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Steady and Unsteady Maneuvering Forces
and Moments on Slender Bodies

Kenneth Granlund

(ABSTRACT)

Forces and moments have been measured on slender bodies in both static angle conditions

as well as rapid time-dependent large amplitude maneuvers with the Dynamic Pitch Plunge

Roll (DyPPiR) apparatus.

Lateral and transversal forces as well as all three moments have been measured at ReL =

4.5 · 106 − 6 · 106 at static angles of attack and sideslip −26◦ < [α, β] < +26◦ or −0.45 <

[w′, v′] < 0.45 and unsteady pitch ramp maneuvers −15◦ → 0◦, −15◦ → +15◦ and 0◦ → 15◦

at a fixed point of rotation at the quarter length of the body. The two bodies are the DARPA

Suboff generic submarine shape and a non-Body-of-Revolution scalene ellipsoid with a con-

stant cross-section midbody.

An analytical two-mode equation has been shown to accurately describe the normal force

and pitch moment as well as side force and yaw moment for the ellipsoid body. It is based

on the observation that the center of pressure for the cross-flow contribution is at a fixed

location. For the Suboff body, this assumption is invalid.

Unsteady forces and moments can be measured to a very small magnitude of uncertainty

and were found to differ from steady forces and moments at the time-instantaneous flow

angle during the motion.
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Chapter 1

Introduction

For at least a century, engineers have had a desire to predict the motions of vehicles: aircraft,

automobiles, airships, submarines, surface ships etc. to build faster, more agile, more stable,

more comfortable and in general be able to fully understand what physical phenomena for

the vehicle itself, as well as the medium it travels on or in, contribute to the maneuvering

behavior. Researchers and engineers have always sought to expand the safe envelope of mo-

tion and maneuvering, as well as maintain a capability to an ever decreasing cost. In order

to design and construct vehicles for a specific maneuvering goal, one must first be able to

analytically, uniformly describe any motion such that it is understood by the community of

researchers and engineers in that field.

In order to reliably make predictions on the capabilities of future vehicles, the computa-

tional tools themselves must be able to consistently make valid enough predictions about

the tested geometries, both in constant motion as well as up to the predicted capability in

maneuvering speed of the projected vehicle. In order to validate the computational tools,

experiments must be performed as close to the actual maneuvering conditions of the vehicles.
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The experiments that provide the foundation for this dissertation will be used to validate

computations on new submarine geometries, as well as to give some insight on how these

geometries behave in maneuvers.

1.1 Coordinate system definition

A vehicle motion can be described with three translations and three rotations of the body-

fixed coordinate system with respect to the inertial coordinate system. This is referred to as a

six degree of freedom motion. A right handed coordinate system can be oriented in essentially

any way in a vehicle, although there are certain uniformly accepted orientations depending

on whether the vehicle is an aircraft, automobile, surface ship, satellite or submarine. For

submarines, in this case, the convention by Feldman [26] is used, where the x-axis is oriented

forward, the y-axis is oriented in the starboard direction (or right side) and the z-axis is

oriented downward as shown in Figure 1.1. The origin of the coordinate system is on the

longitudinal line of symmetry and on the lengthwise position where the center of buoyancy

is located.

Figure 1.1: Model coordinate system
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1.2 Vehicle motion

Any motion of the vehicle is described as a motion of the body-fixed coordinate system with

respect to the inertial coordinate system. Translation of the body-fixed coordinate system is

described with the velocities u, v and w in the x, y and z directions, respectively. Rotation

of the body-fixed coordinate system is described with the rotational velocities p, q and r,

respectively.

For vehicles with a forward motion velocity much higher than the two other translational

velocities, the six states are usually reduced to five by taking the freestream velocity U∞

as constant and using two angles alpha α and beta β to describe the translational states.

This is normally done for heavier-than-air vehicles such as airplanes which require a signifi-

cant forward velocity to stay airborne. However, this assumes that the free-stream velocity

stays constant. For large amplitude maneuvering, the free-stream velocity may not stay

constant [63] and for maneuvers such as the famous ’Cobra maneuver’ usually performed

with the Sukhoi Su-27 as an agility demonstration during airshows, the purpose is to rapidly

pitch the aircraft up more than 90◦ from level flight and back while significantly reducing

forward velocity without losing altitude [74].

To properly define the motion of a vehicle with respect to an inertial coordinate system,

one must also take into account any translational and rotational motion of the surrounding

fluid with respect to the inertial coordinate system. In the following discussion of motion

and maneuvering, the fluid is considered to have no relative motion to the inertial coordinate

system.
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1.3 Forces and moments

All external forces and moments from the surrounding fluid on the vehicle are denoted X,

Y and Z for the forces and K, M and N moments in the x, y and z directions respectively.

These definitions are used in naval engineering. A slightly different notation is used in

aeronautical engineering, where the force D is used for the aerodynamic drag and L is used

for lift.

1.4 Equations of motion

The external forces and moments from the surrounding fluid at every instant in time bal-

ance the internal inertial forces and moments as in the equations of motion 1.1 for a simple

symmetric body where the center of buoyancy and mass coincide and are aligned at the

intersection of the longitudinal- lateral and transversal plane of symmetries.



mB 0 0 0 0 0

0 mB 0 0 0 0

0 0 mB 0 0 0

0 0 0 Ixx 0 0

0 0 0 0 Iyy 0

0 0 0 0 0 Izz





u̇

v̇

ẇ

ṗ

q̇

ṙ



=



X

Y

Z

K

M

N



(1.1)

In the body coordinate system, the forces and moments in the three axes are the indepen-

dent variables and the translations and rotations, also called the states, are the dependent

variables. To relate the dependent forces and moments to the independent states, a first-

order Taylor expansion was initiated by Bryan [10] with the assumption that all forces and

moments are dependent on all states. For example, the normal force Z ′ and pitching moment
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M ′, for any motion constrained in the vertical plane with w′ and q′, would be expanded as

Z ′ = Z ′q′q
′ + Z ′w′w

′ (1.2)

M ′ = M ′
q′q
′ +M ′

w′w
′ (1.3)

As advances to maneuverability of the vehicles progressed, linear dependence of forces and

moments to the states were no longer adequate, but extended to include nonlinear depen-

dencies of states, such as higher order terms and cross–dependencies.

The sensitivity coefficients in these equations are normally given as constants from a look-up

table in a particular steady-state motion such as a straight and level motion or a constant

banking turn. The partial derivatives depending on translational motions are easy to obtain

from measurements with the body at an angle of attack α or sideslip β in a wind tunnel.

The other derivatives depending on rotational motions are a bit more troublesome to obtain

because of the need to achieve constant curvilinear motion. The early experiments were done

in vertical wind tunnels dedicated for analyzing spin-motion of aircraft. Later experimental

studies have in the past been done with curved or rolling test sections in wind tunnels such

as described by Lutze [54]. Present technology for hydrodynamic testing is a rotating arm in

a large basin as described by Feldman [27]. Another approach is by Chang and Purtell [12]

who conducted an experimental conformal mapping approach by transforming the problem

of a curved flow over a straight body to a curved body in uniform flow. This novel approach

is not practical since several unique wind tunnel models with different curvature need to be

constructed for a single geometry.
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1.5 Characterising motion of vehicles

Vehicle motion can be characterized into four different categories

Steady(-state) motion In this case, the vehicle is undergoing a motion where all state

variables are held constant and the macroscopic flow behavior is independent of time.

Examples of this would be a straight and level flight of an aircraft at some altitude

with an angle of attack. Another example could be a constant turn where the vehicle

keeps a constant yaw rate, sideslip and angle of attack in order to continue a path

forming a circle.

Quasi-steady motion Here, a vehicle is undergoing a time-dependent motion but the

states are varying so slowly that the forces and moments depending on the state deriva-

tives are much smaller than those depending on the states themselves. Because of the

much smaller contribution, the unsteady terms are neglected. The forces and moments

are thus only seen as dependent on the instantaneous states. An example would be

the relatively slow ‘short-period’ and ‘phugoid’ motions of aircraft in straight and level

flight according to Etkin [23]. Regular maneuvering of commercial aircraft, such as

take-off, landing and direction change, also falls into this category.

Unsteady motion In unsteady motions of vehicles, a full account is needed for the in-

stantaneous motion of the vehicle with respect to all states and all orders of state

derivatives. Some dependencies can be simplified, linearized or neglected depending

on the vehicle and the motion. For vehicles that depend on the surrounding fluid for

maneuvering such as aircraft and underwater vehicles, the vorticity generated at an

instant in time is convected downstream. For subsonic flow, flow property information

from the downstream convected fluid is transferred back upstream. Therefore the past

history of the motion of the vehicle is needed to determine the instantaneous states
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of the vehicle. What complicates things are that vorticity generated in the boundary

layer and shed into the freestream convects with significantly different magnitudes of

velocity in the inner part and outer part of the boundary layer, as well as outside of

the boundary layer.

Quasi-unsteady motion Although not a formally adopted definition in vehicle dynamics,

this is defined by the author as a special case of unsteady motion where the motion is

oscillatory and therefore periodic. The unsteady aerodynamic states are defined with

the motion frequency and amplitude to have instantaneous unsteady properties with

the implicit assumption of a time history effect from the periodic motion. A well studied

case is modeling the aerodynamics of a rotating helicopter blade. In experiments the

airfoil is usually undergoing a pitch-oscillating motion in freestream flow.

1.6 Slender bodies

Investigations in the aerodynamics and maneuvering of slender bodies started with the in-

troduction of airships in the 1920s. Munk [61] summarizes the knowledge on potential flow

on rectilinear and curvilinear motion for small angles as well as the use of ‘apparent added

mass’ to predict gust response. Munk concludes that potential flow theory is adequate for

predicting forces but overpredicts moments compared to wind tunnel tests, even at small an-

gles. Munk addresses the fact that real viscous fluid produces vortices at the rear of the body

that increase local lift and decrease the unstable moment [62]. Potential flow calculations

were also used to predict surface pressure forces concerning airship hull structural rigidity

concerns. Upson and Klikoff [80] showed that the discrepancy of the calculated pitching

moment from Munk’s theory to measured moment was due to the bluntness of the bow,

thereby locally invalidating the small disturbance assumption.
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The discrepancy of normal force and pitching moment at larger angles was recognized by

Munk and Upson and Klikoff as viscous contributions. When a slender body is at an angle

to the free stream flow, the boundary layer is subjected to a favorable pressure gradient by

being accelerated over the blunt bow from the stagnation point. At some location further

downstream, the body starts to taper off and the boundary layer will be subjected to an ad-

verse pressure gradient when slowing down. If the adverse pressure gradient is large enough,

the boundary layer will separate.

