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Abstract:  Over the past year, the emergence of state-of-the-art large language models 
(LLMs) in tools like ChatGPT has ushered in a rapid acceleration in artificial intelligence 
(AI) innovation. These powerful AI models can generate tailored and high-quality text 
responses to instructions and questions without the need for labor-intensive task-specific 
training data or complex software engineering. As the technology continues to mature, 
LLMs hold immense potential for transforming clinical workflows, enhancing patient 
outcomes, improving medical education, and optimizing medical research. In this review, 
we provide a practical discussion of LLMs, tailored to gastroenterologists. We highlight 
the technical foundations of LLMs, emphasizing their key strengths and limitations as well 
as how to interact with them safely and effectively. We discuss some potential LLM use 
cases for clinical gastroenterology practice, education, and research. Finally, we review 
critical barriers to implementation and ongoing work to address these issues. This review 
aims to equip gastroenterologists with a foundational understanding of LLMs to facilitate a 
more active clinician role in the development and implementation of this rapidly emerging 
technology.

Plain language summary 
Large language models in gastroenterology: a simplified overview for clinicians

This text discusses the recent advancements in large language models (LLMs), like 
ChatGPT, which have significantly advanced artificial intelligence. These models can 
create specific, high-quality text responses without needing extensive training data 
or complex programming. They show great promise in transforming various aspects 
of clinical healthcare, particularly in improving patient care, medical education, and 
research. This article focuses on how LLMs can be applied in the field of gastroenterology. 
It explains the technical aspects of LLMs, their strengths and weaknesses, and how to 
use them effectively and safely. The text also explores how LLMs could be used in clinical 
practice, education, and research in gastroenterology. Finally, it discusses the challenges 
in implementing these models and the ongoing efforts to overcome them, aiming to 
provide gastroenterologists with the basic knowledge needed to engage more actively in 
the development and use of this emerging technology.
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Review

Introduction
In November 2022, ChatGPT (OpenAI, USA) 
introduced a wide audience to the disruptive 
potential of large language models (LLMs). These 

artificial intelligence (AI) models contain billions 
of parameters that have been trained on trillions of 
words of text. Current generation LLMs can equal 
or surpass human performance across a wide range 
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of tasks, ranging from translation and content gen-
eration to sophisticated conversational interactions 
and efficient information retrieval.1,2 Chat-based 
LLMs like ChatGPT have an intuitive conversa-
tional interface that enables anyone with a com-
mand of language to interact with these powerful 
AI models. The increased accessibility and capa-
bilities of LLMs have led to a rapid acceleration in 
innovation and investment. Already, there are a 
growing number of customer service agents, vir-
tual assistants, content generators, writing assis-
tants, educational tutors, synthetic data generators, 
and more that leverage the technology.3

At a time when healthcare providers feel increas-
ingly overburdened,4 LLMs offer an opportunity 
to automate and augment many language-driven 
tasks within gastroenterology, particularly within 
the realms of clinical practice, education, and 
research. LLM text generation and reasoning 
capabilities could offload repetitive tasks and 
improve human–data interfaces, leading to 
increased task efficiency and quality across a wide 
range of scenarios.5–8 Achieving these goals 
requires an optimistic, yet cautious assessment of 
LLM capabilities and limitations. Clinicians must 
be aware of key LLM technical concepts, use 
cases, and limitations to shape the development 
and implementation of this emerging technology 
to the needs of patients and providers. This review 
provides the essential knowledge to enable 
informed appraisals of LLM-based tools for 
gastroenterology.

The emergence of LLMs
Situated within the broader taxonomy of AI, 
LLMs fall under the umbrella of machine learn-
ing, more specifically within the domain of deep 
learning, due to their foundation in complex neu-
ral network architectures (Figure 1).2 The devel-
opment of current-generation LLMs has been 
propelled by key advancements in AI, starting 
with the emergence of deep neural networks in 
the 1980s. These networks are composed of mul-
tiple layers of interconnected, weighted mathe-
matical functions, or ‘artificial neurons’, that are 
collectively adjusted to optimize a mathematical 
output. As raw data passes through the model lay-
ers, each layer extracts and learns a progressively 
more abstract representation of the information. 
This enables tasks like classification or regression. 
LLMs apply deep learning to massive quantities 
of text, with the learning objective of predicting 

sequences of text.2 In the process, LLMs develop 
an internal representation of the broad range of 
human knowledge and reasoning present within 
their text-based training data.

