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(ABSTRACT) 

This research models the effects of software reuse on object-oriented software 

development, in particular, the reuse of C++ classes. Two types of reuse (with and 

without modification) are compared. The common traits of programmers who tend to 

reuse are identified, and some object-oriented software metrics are correlated with the 

inherent reusability of a C++ class. These issues are important because software reuse has 
been shown to increase productivity within the software development process. 

This research effort describes three experiments. The first characterizes the effects of 
reusing C++ classes on object-oriented software development using nine development 

process indicators. The second experiment uses ten similar process indicators to 
differentiate the effects of writing C++ classes from scratch versus reusing them without 

modification versus inheriting new classes from existing ones. The last experiment 

correlates some object-oriented metrics with the expert opinions of the reusability of C++ 

classes. 

This research has shown that the black box reuse (reuse without modification) of C++ 

classes is beneficial to object-oriented software development in many ways. Development 

time is reduced and system reliability increases. For abstract data type C++ classes, a set 

of fifteen skills and experiences are shown to be prominent in frequent class reusers. 

Lastly, a set of object-oriented metrics is used to predict C++ class reusability. All of 
these results can be used to increase programmer productivity when developing C++ 

software systems. 

This work was supported in part by the National Science Foundation Grant #527524: 

Measurement of Software Reusability in the Object Oriented Paradigm, to Virginia Tech.
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Chapter 1 

z= Introduction 

The state of the software industry is again reaching crisis proportions. Statistics predict a 

world-wide shortage of programmers some time this decade [CoxB90, Horo84, Jone84, 

Stan84]. Programs are growing larger and more complex. The current programmer 

population is not adequate to meet the demands of the software users of the world. One 

partial solution to this problem is through software reuse. Studies [Jone84, Meye87a] 

have shown that around 15% of a new program is unique code; the other 85% is 

composed of common functions and routines that have been written many times before. 

By reusing existing source code, software developers can become more productive and 

hopefully generate a higher overall quality product. Reusing existing software has 

multiple benefits. Less testing is required on the reused routines. Maintenance efforts 

drop off substantially for the reused code, and the productivity of the software developers 

increases. 

1.1 The Object-Oriented Paradigm, Reusability, and Software Metrics 

One of the emerging technologies of the 1990's is the object-oriented paradigm: designing 

programs based on the concrete objects being manipulated in the system. A key idea of 

object-oriented languages is to encapsulate the objects (data structures) with the routines 

that act on them. Furthermore, complex objects can be developed by merging simpler 

objects. Both of these concepts lend themselves nicely to software reuse. As libraries of 

objects are constructed, programmers are able to safely reuse large sections of code 

instead of single procedures. This idea was originally proposed in an early paper by 

Mclllroy entitled Mass Produced Software Components [McII69]. Since then, researchers 

have been investigating how to reuse software effectively. Unfortunately, progress has 

been slow. Mclllroy's vision has not yet come true.



Part of the reason for this failure is a lack of industry coding standards, a lack of 

repeatable processes, and a lack of a set of measures with which to gauge improvement. 

Software Engineering is concerned with creating software metrics. DeMarco states "You 

can't control what you can't measure." [DeMa82], a quotation based on advice from Lord 

Kelvin. One of the problems in software reuse is the lack of valid measures (standards) to 

use that capture the various traits of reusability. Part of this research focuses on creating 

and partially validating some software metrics that measure the reusability of a piece of 

object-oriented code. 

Software reuse is a key to increasing productivity within the software development 

process. By reusing existing software, time and effort are saved in the development and 

maintenance phases of a software product [Lewi92]. The effects of reuse on software 

development are being accessed in this research. In particular, how can the effects of 

reusability be quantified?, How does encouraging software reuse affect programmer 

productivity and final system quality?, and What common traits or experiences exist in 

programmers who reuse well? 

This research effort is centered on a relatively new area of Software Engineering: the 

measurement of object-oriented software (C++ classes) with a focus on software reuse. 

