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IMMUNOLOGICAL AND HEMATOLOGICAL BIOMARKERS FOR 

CONTAMINANTS IN FISH-EATING BIRDS OF THE GREAT LAKES 

by 

Keith A. Grasman 

Patrick F. Scanlon, Chair 

Fisheries and Wildlife Sciences 

(ABSTRACT) 

Field and laboratory investigations have demonstrated that halogenated aromatic 

hydrocarbons (HAHs), which include PCBs and dioxin, are associated with developmental 

and population-level problems in fish-eating birds of the Great Lakes. Other studies have 

shown that perinatal exposure to HAHs causes thymic atrophy and suppresses T 

lymphocyte function in laboratory animals. Higher exposure suppresses antibody 

production and alters white blood cell (WBC) counts. This study investigated whether 

persistent contaminants alter immunocompetence in Great Lakes herring gulls (Larus 

argentatus) and Caspian terns (Sterna caspia). It also evaluated the use of various 

immunological tests as biomarkers for contaminant-associated health effects in wild birds. 

Masses of immune organs and WBC counts were assessed in herring gull chicks at 11 

colonies and adults at 13 colonies, including two colonies outside the Great Lakes. T-cell- 

and antibody-mediated immune functions were assessed in chicks at five sites for each 

species. This ecoepidemiological study revealed a strong association between persistent 

contaminants and suppression of T-cell-mediated immunity. In herring gull chicks, thymus 

mass decreased as the activity of liver ethoxyresorufin-O-deethylase (EROD), an index of 

HAH-exposure and Ah-receptor activation, increased. In Caspian tern and herring gull 

chicks, the phytohemagglutinin skin test for T cell function showed a strong negative 

exposure-response relationship with organochlorines. There was no discernible 

association between contaminants and suppression of antibody-mediated immunity as



measured by the sheep red blood cell antibody test and bursal mass. However, 

contaminant effects on bursal mass were confounded by fluke infections. Several WBC 

variables in both species were associated with contaminants, but the evidence was weaker 

than for effects on T-cell-mediated immunity. The identity of the particular 

organochlorine(s) responsible for alterations of T cell function and WBC counts could not 

be determined because concentrations of organochlorines were highly co-correlated in bird 

tissues. However, PCBs wete the most likely cause because of their high concentrations 

and immunotoxic potential. Tests of immune function, WBC counts, and immune organ 

masses are useful biomarkers for assessing health effects, including those associated with 

contaminants, in wild birds.
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Chapter 1. Problem Statement and Justification 

Introduction 

Despite attempts to control pollution over the past several decades, a variety of 

environmental contaminants continue to impact the Great Lakes of North America. In 1987 

the Great Lakes Water Quality Board identified 11 critical pollutants that still present risks 

to human health and the aquatic ecosystem: 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), 

2,3,7,8-tetrachlorodibenzo-p-furan (TCDF), benzo[a]pyrene (b[a]p), 1,1,1-trichloro-2,2- 

bis(p-chlorophenyl)-ethane (DDT), dieldrin, hexachlorobenzene (HCB), alkylated lead, 

mirex, mercury, polychlorinated biphenyls (PCBs), and toxaphene (Colborn et al. 1990). 

Numerous studies have suggested that at least some of these contaminants present 

significant risks to a number of wildlife species, especially those that occupy high positions 

in the aquatic food web. Biomagnification of persistent, lipophilic chemicals produces high 

concentrations in the tissues of Great Lakes fish, reptiles, birds, and mammals, including 

humans, that eat contaminated fish. These contaminants cause abnormalities that are 

evident at biochemical, physiological, organismal, and population levels. 

Environmental contaminants have been linked to deformities, mortality, and 

population effects in Great Lakes fish-eating birds, including gulls, terns, cormorants, 

herons, and eagles. Numerous studies have demonstrated that halogenated aromatic 

hydrocarbons (HAHs), which include PCBs, TCDD, and TCDF, are responsible for many 

of these bioeffects. Laboratory studies have shown that one of the most characteristic 

effects of exposure to HAHs and other pollutants found in the Great Lakes is 

immunosuppression. Increased susceptibility to infectious diseases potentially is an



important mechanism by which contaminants could produce mortality and population 

effects in fish-eating birds of the Great Lakes. This chapter reviews the past and present 

effects of contaminants on these birds as well as the laboratory evidence for HAH-induced 

immunosuppression. It then describes a research project that studied the effects of 

environmental contaminants on immune function in fish-eating birds of the Great Lakes. 

Literature Review 

During the mid 1960’s, several studies suggested that environmental contaminants 

were disrupting reproduction in fish-eating birds in the Great Lakes ecosystem. 

Subsequent research confirmed these effects and contributed to restrictions on many of the 

more persistent chemicals. Although reproduction has recovered in many populations of 

piscivorous birds in this region, many effects on birds and other wildlife are occurring still, 

especially at highly contaminated sites. The literature documenting the biological effects of 

contaminants in Great Lakes wildlife is quite extensive, so only a cursory review will be 

given here. Other reviews on the subject can be found in Peakall et al. 1980; Mineau et al. 