In 2017, the transformer deep learning architec-
ture was developed to improve the quality of 
machine language translation.9 Seeking to 
improve the contextual understanding of lan-
guage, the architecture introduced a self-attention 
mechanism. Self-attention can detect long-range 
dependencies and relationships within the train-
ing and model input data, in contrast to prior 
methods only capable of detecting local relation-
ships. Importantly, self-attention can be com-
puted in parallel, allowing the training of highly 
dimensional models with massive training data-
sets. The introduction of the transformer archi-
tecture marked a rapid acceleration in deep 
learning language model research.

Bidirectional encoder representations from trans-
formers (BERT), the first transformer-based lan-
guage model, was trained on general domain text 
and released in 2018.10 To adapt this model’s then 
state-of-the-art general text processing capabili-
ties to the biomedical and clinical text, models 
using the BERT architecture were trained with 

Figure 1.  LLMs within the AI taxonomy. LLMs exist 
as a subset of deep learning models, which are a 
subset of machine learning models. Machine learning 
models are a subset of AI. Depending on their size, 
LLMs can also be considered generative AI models.
AI, artificial intelligence; LLM, large language model.
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combinations of text from clinical notes, PubMed 
articles, and Wikipedia articles.11 Like other mas-
sive AI models, these pre-trained language models 
can be ‘fine-tuned’ to improve task-specific perfor-
mance. Additional rounds of model training using 
a labeled task-specific dataset adjust model weights 
to create a model that better fits the dataset.12 
Fine-tuned, task-specific language models can per-
form a wide range of clinical natural language pro-
cessing (NLP) tasks, including clinical data 
extraction and limited medical question answer-
ing, with performance on some tasks still exceed-
ing that of more recent language models.13–15

As the training dataset size and parameter size of 
language models increased, progressively more 
complex model capabilities emerged and less 
fine-tuning has been needed for any given task.2,16 
Most surprisingly, these larger language models 
can generate coherent text outputs, hence their 
classification as ‘generative’ AI models (Figure 
1). Though the exact definition of a ‘large’ lan-
guage model is not well defined in the research 
literature, it generally applies to a language model 
with more complex language capabilities.

By 2021, the emergence of ‘instruction-tuned’ 
LLMs heralded improved model performance 
and a significant improvement in LLM usabil-
ity.17,18 By fine-tuning LLMs with example text 
instruction ‘prompts’ and human-generated 
responses, model outputs shift from sequential 
text completion to a more intuitive conversational 
instruction–response format. This concept was 
extended further with the release of ChatGPT in 
November 2022.1 GPT-3.5, the LLM powering 
ChatGPT was further trained to identify and pro-
duce high-quality text responses, dramatically 
increasing model performance usability and per-
formance.19 Figure 2 summarizes the training 
process of GPT-3.5. ChatGPT also popularized 
the chat-based LLM interface, reducing the level 
of technical experience needed to interact with 
LLMs and launching LLMs into popular con-
sciousness. Over time, LLM complexity and 
training data size have continued to grow, result-
ing in surprisingly human-level performance on a 
wide range of complex language-based tasks.2,3,16

Current LLM capabilities
At the most fundamental level, LLMs receive and 
produce text data. The current state-of-the-art 
models are capable of handling combined input 

and output text capacities of over 100,000 words 
without sacrificing data processing capabili-
ties.20,21 LLMs have advanced to the point where 
they are capable of a wide range of complex tasks, 
grouped broadly into knowledge utilization, lan-
guage generation, and complex reasoning.2 A 
knowledge utilization task primarily aims to 
retrieve and apply knowledge. By contrast, a lan-
guage generation task creates new text or tabular 
data for translation, summarization, or paraphras-
ing. Finally, complex reasoning tasks require 
commonsense or technical reasoning capabilities 
to complete.22,23 A variety of evaluation datasets 
have been developed to standardize model perfor-
mance evaluations across task categories.24 In an 
impressive demonstration of state-of-the-art 
LLM medical reasoning, GPT-4 correctly 
answered 87% of exam questions in the style of 
the Unite States medical licensing exam 
(USMLE) without any task-specific or domain-
specific adaptations.6 Notably, GPT-4 was also 
able to explain its reasoning, provide counterfac-
tual examples, and accurately assess its level of 
uncertainty. Med-PaLM 2 (Google, USA), a 
‘prompt-tuned’ version of PaLM 2 that is not 
publicly available, achieved similar levels of per-
formance on USMLE-style questions.7

