e. multiplicative error structure).  Results from the current study indicate that ageing 

uncertainty is likely a function of age, and exploration into more flexible relationships for 

modeling the ageing error variance is suggested (Richards et al. 1992, Heifetz et al. 1998, Punt et 

al. 2008).  Furthermore, connotation exists for negatively biased catch at age (i.e. M2), and while 

assuming age-independent bias for weakfish would be reasonable (Francis et al. 2010), 

hypotheses integrating systematic over- or under-ageing were unsubstantiated (i.e. M4-M5).  

Attempts to model bias as a function of age appear promising (Punt et al. 2008), although caution 

should be used when applying these methods without known-age individuals. 

 Implications from the current study on effects of age estimation error for fisheries stock 

assessment are not without due concern.  The assumption of time-invariant ageing uncertainty is 

likely unrealistic, as well as assuming constant ageing error for spatially-disaggregated landings 

and the potential influence of spatial variation in weakfish growth on the interpretability of 

ageing structures (Shepherd and Grimes 1983; Lowerre-Barbieri et al. 1995).  In addition, this 

study assumed a constant vector for maturity at age and ignored the possible mitigating influence 

of ageing uncertainty on estimates of weight-at-age in calculating spawning stock biomass 

(Reeves 2003).  Recent stock assessments and projections for the weakfish fishery assume that 

maturity at age is fixed and ignoring ageing error during estimation of weight at age is likely 

unreasonable, especially in calculating long-term yield and subsequent biological reference 

points.  In order to avoid this issue, weight at age was not used for fishery evaluation and relative 

indicators of stock status were re-parameterized in terms of absolute numbers.   

 While the findings presented here are consistent with those acquired by Reeves (2003) 

and Bertignac and Pontual (2007), their conclusions regarding age estimation error and 

management advice seem premature.  Unrealistic assumptions of model structure often preclude 
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the use of absolute values in setting management targets, with decision-making being informed 

by relative trends in key population parameters.  However, even with precautionary reference 

points and risk-averse harvest control rules, our ability to perceive stock status and associated 

risks can be hindered by age-reading error.  Not to mention, ageing uncertainty has the potential 

to influence our ability to evaluate the efficacy of former management strategies on meeting 

conservation objectives.  Model averaging is one method to provide robust inference for 

management advice when model selection uncertainty is high, as is the case here (Jiao et al. 

2008).  Whether or not age estimation error should be integrated into statistical catch-at-age 

analysis for weakfish is still unclear and it is recommended that Bayesian model-averaging be 

applied to circumvent ambiguity in weakfish population dynamics as a result of measurement 

error in observed ages. 

 The overarching goal of this study was to investigate the sensitivity of current stock 

assessment methods to unrealistic assumptions of error-free catch at age.  However, it is also 

worth mentioning that changes in age frequency could be attributed to non-stationary population 

dynamics or time-varying age-specific selectivity.  Concurrent research suggests that changes in 

natural mortality, and to a lesser extent selectivity-at-age, are contributing factors for declining 

trends in weakfish abundance (Jiao et al. 2012).  Moreover, perceived trajectories in population 

size are likely a culmination of ageing error and annual changes in natural mortality rates, both 

of which have severe repercussions on the ability to estimate age-specific selectivity (He et al. 

2011).  Future consideration should be given to the ability of statistical catch-at-age analyses to 

effectively estimate age-specific selectivity and natural mortality in the presence of ageing 

uncertainty, along with the ability of model selection criterion to select for analyses integrating 

ageing error when it is appropriate to do so. 
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Legends of figures 

 

Figure 2-1: Commercial and recreational harvest for weakfish. 

Figure 2-2: Marginal posterior distributions for weakfish spawning stock size (SSN), 

recruitment, and full fishing mortality.  Solid line indicates the posterior mean, while grey 

regions correspond to 95% credible intervals. 

Figure 2-3: Coefficients of variation (CVs) for recruitment estimated from the Bayesian 

statistical catch-at-age models. 

Figure 2-4: Age-specific selectivity patterns from models M1-M5.  (a) M1, (b) M2, (c) M3, (d) 

M4, and (e) M5.  Lines correspond to 95% credible intervals.  See Table 1 for specification of 

models M1-M5. 