For a circle in 2D uniform flow, the separation location will cause a stagnation point on

the surface where there will be a recirculation region on the downstream side. For the case

of a cylinder in 3D flow at moderate angles just large enough to cause separation, the bound-

ary layer will still have a predominantly axial flow component that feeds momentum in on

the lee side of the separation side such that there will be no stagnation location and also

no recirculation region. The flow topology phenomena is called an ‘open separation’ and is

characterized by the boundary layer flow on the lee side, coming from over the centerline

part of the bow, is forced outward towards the separation location. The boundary layer fluid

is ejected into the outer layer fluid, transported further downstream on the lee side and then

back down towards the surface to fill in for the loss in centerline flow further upstream of the

body. As the process continues downstream of the body, more fluid will be circulated and

transported downstream such as it will be rolled up into a large vortex, one on each side on

the lee part of the body and also counter-rotating with respect to each other.
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The problem was simplified by Allen [4] by dividing the flow over a slender body at an angle

of attack into axial- and transversal components based on the idea of Jones [51] for infinitely

long cylinders in oblique flow. Allen made the assumption that the cross-flow velocity

w = U∞sinα (1.4)

could be used to calculate a cross-flow drag (or normal force) component over a circular

cross-section

Z = 2Rcd,cq∞sin
2α (1.5)

with the cross-flow drag coefficient cd,c for a cylinder at the cross-flow Reynolds number

Rec =
2RU∞sinα

ν
(1.6)

with a later correction η for finite cylinders. The normal force could then be written as

Z = 2Rηcd,cq∞sin
2α = 2Rηcd,cq∞w

′|w′| (1.7)

for which the normal force has a quadratic dependency on angle of attack. This is essentially

the form of equations defined as ‘Standard Submarine Equations’ by Gertler and Hagen [29].

They were later revised and extended by Feldman [26] by introducing several other higher

order states and corresponding coefficients, although without any clear reference to any

physical basis in flow structures. The main issue with this form of equations and the un-

derlying physics is the assumption of superposition of solutions from axial and lateral flow

components, especially at very small angles of attack – an assumption that was disputed by

McCroskey [57]. Equation 1.7 explains the cross-flow velocity component producing a force

that is affected by the Reynolds number based on the cross-flow velocity Rec. A small angle
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of attack would therefore have a small Rec, indicating laminar boundary layer separation

and a large cross-flow drag force coefficient cd,c. A larger angle of attack would have a larger

cross-flow Rec indicating a turbulent boundary layer and a smaller cross-flow drag-force co-

efficient cd,c. However, if the free stream Reynolds number ReL for a slender body is large

enough for the boundary layer over the mid- and aft body to always be turbulent, it will

obviously not undergo any laminar cross-flow separation at small angles of attack and turbu-

lent cross-flow separation at larger angles of attack. At an infinitesimal angle of attack the

boundary layer will be subjected to an infinitesimally small circumferential adverse pressure

gradient. This infinitesimally small adverse pressure gradient may not undergo separation

until the angle of attack has reached some value to produce an adverse pressure gradient

large enough to cause separation. Turbulent boundary layers also resist separation in adverse

pressure gradients to a greater extent than laminar boundary layers.

In order to characterize the separation location topology, Wetzel et al. [84] used several

different methods for quantifying the separation line position and concluded that a minima

in skin friction is the best method. Experiments on a 6:1 prolate spheroid by Chesnakas and

Simpson [13] as well as Wetzel and Simpson [83] were conducted to reveal the location of the

cross-flow separation lines, as well as giving detailed statistical information on the turbulent

flow structures in the boundary layer and the large rolled up vortices on the lee side to aid

and validate computational simulations. Hosder and Simpson [49] also provided skin friction

and separation location information on the Suboff geometry using unidirectional hotfilm sen-

sors. In the aforementioned research on separation location and flow structures, a measurable

difference was observed between different pitch rotation maneuvers and the corresponding

steady angle of attack conditions. The flow stays attached for some measurable time longer

than what a time-instantaneous steady-state solution would predict. Hosder and Simpson

successfully applied a first-order lag-model adapted from Goman and Khrabrov [40] to local
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separation location, but it is unclear whether this information can be used for maneuvering

force and moment predictions as well.

For slender body geometries with a non-1:1 cross section aspect ratio the studies of the

flow over the elliptic forebody by Schmitt and Chanetz [70] and Chanetz and Délery [11]

provided extensive information on the boundary layer and the vortical separation region with

oilflows, LDV and five-hole pressure probe measurements. However, no force measurements

were done.

1.6.1 Computational simulations

To address the shed vorticity on slender bodies at higher angles of attack, computational

predictions were performed by Mendenhall and Lesieutre [58] as potential flow calculations

with added vortex shedding at the location of separation. Despite the quite accurate pre-

dictions on submarine maneuvering by Mendenhall and Perkins [59], a priori information on

the location of cross-flow separation is needed which precludes it from being an initial tool

in submarine engineering.

Recent CFD calculations have been produced from several different research groups, such

as the U-RANS simulation of the forces and moments on a pitching 6:1 prolate spheroid by

Rhee and Hino [67], maneuvering predictions of a prototype submarine by Racine and Pa-

terson [66], and the LES investigation of the turbulent boundary layer flow of a maneuvering

Suboff by Alin et al. [22]. Rhee and Hino used a simple eddy viscosity turbulence model

on a relatively coarse grid and concluded that the computations show the correct trend of

the data, both in magnitude and time-lag, but that viscous dissipation in the vortical wake

is overpredicted and therefore underpredicts all results. Racine and Paterson used overset
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grids and a more advanced turbulence model with partial success to predict hydrodynamic

coefficients and motion stability of a prototype submarine. The work by Alin et al., has been

concentrated on developing computational methods for accurately predicting the turbulent

boundary layer and vortical wake structures rather than the implicit method of adjusting

the equations to obtain the correct forces and moments. Physical models for the flow are

still needed for validation of simulations on these slender bodies - especially unsteady ma-

neuvers. In strong cross-flow separations there is little correlation between the flow-gradient

angle and shear-stress angle within the turbulent shear flow, as reported by Chesnakas and

Simpson [13], meaning that simple boundary layer models based on eddy-viscosity do not

work very well there. Advances in dynamic performance can be made if the complex turbu-

lent separation flow phenomena can be understood, modeled and then included in the design

process of future underwater vehicles.

A present, there are no computers fast enough to predict maneuvering in real time from

a full flow high fidelity solution over a submarine. To do that, one must use a reduced order

six degree-of-freedom model based on state derivative coefficients. Automatic vehicle control

systems can take advantage of the increased information from reduced order unsteady aero-

dynamic models to achieve higher maneuverability. Real-time motion simulators can also

achieve higher fidelity. Still, there is no clear consensus on how to treat and predict unsteady

motions of either aircraft, surface ships and submarines with reduced order models.

1.7 Analytical models for unsteady motions

Unsteady fluid mechanics phenomena started with analyzing neutrally buoyant vehicles such

as airships and submarines with extending the Taylor expansion of forces and moments in

Equations 1.2 and 1.3 by also including the partial derivatives of forces and moments with
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respect to the different state derivatives as in Equations 1.5 and 1.6.

Z ′ = Z ′q′q
′ + Z ′w′w

′ + Z ′q̇′ q̇
′ + Z ′ẇ′ẇ

′ (1.8)

M ′ = M ′
q′q
′ +M ′

w′w
′ +M ′

q̇′ q̇
′ +M ′

ẇ′ẇ
′ (1.9)

Forces due to the change in displaced fluid around the body from translational and rotational

motions are named ‘added mass’ and ‘added inertia’ terms. These have historically been cal-

culated with inviscid assumptions since the vehicles in application have been slender, such as

airships and submarines, the motions have usually been very close to straight and level and

the perturbations from the initial motions have been small. With these assumptions, these

force terms are linearly dependent on the transversal and rotational accelerations. Because

of this, the resulting forces and moments are shifted to appear as additional terms in the

system matrix from Equation 1.1 to be the new system matrix shown in Equation 1.10.

Hence the name – ‘(apparent) added mass’ and ‘(apparent) added inertia’.



mB −Xu̇ 0 0 0 0 0

0 mB − Yv̇ 0 0 0 −Yṙ

0 0 mB − Zẇ 0 −Zq̇ 0

0 0 0 Ixx −Kṗ 0 0

0 0 −Mẇ 0 Iyy −Mq̇ 0

0 −Nv̇ 0 0 0 Izz −Nṙ



(1.10)

One issue with this approach is that it assumes that the ‘added mass’ and ‘added inertia’

terms are assumed to be constant. Slender bodies at large angles of attack and sideslip

produce lift with large lengthwise vortices on the leeward side. Even with the inviscid

theory that lies behind the original assumption of added mass and inertia one can quickly
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reason that, with a similar calculation for the lift-producing body, the added mass and

inertia for that state would not necessarily give the same answer as for the straight and level

case. Therefore, added mass and inertia can depend on the states of the slender body. A

qualitative analysis is still possible by adding vortices to strip theory calculations. From

global flowfield knowledge, or separation location information, one can draw qualitative

conclusions on how added mass and inertia vary with crossflow from sideslip or angle of

attack as shown by Granlund and Simpson [42]. The analysis can only be used to predict

the qualitative behavior of the trend – the fact that the ‘added mass’ coefficient term is

reduced as the cross-flow separation moves more to the lee side at a higher local angle of

attack.

1.7.1 Indicial functions

A notable issue with the unsteady added mass and -inertia terms is that they are time-

invariant. It is a well known fact that vorticity, generated on the wall in the boundary

layer under the action of pressure gradient and viscosity, separates and rolls up in vortices

on the lee side and finally convected downstream in the wake. Thus, the flow condition

at any instant in time should depend on the entire past history of the flow over the body.

This concept of time-history effects was introduced by Tobak [78] as the indicial functions

approach by assuming that any unsteady force or moment contribution could be taken as

the integral sum of impulse steps of the relevant states.

CL(t) = CL(α(t = 0)) +
∫ τ

0
CLα(τ)α̇(t− τ)dτ (1.11)

CL(t) = CL(α(t = 0)) +
∫ τ

0
F (α(τ), t = τ, q = 0)α̇(t− τ)dτ (1.12)
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The linear kernel stability derivative in Equation 1.11 was successively extended to nonlinear

functions as in Equation 1.12 via different kernels such as described by Klein et.al [64].

F1(α, t) = CLαe
−b(α)t (1.13)

F2(α, t) = a(α)CLαe
−b(α)t (1.14)

F1(α, t) = CLαe
∫ t
τ
(−c(α(ζ))dζ (1.15)

CLα = d1 + d2(α− α1) + d3(α− α1)
2 (1.16)

There are several problems with this approach. The first is the increasing complexity of

the kernel with more and more constants to determine, some of them possibly even with

questionable physical meaning. Just because an aerodynamic property can be written as

a mathematical function does not necessarily mean that there are any physical phenomena

that justify that function. The second one is that the state and kernel function can be

represented as a vector and matrix in a linear relationship inside the integral. Whether

the indicial function approach even can be extended to a multivariate relationship either in

linear or some nonlinear form is questionable. The third objection is whether a single time

constant τ can be used to represent all unsteady features of the flow structures, such as

delayed separation, vortex burst etc., or if several time constants are needed.

1.7.2 Time-lead/lag equations

Models predicting unsteady dynamics of motion with time lead/lag have proved useful for

a number of different experimental studies involving airfoils, delta wings and entire aircraft.

These models predict fluid phenomena by using internal state variables. These states are

allowed to have time leads or lags showing the behavior of vortex burst and/or separa-

tion location off an airfoil that in turn affect the global forces and moments. Goman and
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Krabrov [40] used the internal state variable xv as a monotonic single-variable function to

describe the chordwise separation location as a function of angle of attack α.

