MEASUREMENT OF THE EFFECTS OF REUSING
C++ CLASSES ON OBJECT-ORIENTED
SOFTWARE DEVELOPMENT

by
Mark Richard Lattanzi

Dissertation submitted to the Faculty of Virginia Tech in partial
fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY
in
Computer Science

APPROVED:

©
S auter) o
Dr. Sallie M. Henry, Chairpers])n

@Jman Balei W /

Dr. Osman Balci / Dr. Robert V. Fo
C \\r\ \f\ N N
Md AN A
Dr. Degnnis G. Kafura Robert C. Wllllges \\X
March 1995
Blacksburg, Virginia

Keywords: Software Reuse, Software Metrics, Object-oriented, C++ Classes

MEASUREMENT OF THE EFFECTS OF REUSING
C++ CLASSES
ON
OBJECT-ORIENTED SOFTWARE DEVELOPMENT

by

Mark Richard Lattanzi

(ABSTRACT)

This research models the effects of software reuse on object-oriented software
development, in particular, the reuse of C++ classes. Two types of reuse (with and
without modification) are compared. The common traits of programmers who tend to
reuse are identified, and some object-oriented software metrics are correlated with the
inherent reusability of a C++ class. These issues are important because software reuse has
been shown to increase productivity within the software development process.

This research effort describes three experiments. The first characterizes the effects of
reusing C++ classes on object-oriented software development using nine development
process indicators. The second experiment uses ten similar process indicators to
differentiate the effects of writing C++ classes from scratch versus reusing them without
modification versus inheriting new classes from existing ones. The last experiment
correlates some object-oriented metrics with the expert opinions of the reusability of C++
classes.

This research has shown that the black box reuse (reuse without modification) of C++
classes is beneficial to object-oriented software development in many ways. Development
time is reduced and system reliability increases. For abstract data type C++ classes, a set
of fifteen skills and experiences are shown to be prominent in frequent class reusers.
Lastly, a set of object-oriented metrics is used to predict C++ class reusability. All of
these results can be used to increase programmer productivity when developing C++
software systems.

This work was supported in part by the National Science Foundation Grant #527524:
Measurement of Software Reusability in the Object Oriented Paradigm, to Virginia Tech.

Acknowledgments

Four years of my life were used to complete this document. In that time, many people
helped me with the technical aspects of this research and with maintaining my sanity. My
deepest thanks go out to each and every person who helped make this research possible.

Dr. Sallie Henry, my advisor and my friend. None of this would have happened without
her guidance and support.

My committee: Dr. Osman Balci, Dr. Dennis Kafura, Dr. Robert Williges, and Dr.
Robert Foutz, all who provided me with invaluable technical assistance and advice
about a myriad of topics.

My parents: Henry and Jay Lattanzi, who will always be there for me in sunny Florida.
Chris Moore, my fiancée, who put up with me more than anyone during this endeavor.

Todd Stevens, for listening to me, giving much needed advice, and putting up with me
through many things too numerous (or desirable) to mention.

My closest friends in the world: Frank Owen and Phil English, whose phone calls and
visits always brightened my life.

The graduate students in the CS department that were my friends and sounding boards:
Randy, Siva, Bo, and Austin to name a few.

The People of the LUP: Suha, Steve, Mona, John P, Kurt, John G., Hla, Jim, Laura,
Sean, Brian, Jeff, Greg, Big Joe and a host of others.

Matt, Mike, Jenn, and Gina: no one could ask for better brothers and sisters-in-law.
Grandma Lattanzi for her love and support for all of my life.

Shawn, who was here at the beginning and will always be in my heart.

Caroline, for a taking care of me in the summer of 1994.

The sixty CS students in two Software Engineering classes that I put through Hell.

And lastly, the dogs of my life:
Allie, the big white dog whose hopping clouds now,
Lizzie, the Chaser of Light #2 and my AT companion,
Kiera, the 3rd Chaser of Light, and the dog of my dreams.

