
MEASUREMENT OF THE EFFECTS OF REUSING 

C++ CLASSES ON OBJECT-ORIENTED 

SOFTWARE DEVELOPMENT 

by 
Mark Richard Lattanzi 

Dissertation submitted to the Faculty of Virginia Tech in partial 

fulfillment of the requirements for the degree of 

DOCTOR OF PHILOSOPHY 

in 

Computer Science 

APPROVED: 

0 

Dalle) thenrny 
Dr. Sallie M. Henry, Chairperson 

Cdaman Bali ties. Lez 
    

    

Dr. Osman Balci ’ Dr. Robert V. Foutz 

Se YN No nN o™N 

YS a-=. ine PVC - 
“Dr. Defnis G. Kafura By. Robert Cc. Williges NN 

March 1995 

Blacksburg, Virginia 

Keywords: Software Reuse, Software Metrics, Object-oriented, C++ Classes





MEASUREMENT OF THE EFFECTS OF REUSING 

C++ CLASSES 

ON 

OBJECT-ORIENTED SOFTWARE DEVELOPMENT 

by 

Mark Richard Lattanzi 

(ABSTRACT) 

This research models the effects of software reuse on object-oriented software 

development, in particular, the reuse of C++ classes. Two types of reuse (with and 

without modification) are compared. The common traits of programmers who tend to 

reuse are identified, and some object-oriented software metrics are correlated with the 

inherent reusability of a C++ class. These issues are important because software reuse has 
been shown to increase productivity within the software development process. 

This research effort describes three experiments. The first characterizes the effects of 
reusing C++ classes on object-oriented software development using nine development 

process indicators. The second experiment uses ten similar process indicators to 
differentiate the effects of writing C++ classes from scratch versus reusing them without 

modification versus inheriting new classes from existing ones. The last experiment 

correlates some object-oriented metrics with the expert opinions of the reusability of C++ 

classes. 

This research has shown that the black box reuse (reuse without modification) of C++ 

classes is beneficial to object-oriented software development in many ways. Development 

time is reduced and system reliability increases. For abstract data type C++ classes, a set 

of fifteen skills and experiences are shown to be prominent in frequent class reusers. 

Lastly, a set of object-oriented metrics is used to predict C++ class reusability. All of 
these results can be used to increase programmer productivity when developing C++ 

software systems. 

This work was supported in part by the National Science Foundation Grant #527524: 

Measurement of Software Reusability in the Object Oriented Paradigm, to Virginia Tech.



Acknowledgments 

Four years of my life were used to complete this document. In that time, many people 

helped me with the technical aspects of this research and with maintaining my sanity. My 

deepest thanks go out to each and every person who helped make this research possible. 

Dr. Sallie Henry, my advisor and my friend. None of this would have happened without 

her guidance and support. 

My committee: Dr. Osman Balci, Dr. Dennis Kafura, Dr. Robert Williges, and Dr. 

Robert Foutz, all who provided me with invaluable technical assistance and advice 

about a myriad of topics. 

My parents: Henry and Jay Lattanzi, who will always be there for me in sunny Florida. 

Chris Moore, my fiancée, who put up with me more than anyone during this endeavor. 

Todd Stevens, for listening to me, giving much needed advice, and putting up with me 

through many things too numerous (or desirable) to mention. 

My closest friends in the world: Frank Owen and Phil English, whose phone calls and 
visits always brightened my life. 

The graduate students in the CS department that were my friends and sounding boards: 

Randy, Siva, Bo, and Austin to name a few. 

The People of the LUP: Suha, Steve, Mona, John P., Kurt, John G., Hla, Jim, Laura, 

Sean, Brian, Jeff, Greg, Big Joe and a host of others. 

Matt, Mike, Jenn, and Gina: no one could ask for better brothers and sisters-in-law. 

Grandma Lattanzi for her love and support for all of my life. 

Shawn, who was here at the beginning and will always be in my heart. 