1984; Fox and Weseloh 1987; Peakall and Fox 1987; Gilbertson 1988, 1989; Peakall 

1988; Colborn et al. 1990; Fox et al. 1991; Gilbertson et al. 1991; Government of Canada 

1991; Fox 1993.



Effects of Environmental Contaminants on Fish-Eating Birds of 

the Great Lakes 

Early Indications of Reproductive Problems 

Reproductive failure and population declines in herring gulls (Larus argentatus) and 

double-crested cormorants (Phalacrocorax auritus) were the first indications that 

environmental contaminants might be affecting birds in the Great Lakes. Keith (1966) 

observed that adult herring gulls near Green Bay, WI, had organochlorine pesticide 

residues in fat that exceeded 2000 g/g during 1963. During 1964, bird banders observed 

a lower number of herring gull chicks than during past years. Hatching success was only 

41%, and eggshell damage was reported. Ludwig and Tomoff (1966) reported low 

reproduction in herring gulls in Traverse Bay, MI. Hatching success was only 28%, and 

20% of the eggs were cracked. Both of these studies reported a fledging rate of only 0.3- 

0.4 fledglings/nest, compared to a normal rate of 1.2 fledglings/nest. Alterations in 

parental behavior also were observed. 

These ecologists suggested that organochlorine contaminants might be causing 

these reproductive problems. Herring gull eggs from Green Bay contained twice as much 

DDE (1,1-dichloro-2,2-bis(p-chlorophenyl-ethylene; a toxic metabolite of DDT) than eggs 

from control sites (Keith 1966). Traverse Bay eggs did not differ from controls in DDE 

content, although Ludwig later suggested that PCBs might have confounded pesticide 

analysis. Unfortunately, TCDDs and TCDFs were not assayed (Gilbertson 1988). 

Although populations of double-crested cormorants in the Great Lakes basin 

increased from the beginning of the century through the 1940’s, declines were observed 

during the 1950’s and 60’s. Population size decreased 80% from peak numbers by 1972



(Peakall 1988). During the late 1960’s and early 1970’s, reproductive failure and 20-30% 

eggshell thinning were reported in double-crested cormorants from Lake Huron (Weseloh 

et al. 1983, Gilbertson 1988). DDE-induced eggshell thinning probably was the most 

important factor in double-crested cormorant population declines during this time period 

(Peakall 1988). 

During 1972, five herring gull colonies in Lake Ontario produced only 0.06 to 0.21 

fledglings/nest--approximately 1/10 of normal. DDE-induced eggshell thinning produced 

eggshell breakage and flaking in the most contaminated colonies (Gilbertson 1974). On 

Scotch Bonnet Island in Lake Ontario during 1973, 27% of herring gull nests had no eggs, 

20% of eggs exhibited early embryonic mortality, hatching success was only 17%, chick 

mortality was 74%, and fledging success was only 0.06 fledglings/pair (Gilbertson and 

Hale 1974a,b). These problems were associated with high contaminant residues in the 

eggs: 140 ug/g (dry wt.) DDE and 550 ug/g PCBs. Dieldrin, heptachlor epoxide, and 

HCB also were detected. 

Further Documentation of Problems 

After these initial reports, many other studies documented associations between 

reproductive problems and high contaminant concentrations in piscivorous birds in the 

Great Lakes. Ingestion of HAHs by chickens (Gallus domesticus) causes a syndrome 

called chick edema disease, which includes subcutaneous, pericardial, and peritoneal edema 

as well as reduced body mass gain, hemorrhaging, liver necrosis, and even death 

(Gilbertson et al. 1991). Several outbreaks of similar symptoms were observed in fish- 

eating birds at highly contaminated sites in the Great Lakes during the 1960’s and 70’s. 

High embryonic mortality, subcutaneous, pericardial, and peritoneal edema, congenital



deformities, growth retardation, hepatomegaly, liver necrosis, and liver porphyria are the 

major symptoms associated with this condition in wild birds (Gilbertson 1989). Gilbertson 

et al. (1991) named this set of symptoms Great Lakes embryo mortality, edema, and 

deformities syndrome (GLEMEDS). The first occurrence of GLEMEDS was observed in 

Lake Ontario herring gulls between 1966 and 1976 (Gilbertson and Fox 1977, Gilbertson 

et al. 1991). Retrospective analysis of herring gull eggs from the lower Great Lakes 

showed that TCDD concentrations averaged 500 pg/g (parts per trillion) during 1974 but 

were as high as 1200 pg/g in earlier years (Gilbertson 1988). A second outbreak of 

GLEMEDS occurred in Forster’s terns (Sterna forsteri) in Green Bay, WI, starting in about 

1973 (Gilbertson 1989, Gilbertson et al. 1991, Kubiak et al. 1989). 