Thanks for ALL of your help.

il

Table of Contents

Chapter Page
1. Introductionveiinriassinnronesanarasasssaransanarnnas 1
1.1. The Object-Oriented'Paradigm, Reusability, and Software Metrics 1
1.2. Research Goals it 3
1.3. Research Results 5
1.4. Research Approach i 7

2. Motivationfor Researchcociteenrracnrssacanssannsnnnnns 9
2.1. Software Reusability 9
2.1.1. Subdividing Reusability i 11

2.1.2. Problems with Software Reuse, 12

2.2. The Object-Oriented Paradigm 13
2.3, Software MetriCsoooiini it 15
2.3.1. Object-Oriented Metricsc.oiiiiriiiiiiineeaannn.. 15

2.3.2. Potential Reusability Metrics 15

2.4. Researchinto Software Reuse 16
24.1. Research Abroad 16

2.4.2. Researchat Virginia Tech 19
2.4.2.1. Descriptionof Research 19

2.4.2.2. The Metrics GeNeratorcouuiuiereeeinineeneennnn. 20

2.5, SUMMATY ... 21

3. Definitions for the Research Effortciiiniinnnnans 22
3.1. Definitionof Termso i 22
3.2, Statistical TErmS o 23
3.3. Object-Oriented Metrics ...ttt i, 25
3.4. The Research Experiments i, 28
34.1. Experiment Oneo. it 30

3.42. Experiment TWO oo 32

343, Experiment Three i, 33

3.5, SUMMATY 34

4. Effects of Software Reuse in the Object-Oriented Paradigm 35
4.1. Designand Setupot 36
42 Experimental Data 37

v

A3 RESUIS . oot 41

44 Analysis e 49
4.4.1. TotalDesign Timeo i, 52
4.4.2. Total Implementation (Coding) Time 54
4.43. Total Library Time i, 56
4.4.4. Total Integration Time o iiiiiiiiiiianiinn.. 58
4.4.5. Total Time for Whole Project Development 59
4.4.6. Number of Integration Errors 61
4.4.7. Number of Integration Compiles iiie... 63
4.4.8. Number of IntegrationRunso.... 64
4.4.9. Number of Errors in the Final System 66

4.5, Summary / Conclusionsiiiiiiii e 67
45.1. Research QuestionOneo, 69
452 ResearchQuestionTwo i, 70
453. Research QuestionThree iiiiueo. ... 71

4.6. Final Commentsuiuitiit i 72

5. Types of Software Reuse and Software Development 73

5.1. Designand Setup ...ttt 74

5.2. Experimental Data 77

5.3 ReSUIS ...t 78

5.4, ANalysis 79
54.1. AnalysisData 82
542 Design TIMet 83
5.4.3. Time Examining / Learning the Library 84
5.4.4. Implementation (Coding) Timei... 85
54.5. Debugging Time i i 85
5.4.6. Total Development Time iiiiiiieiiinninano.. 86
5.4.7. Number of Compiles, 87
548 Numberof Runs i, 87
5.4.9. Number of Compile-Time Errors 87
5.4.10. Number of Logic Errors i, 88
5.4.11. Number of Run-Time Errors 88

5.5. Summary / Conclusions i 89

6. Programmer Experience and Software Reusecc0ununen 91

6.1. Experimental Data 91

6.2, ReSUItS 98
6.2.1. The Chi-Square Test e 98

6.2.2. Chi-Square Tests on the Experimental Data 100

6.2.3. Results of the Chi-Square Tests 101

6.3. Analysis of the Chi-Square Data, 101
6.4. ConCIUSIONSot 106

7. Reusability and Characteristics of C++ Classescccvvevnneenns 108
7.1. Opinions on Reusability i, 109
7.2. Characteristics of Reusable C++ Classes 110
7.3. Experiment Three: Designand Results 112
7.4. Experiment Three: Analysis i, 117
7.5. Summary / ConcClusions i 123

8. Conclusionscciiiurieitnnnsannanssanennsnssnnannsns 125
B.1. Goal One ... 125
8.2, Goal TWO ... 126
83. Goal Three i 127
84 GoalFour i, e 128
8.5. Implications of Research i 130
8.5 Future Work 131

9. Referencesccuvsennnennnsnensonsnnnansnssnansnnnnass 133
Appendicesccciiiiiicinntaranataa st a s 147
A. Programmer Skill Areas 147