Caroline, for a taking care of me in the summer of 1994. 

The sixty CS students in two Software Engineering classes that I put through Hell. 

And lastly, the dogs of my life: 

Allie, the big white dog whose hopping clouds now, 
Lizzie, the Chaser of Light #2 and my AT companion, 

Kiera, the 3rd Chaser of Light, and the dog of my dreams. 

Thanks for ALL of your help. 

itl



Table of Contents 

Chapter Page 

1. Introduction 1... cee ewe eee ee eee eee 1 

1.1. The Object-Oriented Paradigm, Reusability, and Software Metrics ........... l 

1.2. Research Goals ...... 0... ccc ccc cece nee e tenn enn n ene eees 3 

1.3. Research Results 0.0.0.0... cc ccc een n tenn eae 5 

1.4. Research Approach .......... 000 ccc teen tenes 7 

2. Motivation for Research .......ccc ene e ence eect eee eee ee eee 9 

2.1. Software Reusability ....... 0.00. eees 9 

2.1.1. Subdividing Reusability ........00. 00000 eee ... 1 

2.1.2. Problems with Software Reuse ............. 00.0 cece eee nee 12 

2.2. The Object-Oriented Paradigm ......... 0... ccc ee eee ees 13 

2.3. Software Metrics ........ 00... ccc cece t eee ee nas 15 

2.3.1. Object-Oriented Metrics 2.2.0.0... 000 eens 15 

2.3.2. Potential Reusability Metrics ........... 0.0... cece cee eee 15 

2.4. Research into Software Reuse ........... 0.0... cece ete eee anes 16 

2.4.1. Research Abroad .......0.000.0.0 00000 c ccc ccc cen eens 16 

2.4.2. Research at Virginia Tech .............0. 0.0.0 eee ees 19 

2.4.2.1. Description of Research ............0 0.0.00. c cece eee eens 19 

2.4.2.2. The Metrics Generator .......0.00 00.0 ccc ene 20 

2.5. Summary 2.0.0.0... cee eee eet e eee e eee e beet eens 21 

3. Definitions for the Research Effort .......0. cece cece ene n een eneee 22 

3.1. Definition of Terms ........0.0. 0... n eens 22 

3.2. Statistical Terms... 0.6.1 eee eens 23 

3.3. Object-Oriented Metrics ........... 0. cece eee eee eens 25 

3.4. The Research Experiments ............. ccc ccc cece teen eens 28 

3.4.1. Experiment One .........0.. 000. ccc eee eee eens 30 

3.4.2. Experiment TWo ...... 0.0... c eee been eee e eens 32 

3.4.3. Experiment Three .......... 00.00. ccc cece teen ees 33 

3.5. Summary ........ 0.0.0. teen e ete t eee tenner eens 34 

4. Effects of Software Reuse in the Object-Oriented Paradigm ...........:5 35 

4.1. Design and Setup .......... 0... c ccc ceneet eee e nnn eees 36 

4.2. Experimental Data .......... 0.0 ccc n en nnes 37 

iV



4.3. Results 0... 0.0.0. ccc cece ence ene eee n ten beneunteneevneenees 41 

AA. Analysis... 0.0 ccc cnet n nent eens 49 

4.4.1. Total Design Time ........... 0... ees 52 

4.4.2. Total Implementation (Coding) Time ................. 0.0 c eee eee 54 

44.3. Total Library Time .......... 0.00. eees 56 

4.44. Total Integration Time ............. 0... cece ee 58 

4.4.5. Total Time for Whole Project Development .....................0.. 59 

4.4.6. Number of Integration Errors ...........0. 0. 0c cece eee eee 61 

4.4.7. Number of Integration Compiles ........... 0.0... eee eee eee 63 

4.4.8. Number of Integration Runs .............. 0.0.0 cece cece ees 64 

4.4.9. Number of Errors in the Final System ................ 0000000200 eee. 66 

4.5. Summary / Conclusions .........0.0. 0.0 c ccc cee nee etnies 67 

4.5.1. Research Question One .......... 0.0 ccc ccc eee 69 

4.5.2. Research Question TWO ........ 00.00 ccc eee e eee eens 70 