τ1
dxv
dt

+ xv = xv,0 (α− τ2α∗) (1.17)

CL = CL0 +
∂CL(xv)

∂α
α +

∂CL(xv)

∂q̂
q̂ (1.18)

Cm = Cm0 +
∂Cm(xv)

∂α
α +

∂Cm(xv)

∂q̂
q̂ (1.19)

Fan and Lutze [24] showed that for an F-18 aircraft model, one can use the non-dimensionalised

internal state variable xv of the vortex burst location and two different time constants with

the external state variables for angle of attack α and pitch rate q as in Equation 1.19. The

time constants in the differential equation will modify the location of separation or burst

location during a maneuver with non-zero state derivatives. The modified location will de-

scribe a different lift or pitching moment during an unsteady maneuver from the steady state

separation or burst location.

For a slender body, such as a submarine, airship or a torpedo, these fluid phenomena are a

bit more complex. As opposed to the leading edge of a delta wing, the separation location

is no longer fixed. It also can not be parameterized as a monotonic function of a single

variable for chordwise, spanwise or circumferential angle location. The flow exhibits cross-

flow separation which can be characterized by a circumferential angle position that varies all

along the entire middle and aft portion of the body shown by both Wetzel and Simpson [83]

and Hosder and Simpson [49]. For example, when maneuvering in pitch and/or heave, the

separation location would most likely not change uniformly across the entire lee side. The

vortex burst phenomena also does not occur within any normal maneuvering envelope for

slender bodies in use today.
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1.7.3 Previous experiments

Previous work has mainly focused on sharp edge separation from airfoils, delta wings and

also coned forebodies of missiles. Blunt-nosed slender bodies have more complex flow phe-

nomena since the separation on the leeward side is three-dimensional [13] and the location

is also not fixed.

The early attempts to determine unsteady effects were done with coning motion rigs such as

the work by Tobak and Schiff [79] and Ericsson [21]. These experiments consisted of oscilla-

tions in no less than five state variables - α, β, p, q and r. Smith and Nunn [75] reduced the

variations to two states by oscillating in one plane, but they were still continuously variable

during one motion test. The difficulties in constructing analytical models for these unsteady

motions are tremendous since the unsteady contributions from the different state variables

are difficult, if not impossible to separate out.

Subsequent research were small amplitude oscillation in one plane - either in pitch-, yaw-

or roll plane using constrained oscillatory motion devices. Small amplitude oscillation were

performed at some nominal angle of attack and/or sideslip to give some information on dy-

namic state derivative coefficients. The phenomena of delta wing vortex breakdown were

investigated with pitch oscillation and roll oscillation at angle of attack. The unsteady pitch

oscillation of a NACA 0015 airfoil was investigated by Goman and Khrabrov [40] in an

attempt to extend the knowledge of helicopter blade aerodynamics. Greenwell [44], also

extended the model to include the delay in vortical separation from delta wings. The time

lag concept has been extended to several other geometries such as complete aircraft such as

vortex burst causing wing drop on the F-18 by Fan and Lutze [24]. A thorough review of

recent unsteady aerodynamic modeling has been done by Greenwell [45].
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During the 1990s, investigations in so called ‘super maneuverability’ of combat aircraft were

conducted after the analysis of the Su-27 ‘Cobra maneuver’ [74]. These air combat maneu-

vers performed were characterized by rapid, short-duration changes in aircraft direction at

lower speeds. Research in analytically investigating these post-critical angles of attack at

high pitch rates has been conducted as bifurcation analysis such as the work by Sibilski [72].

However, to accurately be able to predict maneuvering dynamics of vehicles, one needs to

have an accurate analytical representation of the physics of the problem. According to Nel-

son and Pelletier [63], bifurcations only arise when the flow structure changes modes, such

as the onset of a separation or vortex burst. Time lags also only occur from bifurcations. In

the scope of this research, only the flow physics matters. For other aeronautical problems,

such as aeroelastcity, the aerodynamic interaction with structure deformation is of interest.

One problem persists though - most experiments done in previous research are either small

amplitude oscillations in one or more state variables or large amplitude in only one state

variable. McCroskey [57] raised the point that it is debatable whether these single-state

variable small amplitude oscillations can be extended via superposition to multi-state large

amplitude motions that are more similar to actual operational maneuvers. The problem with

the oscillatory tests are that the wake of convected vorticity generated from the oscillatory

motion influences the flowfield over the body, and therefore the pressure distribution and

forces and moments at any instant in time – at least in subsonic flow. This makes oscillatory

tests ‘quasi-unsteady’ in the respect that they are attributed properties of a time–dependent

unsteady motion whereas the motion is instead continuously repeatable. For this reason,

model oscillation testing should only be used when the real motions of the vehicles them-

selves are oscillatory.
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1.8 This research contribution

This research seeks to extend the knowledge of forces and moments over non-body of revolu-

tion slender bodies for fixed angles of attack as well as for unsteady pitch ramp maneuvers.

For steady angles of attack, the presence and extent of the linear range from attached flow to

the nonlinear range with separated flow will be investigated and quantified for at least two

different geometries. Attempts to construct reduced order models will also be made from

the experimental data.

Short duration, unsteady pitch-ramp maneuvers will be performed to investigate how, and

which different analytical models can be used to predict maneuvering forces and moments

from the states of the motion. The unsteady datasets will also be used as a database reference

set for non-body of revolution geometries to validate computational flow simulations.
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Chapter 2

Equipment

To accurately obtain hydrodynamically similar forces and moments on slender bodies in

static and dynamic conditions in air, several pieces of equipment need to meet certain con-

ditions. First, since air is less dense than water, Reynolds number will not be matched but

must be kept high enough to invoke similar flow conditions over the model as for a full size

vehicle. This implies a large model and high freestream velocity. To achieve dynamic ma-

neuvering similarity a mechanism needs to be able to accurately adjust the position of the

model at a similar rate corresponding the rate of fluid passing over the model versus for the

real size vehicle. The higher the freestream velocity and the smaller the model, the larger

the model maneuvering rate.

The higher the maneuvering rate of the model, the larger the extent of the model mass

will affect the measurements. Mass of the model needs to be kept as low as possible while

at the same time keeping the model structurally stiff and not deform during maneuvering.

Force transducers need to be sensitive only to the inertial- and aerodynamic loads in the

desired directions as well as have a long fatigue life.
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2.1 Models

Three models are built for wind tunnel tests. They are of similar construction as the Suboff

model previously built by Whitfield [85] and used by Granlund and Simpson [43]. To increase

the signal-to-noise ratio in dynamic tests, the models need to be as lightweight as possible

and lighter than the previously built Suboff model to reduce inertial forces. To accomplish

this, the vinyl foam core and aluminum stringers are replaced by Nomex honeycomb. The

surface gelcoat from the Suboff model built by Whitfield is also no longer employed. Gelcoat

on composite structures such as boats and aircraft is mainly used to protect the fibers and

polymer matrix from degrading by ultraviolet radiation from the sun. A secondary purpose

is to provide a hard surface that can have a different color than the composite structure.

Neither of these properties are necessary for a wind tunnel model since it is stored indoors

away from sunlight and is handled carefully to avoid dents while being transported between

storage and wind tunnel testing. Surface coloring with red pigment may be a desired prop-

erty for laser based flow measurements such as DGV, LDV or PIV to avoid surface scatter

of laser light to the receiving optics or a black surface for oil flow visualization, but it can

be achieved with spray paint after the model is built.

For the ellipsoid model, paper templates for every 2” position of the curved bow and stern

are printed out and glued on to 2” thick sheets of extruded polystyrene wall insulation sheets.

The sections are then cut out with a scroll saw as shown in Figure 2.1. The constant cross-

section midbody part is cut out with a hot-wire saw with wood end templates. The wood

templates are constructed the same way as with paper templates glued to the wood boards.

The different sections forming the plug are glued together with 3M Spray Adhesive 6070 [65]

and stacked using clamps shown in Figure 2.2. After the stacked slices make up a curved bow
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section, they are sanded down, first with a coarse shaving then 120 grit and finally 400 grit

sand paper. The sanding pattern is crosswise as in Figure 2.3 in order to avoid producing

flat spots. To achieve the correct surface curvature, the plug can be held up and rotated

slightly so that it reflects the light. Non-smooth curvatures can easily be spotted in the

reflecting light and corrected with the sanding block. After the plug parts have been sanded

down to the correct shape, the bow/stern and midbody are glued together. Plugs for other

submarine-like models have been CNC machined from polyurethane foam by Vectorworks

Marine [1].

The plug is then covered with a thin 4 Oz/Sq Yd. Fiberglass Surfacing Fabric [31] and

epoxy [76] to create a hard surface and protect the Styrofoam from the organic solvents of

the finishing material. If the plug is machined out of a block of polyurethane foam, there is

no need for a fiberglass surface. It is instead prepared with a mix of epoxy and glass micro-

spheres [34] that is applied smoothly over the surface before the surface finishing material.

Bondo Automotive Body Filler [8] is applied and sanded down to give a smooth surface

with 220 and 400 grit sandpaper. After that, in order to take care of pinhole spots, Bondo

Spot Putty [9], shown in Figure 2.5, is applied and sanded down with 800 grit sandpaper.

To complete finishing the surface, it is sprayed with automotive filler primer that is sanded

down with 800 followed by 1600 grit sandpaper. To complete the surface, several coats of

automotive lacquer [20] are applied and sanded down with 1600 grit wet sandpaper.

To prepare for making a mold from the plug it is glued on to a backing board on a flat sur-

face. Gaps between the plug and the backing surface are sealed using an oil-based clay [35]

shown in Figure 2.6. Excess clay is removed to get a square edge. The plug and backing

board is then waxed four times with a carnauba wax that is suitable for epoxy molds. In

order to ease the release of the mold from the plug and backing board, it is spray coated
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with a PVA release film [38]. It is essential to cover a substantial part of the backing board

with wax and release film to be able to create a mold edge.

The first part of the mold is the epoxy surface coat [33] that is brushed on to the mold

shown in Figure 2.7. This surface coat helps provide longevity for the mold surface so that

it can be used repeatedly to create several models without degradation. A 10 cm edge on

the backing board is applied to create the edge for the mold. The surface coat is also mixed

with pigment in order to achieve a contrasting surface for the subsequent layers of fiberglass

and epoxy. With a contrasting color, it is easier to see if there are any air bubbles trapped

in the epoxy that locally weakens the structure. The second part is four layers of the Sur-

facing Fabric [31], which are draped over the surface coat when it has started to cure. It

is important to wet the fabric thoroughly with epoxy before adding the next layer to avoid

voids that will make the mold surface brittle. The third part is a total of eight layers of 20

Oz/Sq Yd. Fiberglass Tooling Fabric [31] to build thickness. Again, it is important to wet

each layer with epoxy before adding the next. Finally, add two shaped blocks of 2” Styro-

foam sheet to stiffen the mold and to provide a level support. When the epoxy has cured

after several hours, the plug can be released from the mold. The mold then needs to be pol-

ished inside to a smooth surface since the PVA release film produces an ‘orange peel’ texture.