However, LLMs remain intrinsically unable to 
handle certain tasks without external assistance. 
As language models, they are fundamentally text 
predicters. On their own, they are incapable of 
multi-step reasoning, running code, performing 
mathematical or logic calculations, or performing 
search commands.3,25,26 They also cannot perform 
tasks that require a digit or letter-level understand-
ing of text due to data representation choices 
made at the time of model training.27 To address 
these limitations and to augment LLM perfor-
mance further, LLMs have been linked with exter-
nal ‘tools’.28–30 Some tools are as simple as a 
calculator to perform basic math operations or a 
curated database for knowledge retrieval. 
ChatGPT Plus, a paid ChatGPT subscription ser-
vice, allows the use of some limited tool use capa-
bilities in the form of a customizable library of 
‘plugins’.31 Semi-autonomous LLM-based ‘agents’ 
can execute even more complex tasks. Agents have 
broad instructions to define and execute a series of 
sub-tasks until the overall task is complete.32 The 
ChatGPT Code Interpreter mode is one such 
agent that takes coding instructions and input files 
and runs and iterates upon generated code until 
the initial task is complete.33
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LLM use and implementation
LLMs are evolving to serve as ‘intelligence’ mod-
ules that leverage the power of language and logic 
to translate human instructions to a variety of 
tasks enabled by linkage to software tools, curated 
knowledge, and raw data. The full capabilities of 
this paradigm have yet to be realized. To ensure 
the safe and effective use of LLMs, the most 
appropriate model and interface should be cho-
sen, effective prompts should be used, and LLM 
augmentation should be considered when facing 
LLM limitations.

At the time of writing this manuscript, GPT-4 has 
the best overall performance and versatility of the 
publicly available models.2,34,35 However, GPT-4 
has several key limitations compared to other 

LLMs. The high computational requirements of 
GPT-4 limit its utility for certain scenarios rele-
vant to gastroenterology. Slow inference speeds, 
usage caps, and restricted availability limit the use 
of GPT-4 for high-throughput text processing or 
reasoning tasks. Because the GPT-4 architecture 
and model weights were not publicly released, 
customization via fine-tuning is not possible and 
protected user data must be routed through a 
third-party cloud service.36 Moreover, the source 
of the training data for GPT-4 has not been 
released, limiting the ability of researchers to 
assess for algorithmic bias. Though open-source 
models currently do not match the performance 
of the GPT-4 model on certain high-level reason-
ing tasks, they offer increased model transpar-
ency, customizability, data security, and cost 

Figure 2.  Training a chat-based LLM. Training a chat-based LLM requires a multi-stage learning process. In 
the pre-training phase, massive quantities of text are fed into a language model that aims to predict sequences 
of words. To enable instruction-following, the initial model is fine-tuned on a dataset of paired instructions and 
human responses. The resulting instruction model is used to generate a dataset of responses, which are then 
ranked by humans. The ranking dataset is then used to train a model that can rank the quality of generated 
responses. This ‘reward model’ is linked to the instruction-tuned model to create the final chat LLM that 
prioritizes the generation of high-quality text outputs.
Source: The figure was created with BioRender.com.
LLM, large language model.
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savings required for certain high-throughput or 
high-security use cases.37–40 Open-source models 
can also be fine-tuned with additional data and 
optimized using model quantization to customize 
model capabilities and performance further.2

At present, LLMs have three distinct interfaces, 
with different degrees of customizability and user-
friendliness. The simplest method of interacting 
with an LLM is through a chat interface. This 
approach does not require prior programming 
experience but limits data inputs and outputs to 
the rate at which the user can interact with the 
interface. Users input a prompt containing the 
necessary instructions and contextual informa-
tion to perform an intended task. Some chat 
interfaces also allow file uploads or adjustment of 
model characteristics like creativity. For ChatGPT 
Plus subscribers, a limited number of ‘plug-ins’ 
can be enabled to allow LLM tool use.31