4.5.3. Research Question Three ..........0. 0.0.0. c cee ccc ccc eee een 71 

4.6. Final Comments ........... 0... c ccc eee cette eee eas 72 

5. Types of Software Reuse and Software Development .........0.ee008: 73 

5.1. Design and Setup 0.0.0.0... 0. nett eee t tne een e nes 74 

5.2. Experimental Data ........00. 00... eees 77 

5.3. Results 2.0.0... eee en nent eee t ene eee nnenes 78 

5.4. Analysis 0.0... eee eee e ene tence entrees 79 

5.4.1. Analysis Data ............. eee een enn eee een n eee teen ee ees 82 

5.4.2. Design Time ........ 0... ccc cnet eet e etnies 83 

5.4.3. Time Examining / Learning the Library ........................005- 84 

5.4.4. Implementation (Coding) Time ............. 00... cece eee ees 85 

5.4.5. Debugging Time .......... 00... cece eect eens 85 

5.4.6. Total Development Time ............. 0... c cece eee eens 86 

5.4.7. Number of Compiles .........0....... 00 ccc eects 87 

5.4.8. Number of Runs 2.0.0... ccc cece eee nnn e eee 87 

5.4.9. Number of Compile-Time Errors ............0..0 000.00 cece eee eee 87 

5.4.10. Number of Logic Errors 2.0.0.0... 0c cee eee ens 88 

5.4.11. Number of Run-Time Errors ...............0.0 0000 cece eee eee 88 

5.5. Summary / Conclusions ........000 000 ccc eee eee nen en 89 

6. Programmer Experience and Software Reuse ........00eeeceeeneeues 91



6.1. Experimental Data ......0...0.0.0 0.02 c ccc ete e nnn ne e ee eenes 9] 

6.2. Results .......0. 0.00. e eens 98 

6.2.1. The Chi-Square Test ........... 0... ccc ccc cece ees 98 

6.2.2. Chi-Square Tests on the Experimental Data ...................00. 100 

6.2.3. Results of the Chi-Square Tests ................... 00: e cece ee ees 101 

6.3. Analysis of the Chi-Square Data ........ 0... ccc eee eee 101 

6.4. Conclusions ......... 0... tenet teen eee tenes 106 

7, Reusability and Characteristics of C++ Classes 1... .0ceeeeeeeneceues 108 

7.1. Opinions on Reusability ........ 0... ees 109 

7.2. Characteristics of Reusable C++ Classes ............. 00000 c eee eee ee 110 

7.3. Experiment Three: Design and Results ......................2..000045- 112 

7.4. Experiment Three: Analysis ...........0.. 0.60 ccc eect eee eens 117 

7.5. Summary / Conclusions ........... 0000 ccc cece eens 123 

8. Conclusions 1... 0c cece cee nec ee eee eeeee eee e eee e eee 125 

B.1. Goal One 2.0.0... .. een eee ened nett eee n ne nes 125 

8.2. Goal TWO... cette eee ee teen ees 126 

8.3. Goal Three 2.0.2... 0... nent eee n eens 127 

8.4. Goal Four 0.00... enn n eee nen tenes 128 

8.5. Implications of Research ............ 00.0 c cece cee eens 130 

8.5. Future Work 2.2... nent teen nes 131 

9. References ... 2.0 cence c cee nee eee eee eee eee 133 

Appendices 2... cc cece eee e cere eet ween eee ee eee eee eee ees 147 

A. Programmer Skill Areas ......... 00. e eens 147 

B. Questionnaires for Experiment One .........0.00.0.0 000.0 c cece eens 150 

C. Expermment One Raw Data ......... 0... cence eee enes 160 

D. Experiment Two Assignmewnt Sheets ............. 0.0. ccc eee eee ees 163 

E. Experiment Two Data Collection Sheet ............. 0... ccc ccc eae 168 

F. Experiment Two Pseudo-Code Solution ................. 0002 cece eee eee 170 

G. Experiment Two Raw Data .......... 00... cc ccc cece eee en 172 

H. 18 Chi-Square Frequency Tables ...............0.0 00.0 ccc ccc ees 174 

I. Experiment Three: C++ Class Reusability Evaluation Form ................ 184 