Figure 2-5: Fishery status evaluation for differing ageing error scenarios (see Table 1 for 

specification of models M1-M5). 

Figure 2-6: Coefficients of variation (CVs) for catch-at-age from the Bayesian statistical catch-

at-age models for ages 1-6+. 

 

Legends of tables 

 

Table 2-1: Ageing error matrices (AEM).  M1) Ignore ageing error, M2) empirical AEM, M3) 

unbiased-theoretical AEM, M4) positively-biased-theoretical AEM, and M5) negatively-biased-

theoretical AEM. 

Table 2-2: Summary of prior distributions used in solving the Bayesian statistical catch-at-age 

models.   

Tables 2-3: Bayesian statistical catch-at-age model performance using deviance information 

criterion (DIC) and posterior predictive p-values for catch at age.  See Table 1 for specification 

of models M1-M5. 

Table 2-4: Summary of posterior distributions for biological reference points FMSY and NMSY (in 

1E6 fish), including posterior median, standard deviation (S.D.) and 95% credible intervals. 
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Appendix 

 

Table 2-1 

Model 1 

 

True Age 

Observed Age 1 2 3 4 5 6 

1 1.000 0.000 0.000 0.000 0.000 0.000 

2 0.000 1.000 0.000 0.000 0.000 0.000 

3 0.000 0.000 1.000 0.000 0.000 0.000 

4 0.000 0.000 0.000 1.000 0.000 0.000 

5 0.000 0.000 0.000 0.000 1.000 0.000 

6 0.000 0.000 0.000 0.000 0.000 1.000 

Model 2 

 

True Age 

Observed Age 1 2 3 4 5 6 

1 0.917 0.261 0.040 0.004 0.000 0.000 

2 0.079 0.675 0.254 0.106 0.019 0.000 

3 0.004 0.058 0.665 0.287 0.062 0.000 

4 0.000 0.005 0.042 0.575 0.373 0.080 

5 0.000 0.000 0.000 0.026 0.522 0.240 

6 0.000 0.000 0.000 0.002 0.024 0.680 

Model 3 

 

True Age 

Observed Age 1 2 3 4 5 6 

1 0.979 0.064 0.001 0.000 0.000 0.000 

2 0.021 0.750 0.244 0.032 0.004 0.000 

3 0.000 0.169 0.484 0.290 0.104 0.033 

4 0.000 0.016 0.210 0.377 0.313 0.198 

5 0.000 0.001 0.052 0.217 0.348 0.377 

6 0.000 0.000 0.010 0.085 0.233 0.391 

Model 4 

 

True Age 

Observed Age 1 2 3 4 5 6 

1 0.064 0.001 0.000 0.000 0.000 0.000 

2 0.750 0.244 0.032 0.004 0.000 0.000 

3 0.169 0.484 0.290 0.104 0.033 0.011 

4 0.016 0.210 0.377 0.313 0.198 0.116 

5 0.001 0.052 0.217 0.348 0.377 0.348 

6 0.000 0.010 0.085 0.233 0.391 0.524 

Model 5 

 

True Age 

Observed Age 1 2 3 4 5 6 

1 1.000 0.979 0.064 0.001 0.000 0.000 

2 0.000 0.021 0.750 0.244 0.032 0.004 

3 0.000 0.000 0.169 0.484 0.290 0.104 

4 0.000 0.000 0.016 0.210 0.377 0.313 

5 0.000 0.000 0.001 0.052 0.217 0.348 

6 0.000 0.000 0.000 0.010 0.085 0.233 
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Table 2-2 

Parameter Prior 

fy U(0.001,2) 

sa U(0,1) 

Ln(Ry) U(-20,20) 

Ln(Na,y=1982) U(-20,20) 

Ln(qj,a) U(-30,30) 

σC U(0.001,10) 

σj U(0.001,10) 
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Table 2-3 

Model p-value pD    DIC 

1 0.745 103.5 849.6 953.1 

2 0.721 103.1 859.9 954.0 

3 0.891 99.8 889.5 989.3 

4 0.253 96.9 982.7 1079.6 

5 0.874 100.3 880.8 981.1 
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Table 2-4 

  FMSY NMSY (10
6
 Fish) 