C++ is an object-oriented programming language designed by Stroustrup [Stro86, 

Stro88]. 

The object-oriented paradigm has been shown to promote reuse in some cases [Lewi92]. 

Object-oriented libraries (databases) are being introduced throughout the Computer 

Science industry. NeXtStep Computer [Next95] uses a large interface library of classes as 

the basis for its object-oriented software development environment. GNU [GNU95] 

developed a standard library for its UNIX compiler. Microsoft's [Micr95] development kit 

(an object library) is shipped with Microsoft's C++ compiler. Borland International 

[Borl93] ships a C++ object library with Borland C++, version 4.0. Smalltalk [Gold84] is



based on reusable libraries of objects and 1s hardly usable without them. COOL [Afsh93] 

is a public domain library of C++ classes. Classix [Empa90] and NIH [Gorl90] are two 

third-party libraries of C++ and Smalltalk objects. 

However, there are few, if any, metrics that attempt to measure the reuse potential of one 

of the classes in these libraries (or even the reuse potential of a function in a procedural 

language library). This research first investigates the effects that software reuse has on the 

software development process and the final product. Additionally, two different types of 

reuse are investigated. Next, the characteristics of programmers who tend to reuse are 

identified, and lastly, the aspects of software that promote reusability are identified in an 

empirically based hierarchy. This hierarchy characterizes the reusability of C++ classes by 

identifying the measurable traits of C++ classes. Some current software metrics are then 

used with this hierarchy to see if they can predict the reusability of a C++ class. 

The remainder of this chapter explains the four major goals of this research effort and their 

connections to software reusability, the object-oriented paradigm, and software metrics. 

1.2 Research Goals 

The goals of this research involve measuring reusability of object-oriented software and 

determining the effect that reuse has on the software development life cycle. The specific 

goals of this research are described below. 

GOAL ONE is to characterize the effects of reusing C++ classes on the software 

development process. 

One of the major goals of this research is to examine how reusing C++ classes affects the 

development of software. Nine process indicators are used to ascertain the impact that 

reuse in the object-oriented paradigm has on the software development process. The 

effects on each of these indicators are modeled using multiple linear regression model. An



empirical study (Experiment One) is performed in academia to accomplish this goal. 

Chapter 4 addresses this goal in detail. 

GOAL TWO is to measure the effects of the different types of C++ class reuse (black 

box reuse and white box reuse’) on the software development process. 

The second goal of this research focuses on the type of reuse that is occurring and its 

effect on the software development process. Lewis [Lewi92] did some preliminary work 

in this area proving several important results concerning software reuse. One is that 

reusing C++ classes improves productivity. This new research refines and quantifies this 

result (i.e., What type of reuse of C++ classes is the most beneficial and how beneficial is 

it?). A second experiment (Experiment Two) is conducted to achieve this goal. It also 

occurs in an academic setting. Chapter 5 addresses this goal. 

GOAL THREE is to determine what programmer characteristics influence or predict the 

level of reuse performed. 

Goal three pertains to the human side of software reuse. Tracz [Trac88a, Trac88b] and 

others [Free87, Hoop91, Lewi92, Wood87] point out that software reuse 1s not just a 

technical problem. People are reluctant to reuse. Some programmers are reluctant to 

reuse other people's code. Some programmers are good at writing reusable code; others 

are good at reusing existing code. To meet this goal, data on the programmers involved in 

the first experiment is gathered and data on the code that each programmer writes or 

reuses is also recorded. An analysis is performed relating the traits of the programmers 

with the level of reuse attained by each of them. Chapter 6 addresses this goal. 

GOAL FOUR is to identify some of aspects that make a C++ class reusable, and to 

assign metrics to some of these aspects to measure the reusability of a C++ class. 
  

' Black box reuse refers to reusing code from software libraries without modifying it. 

White box reuse implies that the reused code is modified before being reused. 

Inheritance is a form of white box reuse. 