J. Informed Consent Form For Research Involving Human Subjects .......... 186 

Vita cece ee eee cee teen eee ee eee een eenes 190



Figure 

2.1 

4.1 

4.2 

4.3 

4.4 

4.5 

4.6 

4.7 

4.8 

4.9 

6.1 

7.1 

List of Figures 

Title 

Research in Software Reusability 

Design Time Model 

Implementation (Coding) Time Model 

Library Time Model 

Integration Time Model 

Total Development Time Model 

Integration Errors Model 

Integration Compiles Model 

Integration Runs Model 

Final System Errors Model 

A 2x3 Chi-Square Explained 

Some Characteristics of a Reusable C++ Class (Plus Metrics) 

Vil 

Page 

10 

54 

56 

58 

59 

61 

63 

64 

65 

67 

99 

11]



List of Tables 

Table Title Page 

4.1 Data Sets Collected During Experiment One 39 

4.2 Development Process Indicators (Dependent Variables) forthe Nine 42 

Projects 

4.3. Reuse Data for the Nine Projects of Experiment One 46 

44 Size Metrics for the Nine Projects 48 

45 Object-Oriented Complexity Metrics for the Nine Projects 49 

4.6 Summary of the Regression Models for the Nine Process Indicators 68 

5.1 | Means and Variances for the Three Experimental Groups 75 

5.2 Statistical Test Values Showing the Three Experimental Groups 76 
Being Equal 

5.3 Ten Process Indicators for Experiment Two 78 

5.4 Development Data for Experiment Two - Means and Variances 79 

5.5 Statistical Tests on the Ten Process Indicators 83 

5.6 Summary of the Means Relationships for the Ten Process Indicators 89 

6.1 Original Data Set of Programmer Skills and Which are Eliminated 93 

6.2 Programmer Skills Data for the Programming Languages Skills 95 

6.3. Programmer Skills Data for the Software Engineering Skills 96 

6.4 Programmer Skills Data for the Reusability Skills 97 

6.5 A 2x3 Chi Square for UNIX Experience Versus Level of Reuse 100 

6.6 Results of the Chi Square Tests for the Eighteen Programmer 102 

Aptitudes and Level of Reuse 

7.1 Percentages of Programmer Opinions for What Make a Class 109 

Reusable 

7.2 The Fifteen Classes, Their Rank, and Averaged Reusability Scores 114 

7.3. Metrics Values for the Fifteen Classes in Experiment Three 116 

7.4 Averages for the Three Reuse Groups for the Fifteen Classes 117 

7.5 Correlation Coefficients for Five Indicators Versus the Fifteen - 119 

Metrics 

C Experiment One Raw Project Data 160-162 

G Experiment Two Raw Project Data 173 

H ~~ Chi-Square Frequency Tables for Programmer Experiences 175-183 

Vill



Chapter 1 

z= Introduction 

The state of the software industry is again reaching crisis proportions. Statistics predict a 

world-wide shortage of programmers some time this decade [CoxB90, Horo84, Jone84, 

Stan84]. Programs are growing larger and more complex. The current programmer 

population is not adequate to meet the demands of the software users of the world. One 

partial solution to this problem is through software reuse. Studies [Jone84, Meye87a] 

have shown that around 15% of a new program is unique code; the other 85% is 

composed of common functions and routines that have been written many times before. 

By reusing existing source code, software developers can become more productive and 

hopefully generate a higher overall quality product. Reusing existing software has 

multiple benefits. Less testing is required on the reused routines. Maintenance efforts 

drop off substantially for the reused code, and the productivity of the software developers 

increases. 