Scenario Median S.D. 0.025 0.975 Median S.D. 0.025 0.975 

M1 0.604 0.234 0.340 1.143 62.934 58.966 33.808 119.202 

M2 0.709 0.318 0.325 1.483 55.646 56.569 32.642 89.638 

M3 1.381 0.398 0.747 2.000 31.437  6.138 23.349 44.794 

M4 1.176 0.336 0.753 1.909 26.552  5.767 17.527 38.808 

M5 1.410 0.509 0.565 2.000 49.887 10.388 37.393 72.877 
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Figure 2-1 
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Figure 2-3 4 
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Figure 2-4 13 
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Chapter 3: Stochastic simulation concerning the effects of ageing error during fisheries 

stock assessment for weakfish Cynoscion regalis 

 

Abstract 

 

 Current methods for assessing weakfish stock dynamics assume negligible uncertainty in 

catch-at-age, as well as ancillary information used to calibrate estimates of population 

abundance.  Unfortunately, error within ageing techniques, used to assess relative age 

frequencies within commercial and recreational harvest, is considered to be a major source of 

uncertainty for weakfish.  Monte Carlo simulations were used to gauge the robustness of 

ignoring this type of uncertainty during weakfish stock assessment, as well as the influence of 

ageing error on relative indicators of stock status.  Overall, implications for age-reading error on 

weakfish stock assessment are varied, depending upon the type ageing uncertainty considered, as 

well as the underlying structure of the stock assessment model.  While ageing error has the 

potential to impact absolute levels of estimated population parameters (e.g. fishing mortality and 

spawning stock size), it plays a lesser role on relative trends of those parameters over time.  As 

such, our ability to correctly allocate the weakfish stock to its appropriate status (i.e. overfishing 

and/or overfished) is relatively unaffected, regardless of the type of ageing error assumed.  

Furthermore, assuming negligible ageing uncertainty within age-structured indices of relative 

abundance appears reasonable, as simulations incorporating age-reading error within fishery-

independent surveys showed minor deviations from situations only considering observation 

noise. 
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1. Introduction 

 

 Productivity of fish populations is largely determined by reproductive output, growth and 

mortality rates, all of which can vary with age (Caswell 1989).  Hence, statistical catch-at-age 

models have been widely applied and prerequisites for many stock assessment methods include 

age-structured data (Campana & Thorrold 2001).  Age estimation, then, plays a key role in 

providing scientific advice for management decision-making, with need to evaluate age-

structured models in the presence of measurement error in observed ages.  Not to mention, 

effects of age-reading error appear fishery-specific (Reeves 2003; Bertignac and Pontual 2007), 

requiring case-by-case understanding of ageing uncertainty and its influence on perceived 

population dynamics and stock status (i.e. overfishing and/or overfished). 

 Age-based assessments typically portray fish stocks as individual cohorts and consider 

the effects of age- and year-specific recruitment, growth, and total mortality on underlying 

population structure (Megrey 1989; Hilborn and Walters 1992).  Age-length keys (ALKs) are 

commonly used to confer age frequency to total catch and entail reliable age determinations from 

sub-sampled harvest.  Error in observed ages will be propagated into stock assessment through 

misallocation of catch at age and various ancillary information used for calibrating population 

dynamics and/or elicitation of biological reference points.  Consequently, the quality, and to a 

lesser extent quantity (Coggins and Quinn 1998), of aging information may drive the 

performance of fisheries stock assessment and influence subsequent management advice.   

 Variability in age estimates is largely a function of misinterpretation by readers or 

inability of ageing structures to accurately record true age (Campana 2001).  The former and 

latter sources of ageing uncertainty are referred to as interpretation and process error, 
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respectively, with interpretation error being more prevalent in age determinations, owing to the 

fact that age validation methods are fundamental to production ageing programs (Campana 

2001).  The subjective assignment of age to individual fish is largely dependent upon preparation 

and interpretation of periodic increments innate to ageing structures, and can vary within and 

between readers, as well as laboratories (Campana and Moksness 1991; Kimura and Lyons 1991; 

Reeves 2003).  The ability to quantify and adjust for ageing error, then, is an important aspect of 

fisheries stock assessment, as well as the application of Monte Carlo simulations to evaluate 

consequences of ignoring this type of uncertainty during model fitting. 