For more complex or high-throughput use cases, 
application programming interfaces (APIs) pro-
vide simplified programming instruction sets for 
model interaction and customization. APIs can 
achieve higher quality and speed of output genera-
tion through the adjustment of model version, 
system-level prompts, and output parameters like 

number of outputs, randomness of output, and 
maximum output length. Third-party APIs enable 
more complex structures such as chained prompts, 
parallel processing, long-term memory, advanced 
tool use, and semi-autonomous agents that are 
needed for advanced LLM-based software.41

Potential LLM use cases in gastroenterology
Recent advancements have significantly enhanced 
the capabilities of LLMs, making them increas-
ingly viable as clinical knowledge and reasoning 
modules for a wide range of clinical, education, 
and research tasks in gastroenterology. With tool 
augmentation, LLMs could integrate user inputs 
and real-time data with previously collected patient 
data to produce patient-specific outputs across 
many different contexts (Figure 3 and Table 1). 
Although realizing these innovative applications 
poses substantial challenges, the rapid progress in 
LLM capabilities has now made it possible to con-
sider and develop a range of novel clinical AI-driven 
tools that were previously beyond reach.

Clinical applications
Over time, LLMs have the potential to offload a 
wide range of labor-intensive tasks and unlock 

Figure 3.  Schematic overview of LLM functionality in healthcare. LLMs leverage their knowledge base and 
reasoning capabilities to integrate data inputs from the user, environment, and the electronic health record. 
On their own, they produce responses in the form of text or audio. If augmented with tools or additional 
artificial intelligence models, LLMs can also produce images, data visualization, video, or video overlays. LLM 
data streams and outputs can be customized to accomplish each task.
Source: The figure was created with BioRender.com.
LLM, large language model.
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new data-driven capabilities across the clinical, 
educational, and research spheres of gastroenter-
ology. By bringing useful data front and center for 
clinicians and patients and automating adminis-
trative tasks, LLMs hold the promise of elevating 
the human aspects of clinical medicine.42 
Physicians spend more time on the computer 
than directly interacting with patients.43 LLMs 
are well suited for understanding and generating 
both the complex natural language and structured 
data found in electronic health records. By ena-
bling data extraction from clinical text and struc-
tured electronic health record (EHR) data, LLMs 
can facilitate efficient information retrieval, 

summarization, and representation. In doing so, 
downstream inference tasks like event prediction 
and clinical decision support (CDS) can be 
automated.2

LLMs can be used to automate data extraction 
and summarization of large clinical datasets to 
identify new treatments, risk factors, and diag-
nostic tools as well as identify patterns that may 
have been missed by human researchers. Many 
important clinical concepts are not captured by 
standard billing codes and are instead present in 
free text notes, laboratory data, medication his-
tory, and other richer clinical data.44

Table 1.  Potential use cases for LLMs in clinical gastroenterology.

Gastroenterology 
clinical tasks

LLM capabilities and potential benefits

1. Reviewing 
endoscopy and 
pathology reports

Can quickly process and analyze large volumes of text data, extracting key 
information from endoscopy and pathology reports. This reduces the time spent 
on manual reviews and helps to identify critical findings more efficiently.

2. Determining 
surveillance intervals

Can be trained to recognize polyp characteristics (number, morphology, and 
histology) and suggest appropriate surveillance intervals based on established 
guidelines. This assists in clinical decision-making and ensures appropriate 
follow-up for patients.

3. Patient triage and 
risk assessment

Can help stratify patients based on their symptoms, medical history, and risk 
factors, enabling more accurate and efficient triage. This allows for better 
prioritization of cases and allocation of resources, resulting in improved patient 
care.

4. Creating and 
maintaining patient 
records

Can assist in generating concise and accurate clinical documentation by 
summarizing and organizing relevant information from various sources. This can 
lead to more complete and up-to-date patient records, ultimately improving the 
quality of care provided.

5. Clinical decision 
support

Can provide evidence-based recommendations by analyzing the latest research, 
guidelines, and consensus statements. This can help clinicians stay current 
with best practices, improve diagnostic accuracy, and facilitate better patient 
management.

6. Patient education 
and communication

Can generate personalized patient education materials based on the individual’s 
condition, language, and literacy level. This can help enhance patient 
understanding and adherence to treatment plans, leading to better outcomes. In 
addition, LLMs can assist in drafting clear and empathetic communication with 
patients, including emails and follow-up instructions.

7. Research and 
quality improvement

Can assist in the identification of trends and patterns in clinical data, helping 
to uncover areas for improvement and inform new research directions. This 
can lead to the development of innovative approaches to patient care and the 
identification of best practices.