1.1 The Object-Oriented Paradigm, Reusability, and Software Metrics 

One of the emerging technologies of the 1990's is the object-oriented paradigm: designing 

programs based on the concrete objects being manipulated in the system. A key idea of 

object-oriented languages is to encapsulate the objects (data structures) with the routines 

that act on them. Furthermore, complex objects can be developed by merging simpler 

objects. Both of these concepts lend themselves nicely to software reuse. As libraries of 

objects are constructed, programmers are able to safely reuse large sections of code 

instead of single procedures. This idea was originally proposed in an early paper by 

Mclllroy entitled Mass Produced Software Components [McII69]. Since then, researchers 

have been investigating how to reuse software effectively. Unfortunately, progress has 

been slow. Mclllroy's vision has not yet come true.



Part of the reason for this failure is a lack of industry coding standards, a lack of 

repeatable processes, and a lack of a set of measures with which to gauge improvement. 

Software Engineering is concerned with creating software metrics. DeMarco states "You 

can't control what you can't measure." [DeMa82], a quotation based on advice from Lord 

Kelvin. One of the problems in software reuse is the lack of valid measures (standards) to 

use that capture the various traits of reusability. Part of this research focuses on creating 

and partially validating some software metrics that measure the reusability of a piece of 

object-oriented code. 

Software reuse is a key to increasing productivity within the software development 

process. By reusing existing software, time and effort are saved in the development and 

maintenance phases of a software product [Lewi92]. The effects of reuse on software 

development are being accessed in this research. In particular, how can the effects of 

reusability be quantified?, How does encouraging software reuse affect programmer 

productivity and final system quality?, and What common traits or experiences exist in 

programmers who reuse well? 

This research effort is centered on a relatively new area of Software Engineering: the 

measurement of object-oriented software (C++ classes) with a focus on software reuse. 

C++ is an object-oriented programming language designed by Stroustrup [Stro86, 

Stro88]. 

The object-oriented paradigm has been shown to promote reuse in some cases [Lewi92]. 

Object-oriented libraries (databases) are being introduced throughout the Computer 

Science industry. NeXtStep Computer [Next95] uses a large interface library of classes as 

the basis for its object-oriented software development environment. GNU [GNU95] 

developed a standard library for its UNIX compiler. Microsoft's [Micr95] development kit 

(an object library) is shipped with Microsoft's C++ compiler. Borland International 

[Borl93] ships a C++ object library with Borland C++, version 4.0. Smalltalk [Gold84] is



based on reusable libraries of objects and 1s hardly usable without them. COOL [Afsh93] 

is a public domain library of C++ classes. Classix [Empa90] and NIH [Gorl90] are two 

third-party libraries of C++ and Smalltalk objects. 

However, there are few, if any, metrics that attempt to measure the reuse potential of one 

of the classes in these libraries (or even the reuse potential of a function in a procedural 

language library). This research first investigates the effects that software reuse has on the 

software development process and the final product. Additionally, two different types of 

reuse are investigated. Next, the characteristics of programmers who tend to reuse are 

identified, and lastly, the aspects of software that promote reusability are identified in an 

empirically based hierarchy. This hierarchy characterizes the reusability of C++ classes by 

identifying the measurable traits of C++ classes. Some current software metrics are then 

used with this hierarchy to see if they can predict the reusability of a C++ class. 

The remainder of this chapter explains the four major goals of this research effort and their 

connections to software reusability, the object-oriented paradigm, and software metrics. 

1.2 Research Goals 

The goals of this research involve measuring reusability of object-oriented software and 

determining the effect that reuse has on the software development life cycle. The specific 

goals of this research are described below. 

GOAL ONE is to characterize the effects of reusing C++ classes on the software 

development process. 