When the two model halves are produced, the Hexcel HRH-10-F35-2.5 over expanded hon-

eycomb core [46] used in the center section and HRH-36-F50-2.0 Flexcore [47] for the double

curvature surfaces of the bow and stern first needs to be positioned in the mold and cut to

the correct shape. Then the two sheets of Fibre Glast 3K 2x2 twill weave carbon fiber fab-

ric [30] are cut. Finally, the vacuum bag [37], Nylon release film [36] and breather cloth [32]

are cut to shape. To begin the process, the sealant tape [39] is first attached around the

entire outer edge of the mold with the top paper protection still in place. Then the vacuum
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bag is positioned in place attached to half the side of the mold. In the vacuum bag, mount

one or two hose attachments depending on the mold size. The final preparation of the mold

is four coats of waxing and buffing and finally a coat of PVA release film.

The process is started by positioning one layer of carbon fiber fabric in the mold. Epoxy is

mixed in a cup-sized batch and then poured on the weave. The liquid needs to be thoroughly

worked in to completely wet the fabric by using both a roller and a squeegee. With an excess

of epoxy it is easier to completely wet the fabric. The excess epoxy is then removed with

squeegee and scraped back up in the mixing cup. When working in the epoxy into the weave,

it is relatively easy to shift the weave. The fibers need to be completely straight in order not

to weaken the structure. When the fabric is completely wet and all the excess is scraped off,

position the honeycomb in the mold and close the vacuum bag. Before completely closing

the bag, place a swatch of Nylon release film and a quadruple folded piece of breather cloth

underneath each vacuum hose fitting. The breather cloth spreads the load so that the fit-

ting does not deform the honeycomb material. The Nylon release film makes sure that the

breather cloth does not get glued to the material with the epoxy. Finally, apply vacuum and

check the bag for leaks.

When the epoxy has cured completely, one removes the bag gently in order not to dam-

age it, but leaves half the bag attached to the mold and sealant tape for the second part of

the model. Complete the second layer of carbon fiber fabric by completely wetting it with

epoxy. Excess epoxy is not a problem since it will be soaked up during curing. This time,

use a fully covering layer of Nylon release film and a fully covering layer of breather cloth

in order to wick up any excess of epoxy. The layers are shown in Figure 2.10. Also place

quadruple folded pieces of breather cloth under the vacuum fittings to avoid soaking up too

much epoxy. Complete another vacuum cycle until the epoxy has cured completely. After
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the curing cycle, remove the vacuum bag and breather cloth. With the model half still in the

mold, apply a mix of epoxy and glass microspheres to the edge and sand it down squarely

after curing. Then repeat the entire process for the second half to produce two symmetric

halves shown in Figure 2.11. The model geometry uncertainties are kept below 0.5mm in

order not to affect the measurement uncertainties according to a study by Makovec [55]. No

dynamic structural analysis was done on the construction of the models. Since the models

have been subjected to much larger accelerations, without permanent damage, by the DyP-

PiR than those of the motions where aerodynamic data is obtained, it is believed that any

deformations of the model are negligible.

Since a sandwich construction is too weak to transfer point loads to loadcells, rings ma-

chined out of 25.4mm thick aluminum block to an inner 3.175mm ring are used to transfer

the load. Two rings are used, one at the front most, and one at the rearmost points of the

constant cross-section midship part. The aluminum rings are glued with epoxy to the inside

of the model. They incorporate mounting points for the two front and single rear loadcells.

One half of the model is cut in three pieces in order to create a removable hatch of the mid

body section. When the hatch is mounted to the model, clay [35] is used to seal the gaps.
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Figure 2.1: Cutting 2” Styrofoam segments Figure 2.2: Gluing segments together

Figure 2.3: Sanding the curved surface Figure 2.4: Reinforcing the surface with
fiberglass cloth and epoxy

Figure 2.5: Smoothing the surface with spot putty Figure 2.6: Attaching the plug to a
backing surface

26



Figure 2.7: Waxing the sur-
face glossy

Figure 2.8: Mold epoxy surface coat

Figure 2.9: Layers of fiberglass cloth plus 2”
Styrofoam stiffeners

Figure 2.10: Model surface construction

Figure 2.11: Two shell halves created Figure 2.12: Aluminum ring inserted
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2.1.1 Mass and moment of inertia

The mass and moment of inertia of the models need to be measured or calculated for the

inertial loads to be subtracted from the total loads during dynamic tests. Because of the

low weight of the model, experiments would need to be performed in vacuum to measure

the inertia without including the effects of still air. This is also the reason why dynamic

maneuvers cannot be performed as ’wind on maneuver’ minus ’wind off maneuver’.

Since the models are built as a sandwich shell structure with thin walls, it is easier to use

area density in the calculations. The equations for calculating the mass, center of gravity

and moment of inertia are

m =
∫
dm = ρa

∫
dA (2.1)

xm =
∫
xdm (2.2)

ym =
∫
ydm (2.3)

zm =
∫
zdm (2.4)

Ixx =
∫ (

y2 + z2
)
dm (2.5)

Iyy =
∫ (

x2 + z2
)
dm (2.6)

Izz =
∫ (

x2 + y2
)
dm (2.7)

and the area densities for the materials are

ρa,weave = 0.19326
kg

m2

ρa,epoxy = 0.359664
kg

m2

ρa,honeycomb = 0.27057
kg

m2
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The area is numerically integrated by summing area elements tangentially round the x-axis

and then in x-direction. An area element consists of four defined points on the body.

~r1(x, θ)

~r2(x, θ + dθ)

~r3(x+ dx, θ)

~r4(x+ dx, θ + dθ)

The mass is calculated at the linear geometric center of the area element

~rc(x, θ) =
(~r1 + ~r2 + ~r3 + ~r4)

4
(2.8)

The area of the element, shown in Figure 2.13, is calculated as four triangles, each with two

corner points and the center point as the third. This enables a more accurate calculation of

area of highly skewed elements.

Figure 2.13: Integration area element
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A1 =
1

2
abs [(~r1 − ~rc) (~r2 − ~rc)] (2.9)

A1 =
1

2
abs [(~r1 − ~rc) (~r3 − ~rc)] (2.10)

A1 =
1

2
abs [(~r2 − ~rc) (~r4 − ~rc)] (2.11)

A1 =
1

2
abs [(~r3 − ~rc) (~r4 − ~rc)] (2.12)

A = A1 + A2 + A3 + A4 (2.13)

Since the body consists of three layers of material, an outer and inner layer of carbon fiber

reinforced epoxy, and a middle layer of Nomex honeycomb, the integration is done in three

parts, one for each layer. The only unknown, or adjustable parameter, is ξ in calculating the

thickness of epoxy in the faces of the shell structure

ρa,face = (ξρa,weave + ρa,epoxy) (2.14)

A grid independence study concludes that for mass to be determined ≤ 1g uncertainty for

square area elements, dx and dθ need to be smaller than according to Table 2.1. The weight

dx ≤ 0.005m
dθ ≤ 3◦

Table 2.1: Grid independence requirements

and moment of inertia of the aluminum support rings are calculated in AutoCAD [6]. With

the aforementioned conditions and the following calculations, a ξ = 0.87 is achieved in the

manufacturing process. This means that there is a slight excess of epoxy in the structure.
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2.1.2 Suboff

The Suboff geometry, first tested by Roddy [68], is a widely used slender body configurable

as unappended, with sail, stern appendages or with both. The exact geometrical shape of

the Suboff geometry is included in the Appendix.

Due to an unfortunate event, the Suboff model previously used in tests by Whitfield [85]

and Granlund [41] was destroyed. A new model was built with uniform core material that

enables the mass properties to be determined. The properties of the aluminum support rings

are given in Table 2.2.

mring 0.3746 kg
Ixx 0.00178287 kgm2

Iyy 0.003283 kgm2

Izz 0.004850 kgm2

Table 2.2: Suboff aluminum support ring properties

The measured mass of the model with the support rings is msuboff = 2.749kg. In the calcu-

lations, ξ is adjusted for the calculated weight to match the measured weight of the model

shell. The model shell properties are given in Table 2.3.

mshell 1.9992 kg
xm,shell 1.0618 m
Ixx 0.0300 kgm2

Izz = Iyy 2.9401 kgm2

Table 2.3: Suboff shell properties

The inertial properties of the entire model are calculated at the center of gravity via

xm =
1

mtot

(mshellxm,shell +mring (xm,frontring + xm,rearring)) (2.15)
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Ixx,model = Ixx,body + 2Ixx,ring (2.16)

Iyy,model = Izz,model = Iyy,shell −mshellx
2
m,shell

+Iyy,ring +mring (xm − 0.5334)2

+Izz,ring +mring (xm − 1.70352)2 (2.17)

mbarebody 2.7484 kg
xm,shell 1.0772 m
Ixx 0.0133 kgm2

Izz = Iyy 0.489 kgm2

Table 2.4: Suboff model mass properties

2.1.3 Ellipsoid body

The ellipsoid is chosen for a generic non-body of revolution shape. The body is similar to

the one studied experimentally by Schmitt and Chanetz [70].

(
x

a

)2

+
(
y

b

)2

+
(
z

c

)2

= 1 (2.18)

A scalene ellipsoid with a = 400mm, b = 200mm and c = 115.5mm axes lengths and

n1 = n2 = n3 = 2 is used for the bow and stern. An 800mm long constant elliptical cross-

section is inserted in the middle of the longest axis. This produces a body, depicted in

Figure 2.14 with half the size of the model used by Schmitt and Chanetz. The geometry

used in these experiments is more like a submarine-like body, since the aforementioned body

by Schmitt and Chanetz was only the front half of the body in this work.
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Figure 2.14: Ellipsoid body (dimensions in mm)

The use of elliptic shapes is motivated by the study of separation locations. Elliptic surfaces

have no curvature discontinuities, and thus no pressure gradient discontinuities that can

promote separation at fixed locations. This should therefore be of a particular challenge to

computational simulations.

The inertial properties of the ellipsoid body are computed the same way as for the Sub-

off. First the properties of the aluminum support rings are calculated in AutoCAD to the

properties in Table 2.5.
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Rear Front
mring [kg] 0.411 0.360
Ixx [kgm2] 0.00679 0.00877
Iyy [kgm2] 0.00324 0.0145
Izz [kgm2] 0.00373 0.0736

Table 2.5: Ellipsoid aluminum support ring properties

With the same ζ ratio as for the Suboff, the calculated mass of the ellipsoid body agrees

within 5 grams of the measured mass. The ellipsoid model has the mass properties in

Table 2.6.

mellipsoid 2.5636 kg
xm,shell 0.8061 m
Ixx 0.0301 kgm2

Iyy 0.227 kgm2

Izz 0.265 kgm2

Table 2.6: Ellipsoid model properties for x/L = 0.5

2.1.4 NNEMO

The Newport News Experimental MOdel is a concept design model for a new submarine.