 Currently, stock assessment methods for weakfish assume no error in catch at age, as well 

as age-structured indices of relative abundance.  Prior to 1990, scales were the primary ageing 

structure utilized for construction of age-length keys, until it was discovered that scales tend to 

negatively bias age estimates for older individuals (Lowerre-Barbieri et al. 1994).  However, 

using otolith-estimated ages does not guarantee age determinations will reflect true age for 

sampled fish, as variation within and between readers, as well as laboratories, can still bias 

inference.  Recent declines in weakfish abundance have raised concern among stakeholders, as to 

the potential ramifications of unrealistic model assumptions on stock assessment performance.  

Error within ageing techniques, used to assess relative age frequencies within commercial and 

recreational harvest, is considered to be a major source of uncertainty for weakfish stock 

assessment (NEFSC 2009). 

 Implications for violating error-free assumptions of statistical catch-at-age models, with 

respect to ageing uncertainty, were assessed using Monte Carlo simulations emulating the 

weakfish fishery.  Four ageing error scenarios were investigated, each with a subset of situations 

that mimic potential realizations of age-reading error within fisheries stock assessment for 



74 
 

weakfish.  Uncertainty in observed ages was introduced into the simulation by applying ageing 

error matrices to age-structured catch and relative abundance indices, thereby reflecting age-

misclassification rates for weakfish.  Ageing error matrices were constructed using the methods 

of Richards et al. (1992) and Coggins and Quinn (1998), see Hatch et al. (in preparation) for 

more detailed information concerning ageing error matrix construction.  We would further like to 

emphasize that this study is not meant as a critique on the current stock assessment or 

management approach for weakfish, but simply an investigation into the sensitivity of age-

structured methods to issues with data quality.   

2. Methods and materials 

 

 A Monte Carlo simulation was used to evaluate the effects of age-reading error on 

fisheries stock assessment within a statistical catch-at-age framework.  Simulated data sets were 

generated based on the weakfish stock (Hatch et al. in preparation), although general 

conclusions should be applicable to fisheries with similar characteristics.  Output from the data-

generating model included true catch- and abundance-at-age, as well as known age-structured 

indices of relative abundance.  True catch at age and indices of relative abundance were then 

manipulated to reflect various scenarios of ageing uncertainty, as well as observation error in 

fisheries stock assessment.  Key population parameters were estimated jointly from generated 

assessment data using a Bayesian statistical catch-at-age model, and performance measures were 

calculated by comparing estimates with known, true values.  Performance measures were then 

summarized across simulation replicates to provide an overall, relative measure of ageing 

uncertainty and its influence on stock assessment quality.  Full descriptions of the simulation 

approach used in this study are presented below. 
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2.1 Statistical catch-at-age model 

 

 The same set of equations was used in generating assessment data, as well as estimating 

population parameters, and can be written as   

(1)               
        

(2)             
               

          

(3)             

(4)       
    

      
                 

(5)                   

where Na,y is the population size of age a fish in year y, Ca,y is the catch of age a fish in year y, fy 

is the full fishing mortality in year y, sa is the age-specific selectivity, and M = 0.25 is the natural 

mortality rate (NEFSC 2009).  Ij,a,y is the jth relative abundance index for age a fish in year y and 

qj,a is the catchability coefficient of age a fish used to scale weakfish abundance to the jth 

relative abundance index (j   {1, 2}).  Catch at age and age-structured indices of relative 

abundance were further manipulated to represent situations in which ageing error influences 

misallocation of relative age frequencies (i.e.     
          

     ), where p(a'|a) denotes the 

ageing error matrix and characterizes the probability of being aged a', given the individual is true 

age a.    

 Variability in recruitment, initial abundance, fishing mortality, age-specific selectivity, 

catchability, and measurement error were incorporated into the simulation by drawing known, 

true values from their joint posterior distribution (Hatch et al. in preparation).  The joint 

posterior distribution for key population parameters was obtained from a Bayesian statistical 
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catch-at-age model assuming negligible error within estimated age compositions (Hatch et al. in 

preparation).  In this way, a broad range of potential outcomes was simulated to ensure an 

adequate representation of the influence of ageing error on the stock assessment performance for 

weakfish.     