One of the major goals of this research is to examine how reusing C++ classes affects the 

development of software. Nine process indicators are used to ascertain the impact that 

reuse in the object-oriented paradigm has on the software development process. The 

effects on each of these indicators are modeled using multiple linear regression model. An



empirical study (Experiment One) is performed in academia to accomplish this goal. 

Chapter 4 addresses this goal in detail. 

GOAL TWO is to measure the effects of the different types of C++ class reuse (black 

box reuse and white box reuse’) on the software development process. 

The second goal of this research focuses on the type of reuse that is occurring and its 

effect on the software development process. Lewis [Lewi92] did some preliminary work 

in this area proving several important results concerning software reuse. One is that 

reusing C++ classes improves productivity. This new research refines and quantifies this 

result (i.e., What type of reuse of C++ classes is the most beneficial and how beneficial is 

it?). A second experiment (Experiment Two) is conducted to achieve this goal. It also 

occurs in an academic setting. Chapter 5 addresses this goal. 

GOAL THREE is to determine what programmer characteristics influence or predict the 

level of reuse performed. 

Goal three pertains to the human side of software reuse. Tracz [Trac88a, Trac88b] and 

others [Free87, Hoop91, Lewi92, Wood87] point out that software reuse 1s not just a 

technical problem. People are reluctant to reuse. Some programmers are reluctant to 

reuse other people's code. Some programmers are good at writing reusable code; others 

are good at reusing existing code. To meet this goal, data on the programmers involved in 

the first experiment is gathered and data on the code that each programmer writes or 

reuses is also recorded. An analysis is performed relating the traits of the programmers 

with the level of reuse attained by each of them. Chapter 6 addresses this goal. 

GOAL FOUR is to identify some of aspects that make a C++ class reusable, and to 

assign metrics to some of these aspects to measure the reusability of a C++ class. 
  

' Black box reuse refers to reusing code from software libraries without modifying it. 

White box reuse implies that the reused code is modified before being reused. 

Inheritance is a form of white box reuse. 

4



Goal four of this research identifies some of the major aspects of C++ classes that make 

them reusable. The idea is to divide the broad concept of class reusability into smaller, 

more directly measurable parts for which metrics can be created. The idea of dividing 

broad concepts into constituent (measurable) parts can be found in [Balc93, McCa78]. 

Some aspects of class reusability are concrete and can be objectively measured (code 

complexity) and others require subjective measurement (code readability). Under this 

goal, the major characteristics of reusable classes are identified. The reuse potential of a 

set of C++ classes is obtained. Metrics are then gathered on this set of classes to ascertain 

if any object-oriented metrics can be used to determine the reusability of a C++ class. The 

third experiment (Experiment Three) of this research is conducted with industry experts 

on industry software (C++ classes from current C++ libraries). Chapter 7 addresses the 

third experiment and this research goal. 

Summarizing, this research examines the concept of software reuse in the object-oriented 

paradigm and the effect that reusing C++ classes has on the software development 

process. Furthermore, this research decomposes C++ class reusability into measurable 

traits that can be used to quantify the problems involved in developing and using reusable 

software in the object-oriented paradigm, and to provide some tools with which to combat 

these problems. 

1.3 Research Results 

Some tangible results accompany each of the four major goals of this research effort. 

Goal one investigates the software development process. The result of this investigation is 

a set of nine multiple linear regression models that characterize the effects of reusing 

C++ classes on the software development process. The software development process is 

characterized by a set of nine indicators. Each of the nine models explains the trend in one 

of the process indicators. The nine indicators listed below each measure some facet of the



software development process from the design stage through the coding and integration 

stages to the submission of the final product. 

The nine process indicators are: 

. Total Design Time (hours) 

. Total Coding Time (hours) 

. Total Library Time (hours) 

. Total Integration Time (hours) 

. Total Development Time (hours) 

. Total Number of Major Integration Errors 

. Total Number of Integration Compiles 

. Total Number of Integration Runs 

0
 

Oo
 

1) 
DW 

nA 
BR 

WD
 

N
O
 

. Total Number of Final Errors 

These nine indicators are explained in detail in Chapter 4. Explanations for each of the 

nine models (and their constituent terms) are provided in Chapter 4 as well. 