It is a twin propulsor design with roughly 1:2:6 height:width:length ratio, thus also making

it a non-body of revolution. The actual geometry is ITAR restricted and thus cannot be

published openly. The scaled wind tunnel model is built to a length of 2.43m. The model

has the following inertial properties for xrp
L

= 0.5

mbarebody 0.0 kg
ζm,shell 0.0 m
Ixx 0.057 kgm2

Iyy 0.299 kgm2

Izz 0.3026 kgm2

Table 2.7: NNemo model mass properties
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2.1.5 Boundary layer trips

For the wind tunnel model to simulate the flow conditions over a large full-scale submarine,

the Reynolds number ideally needs to be the same. Even though on a full scale submarine

ReL ≈ 109 it is not achievable in a wind tunnel, the main concern is still that the boundary

layer is fully turbulent before cross-flow separation on the lee side. This is ensured with trips

on the bow. According to Ahn and Simpson [2], there exists a critical Reynolds number of

ReL ≈ 2.5 ·106 for the 6:1 prolate spheroid with the post trips where the boundary layer will

be turbulent at cross-flow separation. Above this Reynolds number, the separation topol-

ogy dependence on Reynolds number is small compared to the dependence on angle of attack.

The location of the trips is taken from the study by Fussell and Simpson [28] and De-

Moss [16]. Essentially, there are criteria that need to be fulfilled. First, the trips need to be

in a location downstream enough to produce a momentum thickness change of ∆Reθ > 800

so that flow relaminarization cannot occur at any angular portion to the flow within the test

range. Second, they need to be in a location upstream enough where the boundary layer

is not subjected to an adverse pressure gradient, when in any test angular position. This

is taken as the location where the tangent to the surface is parallel to the freestream for

all orientations of the model. For all three bodies; the ellipsoid, NNEMO and Suboff, the

location is x/L = 0.05 as shown in Figure 2.15.

The trips are two rows of 1.6 mm (1/16”) diameter cylinders with a height of 1.14 mm

(0.045”) with 4.75 mm (3/16”) separation shown in Figure 2.16. Eight layers of masking

tape with 1/16” hole punch are used as a disposable mold for a mix of epoxy and microbal-

loons to create the trips directly on the surface on the model.
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Figure 2.15: Boundary layer trip location on the model bow

Figure 2.16: Boundary layer trips
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2.2 Wind tunnel

The experiments are performed in the Stability Wind Tunnel at Virginia Tech which is a

closed return, subsonic facility with provision for installing different types of test sections.

The test section is a 1.8m x 1.8m cross section with 7.3m length. The maximum speed is

45m/s with the DyPPiR installed. Free stream turbulence is < 0.03% according to Choi and

Simpson [14].

Figure 2.17: Stability Wind Tunnel schematic (from [77])

Slotted walls were used in the tests to reduce the blockage effects of large wind tunnel models.

A study done by Willet [86] concluded an optimum open air ratio is 37.4%. This is achieved

with installing lengthwise boards on all walls as shown in Figure 2.19 and also in the motion

video analysis in Section 4.3. The boards are 25mm thick ‘oriented strand board’. Three

center boards have a width of 150mm and the four outer on each side are 75mm slats.

The spacing between each slat is 75mm. Whitfield [85] and Granlund [41] concluded that

the forces and moments measured on the Suboff are within the uncertainties measured by

Roddy [68]. No studies have been done on whether there are any dynamic blockage effects

on the model during maneuvers.
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Figure 2.18: Test section with DyPPiR and model installed (dimensions in meter)

Figure 2.19: Slotted wall schematic of upstream/downstream view (dimensions in mm)
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The dynamic pressure fluctuations reported by Larssen and Devenport [53] and further

investigated by Granlund [41] have been addressed since they can promote or delay the

onset of separation on the body. During the Ellipsoid drag measurements by DeMoss [16],

an attempt was made to remove the fluctuations by suction via a high-capacity air blower

and an upstream facing 30 cm tube inserted in the diffuser. Unfortunately, this produced no

change whatsoever on the pressure fluctuations. Reversing the tube and blowing in air had

no effect on the fluctuations either.

Figure 2.20: Slotted wall beam side schematic (dimensions in meter)

A further investigation revealed that the wavelength λ computed from dividing the free

stream velocity by the measured Pitot tube pressure fluctuation frequency by Granlund [41]

coincided reasonably well with twice the distance between test section wall panel support I-

beams. By adding support boards mounted on the outside of the slats between the I-beams,

the amplitude of the fluctuations appeared to be reduced, although this effect was never

quantified with measurement equipment. Additionally, by opening the wind tunnel test

section door, the frequency of the fluctuations doubled. Unfortunately, due to the DyPPiR

hydraulic system restrictions, the test section door is not permitted to be open with the

hydraulic pressure on.
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2.3 DyPPiR

Figure 2.21: DyPPiR schematic (from [77])

The Dynamic Plunge Pitch Roll apparatus (DyPPiR) in Figure 2.21, described in detail

by Ahn [3] ans Simpson [73], is used for the dynamic tests. It is is a 3-degree of freedom

hydraulically operated arm. It is rated to carry a model weighing no more than 50kg. It is

capable of vertically actuating ±650 mm at 9m/s, pitching ±45◦ at 120◦/s and rolling the

model ±140◦. Model commanded- as well as actual position in vertical and pitch direction

are at all times available and also digitized and recorded with loadcell data. According to

the DyPPiR manual [82], position uncertainties are ±0.65mm in plunge and ±0.63◦ in pitch.

Repeatability uncertainties during motions are 0.5mm in plunge and 0.1◦ in pitch acquired

from recorded motion data in Section 4.3.
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2.4 Sting

The sting used in the tests is a carbon-fiber reinforced epoxy tube with steel inserts to mount

the sting to the DyPPiR and loadcell supports. The sting has a length of 1700mm, a weight

of approximately 10kg and is described in more detail by Whitfield [85]. A single sting is

used for the Ellipsoid and Suboff tests and mounted directly to the roll actuator.

The eigenfrequency of the entire model–loadcell–sting–DyPPiR is measured to be 53Hz for

the single-sting setup by both Granlund [41] and Whitfield [85]. This is significantly higher

than the frequency range of useful motions. Sting deformations were not taken into account,

as needed by Fan and Lutze [25], because of the stiffer sting with higher eigenfrequency.

2.5 Loadcells

The loadcells are custom made, two-axis force loadcells of the same geometry as designed

by Whitfield [85]. They are constructed as a 7075-T7 aluminum cantilever beam with a ball

joint end for a moment-free installation shown in Figure 2.22. The flexures are equipped

with two sets of Vishay TK-13-S076K-45C straingages in full bridge configuration with two

straingages each on opposite side of the flexure. Three loadcells are mounted in the model

to register loads in local yl- and zl-axes only.

Two loadcells are mounted to the front aluminum ring at the junction of the bow and

constant cross-section midbody and a single loadcell is mounted to the rear aluminum ring

at the junction of the midbody and stern according to Figures 2.23 and 2.24. With these

three loadcells, forces in y- and z-axes and moments in all axes can be measured. Since the

loadcells are oriented in the model x-direction, axial force X cannot be registered.
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Figure 2.22: Loadcell with half of the base cap removed to expose the ball and socket joint
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Figure 2.23: Loadcell location in ellipsoid model (dimensions in mm)

Figure 2.24: Loadcell location in Suboff model (dimensions in mm)
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The loadcell mount to the model aluminum ring has also been slightly redesigned for more

durability from what used by Whitfield. The previous version used two 1/8” steel dowel

pins in cutouts between the loadcell head and model ring hole as shown in Figure 2.25.

This caused slight deformation of the material and play which was one source of excessive

vibrations as measured by Granlund [41]. The improved construction consists of two ramps

on the model aluminum ring forming a notch holding the entire square loadcell head as

shown in Figure 2.26. The old loadcells can still be used with the new design.

Figure 2.25: Older style loadcell mount with dowel pin
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Figure 2.26: New style loadcell mount with ramp integrated in ring
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New loadcells have been constructed of 1018 grade steel for heavier models. The dimensions

of the loadcells are exactly the same as those made from aluminum, but the steel has a

modulus roughly three times higher and thus have one-third the sensitivity. To match the

temperature coefficient of expansion of steel, new Vishay TK-06-S076K-45C/DP straingages

were selected with the otherwise same properties as those mounted on the aluminum flexures.

Figure 2.27: Loadcell coordinate system and
straingage numbering

Figure 2.28: Loadcell wiring diagram for
straingages and connector
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2.5.1 Loadcell calibration

The loadcells can register a wide range of frequencies, from DC to several kHz. The actual

frequency response has not been tested, nor analyzed, but since the frequency of the motion

of the wind tunnel tests is < 10Hz which is very low, there is no reason to believe that the

static calibration would be different from the low-frequency dynamic one. Each loadcell is

calibrated in-situ connected to the same cables, amplifiers and external filters as in actual

wind tunnel tests. To correctly align the applied force, a special calibration rig designed by

John Fussell is used that is described in more detail in Granlund [41].

Calibrated weights are hung so as to load the ball end of the flexure at such a range so

that the loadcell amplifiers register a voltage from 0 to maximum of 10V. With the am-

plifier gain setting at 1000, this set corresponds to a force from 10.26 to 113 N. Note that

the amplifier does not need to be adjusted to 0 V at 0 N load. Only the slope is necessary

information. A Labview script records the mean and standard deviation of a fixed set of

samples.

Starting with straingage bridge yl. The forces are transformed to the coordinate system

of the loadcell according to Figure 2.29. There are problems with friction at very low forces

in the calibration rig, so the smallest forces with nonlinear sensitivity are rejected. For every

set (i.e. measurement angle), a linear least squares fit of data is employed. The data are

then shifted in voltage as for the linear fit to have zero intercept (through the origin). The

procedure is shown in Figure 2.30.
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Figure 2.29: Raw calibration data with nonlinear points from calibration rig stick-slip friction
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Figure 2.30: Cropped data with zero voltage bias
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The six sets with forces in the yl-direction are then plotted in the same window. According

to Figure 2.31, there should be six linear sets of data, all positive definite. From this set,

another linear least squares fit is employed according to Figure 2.31. This is the calibration

coefficient of the yl-axis bridge to yl-axis load ayy.
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Figure 2.31: Combined data for tests on one bridge
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Since the data points are individually recorded as mean and standard deviation, we can

compute the variance of the calibration curve slopes as

V ar [ayy] =
∑
i

V ar [vyy,i]

F 2
y,i

(2.19)

For the two sets with force applied in the zl-axis direction and voltage registered on the

yl-direction bridge, the same procedure is repeated as above to obtain ayz. and V ar(ayz)

The same procedure is then totally repeated with the zl-axis voltages to obtain azz, azy,

V ar(azz) and V ar(azy). Now the calibration system of the whole loadcell is known as

 vy

vz

 =

 ayy ayz

azy azz


 Fy

Fz

 (2.20)

Since the sensitivities of the loadcells are the most useful parameter, Equation 2.20 is inverted

instead to

 Fy

Fz

 =
1

ayyazz − ayzazy

 azz −ayz

−azy ayy


 v1

v2

 =

 byy byz

bzy bzz


 v1

v2

 (2.21)

The variances of the measured forces are then for byy

V ar [byy] = V ar [ayy]

(
∂byy
∂ayy

)2

+ V ar [ayz]

(
∂byy
∂ayz

)2

(2.22)

+V ar [azy]

(
∂byy
∂azy

)2

+ V ar [azz]

(
∂byy
∂azz

)2

(2.23)
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And similarly for byz, bzy and bzz. Where the partial derivatives are

∂byy
∂ayy

=
−a2

zz

(ayyazz − ayzazy)2
≈ −1

a2
yy

(2.24)

∂byy
∂ayz

=
(−azz)(−azy)