8. Continuing medical 
education and training

Can generate customized learning materials for clinicians, based on their 
interests and knowledge gaps. This can help support professional development 
and ensure that clinicians remain up to date on the latest advances in the field.

LLM, large language models.
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Caring for patients with complex chronic illnesses 
like inflammatory bowel disease (IBD) or cirrho-
sis requires gastroenterologists to spend signifi-
cant amounts of time reviewing and documenting 
key clinical data. High-quality care of IBD 
patients requires meticulous documentation and 
assessment of factors such as date of diagnosis, 
disease severity, extent, prior imaging, surgeries, 
medications used, and endoscopic evaluations. 
LLM-based technologies could feasibly summa-
rize and query the electronic health records for 
data in clinical notes, laboratory data, and medi-
cations to streamline clinical note generation and 
chart review, allowing for more seamless follow-
up and transition of care.

Clinical documentation in particular is labor-
intensive and time-consuming, significantly 
impeding patient care.4 Commercial automated 
clinical documentation systems are currently 
available, with the capability to draft notes and 
assign billing codes.45–48 They may also enhance 
current documentation processes by providing 
autocompletion of text and relevant clinical data, 
as well as converting text data to coded data. 
When integrated with speech recognition tech-
nology, NLP software can summarize a patient 
visit and generate a comprehensive clinical note 
for review before the clinician leaves the room. 
LLMs could automate additional administrative 
tasks like drafting communications like insurance 
prior authorizations and patient communications 
using patient-specific clinical information. Future 
systems could incorporate relevant research pub-
lications or tailored patient education materials.

By analyzing the unstructured data such as clini-
cal notes in electronic health records and patient 
messages, LLMs can help identify patterns and 
trends that may not be visible through traditional 
data analysis methods, facilitating the identifica-
tion of patients at increased risk of disease or 
complications who would benefit from targeted 
interventions.11,15,49,50 LLMs can identify varia-
tions in care delivery across different providers or 
facilities and develop strategies to reduce these 
variations and improve the quality of care.

Quality improvement is an important aspect of 
healthcare, aimed at improving patient outcomes, 
reducing costs, and enhancing the overall quality 
of care. As an advanced text processing technol-
ogy, LLMs can be used to streamline the collec-
tion of existing quality metrics and enable the 

collection of novel quality metrics from electronic 
health record data including hospital readmis-
sions, medication errors, and patient satisfaction. 
Existing NLP systems can reliably extract proce-
dural quality metrics from the EHR and inform 
related CDS tools.51 However, these types of 
NLP systems require substantial development 
time and are difficult to generalize to other elec-
tronic health record systems. LLM-based systems 
that automate data extraction and integrate infor-
mation from pre-procedure, procedure, and 
pathology notes could accelerate the implementa-
tion and adaptation of analytics pipelines. The 
ease of data extraction from unstructured data 
sources can also facilitate the use of higher-qual-
ity metrics that were previously unmeasurable like 
adenomas per colonoscopy or advanced adeno-
mas per colonoscopy.52 An LLM-based genera-
tive AI system could follow this up by sending 
reminder notifications to support staff (or directly 
to patients) to schedule the next surveillance 
colonoscopy. The ease of development would 
also facilitate rapid changes to the CDS tool with 
any future changes to national guidelines.

Medical errors remain an intractable threat to 
patient safety.53 By analyzing and summarizing 
electronic health record data and contextualizing 
it with a vast medical knowledge base, LLM-
based clinical chatbots, or ‘co-pilots’ have the 
potential to assist a clinician with a variety of clin-
ical reasoning tasks with a higher degree of sophis-
tication and accuracy over previous methods.5,8 
Clinicians could interact with this resource using 
natural language, interrogating suggestions, and 
soliciting explanations as needed. General-
purpose CDS via co-pilots could assist with diag-
nostic uncertainty, and evidence-based treatment 
decisions while keeping physicians at the center of 
decision-making in clinical medicine.