B. Questionnaires for ExperimentOne 150

C. ExperimentOneRawData 160

D. Experiment Two Assignmewnt Sheets 163

E. Experiment Two Data Collection Sheet 168

F. Experiment Two Pseudo-Code Solution 170

G. Experiment TwoRawData 172

H. 18 Chi-Square Frequency Tables 174

I. Experiment Three: C++ Class Reusability Evaluation Form 184

J. Informed Consent Form For Research Involving Human Subjects 186
Vita o uiiiiniieeen it naecascesssnanncansnasassesonanennaness 190

Figure
2.1
4.1
42
43
4.4
45
4.6
4.7
4.8
49
6.1
7.1

List of Figures

Title
Research in Software Reusability
Design Time Model
Implementation (Coding) Time Model
Library Time Model
Integration Time Model
Total Development Time Model
Integration Errors Model
Integration Compiles Model
Integration Runs Model
Final System Errors Model
A 2x3 Chi-Square Explained
Some Characteristics of a Reusable C++ Class (Plus Metrics)

vil

Page
10
54
56
58
59
61
63
64
65
67
99

111

List of Tables

Table Title Page
4.1 Data Sets Collected During Experiment One 39
4.2 Development Process Indicators (Dependent Variables) for the Nine 42

Projects
4.3 Reuse Data for the Nine Projects of Experiment One 46
4.4 Size Metrics for the Nine Projects 48
4.5 Object-Oriented Complexity Metrics for the Nine Projects 49
4.6 Summary of the Regression Models for the Nine Process Indicators 68
5.1 Means and Variances for the Three Experimental Groups 75
5.2 Statistical Test Values Showing the Three Experimental Groups 76
Being Equal
5.3 Ten Process Indicators for Experiment Two 78
5.4 Development Data for Experiment Two - Means and Variances 79
5.5 Statistical Tests on the Ten Process Indicators 83
5.6 Summary of the Means Relationships for the Ten Process Indicators 89
6.1 Original Data Set of Programmer Skills and Which are Eliminated 93
6.2 Programmer Skills Data for the Programming Languages Skills 95
6.3 Programmer Skills Data for the Software Engineering Skills 96
6.4 Programmer Skills Data for the Reusability Skills 97
6.5 A 2x3 Chi Square for UNIX Experience Versus Level of Reuse 100
6.6 Results of the Chi Square Tests for the Eighteen Programmer 102
Aptitudes and Level of Reuse
7.1 Percentages of Programmer Opinions for What Make a Class 109
Reusable
7.2 The Fifteen Classes, Their Rank, and Averaged Reusability Scores 114
7.3 Metrics Values for the Fifteen Classes in Experiment Three 116
7.4 Averages for the Three Reuse Groups for the Fifteen Classes 117
7.5 Correlation Coefficients for Five Indicators Versus the Fifteen - 119
Metrics
C Experiment One Raw Project Data 160-162
G Experiment Two Raw Project Data 173

H Chi-Square Frequency Tables for Programmer Experiences 175-183

viii

Chapter 1
u Introduction

The state of the software industry is again reaching crisis proportions. Statistics predict a
world-wide shortage of programmers some time this decade [CoxB90, Horo84, Jone84,
Stan84]. Programs are growing larger and more complex. The current programmer
population is not adequate to meet the demands of the software users of the world. One
partial solution to this problem is through software reuse. Studies [Jone84, Meye87a]
have shown that around 15% of a new program is unique code; the other 85% is
composed of common functions and routines that have been written many times before.
By reusing existing source code, software developers can become more productive and
hopefully generate a higher overall quality product. Reusing existing software has
multiple benefits. Less testing is required on the reused routines. Maintenance efforts
drop off substantially for the reused code, and the productivity of the software developers

increases.