(ayyazz − ayzazy)2
≈ azy
a2
yyazz

(2.25)

∂byy
∂azy

=
(−azz)(−ayz)

(ayyazz − ayzazy)2
≈ ayz
a2
yyazz

(2.26)

∂byy
∂azz

=
ayyazz − azzayy

(ayyazz − ayzazy)2
= 0 (2.27)

∂byz
∂ayy

=
ayzazz

(ayyazz − ayzazy)2
≈ −ayz
a2
yyazz

(2.28)

∂byz
∂ayz

=
−ayyazz + ayzazy
(ayyazz − ayzazy)2

≈ −1

ayyazz
(2.29)

∂byz
∂azy

=
ayz(−ayz)

(ayyazz − ayzazy)2
≈
−a2

yz

a2
yya

2
zz

(2.30)

∂byz
∂azz

=
ayzayy

(ayyazz − ayzazy)2
≈ ayz

ayyazz
(2.31)

∂bzy
∂ayy

=
azyazz

(ayyazz − ayzazy)2
≈ azy
a2
yyazz

(2.32)

∂bzy
∂ayz

=
azy(−azy)

(ayyazz − ayzazy)2
≈
−a2

zy

a2
yya

2
zz

(2.33)

∂bzy
∂azy

=
−ayyazz + azy(−ayz)

(ayyazz − ayzazy)2
≈ −1

ayyazz
(2.34)

∂bzy
∂azz

=
azyayy

(ayyazz − ayzazy)2
≈ azy
ayya2

zz

(2.35)

∂bzz
∂ayy

=
ayyazz − ayyazz

(ayyazz − ayzazy)2
= 0 (2.36)

∂bzz
∂ayz

=
(−ayy)(−azy)

(ayyazz − ayzazy)2
≈ azy
ayya2

zz

(2.37)

∂bzz
∂azy

=
(−ayy)(−ayz)

(ayyazz − ayzazy)2
≈ ayz
ayya2

zz

(2.38)

∂bzz
∂azz

=
−a2

yy

(ayyazz − ayzazy)2
≈ −1

a2
zz

(2.39)
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Since ayy, azz >> ayz, azy, only the partial derivatives of variables with respect to the same

indices are left. The variances of the sensitivities are thus

V ar [byy] = V ar [ayy]

(
∂byy
∂ayy

)2

(2.40)

V ar [byz] = V ar [ayz]

(
∂byz
∂ayz

)2

(2.41)

V ar [bzy] = V ar [azy]

(
∂bzy
∂azy

)2

(2.42)

V ar [bzz] = V ar [azz]

(
∂bzz
∂azz

)2

(2.43)

The variances in the forces are thus

V ar [F1] = V ar [byy] v
2
1 + V ar [byz] v

2
2 + b2yyV ar [v1] + b2yzV ar [v2]

= V ar [ayy]
1

a4
yy

v2
1 + V ar [ayz]

1

a2
yya

2
zz

v2
2 + b2yyV ar [v1] (2.44)

and

V ar [F2] = V ar [bzy] v
2
1 + V ar [bzz] v

2
2 + b2zyV ar [v1] + b2zzV ar [v2]

= V ar [azy]
1

a2
yya

2
yy

v2
1 + V ar [azz]

1

a4
zz

v2
2 + b2zzV ar [v2] (2.45)

The loadcell calibration constants are located in Appendix B.
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2.6 Data acquisition system

Every axis of the loadcells is connected to a Vishay 2310 loadcell conditioning amplifier [81]

— in total six. The output signals are first low pass filtered with an active circuit built

into the loadcell amplifier to remove large amplitude noise before conversion to digital sig-

nals. Initially a National Instruments PCI-MIO-16XE-10 card was used for conversion, but

as this ISA-based PC card stopped functioning in 2006, a National Instruments SCXI-1600

USB-based digital-to-analog conversion unit was used instead. The loadcell- and DyPPiR

position command and feedback data are recorded in the PC with custom made LabView [50]

scripts. Data are recorded at fs = 1000Hz for the duration of a motion with the DyPPiR.

For steady, fixed-position tests, data are recorded for 10 seconds. An automated LabView

script for reducing steady loadcell data to mean and standard deviation while recording does

exist, but it is not used.

Wind tunnel dynamic- and static pressure, temperature as well as DyPPiR commanded

and actual positions are recorded simultaneously together with loadcell data as described by

Granlund [41].

2.6.1 Loadcell amplifier filter modification

The built-in filter in the amplifiers is of a Sallen-Key [69] design in Figure 2.32 with fixed

resistor values and capacitors selectable via push-buttons on the amplifier front panel. The

transfer function of each filter stage is given by

fc =
1

2π
√
R2C1C2

(2.46)

Q =

√
R2C1C2

(R1 +R2)C1

=

√
C2

4C1

(2.47)

53



Figure 2.32: Vishay 2310 built–in filter circuit diagram

H =
1

1
2πf2

c
s2 + 1

2πfcQ
s+ 1

(2.48)

Initially, the built-in amplifier filter was a second order low-pass Butterworth type active

R (Ω) 22.6k
C1,10 (F) 0.5µ
C2,10 (F) 1µ
C1,100 (F) 0.05µ
C2,100 (F) 0.1µ
C1,1k(F) 0.005µ
C2,1k (F) 0.01µ
C1,10k(F) 0.0005µ
C2,10k (F) 0.001µ

Table 2.8: Vishay 2310 original filter component values

circuit with the selectable frequency of 10, 100, 1000 or 10000 Hz. The filter circuit consists

of a single Sallen-Key [69] stage in Figure 2.32 with component values in Table 2.8. The

operational amplifier is a National Semiconductor LM741 [71]. The filter parameters for the

second order 10 Hz filter turn out to be

fc =
1

2π
√

33k2 · 1µ · 0.5µ
= 9.95Hz (2.49)

Q =

√
R2C1C2

(R1 +R2)C1

=

√
C2

4C1

=

√
1µ

4 · 0.5µ
= 0.707 (2.50)

54



H =
1

1
R2C1C2

s2 + 1
2RC1

s+ 1
=

1

22.6k2 · 1µ · 0.5µs2 + 2 · 22.6k · 0.5µs+ 1

(2.51)

The filtering circuit was upgraded to a sixth order low-pass Butterworth filter by adding

Figure 2.33: Vishay 2310 modified filter circuit diagram

components on the circuit board for cascading three second order stages shown in Figure 2.33.

The new modified filter has the selectable cutoff frequencies of 5, 50, 500 and 5000 Hz.

Components were primarily selected for a 5Hz cutoff frequency instead of the original 10Hz

becuse of a need to filter out DyPPiR maneuver induced noise near and above 7 Hz. As an

added benefit, one can now filter out 60Hz electric power noise with the 50Hz filter. The

resistors and capacitors used all have 1% tolerance for more accurate control of the filter

characteristics in the post-processing of data. The components of the three filter stages were

selected initially from the Analog Devices Interactive Filter Design Java Applet [17] and

then adjusted to standard component values. A 100pF capacitor was chosen for C2c,5k to

keep the filter capacitance larger than the input capacitance of the operational amplifier to

avoid instability.

A Monte-Carlo simulation of the modified filter with the component values and uncertainties

in a seed of n = 10, 000 different combinations was performed to investigate the uncertainties.
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Figure 2.34: Vishay 2310 modified and unmodified filter magnitude response comparison

A B C
R (Ω) 33k 45k 124k

C1,5 (F) 2x0.47µ 0.47µ 0.068µ
C2,5 (F) 2x0.47µ 2x0.47µ 2x0.47µ
C1,50 (F) 0.1µ 0.047µ 6.8n
C2,50 (F) 0.1µ 0.091µ 0.1µ
C1,500 (F) 0.01µ 0.0047µ 0.68n
C2,500 (F) 0.01µ 0.091µ 0.01µ
C1,5k (F) 0.001µ 0.0005µ 100p
C2,5k (F) 0.001µ 0.001µ 0.001µ

Table 2.9: Vishay 2310 modified filter component values

56



1 2 3 4 5 6 7 8 9 10
−25

−20

−15

−10

−5

0

5

Frequency [Hz]

M
ag

ni
tu

de
 [d

B
]

6th order 5Hz filter
Filter stage A
Filter stage B
Filter stage C

Figure 2.35: Vishay 2310 separate stage filter magnitude response
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From Figure 2.36 we can observe that the modified filter has a magnitude uncertainty of well

below 1% for frequency components up to 2Hz and < 0.2% under 1Hz. Regular dynamic

motions are pitch and/or plunge ramps for ≈ 0.25s which can be seen as a half-wave. The

fundamental frequency of the motion is then on the order of 2Hz. According to Figure 2.36

the filter magnitude uncertainties are lower than the calibration and repeatability uncertain-

ties.

For the phase uncertainty contributions we can observe that the phase uncertainties are

a constant 2% in the useful frequency range < 2Hz. If we assume a linear phase response,

for a simplified uncertainty calculation purpose, the phase delay at 2Hz is −90◦. This means

that a 2Hz sinewave with a 0.5s period would be delayed 0.125s through the filter. A 2%

phase response uncertainty would then mean a ±2.5ms uncertainty in time. This corre-

sponds to a non-dimensionalized time error t′error ≈ 0.07 which is significantly less than what

can be observed in the qualitative analysis of the unsteady vs. quasi-steady results.

2.6.2 External filter modules

Optional Krohn-Hite 3202 external filter modules can be inserted in the signal chain before

digital conversion of the signals, but were not used in these experiments. Each channel can

be configured in either low-, band or high-pass configuration with Butterworth response.

For the low- and high-pass configurations, the eight-pole circuit give a 48dB/octave cutoff

slope. In band-pass configurations, each side has four poles producing a 24 dB/octave slope.

However, these only have ±5V input range and a lowest cutoff frequency of 20 Hz and

therefore would not be useful unless there still is excessive noise at high frequencies left after

the Vishay 2310 built-in filters.
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Chapter 3

Postprocessing

During the experiment, the measured data is modified in different ways to improve the signal

properties before being recorded and later processed into useful measurable quantities that

are relevant for the experiment.

3.1 Filtering signals

In experiments, very seldom does the transducer produce a directly useful signal that only

contains the mesured signal at an amplitude that can be recordable for later analysis. When

working with time- and ensemble dependent signals, one often needs to reject parts of the

data that for one reason or another should not be represented in the final results. For en-

sembles of data, one can generally justify removing a data point not following the general

trend if justified by the Chauvenet’s Criterion[48]. For recorded time-dependent data, one

generally wants to remove unwanted ranges of frequencies. This can be done in different

stages in the data acquisition process.
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During unsteady wind-tunnel testing, one only wants to record frequency-bandwidth of sig-

nals that are correlated with the motion itself. For force- and moment measurements, only

the macroscales of the flow such as the separation, vortical structures etc. are correlated

with global forces on the body. The high frequency microscale turbulence of the flow is not

correlated and is filtered out.

The eigenfrequency of any of the structural parts in the system also needs to be substan-

tially larger than the fundamental frequency of the unsteady motion itself. The need for a

substantial bandwidth of the unsteady motion is that the loadcells need to be able to pick

up transients from fluid mechanics phenomena during the unsteady motion that occur at a

much smaller timescale than the motion itself. An example is the vortex burst occuring over

delta wings. The uncorrelated signals can be removed by either low-pass filtering or obtain-

ing information on the model acceleration through accelerometers or feedback information

of the pitch and plunge actuator position.