Finally, LLMs can generate a variety of personal-
ized educational materials for patients, including 
videos, articles, and interactive tools. 
Individualizing these materials can better inform 
patients about their condition and treatment 
options, leading to better adherence to treatment 
plans and improved outcomes.54 Educational 
chatbots and tailored patient resources have 
already been integrated into some patient portals, 
mobile apps, and other digital health platforms to 
provide patients with convenient access to health 
information.55,56 However, current-generation 
LLMs could provide more dynamic patient 
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education materials tailored to a patient’s medical 
history and communication preferences.57

Education applications
LLMs have the potential to revolutionize medical 
education, both for students and educators. As 
noted earlier, even with simple prompt engineer-
ing, GPT-4 can explain its responses to USMLE-
level questions and generate coherent modified 
versions of the questions.6 However, when a GPT-4 
chat-based interface was given gastroenterology 
board exam-style questions, the model was not able 
to achieve a passing score.58 Further research is 
needed to assess whether the performance gap is 
due to errors in knowledge or reasoning.

Chatbots linked to the full clinical evidence 
knowledge base and medical guidelines could 
serve as a means of improving LLM performance 
on medical reasoning and knowledge curation 
tasks.59 Such chatbots could also serve as person-
alized expert tutors for learners of all stages, as 
has already been designed in the general educa-
tion sector.60,61

For educators, LLMs can help automate the 
development of learning materials and grading of 
free text assignments. LLMs are well-suited to 
generate drafts of course syllabi, exam questions, 
and other text-based educational materials. 
Educators could use also LLMs to draft feedback 
on free-text assignments such as patient notes, 
case reports, or online discussions.

Research applications
LLMs are well-positioned to automate and opti-
mize many labor-intensive tasks in clinical research 
and to unlock new pattern recognition capabili-
ties. Many clinical concepts are not represented 
accurately with billing codes and instead require 
processing of data captured in laboratory data, 
medication history, and free-text notes.44 
Historically, extracting this information required 
approaches that are labor-intensive to develop and 
maintain. Tailored LLMs could extract and inte-
grate data from both free text and tabular sources 
to expedite the identification of clinical research 
cohorts and enable the high-throughput assess-
ment of more high-definition clinical measures.

LLMs-based tools are also facilitating the auto-
mation of key research tasks dependent upon 

code generation. A growing number of coding 
assistants have been released, with some capable 
of generating complex working code from natural 
language prompts.33 Coding LLMs are particu-
larly helpful for debugging, explaining, and opti-
mizing code. This reduces the learning curve for 
coding newcomers and improves the productivity 
of more advanced users. Advanced general-pur-
pose and academic writing assistants have also 
been created using LLMs.62,63 Though many aca-
demic journals have explicitly warned against 
using LLMs to generate scientific text, LLMs can 
serve as powerful copy-editing tools.64 They take 
an outline or poorly written text and shape it into 
a more cohesive narrative or provide helpful high-
level comments to improve the clarity and effec-
tiveness of writing. Careful use of ChatGPT, in 
particular, can be helpful with outlining, brain-
storming, summarizing, and counterargument 
generation.65

As models fundamentally designed to perform 
sentence completion tasks, LLMs are also capa-
ble of serving as nonlinear prediction models. 
LLM architectures trained with sequences of bio-
logical or clinical data have produced promising 
results.66 An LLM-based model developed to 
predict a protein’s function from its sequence 
could accelerate the development of synthetic 
proteins for the treatment of inflammatory bowel 
disease and gastrointestinal cancers. In addition 
to assisting with clinical prediction tasks, models 
trained on patient disease trajectories could help 
generate novel epidemiological hypotheses.49,67

As knowledge curators and synthesizers, LLMs 
can assist with literature appraisal and summari-
zation.59 Database-linked chatbots can assist with 
identifying and summarizing the relevant litera-
ture for a particular research question. Taking 
this a step further, Lahat et al.68 conducted a 
study using ChatGPT to identify important 
research questions in gastroenterology, specifi-
cally in the areas of IBD, microbiome, AI in GI, 
and advanced endoscopy. While the model gener-
ated questions that were rated as both important 
and relevant, the questions were not perceived as 
being particularly novel or unique.

Limitations and implementation barriers
A number of intrinsic and extrinsic limitations 
must be overcome to realize fully the potential of 
LLMs in gastroenterology. Current performance 
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and reliability are inadequate for many use cases. 
LLM medical knowledge is often incomplete. 
LLM reasoning and bias remain imperfect and 
poorly understood. Safe human–AI interfaces 
have yet to be defined. Computational and devel-
opment costs remain high. Ensuring equitable 
access to the technology continues to be challeng-
ing. Finally, regulatory approval of generalized AI 
tools in medicine remains unclear. Until these 
limitations are addressed, LLMs cannot be used 
for many medical use cases and LLM innovation 
in healthcare will lag behind other sectors.