4



Goal four of this research identifies some of the major aspects of C++ classes that make 

them reusable. The idea is to divide the broad concept of class reusability into smaller, 

more directly measurable parts for which metrics can be created. The idea of dividing 

broad concepts into constituent (measurable) parts can be found in [Balc93, McCa78]. 

Some aspects of class reusability are concrete and can be objectively measured (code 

complexity) and others require subjective measurement (code readability). Under this 

goal, the major characteristics of reusable classes are identified. The reuse potential of a 

set of C++ classes is obtained. Metrics are then gathered on this set of classes to ascertain 

if any object-oriented metrics can be used to determine the reusability of a C++ class. The 

third experiment (Experiment Three) of this research is conducted with industry experts 

on industry software (C++ classes from current C++ libraries). Chapter 7 addresses the 

third experiment and this research goal. 

Summarizing, this research examines the concept of software reuse in the object-oriented 

paradigm and the effect that reusing C++ classes has on the software development 

process. Furthermore, this research decomposes C++ class reusability into measurable 

traits that can be used to quantify the problems involved in developing and using reusable 

software in the object-oriented paradigm, and to provide some tools with which to combat 

these problems. 

1.3 Research Results 

Some tangible results accompany each of the four major goals of this research effort. 

Goal one investigates the software development process. The result of this investigation is 

a set of nine multiple linear regression models that characterize the effects of reusing 

C++ classes on the software development process. The software development process is 

characterized by a set of nine indicators. Each of the nine models explains the trend in one 

of the process indicators. The nine indicators listed below each measure some facet of the



software development process from the design stage through the coding and integration 

stages to the submission of the final product. 

The nine process indicators are: 

. Total Design Time (hours) 

. Total Coding Time (hours) 

. Total Library Time (hours) 

. Total Integration Time (hours) 

. Total Development Time (hours) 

. Total Number of Major Integration Errors 

. Total Number of Integration Compiles 

. Total Number of Integration Runs 

0
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. Total Number of Final Errors 

These nine indicators are explained in detail in Chapter 4. Explanations for each of the 

nine models (and their constituent terms) are provided in Chapter 4 as well. 

Goal two delves into the differing effects of black box reuse and white box reuse on the 

software development process. The relative rankings of writing from scratch, reusing 

without modification (black box), and reusing with modification (white box) are given for 

a set of process indicators very similar to those outlined under goal one. 

Goal three's result is a list of programmer characteristics and experiences and which 

ones correlate with ability (or likelihood) to reuse. Each of the subjects in Experiment 

One fills out an extensive background questionnaire, which is correlated to the level of 

reuse performed during the experiment. 

From goal four, the result is a list of some of the measurable aspects of C++ class 

reusability. This hierarchical list is based on the opinions of the subjects in the first two 

experiments. This list is used to guide the selection of some software metrics to measure



the reusability of a set of C++ classes. Dependencies between some object-oriented 

metrics and five subjectively determined reusability indicators are made. The reusability 

indicators are obtained from the third experiment's poll of industry experts. 

In this section, the results for each of research goals have been outlined. The next section 

explains the research method and approach to attaining these four goals. 

1.4 Research Approach 

Achieving these four goals of this research is accomplished through three major sources. 

The basis for this research comes from an extensive literature review detailed in a 

following chapter. 

This research effort begins with the motivation for this research and a review of the 

literature covering general reuse and reusability in the object-oriented paradigm in 

particular. A hierarchy of the various research sub-areas in the field of reusability is 

presented along with the various papers and articles that pertain to each topic. 

The next step of this research is to perform two experiments in academia to gather some 

empirical data about how reusing C++ classes affects the software development process 

and some opinions about software reusability and what makes a C++ class reusable. The 

first of these experiments is used to evaluate the effects of software reuse on the 

development process. During this experiment, some data is collected to aid the attatnment 

of goals three and four. In particular, programmer characteristics and experiences are 

gathered so correlations can be made against the amount of reuse performed by each 

programmer. Also, programmer opinions are gathered on what the characteristics of 

reusable C++ classes are. 