1.1 The Object-Oriented Paradigm, Reusability, and Software Metrics

One of the emerging technologies of the 1990's is the object-oriented paradigm: designing
programs based on the concrete objects being manipulated in the system. A key idea of
object-oriented languages is to encapsulate the objects (data structures) with the routines
that act on them. Furthermore, complex objects can be developed by merging simpler
objects. Both of these concepts lend themselves nicely to software reuse. As libraries of
objects are constructed, programmers are able to safely reuse large sections of code
instead of single procedures. This idea was originally proposed in an early paper by
Mclllroy entitled Mass Produced Software Components [Mcll69]. Since then, researchers
have been investigating how to reuse software effectively. Unfortunately, progress has

been slow. Mclllroy's vision has not yet come true.

Part of the reason for this failure is a lack of industry coding standards, a lack of
repeatable processes, and a lack of a set of measures with which to gauge improvement.
Software Engineering is concerned with creating software metrics. DeMarco states "You
can't control what you can't measure." [DeMa82], a quotation based on advice from Lord
Kelvin. One of the problems in software reuse is the lack of valid measures (standards) to
use that capture the various traits of reusability. Part of this research focuses on creating
and partially validating some software metrics that measure the reusability of a piece of

object-oriented code.

Software reuse is a key to increasing productivity within the software development
process. By reusing existing software, time and effort are saved in the development and
maintenance phases of a software product [Lewi92]. The effects of reuse on software
development are being accessed in this research. In particular, how can the effects of
reusability be quantified?, How does encouraging software reuse affect programmer
productivity and final system quality?, and What common traits or experiences exist in

programmers who reuse well?

This research effort is centered on a relatively new area of Software Engineering: the
measurement of object-oriented software (C++ classes) with a focus on software reuse.
C++ is an object-oriented programming language designed by Stroustrup [Stro86,

Stro88].

The object-oriented paradigm has been shown to promote reuse in some cases [Lewi92].
Object-oriented libraries (databases) are being introduced throughout the Computer
Science industry. NeXtStep Computer [Next95] uses a large interface library of classes as
the basis for its object-oriented software development environment. GNU [GNU95]
developed a standard library for its UNIX compiler. Microsoft's [Micr95] development kit
(an object library) is shipped with Microsoft's C++ compiler. Borland International

[Borl93] ships a C++ object library with Borland C++, version 4.0. Smalltalk [Gold84] is

based on reusable libraries of objects and is hardly usable without them. COOL [Afsh93]
is a public domain library of C++ classes. Classix [Empa90] and NIH [Gorl90] are two
third-party libraries of C++ and Smalltalk objects.

However, there are few, if any, metrics that attempt to measure the reuse potential of one
of the classes in these libraries (or even the reuse potential of a function in a procedural
language library). This research first investigates the effects that software reuse has on the
software development process and the final product. Additionally, two different types of
reuse are investigated. Next, the characteristics of programmers who tend to reuse are
identified, and lastly, the aspects of software that promote reusability are identified in an
empirically based hierarchy. This hierarchy characterizes the reusability of C++ classes by
identifying the measurable traits of C++ classes. Some current software metrics are then

used with this hierarchy to see if they can predict the reusability of a C++ class.

The remainder of this chapter explains the four major goals of this research effort and their

connections to software reusability, the object-oriented paradigm, and software metrics.

1.2 Research Goals

The goals of this research involve measuring reusability of object-oriented software and
determining the effect that reuse has on the software development life cycle. The specific

goals of this research are described below.

GOAL ONE is to characterize the effects of reusing C++ classes on the software

development process.

One of the major goals of this research is to examine how reusing C++ classes affects the
development of software. Nine process indicators are used to ascertain the impact that
reuse in the object-oriented paradigm has on the software development process. The

effects on each of these indicators are modeled using multiple linear regression model. An

empirical study (Experiment One) is performed in academia to accomplish this goal.

Chapter 4 addresses this goal in detail.

GOAL TWO is to measure the effects of the different types of C++ class reuse (black

box reuse and white box reuse') on the software development process.

The second goal of this research focuses on the type of reuse that is occurring and its
effect on the software development process. Lewis [Lewi92] did some preliminary work
in this area proving several important results concerning software reuse. One is that
reusing C++ classes improves productivity. This new research refines and quantifies this
result (i.e., What type of reuse of C++ classes is the most beneficial and how beneficial is
it?). A second experiment (Experiment Two) is conducted to achieve this goal. It also

occurs in an academic setting. Chapter 5 addresses this goal.