2.2 Biological reference points 

 

 The method of Shepherd (1982) was used to calculate the true and estimated biological 

reference points (BRPs) for simulated datasets.  The posterior medians of estimated abundance-

at-age and age-specific selectivity were input for elicitation of FMSY and NMSY values from the 

age-structured stock assessment model.  As recruitment and selectivity-at-age were assumed to 

be free parameters and not constrained by pre-defined functions, both Beverton-Holt and Ricker 

stock-recruitment relationships were used in obtaining true and estimated BRPs.  Either Ricker 

or Berverton-Holt stock-recruitment functions were used to calculate BRPs for each simulation 

replicate (i.e. ∆DIC > 5).  If model selection uncertainty was high, then both stock-recruitment 

relationships were used to calculate BRPs, with the final BRPs being model-averaged at that 

iteration (Jiao et al. 2008). 

2.3 Scenarios and situations 

 

 Four ageing error matrices were constructed to simulate various scenarios of age-reading 

error during weakfish stock assessment (Table 1).  An empirical ageing error matrix was 

assembled based on comparison between scale- and otolith-estimated ages, with the 

understanding that otolith-estimated ages are more reflective of true ages for weakfish.  Three 

theoretical ageing error matrices were also developed based on the methods of Richards et al. 

(1992) and Coggins and Quinn (1998), which represent unbiased and biased (over- or under-
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ageing) ageing-error scenarios.  See Hatch et al. (in preparation) for a more in depth discussion 

on the methods used to construct ageing error matrices.  

 Within any given ageing-error (AE) scenario, six situations were explored to assess the 

relative contribution of ageing uncertainty in age-structured catch and relative abundance indices 

on estimating population parameters and biological reference points during fisheries stock 

assessment.  These included no AE (1), AE in catch only (2), AE in one relative abundance index 

(3), AE in both relative abundance indices (4), AE in catch and one relative abundance index (5), 

and AE in catch and both relative abundance indices (6).  Throughout the course of this study, 

scenario will refer to the type of ageing error (e.g. over- or under-ageing) and situation will 

determine how that ageing uncertainty influenced construction of simulated datasets.  

2.4 Convergence and performance measures 

 

 Inference of ageing error during fisheries stock assessment was based on 100 simulations 

per scenario, with 2,400 simulations in total.  All MCMC samplers were run for 5,000 iterations, 

with the first 2,500 being discarded, using 3 chains for each simulation.  Convergence of the 

estimator to the posterior distribution was determined by monitoring trace plots for every 10th 

simulation and ensuring that the                                                  for all 

parameters in every simulation.  Extensive pilot runs were conducted a priori to determine 

appropriate details of MCMC samplers necessary to achieve efficient convergence.   

 The performance measure utilized in this study was relative estimation error (REE), as 

defined by 
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where  j is either age or year and n is the number of simulations.       and        are the true and 

estimated parameter values for simulation i, respectively.  An REE closer to zero indicates an 

estimation procedure or situation that performs well, relative to all others considered.  

2.5 Summary 

 

 A Monte Carlo simulation was implemented to examine the effects of ageing error on 

weakfish stock assessment through the following steps: 

1. Draw true values for Ry, Na>1,y=1982, fy, sa, qj,a, σC, and σj from their joint posterior 

distribution, thereby emulating uncertainty in estimates of current stock status. 

2. Calculate weakfish abundance by age (i.e. 1-6+) and year (i.e. 1982-2007) using 

equations 1-3, assuming M = 0.25. 

3. Observe catch at age and age-structured relative abundance indices by drawing log-

normal random deviates, with log-means equal to the logarithms of equations 4 and 5, 

respectively.  Set corresponding measurement error variances to those obtained from step 

1. 

4. Apply ageing error matrix to observed catch at age and/or relative abundance indices to 

reflect uncertainty in observed age compositions. 

5. Estimate key population parameters using equations 1-5, ignoring ageing error in age-

structured catch and relative abundance indices, and compute performance measures for 

stock assessment quality.  Only catch at age and age-structured indices of relative 

abundance are assumed to be log-normally distributed during estimation. 