Experiment Two deals with two kinds of software reuse (black box reuse and white box 

reuse) and how each affects software development. A set of programmers is given a task



and asked to perform one kind of reuse or the other. Development data is collected as 

they work. The relative benefits of the different types of reuse are obtained for a set of 

software development process indicators. 

Lastly, Experiment Three is an opinion poll of object-oriented paradigm (industry) 

experts. This poll gathers data on a set of C++ classes about their relative reusability. 

Five indicators are gathered: the class complexity, the class organization, the class ease of 

use, the class documentation, and the class completeness of functionality. These 

indicators are correlated to some object-oriented metrics, so that the reusability of a C++ 

class can be predicted, before it is actually reused or added to a software library. 

The literature review and these three experiments form the bulk of this research. It is 

detailed in the coming chapters.



Chapter 2 

= Motivation for Research 

At a high level, the motivation for this research stems from the need for software 

engineers to be more productive and more reliable when writing software systems. The 

reuse of software helps programmers achieve these goals. Since the object-oriented 

paradigm is designed with a focus on software reuse [Meye87a], it also lends itself to 

increasing programmer productivity. But, it can be difficult to perceive these benefits 

[Barn91, Boll90, Hend93, LimW94]. Experimentation and analysis are needed to 

understand how software reuse should be performed and what benefits can be achieved 

through it. Software metrics provide the means to measure quantitatively the process of 

developing (and reusing) software. Therefore, this research explores some current issues 

in Software Engineering and elaborates upon them. 

The remainder of this chapter explores the three major areas mentioned above: software 

reuse, the object-oriented paradigm, and software metrics in more detail. Current research 

findings are investigated and presented. Figure 2.1 depicts the field of software reusability 

and the various citations addressing some of the specified areas. The bold lines connecting 

the shadowed boxes depict the path to the niche in which this research effort lies. The 

following literature review forms the foundation upon which this new research is based. 

2.1 Software Reusability 

Software reuse has been defined in many ways. Biggerstaff [Bigg87] defines it as the 

reapplication of code or the use of libraries, routines, and objects. Tracz [Trac90b] 

defines it as reusing software that was designed to be reused. Therefore, he states that 

software salvaging is not software reuse. The reused software must have been designed 

for reuse. Below, the concept of software reuse is elaborated upon and some of the 

problems with reusing software are discussed.
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2.1.1 Subdividing Reusability 

Software reuse 1s a broad topic that can be subdivided in a number of ways. Grumann 

[Grum88] divides software reuse into reuse of algorithms, reuse of components, and reuse 

of designs. Biggerstaff divides the field of reuse into two broad categories: generation and 

composition [Bigg87]. Reuse through generation involves code generators. Users input 

the required parameters and code generators output custom objects or even complete 

systems that can be used as needed. Much research is occurring in the field of reuse 

through generation [Bato94, Bigg89b, Guer94]. 

Code composition reuse refers to using libraries of components to build complex systems. 

Composition strategies are inherently easier to understand and use because there is no 

need to learn a new meta-generation language. The only prerequisite for building systems 

from reusable components is knowing what components exist in the libraries and how to 

access them correctly. Research in this arena includes [Burt87, Frak94a, Gall92, Gugu86, 

Jone88, Lenz87, Prie87, Prie91a]. This research effort focuses on compositional reuse. 

Software reuse can also be divided by what is being reused: specifications, design 

documents, actual code, or some meta-language that describes code (such as C++ 

templates). Code reuse can be further subdivided into black box and white box reuse. 

Black box reuse implies reusing the component without modifying the internal code while 

white box reuse implies that the component is modified before being reused. This research 

explores code-level software reuse. It focuses on the reusability of object-oriented code 

components (specifically, general purpose C++ classes), and does not address the reuse of 

specification documents or design documents, although research in these areas has shown 

promise [Card88, Chen94, Lane84, Lieb88, Lieb89b, Neig84, Volp89, Weid94]. This 

research examines the distinction between black box and white box reuse and the differing 

effects on the software development process that these two types of reuse cause. 
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