GOAL THREE is to determine what programmer characteristics influence or predict the

level of reuse performed.

Goal three pertains to the human side of software reuse. Tracz [Trac88a, Trac88b] and
others [Free87, Hoop91, Lewi92, Wood87] point out that software reuse is not just a
technical problem. People are reluctant to reuse. Some programmers are reluctant to
reuse other people's code. Some programmers are good at writing reusable code; others
are good at reusing existing code. To meet this goal, data on the programmers involved in
the first experiment is gathered and data on the code that each programmer writes or
reuses is also recorded. An analysis is performed relating the traits of the programmers

with the level of reuse attained by each of them. Chapter 6 addresses this goal.

GOAL FOUR is to identify some of aspects that make a C++ class reusable, and to

assign metrics to some of these aspects to measure the reusability of a C++ class.

" Black box reuse refers to reusing code from software libraries without modifying it.
White box reuse implies that the reused code is modified before being reused.
Inheritance is a form of white box reuse.

4

Goal four of this research identifies some of the major aspects of C++ classes that make
them reusable. The idea is to divide the broad concept of class reusability into smaller,
more directly measurable parts for which metrics can be created. The idea of dividing
broad concepts into constituent (measurable) parts can be found in [Balc93, McCa78].
Some aspects of class reusability are concrete and can be objectively measured (code
complexity) and others require subjective measurement (code readability). Under this
goal, the major characteristics of reusable classes are identified. The reuse potential of a
set of C++ classes is obtained. Metrics are then gathered on this set of classes to ascertain
if any object-oriented metrics can be used to determine the reusability of a C++ class. The
third experiment (Experiment Three) of this research is conducted with industry experts
on industry software (C++ classes from current C++ libraries). Chapter 7 addresses the

third experiment and this research goal.

Summarizing, this research examines the concept of software reuse in the object-oriented
paradigm and the effect that reusing C++ classes has on the software development
process. Furthermore, this research decomposes C++ class reusability into measurable
traits that can be used to quantify the problems involved in developing and using reusable
software in the object-oriented paradigm, and to provide some tools with which to combat

these problems.

1.3 Research Results

Some tangible results accompany each of the four major goals of this research effort.
Goal one investigates the software development process. The result of this investigation is
a set of nine multiple linear regression models that characterize the effects of reusing
C++ classes on the software development process. The software development process is
characterized by a set of nine indicators. Each of the nine models explains the trend in one

of the process indicators. The nine indicators listed below each measure some facet of the

software development process from the design stage through the coding and integration

stages to the submission of the final product.

The nine process indicators are:

. Total Design Time (hours)

. Total Coding Time (hours)

. Total Library Time (hours)

. Total Integration Time (hours)

. Total Development Time (hours)

. Total Number of Major Integration Errors
. Total Number of Integration Compiles

. Total Number of Integration Runs

O 00 1 N WD =

. Total Number of Final Errors

These nine indicators are explained in detail in Chapter 4. Explanations for each of the

nine models (and their constituent terms) are provided in Chapter 4 as well.

Goal two delves into the differing effects of black box reuse and white box reuse on the
software development process. The relative rankings of writing from scratch, reusing
without modification (black box), and reusing with modification (white box) are given for

a set of process indicators very similar to those outlined under goal one.

Goal three's result is a list of programmer characteristics and experiences and which
ones correlate with ability (or likelihood) to reuse. Each of the subjects in Experiment
One fills out an extensive background questionnaire, which is correlated to the level of

reuse performed during the experiment.

From goal four, the result is a list of some of the measurable aspects of C++ class
reusability. This hierarchical list is based on the opinions of the subjects in the first two

experiments. This list is used to guide the selection of some software metrics to measure

the reusability of a set of C++ classes. Dependencies between some object-oriented
metrics and five subjectively determined reusability indicators are made. The reusability

indicators are obtained from the third experiment's poll of industry experts.

In this section, the results for each of research goals have been outlined. The next section

explains the research method and approach to attaining these four goals.

1.4 Research Approach

Achieving these four goals of this research is accomplished through three major sources.
The basis for this research comes from an extensive literature review detailed in a

following chapter.