6. Repeat steps 1-5 for N simulation replicates. 
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3. Results 

 

 The stochasticity imposed on simulations by drawing true values from their joint 

posterior distribution, derived from Bayesian statistical catch-at-age analysis of the weakfish 

fishery, precludes comparison across simulated scenarios on the implications for ageing error 

during fisheries stock assessment.  As a result, valid inference is restricted within a particular 

ageing-error scenario and is further influenced by random generation of simulated data sets, 

requiring careful interpretation of results.  Because of the limited number of simulations per 

situation and scenario, deviations of estimated parameters from their true values may be slightly 

exaggerated and not truly reflective of all potential outcomes for age-reading error during 

weakfish stock assessment.  Regardless, general conclusions should remain applicable and 

comparison across scenarios is achieved through evaluation of changes relative to situations with 

only observation noise (i.e. no ageing error). 

 It is commonly assumed that trends in fishery-independent surveys are proportional to 

overall abundance, and as such error within observed age compositions should affect estimates of 

population numbers.  However, assuming negligible ageing uncertainty within age-structured 

indices of relative abundance appears reasonable, as simulating age-reading error within fishery-

independent surveys had little effect on stock assessment performance (as defined by relative 

estimation error of parameter estimates).  This is likely a function of increased variation in trends 

of relative abundance over time, such that any bias introduced by ageing error is confounded by 

overall uncertainty in changes of relative population numbers (i.e. bias-variance tradeoff).  That 

being said, ageing error within catch-at-age has a profound effect on the performance of fisheries 

stock assessment, impacting estimates of age-specific selectivity, recruitment, and, to a lesser 

extent, full fishing mortality (i.e. fy) (see Figure 1). 
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 At least for full fishing mortality, the type of ageing error had little effect on general 

trends in estimates across scenarios, resulting in consistent and less pronounced underestimation, 

relative to other population parameters (Figure 1).  The effect of age-reading error on selectivity 

and recruitment was more variable, depending upon the type of ageing uncertainty and the 

resultant fishing mortality estimate (i.e. Fa,y = fysa), at least for recruitment.  The empirical and 

under-ageing scenarios tended to inflate estimates for fishing mortality, likely a consequence of 

skewed catch-at-age toward younger ages, resulting in lower estimates for recruitment and 

spawning stock size, as fishers are perceived to be putting higher pressure on younger ages 

through increased age-specific selectivity, resulting in fewer individuals throughout the lifetime 

of a cohort.  Conversely, systematic over-ageing and unbiased ageing-error scenarios tended to 

result in negatively biased estimates for fishing mortality, producing grossly overoptimistic 

numbers for abundance (relative estimation error for SSN was ~51%, averaged across both 

unbiased and over-ageing scenarios, relative to the noise only situation).  Overestimates for 

abundance can generally be explained by the perceived shift in selectivity-at-age toward older 

individuals via unbiased and systematic over-ageing, resulting in lower fishing mortality for 

younger ages and subsequently increasing estimates for recruitment and spawning stock size. 

 Elicitation of biological reference points from age-structured models relies heavily on 

estimates for age-specific selectivity, abundance, and the corresponding stock-recruitment 

relationship.  With that in mind, only minimal effects were observed for relative indicators of 

stock status, regardless of the type of ageing uncertainty considered (Figure 2).  Generally 

speaking, systematic over-ageing led to slightly inflated levels of fishing pressure, typically 

beyond that which could be sustained by the fishery, resulting in depleted estimates for 

abundance and the potential loss of harvest opportunities by fishers.  On the other hand, 
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empirical, unbiased, and systematic under-ageing tended to produce slightly optimistic relative 

indicators of stock status, potentially leading to overexploitation of the weakfish stock.  The 

small deviation in estimates for biological reference points is encouraging, suggesting age-

reading error may play a minor role in the management of marine fish populations, relative to 

impacts of non-stationary population dynamics, selectivity, and/or catchability. 

4. Discussion 

 

 The effects of age-reading error on weakfish stock assessment are varied, and often 

depend on the underlying ageing error matrix, reflecting the direction and magnitude of ageing 

uncertainty within age-structured catch and fishery-independent surveys.  While age-reading 

error has the potential to impact estimates of key population parameters, its influence on 

biological reference points is minimal, generally resulting in correct assignment of weakfish 

stock status (Figure 2).  Furthermore, it appears that ignoring ageing uncertainty within age-

structured indices of relative abundance may be reasonable, although further consideration 

should be given to the role of ageing error on estimates of relative abundance over time, 

especially with varying degrees of observation noise. 

 To some extent, the results presented here are merely a reflection of how simulations 

were developed, as well as the assumed, underlying model structure of the stock assessment.  