Goal two delves into the differing effects of black box reuse and white box reuse on the 

software development process. The relative rankings of writing from scratch, reusing 

without modification (black box), and reusing with modification (white box) are given for 

a set of process indicators very similar to those outlined under goal one. 

Goal three's result is a list of programmer characteristics and experiences and which 

ones correlate with ability (or likelihood) to reuse. Each of the subjects in Experiment 

One fills out an extensive background questionnaire, which is correlated to the level of 

reuse performed during the experiment. 

From goal four, the result is a list of some of the measurable aspects of C++ class 

reusability. This hierarchical list is based on the opinions of the subjects in the first two 

experiments. This list is used to guide the selection of some software metrics to measure



the reusability of a set of C++ classes. Dependencies between some object-oriented 

metrics and five subjectively determined reusability indicators are made. The reusability 

indicators are obtained from the third experiment's poll of industry experts. 

In this section, the results for each of research goals have been outlined. The next section 

explains the research method and approach to attaining these four goals. 

1.4 Research Approach 

Achieving these four goals of this research is accomplished through three major sources. 

The basis for this research comes from an extensive literature review detailed in a 

following chapter. 

This research effort begins with the motivation for this research and a review of the 

literature covering general reuse and reusability in the object-oriented paradigm in 

particular. A hierarchy of the various research sub-areas in the field of reusability is 

presented along with the various papers and articles that pertain to each topic. 

The next step of this research is to perform two experiments in academia to gather some 

empirical data about how reusing C++ classes affects the software development process 

and some opinions about software reusability and what makes a C++ class reusable. The 

first of these experiments is used to evaluate the effects of software reuse on the 

development process. During this experiment, some data is collected to aid the attatnment 

of goals three and four. In particular, programmer characteristics and experiences are 

gathered so correlations can be made against the amount of reuse performed by each 

programmer. Also, programmer opinions are gathered on what the characteristics of 

reusable C++ classes are. 

Experiment Two deals with two kinds of software reuse (black box reuse and white box 

reuse) and how each affects software development. A set of programmers is given a task



and asked to perform one kind of reuse or the other. Development data is collected as 

they work. The relative benefits of the different types of reuse are obtained for a set of 

software development process indicators. 

Lastly, Experiment Three is an opinion poll of object-oriented paradigm (industry) 

experts. This poll gathers data on a set of C++ classes about their relative reusability. 

Five indicators are gathered: the class complexity, the class organization, the class ease of 

use, the class documentation, and the class completeness of functionality. These 

indicators are correlated to some object-oriented metrics, so that the reusability of a C++ 

class can be predicted, before it is actually reused or added to a software library. 

The literature review and these three experiments form the bulk of this research. It is 

detailed in the coming chapters.



Chapter 2 

= Motivation for Research 

At a high level, the motivation for this research stems from the need for software 

engineers to be more productive and more reliable when writing software systems. The 

reuse of software helps programmers achieve these goals. Since the object-oriented 

paradigm is designed with a focus on software reuse [Meye87a], it also lends itself to 

increasing programmer productivity. But, it can be difficult to perceive these benefits 

[Barn91, Boll90, Hend93, LimW94]. Experimentation and analysis are needed to 

understand how software reuse should be performed and what benefits can be achieved 

through it. Software metrics provide the means to measure quantitatively the process of 

developing (and reusing) software. Therefore, this research explores some current issues 

in Software Engineering and elaborates upon them. 

The remainder of this chapter explores the three major areas mentioned above: software 

reuse, the object-oriented paradigm, and software metrics in more detail. Current research 

findings are investigated and presented. Figure 2.1 depicts the field of software reusability 

and the various citations addressing some of the specified areas. The bold lines connecting 

the shadowed boxes depict the path to the niche in which this research effort lies. The 

following literature review forms the foundation upon which this new research is based. 