This research effort begins with the motivation for this research and a review of the
literature covering general reuse and reusability in the object-oriented paradigm in
particular. A hierarchy of the various research sub-areas in the field of reusability is

presented along with the various papers and articles that pertain to each topic.

The next step of this research is to perform two experiments in academia to gather some
empirical data about how reusing C++ classes affects the software development process
and some opinions about software reusability and what makes a C++ class reusable. The
first of these experiments is used to evaluate the effects of software reuse on the
development process. During this experiment, some data is collected to aid the attainment
of goals three and four. In particular, programmer characteristics and experiences are
gathered so correlations can be made against the amount of reuse performed by each
programmer. Also, programmer opinions are gathered on what the characteristics of

reusable C++ classes are.

Experiment Two deals with two kinds of software reuse (black box reuse and white box

reuse) and how each affects software development. A set of programmers is given a task

and asked to perform one kind of reuse or the other. Development data is collected as
they work. The relative benefits of the different types of reuse are obtained for a set of

software development process indicators.

Lastly, Experiment Three is an opinion poll of object-oriented paradigm (industry)
experts. This poll gathers data on a set of C++ classes about their relative reusability.
Five indicators are gathered: the class complexity, the class organization, the class ease of
use, the class documentation, and the class completeness of functionality. These
indicators are correlated to some object-oriented metrics, so that the reusability of a C++

class can be predicted, before it is actually reused or added to a software library.

The literature review and these three experiments form the bulk of this research. It is

detailed in the coming chapters.

Chapter 2
u Motivation for Research

At a high level, the motivation for this research stems from the need for software
engineers to be more productive and more reliable when writing software systems. The
reuse of software helps programmers achieve these goals. Since the object-oriented
paradigm is designed with a focus on software reuse [Meye87a], it also lends itself to
increasing programmer productivity. But, it can be difficult to perceive these benefits
[Barn91, Boll90, Hend93, LimW94]. Experimentation and analysis are needed to
understand how software reuse should be performed and what benefits can be achieved
through it. Software metrics provide the means to measure quantitatively the process of
developing (and reusing) software. Therefore, this research explores some current issues

in Software Engineering and elaborates upon them.

The remainder of this chapter explores the three major areas mentioned above: software
reuse, the object-oriented paradigm, and software metrics in more detail. Current research
findings are investigated and presented. Figure 2.1 depicts the field of software reusability
and the various citations addressing some of the specified areas. The bold lines connecting
the shadowed boxes depict the path to the niche in which this research effort lies. The

following literature review forms the foundation upon which this new research is based.

2.1 Software Reusability

Software reuse has been defined in many ways. Biggerstaff [Bigg87] defines it as the
reapplication of code or the use of libraries, routines, and objects. Tracz [Trac90b]
defines it as reusing software that was designed to be reused. Therefore, he states that
software salvaging is not software reuse. The reused software must have been designed
for reuse. Below, the concept of software reuse is elaborated upon and some of the

problems with reusing software are discussed.

£6SSoM «.th“e
26510) £6aM!7
26291y [-T:3) L | 26lIoOH
g6n. gmx 181109 y6pI4yo
gauyor osedwzy L6p!1yo
£6PUSH 06YSsY t63008

68djoA

qg‘egguae]

Z6ima7

yeand

L6eyly

Z6uayy

183514
8spied

y6usyo
ggamog

(6ssem
q‘esgohaw

18zua7 69IIPN
l8siey ygaue]
ggauor epgyeld
9gnbo9 RINpY | s6pIeD
Z26ieo lsung
068x00
988X00 yeyg ergaud

l8sud pgauor

£6ius ggamog

L6Sse

Z6deil q'eggoeil qeggieiy g8kl yeeyss
qiesud pemuwiry pgoioy edooy 189314
qyexyeld lgyeid 166619 q‘eeghblg 18b661g

A)I[1qeSNIY 91BMYOS UI Yo1BasY [7 2InFiy]

y6pIPM
egawer

£61EN
o6peoy 06B}A

B

y6eyIs
pedsey
veased
osliog

10