Several important studies demonstrated that poor reproduction was caused not only 

by factors intrinsic to the egg (i.e., developmental toxicity of contaminants) but also by 

extrinsic factors (i.e. contaminant-induced abnormalities in parental behavior). Peakall et 

al. (1980) switched eggs between a contaminated herring gull colony on Lake Ontario and 

an uncontaminated colony in New Brunswick. During 1975, 86% of “clean” eggs 

incubated by “clean” adults hatched. “Dirty” eggs incubated by “clean” adults had low 

hatchability (only 10%), demonstrating intrinsic factors. But “clean” eggs incubated by 

“dirty” adults also had low hatchability (only 7%), demonstrating extrinsic effects. “Dirty” 

eggs incubated by “dirty” adults had a hatchability of only 2%. Fox et al. (1978) used 

telemetered eggs in Lake Ontario and New Brunswick to investigate the nature of these 

extrinsic effects. Lake Ontario herring gulls exhibited poor incubation behavior compared 

to New Brunswick controls. At the Lake Ontario colony, parents of unsuccessful nests left 

their nests unattended for three times longer than parents of successful nests. The average 

egg temperature was 1 °C less for unsuccessful nests compared to successful nests. The



length of time that a nest was left unattended was positively correlated with organochlorine 

concentrations in the egg. 

Reproduction of bald eagles (Haliaeetus leucocephalus) also was affected by 

contaminants, primarily by DDT but possibly by PCBs also. Between 1968 and 1970, 

bald eagles on Lakes Superior, Michigan, Huron, and Erie averaged only 0.13 

young/occupied nest. Production of 0.7 and 1.0 young/occupied nest are necessary for 

maintaining stable and healthy populations, respectively. On Lake Superior, 21% eggshell 

thinning was associated with egg concentrations of 57 ug/g (wet wt.) DDE and 28 ug/g 

PCBs (Postupalksy 1971). 

Several studies indicated that organochlorine contaminants were affecting survival 

throughout the year as well as causing the decreases in reproduction noted above. Ludwig 

and Ludwig (1969) captured 15 nesting adult herring gulls from Traverse Bay, MI. Upon 

starvation, six gulls died within 10 days. In previous experiments, relatively 

uncontaminated herring gulls from Lake Huron withstood a 30% loss of body mass in 17 

days without any mortality or loss of activity. Traverse Bay herring gulls that died during 

starvation had brain concentrations of 12 g/g DDT, 6 ug/g DDD (1,1-dichloro-2,2-bis(p- 

chlorophenyl)-ethane; a metabolite of DDT), 180 g/g DDE, and 2 wg/g dieldrin, 

suggesting the lethal mobilization of organochlorine pesticides from body fat during 

starvation. Sileo et al. (1977) analyzed organochlorine contaminants in the brains of ring- 

billed gulls (Larus delawarensis) from southern Ontario during 1969 and 1973. Ring- 

billed gulls found dying with signs of neurologic poisoning and ring-billed gulls found 

dead with no apparent cause of death had significantly higher brain organochlorine residues 

than healthy ring-billed gulls shot for comparison. Dieldrin, an organochlorine insecticide, 

was implicated as an important factor. Although they did not test the correlation



statistically, the authors noted an inverse relationship between brain organochlorine index 

and body mass, suggesting lethal mobilization of contaminants during post-nuptial or post- 

juvenile molt (most mortality occurred during late summer and early autumn). 

Alternatively, the inverse relationship could have been caused by organochlorine-induced 

anorexia and emaciation. 

Restrictions on Organochlorines-- Improvements in 

Reproduction and Population Recoveries 

During the 1970’s and early 1980’s, the use of most organochlorines was greatly 

restricted in the U.S. and Canada. In the U.S. DDT was banned in 1972. PCBs were 

banned in the U.S. in 1979, except for use in totally closed systems or by special 

exemptions. With reduced production of organochlorines, release of HCB into the 

environment decreased. Decreasing trends of organochlorine residues in wildlife through 

the late 1970’s were associated with increased reproduction and population recovery in 

some species, including herring gulls and double-crested cormorants. 

Mineau et al. (1984) reported significant decreases in DDT, DDE, and mirex 

concentrations in herring gull eggs from Lakes Ontario, Erie, Huron, and Superior. PCB 

and dieldrin concentrations decreased in herring gull eggs from Lakes Ontario, Erie, and 

Huron but not Superior. Weseloh et al. (1989) found that DDE and PCB concentrations in 

the eggs of common terns (Sterna hirundo) declined 80-90% in four colonies on Lakes 

Huron, Erie, and Ontario between 1969-73 and 1981. 

In egg switching experiments during 1975, Peakall et al. (1980) had demonstrated 

severe intrinsic and extrinsic effects that were limiting reproduction in Lake Ontario herring 

gulls. During 1976, these researchers found only intrinsic effects. Neither intrinsic nor