3.1.1 Filtering history

At first, Whitfield [85] recorded data with the Vishay 2310 amplifier built-in 2-pole But-

terworth 100Hz setting. This proved to be inadequate since the eigenfrequency of the

model-loadcell-sting package was analyzed to be 53Hz. This proved to be inadequate for

two reasons; the first being that the loadcells overranged in dynamic tests which makes

it quite impossible to accurately reduce the individual loadcell signals to full model forces

and moments. The second problem was that the loadcell signals contained too much high

frequency information - most notably the eigenfrequency of the physical setup. Attempts

were made by Granlund [41] to conduct the signal processing entirely in software in order to

better understand the frequency content of the loadcell signals. The motivation for this was
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that the three accelerometers have an electric circuit with an unknown transfer function and

better time-correlation between the loadcell- and accelerometer data would be the result.

Unfortunately, this proved not to be the case since the accelerometer data could not be used

in the data reduction process. The linear and rotational accelerations of the model could

not be extracted from the very noisy data. Through frequency content analysis, a latter

attempt via low-pass software filtering turned out to be successful in reducing the loadcell

signals to observe a statistical difference with low-uncertainty of similar maneuvers with

small differences [43].

3.2 Analog filtering

Since the signals recorded from the loadcells contain high-frequency high-amplitude noise,

it is preferred to filter these signals before Analog-to-Digital (A/D) conversion to be able to

use the full range of the A/D converter. For example; if the noisy signal is 10Vpp, which is

the same range of the A/D converter and the clean part of the signal is only 5Vpp, digitizing

the noisy signal and then performing digital filtering will reduce the resolution and increase

the uncertainty of the final signal. Therefore, it is desirable to identify the highest useful

frequency information in the signal and low-pass filter out the noise in combination with

increasing the gain on the amplifiers to use the full range of the A/D converter for the

desired signal.
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3.3 Effects of filtering

The main reason for filtering is the attenuation of undesired frequency ranges of the signal.

The other, and often neglected effect is a time lag of the signals. The frequency response

of the built-in second order Butterworth 10Hz low-pass filters of the loadcell amplifiers is

shown in Figure 3.1.
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Figure 3.1: Bode plot of 2310 amplifier 2nd order 10Hz filter with linear phase approximation

One can observe that the phase response is almost linear and −90◦ at 10Hz. This means

that a sine wave at 10Hz taking 0.1s for a full period will be delayed one-quarter period as

shown in Figure 3.2. The group delay is thus 0.025s for this filter meaning that all samples

digitized by the A/D converter will be 25ms late. This signal needs to be shifted back in

time to coincide with unfiltered recorded signals such as DyPPiR position feedback signals.
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Figure 3.2: Phase delayed signal for 2310 2nd order 10Hz filter

During tests, external Krohn-Hite filter modules can also be connected between the 2130

amplifies and the DAQ system, altough they were not used in these experiments. The

Krohn-Hite filters are fourth order Butterworth set to minimum filtering frequency 20Hz.

This produces the total filter in Figure 3.3 with a nearly linear phase response of −168◦ at

10Hz. The group delay for this combination of filters will be 47ms.
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Figure 3.3: Bode plot of 2310 10Hz + K-H 20Hz LP filters

3.3.1 Filtering correction

There exists one problem with using the external filters. The inputs on the Krohn-Hite

filters are only rated 5Vpp which is half the range of the amplifier inputs. This has the

effect of producing much larger slope uncertainties of the loadcells than if the external filters

are not connected and the full 10Vpp amplifier input range is available. The lowest cutoff

frequency for the external filters is 20Hz which puts some boundaries on the reasonable use

of them. The difference in frequency response between the use of only the built-in 10Hz filter

and both the builtin and the external filter is shown in Figure 3.3. There is no difference

between 10Hz and 20Hz. Only if noise at frequencies over 20Hz does it make sense to use

the external filters. Otherwise one will simply have an increased magnitude of uncertainty.
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3.4 Linear vs. nonlinear phase filters

For reducing large noise amplitudes, higher order filters are needed if one wants to preserve

the same passband. Higher order hardware filters have more phase distortion. For the load-

cell amplifier filter modification, the higher order filter no longer has an approximate linear

phase response as shown in Figure 3.4. If left untreated, this would have some undesirable

consequenses of the data in the passband. Any frequency component f < fc would no longer

have the same time delay as another frequency component. The delay is dependent on the

frequency and will cause phase distortion of the signals which can give a false indication of

unsteady flow phenomena. Another problem with the linear phase filter is that the stopband

cutoff is not as sharp as for the nonlinear phase filters. One can observe more attenuation

in the passband and less in the stopband for frequencues near the cutoff.
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Figure 3.4: Bode plot of comparison between FIR and IIR filters
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An advantage of the lower order and linear phase filters is that they produce less ringing from

filtering out impulses as shown in Figure 3.5. A Finite Impulse Response filter with linear

phase response will simply time delay the signal half the number of samples of the order of

the filter. Even though this is a very desirable trait, there would be considerable difficulty

constructing such a hardware filter, not only because of the difficulty in selecting the discrete

components that matches the filter parameters, but the sheer number of components in the

filter will make the uncertainties increase tremendously.

0 100 200 300 400 500 600 700
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time [ms]

M
ag

ni
tu

de

Half−cosine pulse
400th order FIR
2nd order Butterworth
6th order Butterworth

Figure 3.5: Ringing comparison between FIR and IIR filters for pulse response

One way of correcting the phase distorted signals is to feed them through a inversed filter of

the same kind. However, if the hardware filter is recreated in software and the time dimension

of the recorded signals is reversed, all phase distortions will be completely corrected and the

filter will order be doubled.
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3.5 Data reduction

Loadcell data are reduced to global forces and moments in the same way as in Granlund

[41] with a few exceptions. Raw loadcell data are first filtered in reverse time with the

amplifier filter recreated in software as described above to obtain the useful frequency content

f < 5Hz. The voltage signals are then converted to forces using the calibration system of

functions in Appendix B.

 F1

F2

 =

 b11 b12

b21 b22


 F1

F2

 (3.1)

For steady tests, all signals are reduced to mean and variance.

F =
1

N

N∑
i

F (ti) (3.2)

V ar [F ] =
1

N

N∑
i

(F (ti)− F )2 (3.3)

The individual loadcell forces are summed up into model global forces and moments with

respect to the moment reference point given in the Appendix.

In order to make sure that the filtering process maximizes the reduction of the noisy parts

and minimizes any adverse effects on the low frequency part of the signal that contains the

information of the aerodynamic contributions. Figure 3.6 shows how a fictional, but similar

to the performed unsteady maneuvers, electric signal from a loadcell is modified during the

filtering process. The loadcell attached to the model is rotated via a linear ramp motion

starting from, for example, −15◦ negative angle of attack, corresponding to a −5V signal and

to a final +15◦ angle corresponding to a +5V signal, respectively. The model, and loadcell

is subjected to a maneuver start impulse and also an ending impulse. Since the impulse
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enters the data prior to the hardware amplifier and filter, it is created from observing how

the raw digitized recorded signal, with the impulse noise, looks like after being filtered. The

figure shows how the raw impulse signal from the loadcell starts out with a large amplitude

and dampens out during the motion. At the end of the motion, when the model is stopped,

a similar impulse occurs. After the signal passes through the filter, the high frequency os-

cillations are attenuated and most notably, the entire signal is delayed a significant amount

before recorded and converted to digial format. In order to correct for the delay/phase shift,

the recorded signal is reversed in time, fed through the reproduced filter in software and

finally reversed back. In close observation, the phase corrected signal will actually have

slightly larger oscillations in the middle of the motion than the signal that is only hardware

filtered. The reason for this is because an impulse or oscillation that is filtered is ‘smeared

out’ forward in time while it is attenuated. In this case, it is the motion ending impulse

that is smeared out back into the motion time window during the time-backward filtering

process.

To further reduce the oscillations from the recorded loadcell data signals, they are filtered

a second time. The second filtering process is done via Matlab’s built in filtfilt zero-phase

filtering module with a sixth order −30dB Chebyshev2 filter to achieve a sharper magni-

tude rolloff at the expense of stopband ringing. As is evident in a qualitative analysis in

Figure 3.7, it is important to choose the cutoff frequency of the second filter properly. If

the cutoff frequency is chosen at 6Hz, which is higher than the previous cutoff frequency of

5Hz, not much will happen with the oscillations. They will only be attenuated a very minor

amount and mostly, the peaks will shift a little bit in time. Using the same 5Hz cutoff fre-

quency in both parts, one can observe that the filtered signal follows the original ramp signal

correctly in magnitude and trend in the middle part of the motion. In the beginning and

end of the motion, the magnitude exceeds the correct value by a noticable amount because
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70



0 2 4 6 8 10 12
−6

−4

−2

0

2

4

6

motion signal
corrected signal from amplifier
f
c2

=4Hz
f
c2

=5Hz
f
c2

=6Hz

Figure 3.7: Loadcell signal effect on variation on second filtering frequency

of the presence of the impulse noise there. If the cutoff frequency of the second filtering is

reduced to 4Hz, the initial and end parts of the signal approach the correct magnitudes.

However, the middle part of the motion now shows an incorrect slope.
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Chapter 4

Experimental results

Experimentally obtained data are presented in figures with mean values and 95% confidence

limit (or 20:1 odds) uncertainties calculated according to Granlund [41]. Reduced data

are corrected in pitch angle position to have zero force and moment at zero angle for the

symmetric ellipsoid and Suboff barebody geometries. Since there are non-uniform flow in

the test section, reduced data are also corrected with a ψ = −2◦ roll angle that minimizes

the out-of-plane forces and moments. All data are taken at Re = 2.8 · 106 per meter. Steady

data are taken with 1◦ increment for −26◦ < θ < 26◦ with additional 0.5◦ increments near

5◦ < |θ| < 8◦ to reliably identify linear and quadratic regions. Steady data are recorded

for 10 seconds at fs = 1kHz and unsteady maneuvers are repeated 20 times to reduce

measurement uncertainties.
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4.1 Ellipsoid steady data

4.1.1 Angle of Attack

From Figure 4.1 one can observe that for small translation velocities (or angles of attack),

|α| < 5◦ or w′ = sin(α) < 0.09, there is a linear response of the normal force Z ′ according to

Equation 4.1. In this region, the flow is believed to be completely attached without cross-flow

separation according to Allen and Perkins [5] and computations by Bensow [7].
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Figure 4.1: Ellipsoid linear fit to normal force

Z ′att = −0.045w′ (4.1)
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For larger translation velocities |w′| > 0.09 the response in Figure 4.2 is quadratic according

to Equation 4.2.
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Figure 4.2: Ellipsoid quadratic fit to normal force

Z ′vor = −0.29w′|w′| − 0.018 (4.2)

Since cross-flow separation and vortical lift do not occur until the pressure gradient is ad-

verse enough from an angle of attack of the body, we have to use a function that ‘turns on’

at a certain angle of attack. In order to have a function that approximates linear propor-
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tionality at low angles and quadratic at higher angles, an approximate tanh(w′) function in