Algorithmic bias
All AI tools are designed to build high-quality 
representations of their underlying training data. 
Like other AI tools, LLMs are prone to learning 
and outputting subtle and unsubtle biases in the 
training data. This can lead to the generation of 
language with bias against marginalized groups or 
predictions that incorporate implicit bias in real-
world healthcare delivery.69,70 In the case of clini-
cal data, this can lead to a representation of a 
biased healthcare delivery system. Without vigi-
lant monitoring for such algorithmic bias, LLMs 
could reinforce existing healthcare disparities. 
Furthermore, certain populations may have 
access to AI-enabled care while other less privi-
leged ones may not, leading to a widening gap in 
healthcare access. LLMs must be designed and 
implemented in ways to minimize the effects of 
these inherent biases in the training data.71

Knowledge limits
All AI models are constrained by the content of 
their underlying training data. The best-perform-
ing LLMs do not publish the full content of their 
training datasets, so it is not clear what informa-
tion informs these models. Indirect assessments 
of LLM knowledge through evaluation tools such 
as the American College of Gastroenterology self-
assessment exam suggest that even the best gen-
eralist models do not have comprehensive 
expert-level knowledge and reasoning skills.58,72 
Generalist LLMs are further limited by their lack 
of training data capturing instructions and 
responses pertinent to healthcare delivery. As 
such, their responses are not fully optimized to 
prioritize accuracy, comprehensiveness, or patient 
safety. Fine-tuning generalist models on medical 
domain knowledge and data can greatly mitigate 
this weakness.7,73–75

Output variability and errors
LLMs intrinsically produce variable outputs. 
Some response variability is inherent due to the 
probabilistic nature of the models but model 
outputs are also particularly sensitive to small 
changes in prompt instructions in ways that are 
not intuitive. Fundamentally, LLM ‘reasoning’ 
differs from human reasoning in that the models 
lack the self-awareness to perform ‘sanity 
checks’ on their outputs. On their own, they 
struggle with mathematical reasoning and multi-
step problems.22,23 The tendency for LLMs to 
prioritize being helpful when they lack the 
capacity to respond correctly makes them prone 
to producing plausible sounding, but factually 
incorrect outputs that have been termed 
‘hallucinations’.

To improve LLM accuracy and reliability, a 
number of prompt-based strategies have been 
developed and perform well on medical reason-
ing tasks.76 Code-based approaches to knowl-
edge reasoning have also improved response 
accuracy and reduced confabulations.77 LLM 
augmentation with tools can also help break 
down complex tasks or impose a consistent rea-
soning framework.78 However, all reasoning 
augmentation approaches facilitate improved 
mimicry of human explanations rather than 
aligning underlying model decision-making with 
human heuristics.

Human–AI interfaces
It is not clear what the best integration of LLMs 
will be in the domain of gastroenterology. 
Human–LLM interfaces will need to consider 
how best to balance automation with human 
involvement. The delineation of human versus 
LLM tasks will need to consider the competing 
needs of patient safety, quality of care, and 
medical education. Humans will need to be 
involved in complex medical data analysis, deci-
sion-making, and communication as fully 
autonomous systems will be not safe or effective 
for such tasks in the short or medium term. The 
interfaces must be designed both to facilitate 
trust and vigilance against the models, dictated 
by the particulars of a given situation.79–81 
Systems will also need to ensure that automa-
tion does not prevent trainees and practicing 
clinicians from learning and maintaining the 
real-world clinical skills needed to practice 
gastroenterology.82,83
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Development and implementation costs
LLMs require significant computational resources 
to train and interact with. Highly complex LLMs 
like GPT-4 are so computationally intensive that 
the demand for AI training and inference capacity 
has outstripped the physical supply of hardware, 
leading to increased development and implemen-
tation costs and access restrictions.84 As a result, 
it is not presently feasible to implement a model 
with GPT-4 capabilities across a wide range of 
healthcare tasks and users. However, LLM capa-
bilities exist along a spectrum, enabling the distri-
bution of tasks of various complexities to specific 
LLMs based on their capabilities.30 Until models 
become more computationally efficient, or pro-
cessing costs go down, implementation strategies 
will need to strategically select which models to 
use and how to use them. In addition, there is 
ongoing research on reducing the memory 
requirements for advanced LLM capabilities.39,85

Access to technology
As with other digital health innovations, LLM-
based tools will need to avoid exacerbating dis-
parities in healthcare access.86 LLM tool 
implementation strategies should consider how to 
ensure access for patients with limited digital lit-
eracy, smartphone access, or internet access. 
LLMs are predominantly trained using English 
text, so performance in non-English languages 
can suffer.87 Communication tools using LLMs 
will be needed to ensure equivalent performance 
and safety for all languages.