Observed catch-at-age for weakfish is heavily dominated by younger ages (Figure 3), and as 

such larger discrepancies are expected for ageing-error scenarios that preferentially influence 

these age classes.  Basically, simulated ageing error works to misallocate individuals into 

neighboring age groups, but not so far as to traverse the true age range.  In other words, observed 

ages are lower and upper bounded by age-1 and age-6+ respectively, with changes in age 
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frequencies of younger individuals driving most of the conclusions for this simulation.  As 

shown in Table 1, age-reading error for older ages tended to be more uncertain, but more 

consistent across scenarios, while age-reading error for younger ages was more precise, allowing 

for a larger impact of ageing bias on estimates for fishing mortality and recruitment.  This may 

also explain why our study showed a clear distinction between unbiased and biased ageing-error 

scenarios, as opposed to the findings of Reeves (2003), although our results are consistent with 

those obtained by Coggins and Quinn (1998) and Bertignac and Pontual (2007).  This 

discrepancy may be further explained by the order of magnitude in ageing bias considered across 

studies (Bertignac and Pontual 2007), and the fact that we modeled population numbers, instead 

of population biomass, which has been shown to smooth differences in estimates of spawning 

stock size across age-reading error scenarios, although this phenomenon is likely fishery-specific 

depending upon how growth is modeled (Reeves 2003).  Similarly, some of the results presented 

here may be an artifact of using posterior medians to reflect parameter estimates across 

simulations. 

 Empirical and under-ageing scenarios tended to produce similar results, while parameter 

estimates for unbiased and over-ageing scenarios were also comparable.  This is likely a result of 

similarity amongst ageing error matrices, due in part to the assumed skewed nature of age-

reading error for weakfish.  Age-reading error was assumed to be log-normally distributed, 

resulting in stronger underestimation of observed ages for older age classes, which is somewhat 

reflected in empirical observations between scale- and otolith-estimated ages (Table 1).  For 

younger ages, underestimation is less pronounced, allowing unbiased and over-ageing error 

scenarios to be more alike, relative to the empirical and under-ageing error scenarios.  On a 

similar note, unbiased and over-ageing scenarios tended to result in larger deviations for 
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estimates of key population parameters, relative to empirical and under-ageing scenarios.  Again, 

this is likely a consequence of unbiased and over-ageing error matrices more heavily re-

distributing predominate age-classes within age-structured catch, which causes larger departures 

of parameter estimates from their true values. 

 Several other caveats of the simulation need to be addressed before adequate implications 

from this study can be drawn for use in a management-oriented context.  First, plus groups were 

not considered during construction of ageing-error matrices, largely in part because their 

inclusion would greatly diminish the potential for under-ageing of age-6 individuals.  However, 

this would likely decrease ageing uncertainty for older ages, allowing for a stronger impact of 

ageing bias on stock assessment results, and further investigation into its effect is recommended.  

Secondly, ageing error was applied directly to catch-at-age, instead of adjusting relative age 

frequencies within given length intervals (i.e. age-length keys), which are used to confer age 

composition to total weakfish landings.  If growth changes over time or space, effects of age-

reading error may be confounded by spatiotemporal trends in the age-length relationship and 

subsequent derivation of age-length keys.  Similarly, age-reading error was assumed to be static 

over time, although this is likely a reasonable assumption given the strict protocols of many 

ageing programs for quality control and assurance (Morison et al. 1998). 

 The influence of age-reading error on weakfish stock assessment largely depends on the 

type of ageing uncertainty considered, although there is little effect on relative perceptions in key 

population parameters over time.  This appears promising for management, as the role of ageing 

error in formulating policy may be relatively small, although adjusting for ageing error during 

fisheries stock assessment is still recommended, as it will allow for a better understanding of 

population dynamics.  Furthermore, age-reading error may have severe repercussions on the 
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ability to predict outcomes of alternative management strategies on future trends in abundance 

(Reeves 2003; Bertignac and Pontual 2007).  As such, it is recommended that a more in-depth 

management strategy evaluation be undertaken for weakfish, especially in the presence of ageing 

uncertainty.   