2.1 Software Reusability 

Software reuse has been defined in many ways. Biggerstaff [Bigg87] defines it as the 

reapplication of code or the use of libraries, routines, and objects. Tracz [Trac90b] 

defines it as reusing software that was designed to be reused. Therefore, he states that 

software salvaging is not software reuse. The reused software must have been designed 

for reuse. Below, the concept of software reuse is elaborated upon and some of the 

problems with reusing software are discussed.



E
6
S
S
0
M
 

Z6SIOY 
Z6Z9IM 

SHE] 

gguyor 
ogedurz 
o6ysiY 

       

GEdjoA 
q
‘
e
g
g
u
a
e
y
 

2
G
I
M
O
T
 

yeasty 

L
6
e
U
I
V
 

c
6
H
E
W
 

£69M!T 
26H9H 
vEPIND 
L6EPIND 
£
6
9
0
0
g
 

Ayljiqesnay 
aremyos 

ul 
yoseasay 

[7 
ound 

L89S!4 
gepsed 

V6PIOM 
6
g
o
w
e
r
 

    

 
 

 
 

  fOr HY        

cguayaD 

covew 
peuela 

o6peod 
ggemog 

per 

    

OGEHA 

  

      

 
 

L
E
S
S
E
M
 

  
 
 

   
 

  
 
 

q‘eLgahay 
Lezuay 
zesiey 
g
g
e
a
u
o
r
 

g
g
n
B
o
5
 

zeneo 
068x09 
e
t
 

| 
182d 

— pgeuor 
gelueH 

sgamog 

zene, 
q‘eggoes, 

q‘eggoesy 
Gk628Hd 

E
M
U
 
= 

pRO1OH 
qverels 

= 
Lael 

    

6
9
1
P
W
 

ygouey 
, Pv64e4F 

 
 

        

LgIe41L 
L
e
d
o
o
y
 

Lebbig 
q‘eggbhbig 

  

b6pleD 
L
e
u
n
g
 

  

besse 
y6eyrs 
Lg9al4 
Leb6ig 

  

 
 

    

¥6eYyIS 
pedsey 
62je4 
o6iiog 

10



2.1.1 Subdividing Reusability 

Software reuse 1s a broad topic that can be subdivided in a number of ways. Grumann 

[Grum88] divides software reuse into reuse of algorithms, reuse of components, and reuse 

of designs. Biggerstaff divides the field of reuse into two broad categories: generation and 

composition [Bigg87]. Reuse through generation involves code generators. Users input 

the required parameters and code generators output custom objects or even complete 

systems that can be used as needed. Much research is occurring in the field of reuse 

through generation [Bato94, Bigg89b, Guer94]. 

Code composition reuse refers to using libraries of components to build complex systems. 

Composition strategies are inherently easier to understand and use because there is no 

need to learn a new meta-generation language. The only prerequisite for building systems 

from reusable components is knowing what components exist in the libraries and how to 

access them correctly. Research in this arena includes [Burt87, Frak94a, Gall92, Gugu86, 

Jone88, Lenz87, Prie87, Prie91a]. This research effort focuses on compositional reuse. 

Software reuse can also be divided by what is being reused: specifications, design 

documents, actual code, or some meta-language that describes code (such as C++ 

templates). Code reuse can be further subdivided into black box and white box reuse. 

Black box reuse implies reusing the component without modifying the internal code while 

white box reuse implies that the component is modified before being reused. This research 

explores code-level software reuse. It focuses on the reusability of object-oriented code 

components (specifically, general purpose C++ classes), and does not address the reuse of 

specification documents or design documents, although research in these areas has shown 

promise [Card88, Chen94, Lane84, Lieb88, Lieb89b, Neig84, Volp89, Weid94]. This 

research examines the distinction between black box and white box reuse and the differing 

effects on the software development process that these two types of reuse cause. 

\1