Regulatory obstacles
To date, the FDA has regulated AI under the 
Software as a Medical Device framework.88 
AI-based CDS tools are exempt from this regula-
tory classification if four criteria are met: (1) they 
do not process or analyze medical images or sig-
nal data; (2) are intended for the display or analy-
sis of clinical information; (3) support or provide 
clinical recommendations to a healthcare profes-
sional; and (4) the healthcare professional does 
not rely primarily on the recommendations to 
make a clinical decision.89 In this context, it 
remains unclear how to regulate LLMs in health-
care. They have a near-infinite range of inputs 
and outputs, which could be used in a multitude 
of potential use cases that would be impossible to 
validate fully. The rate at which LLMs can be 
updated and improved also presents a challenge, 

as an LLM could already be obsolete by the time 
a validation study in clinical practice could be 
performed. The balance between spurring inno-
vation and ensuring safety therefore remains an 
ongoing area of discussion among regulatory 
agencies, AI developers, and healthcare 
providers.90–92

A roadmap for LLM development and 
implementation for GI
Ultimately, LLMs should serve to augment the 
physician–patient relationship. Even a perfectly 
functioning LLM cannot understand the full con-
text of a given clinical scenario or reproduce the 
full clinical expertise of an expert clinician. LLMs 
are therefore best utilized to offload the data-
intensive tasks that have become increasingly 
common in the era of the electronic medical 
record. To achieve trustworthy AI worthy of 
implementation in clinical gastroenterology prac-
tice, LLMs must be optimized to be safe, trans-
parent, explainable, fair, and secure.93 The degree 
to which medical tasks become automated should 
therefore adjust to the evolving capabilities of the 
models.

To address current generation LLM limitations, 
a range of model enhancements are being actively 
researched in parallel. This work can be under-
stood in the context of the translational science 
spectrum (Figure 4). At the basic science level, 
experimental model architectures continue to 
iterate rapidly, improving performance and effi-
ciency at an almost weekly pace.2 Curated train-
ing and instruction fine-tuning datasets have 
enabled the distilling of larger models into less 
complex forms. At the preclinical stage, the best 
combinations of architecture and data to create 
the models best suited for medical use cases will 
need to be determined. Prompt engineering and 
higher-level LLM augmentations such as tool use 
and LLM agents have yet to be fully explored in 
the medical context. All of these LLM enhance-
ments require better and more standardized eval-
uation datasets for medical tasks to generate 
high-throughput assessments of model perfor-
mance versus the current standard of board exam-
style questions or manual review of selected 
outputs.94

At the clinical research and implementation 
stages, clear boundaries between the roles of 
humans and AI must be developed to ensure the 
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safe integration of this technology. How to dem-
onstrate decision-making transparency and 
understandability will need to be determined. 
LLM uncertainty and reasoning should be clear 
to the user to enable informed decision-making. 
The best means by which to educate and inform 
users about the capabilities and limitations of the 
models must be clarified.

Conclusion
In summary, LLMs have the potential to reshape 
the way medical care is delivered for the better, 
ultimately enabling physicians to provide higher 
quality, more efficient care. The models will 
continue to be refined at a staggering pace, and 
new machine-learning architectures with even 
more expansive abilities will arise. Clinicians 
can play a more active role in guiding LLM 
implementation and appraising their value to 
ensure LLMs meet their promise of improving 
healthcare access, quality, and outcomes and 
reducing physician burnout. To do so, clini-
cians must have fundamental knowledge of 
LLMs and the barriers to their safe develop-
ment and deployment. Just as a stethoscope 
amplifies auditory capabilities and enables  
auscultation of otherwise obscure diagnostic 
sounds, the LLM may soon emerge as an instru-
ment to augment clinician knowledge and rea-
soning capabilities. This emerging technology 
could become the most important tool in the 
medical armamentarium.
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