 While the results from this simulation study appear promising, the general conclusions 

and inferences regarding ageing error within fisheries stock assessment are limited to the 

weakfish fishery, as well as fisheries with similar characteristics.  The role of age-reading error 

on estimation of key population parameters and subsequent biological reference points will 

depend, in large part, on how those population parameters were treated during estimation and 

whether or not certain parameters were modeled by pre-defined functions.  Similarly, ageing 

error matrices constructed for this study are specific to the weakfish stock, and will likely 

influence the sign and/or magnitude of over- and/or under-estimation of key population 

parameters as a result of misallocating individuals to erroneous age classes.  As such, caution 

should be used in extrapolating the results from this study to fisheries whose characteristics are 

dissimilar to that of weakfish. 
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Legends of figures 

 

Figure 3-1: Boxplot of relative estimation error (REE) for full fishing mortality, selectivity, and 

recruitment.  Colors correspond to age-reading error scenarios (i.e. white = empirical, light grey 

= unbiased, dark grey = over-ageing, and black = under-ageing).  See Methods and Materials 

section for a more in-depth discussion of situations explored during this study.  Outliers not 

shown. 

Figure 3-2: Boxplot of relative estimation error (REE) for relative indicators of stock status.  

Relative estimation error was calculated relative to the situation with no ageing error, so as to 

remove influences of measurement noise on discerning the overall contribution of age-reading 

error to estimates of biological reference points.  Colors correspond to age-reading error 

scenarios (i.e. white = empirical, light grey = unbiased, dark grey = over-ageing, and black = 

under-ageing).  See Methods and Materials section for a more in-depth discussion of situations 

explored during this study.  Outlier not shown. 

Figure 3-3: Bubble plot of observed catch-at-age for weakfish, as well as total catch over time. 

 

Legends of tables 

 

Table 3-1: Ageing error matrices (AEM).  M1) Ignore ageing error, M2) empirical AEM, M3) 

unbiased-theoretical AEM, M4) positively-biased-theoretical AEM, and M5) negatively-biased-

theoretical AEM. 

Table 3-2: Summary of prior distributions used in solving the Bayesian statistical catch-at-age 

models.   
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Appendix 

 

Table 3-1 

Scenario 1 

 

True Age 

Observed Age 1 2 3 4 5 6 

1 0.917 0.261 0.040 0.004 0.000 0.000 

2 0.079 0.675 0.254 0.106 0.019 0.000 

3 0.004 0.058 0.665 0.287 0.062 0.000 

4 0.000 0.005 0.042 0.575 0.373 0.080 

5 0.000 0.000 0.000 0.026 0.522 0.240 

6 0.000 0.000 0.000 0.002 0.024 0.680 

Scenario 2 

 

True Age 

Observed Age 1 2 3 4 5 6 

1 0.979 0.064 0.001 0.000 0.000 0.000 

2 0.021 0.750 0.244 0.032 0.004 0.000 

3 0.000 0.169 0.484 0.290 0.104 0.033 

4 0.000 0.016 0.210 0.377 0.313 0.198 

5 0.000 0.001 0.052 0.217 0.348 0.377 

6 0.000 0.000 0.010 0.085 0.233 0.391 

Scenario 3 

 

True Age 

Observed Age 1 2 3 4 5 6 

1 0.064 0.001 0.000 0.000 0.000 0.000 

2 0.750 0.244 0.032 0.004 0.000 0.000 

3 0.169 0.484 0.290 0.104 0.033 0.011 

4 0.016 0.210 0.377 0.313 0.198 0.116 

5 0.001 0.052 0.217 0.348 0.377 0.348 

6 0.000 0.010 0.085 0.233 0.391 0.524 

Scenario 4 

 

True Age 

Observed Age 1 2 3 4 5 6 

1 1.000 0.979 0.064 0.001 0.000 0.000 

2 0.000 0.021 0.750 0.244 0.032 0.004 

3 0.000 0.000 0.169 0.484 0.290 0.104 

4 0.000 0.000 0.016 0.210 0.377 0.313 

5 0.000 0.000 0.001 0.052 0.217 0.348 

6 0.000 0.000 0.000 0.010 0.085 0.233 
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Table 3-2 

Parameter Prior 

fy U(0.001,2) 

sa U(0,1) 

Ln(Ry) U(-30,30) 

Ln(Na,y=1982) U(-30,30) 

Ln(qj,a) U(-30,30) 

σC U(0.001,10) 

σj U(0.001,10) 
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