Equation 4.3 is used where k ≈ −100 depending on the sharpness of the ‘knee’ between the

two piecewise polynomials. The linear positive part that appears with the quadratic part is

the reduction in attached lift from the small angle linear proportionality.
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Figure 4.3: Ellipsoid normal force

Z ′ = Z ′att + Z ′vor = −0.045w′ +
1

1 + exp(−k|w′| − 0.09)
(0.29w′|w′|+ 0.027w′) (4.3)
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The results by Bensow [7] indicate a smoother transition between the fully attached flow and

the advent of cross-flow separation than what experiments do in Figure 4.3. The difference

between the experiments and the computations is probably due to the centerline sting which

could be affecting the flow at small angles of attack and cause a different separation than

what the geometry would do without the sting. If the exponential ‘switching on’ part is not

used as in Equation 4.4, there will be a significant difference in predicted versus measured

normal force for small angles as in Figure 4.4.
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Figure 4.4: Ellipsoid normal force with wrong linear fit

Z ′ = −0.045w′ − 0.29w′|w′|+ 0.027w′ = −0.018w′ − 0.29w′|w′| (4.4)
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The same observation for the pitching moment can be observed in Figures 4.5 where the

response is also linear as in Equation 4.5. This behavior is explained by the CFD simulations

by Bensow [7] where for α < |5◦| there are no lee side vortices and the flow is fully attached.
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Figure 4.5: Linear fit to pitching moment

M ′
att = 0.057w′ (4.5)
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For higher angles of attack, the pressure gradient from the normal velocity becomes high

enough to invoke cross-flow separation starting from the stern. The question here is exactly

how this cross-flow separation vortical lift is distributed. At some point upstream on the

body, there is no separation, as shown by Hosder [49]. The separation also grows from the

stern, indicating that lift forces would be distributed increasing from zero somewhere on the

midbody to maximum on the stern. The simplest function is a linearly increasing lift from

zero at ζ = 0.5 to max at ζ = 1. The center of pressure from the vortical lift is then at

ζvor = 5/6 = 0.833.

M ′ = M ′
att +M ′

vor = 0.057w′ + (ζvor − ζM)
Z ′vor

1 + exp(−k|w′| − 0.09)

= 0.057w′ +
1

1 + exp(−k|w′| − 0.09)
(−0.105w′|w′|+ 0.00945w′) (4.6)

Figure 4.6 shows that, with a small modification in vortical lift center of pressure, the

polynomial approximations of the normal force and pitching moment agree to within the

experimental measurement uncertainties.
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Figure 4.6: Ellipsoid pitching moment

4.1.2 Center of pressure

ζcp = ζM +
M ′

Z′
= 0.5 +

0.057

−0.0447
= −0.775 (4.7)

According to Equation 4.7 the center of pressure for the linear response, attached flow, the

center of pressure is in front of the bow making it very unstable in pitch. It comes from the

fact that the center of pressure for the lee side is on the front half of the body and on the
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rear half for the windward side.

ζcp = 0.5 +
−0.105w′|w′|+ 0.665

−0.3w′|w′| − 0.018
(4.8)

For the case when crossflow separation exists, lift is being produced mainly from the aft part

of the body. This moves the center of pressure on the lee side of the body aft and gradually

limits the unstable pitching moment as evident in Figure 4.7. This is also supported by the

results by Allen and Perkins [5] that show a more aft position of the center of pressure for

slender bodies at higher angles of attack.
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Figure 4.7: Ellipsoid vertical center of pressure
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4.1.3 Sideslip

For smaller angles of sideslip, |β| < 3.5◦ or v′ = sin(β) < 0.06, the flow is believed to be

completely attached. However, the uncertainties in side force measurement in Figure 4.8

prevents making any certain fit of data. Since the uncertainty limits incorporate Y ′ = 0, for

symmetry of data (of a symmetric body), this will be used.
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Figure 4.8: Ellipsoid linear fit to yaw force
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From Figure 4.9 one can observe the same quadratic dependency of yaw force Y ′ on sway v′

as the normal force Z ′ on heave w′ in Figure 4.2.
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Figure 4.9: Ellipsoid quadratic fit to yaw force
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Due to the oval cross section, cross-flow from a sideslip will encounter a separation triggering

adverse pressure gradient at a smaller angle than from an angle of attack. The function for

the yaw force Y ′ on sway v′ is then

Y ′ =
1

1 + exp(−k|v′| − 0.06)
(−0.053v′|v′|+ 0.0021v′) (4.9)

where k ≈ −100.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4

−0.01

−0.005

0

0.005

0.01

v′

Y′

Experimental data with uncertainty
Polynomial fit

Ellipsoid geometry
U∞=45 m/s

Re
L
=4.5⋅106

Transition trips at ζ=0.05 

Figure 4.10: Ellipsoid side force
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The same observation for the yaw moment, as for pitching moment, can be observed in

Figures 4.11. The yaw moment is destabilizing since a sideslip angle will produce a yaw

moment that increases the sideslip angle.
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Figure 4.11: Linear fit to yawing moment

The linear approximation of the pitching moment for small angles is

N ′att = −0.019v′ (4.10)
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For larger sideslip angles, the pressure gradient from the normal velocity becomes large

enough to invoke cross-flow separation starting from the stern the same way as for angle of

attack. The vortical force contribution is done the same way for the normal force. Figure 4.12

shows that, with vortical lift center of pressure to ζvor = 0.76, the polynomial approximations

of the normal force and pitching moment agree to within the experimental measurement

uncertainties.

N ′ = −0.019v′ + (ζvor − ζM)
Y ′vor

1 + exp(−k|v′| − 0.06)

= −0.019v′ + 0.26
0.053v′|v′| − 0.0021v′
1 + exp(−k|v′| − 0.06)

(4.11)
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Figure 4.12: Ellipsoid yaw moment

4.1.4 Potential flow slender body theory results

From Karamcheti [52], one can use slender body theory to predict the normal force and pitch

moment for small angles

Z ′ =
Z2sinα

q∞L2
=
−2q∞w

′

q∞L2

∫ L

0

dS

dx
dx = Z ′ww

′ (4.12)

M ′ =
−2q∞w

′

L3

∫ L

0
(x− 0.8)dS = M ′

ww
′ (4.13)
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Since a closed body in potential flow without circulation does not produce any lift, we end

the integration prematurely at a location in the stern where the flow will undergo separation.

The exact location of the stern separation cannot easily be determined. It cannot be further

upstream than where the stern meets the constant cross section since separation occurs

in adverse pressure gradients where the cross section area is reduced. The body is also

suspended with a 3in. sting on the centerline through a hole with an approximately 4in.

diameter. The bounds for the separation are therefore

0.75 < ζsep <
1

1.6

1.2 +

√
1−

(
0.0254 · 2

0.2

)2
 = 0.99 (4.14)

When using these limits in the sender body theory equations, the normal force and pitch

moment coefficients vary between

− 0.098 < Z ′w < −0.0061 (4.15)

0.0102 < M ′
w < 0.0152 (4.16)

with the smaller values corresponding to the separation location at ζs = 0.75 and the larger

values corresponding to ζs = 0.99. The measured Z ′w = −0.045 is within the bounds of

the computational result, but the measured pitch moment M ′
w = 0.057 is almost three

times greater than the possible maximum. The most likely reason for the difference in pitch

moment is the fact that slender body theory, as well as thin airfoil theory, are based on

the assumptions on small disturbances and therefore small changes in body area difference

and airfoil thickness. This is not valid at the bow for blunt bodies and the leading edge for

airfoils where the greatest influence on pitch moment is generated. Therefore, this method

should not be used to predict the pitch moment.
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4.1.5 Combination of Angle of Attack and Sideslip

An angle sweep from −26◦ < θ < 26◦ with a roll angle of φ = 80◦ was also tested in order

to see any evidence of curvature discontinuities in the force and moment response plots

Figure 4.13 to 4.17. Any discontinuities would be an indication of bifurcation instabilities

for motions. However, the figures indicate near perfect symmetrical or antisymmetrical

curves. In Figure 4.13 and 4.14 we can observe that the angle span of the linear relationship

of side- and normal force to the pitch angle appears to be larger than for the case when the

roll angle is zero in Figure 4.3 and 4.10.
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Figure 4.13: Side force at 10◦ roll angle
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Figure 4.14: Normal force at 10◦ roll angle
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Figure 4.15: Roll moment at 10◦ roll angle
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Figure 4.16: Pitching moment at 10◦ roll
angle
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Figure 4.17: Yaw moment at 10◦ roll angle
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When plotting the forces with respect to the non-dimensional body-coordinates instead,

one can observe in Figure 4.18 and Figure 4.20 that the side force Y ′ reaches maximum

magnitude at pure sway velocity v′ with heave velocity w′ = 0. A slight roll angle of φ = 80◦

from a pure sideslip reduces the side force Y ′. Figure 4.18 includes the φ = 80◦ roll angle

data points that are also duplicated for φ = 100◦ data points (since the body is symmetric).

The slight assymmetry of the v′ = 0 line is believed to be from the non-uniformity of the

freestream.

v′ = sinφ sin θ (4.17)

w′ = cosφ sin θ (4.18)
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Figure 4.18: Side force at combinations of normal and transversal velocities
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The side force Y ′ reduces in magnitude at sideslip angles when a small angle of attack is

included as seen in Figure 4.18. Figure 4.19 shows how the coefficient Y ′|w|, calculated in

Equation 4.19, varies over a range of v′ and is near constant for 0.15 < v′ < 0.45. At smaller

v′ < |0.1| the coefficient rapidly approaches zero since there are no cross-flow separation

vortices.

Y ′|w| =
Y ′|w′=0 − Y ′|φ=80◦

|w′|
= −0.085 (4.19)
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Figure 4.19: Side force coefficient as function of |w′| at a range of v′

Since the data are interpolated for other roll angles the figures can therefore not reliably

be seen to illustrate the forces and moments where the magnitude of v′ and w′ are roughly

equal.
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The normal force Z ′ in Figure 4.20 increases in magnitude at a combination of larger sway

velocity v′ and small heave velocity w′ according to the data points.

−0.5

0

0.5

−0.5

0

0.5

−0.1

−0.05

0

0.05

0.1

v′w′

Z′

−0.1
−0.05

0
0.05

0.1

−0.1

−0.05

0

0.05

0.1

−0.01

−0.005

0

0.005

0.01

v′w′

Z′

Figure 4.20: Normal force at combinations of normal and transversal velocities

The normal force Z ′ increases in magnitude at sideslip angles when a small angle of attack

is included as seen in Figure 4.20. Figure 4.21 shows how the coefficient Z ′√vw2 varies over a

range of v′ and is near constant for 0.15 < v′ < 0.45. At smaller v′ < |0.15|, the coefficient

rapidly approaches infinity because of the difficulty of numerically determining any deriva-

tives there.

Z ′√vw2 = −5.5 (4.20)
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Figure 4.21: Side force coefficient derivative at a range of v′

Since there does not exist data for other roll angles than ψ = 80◦, not very much more can

be said about how the normal force behaves at combinations of both large heave w′ and sway

v′ velocities.

The rolling moment K ′ in Figure 4.22 is obviously zero at pure sideslip or angle of at-

tack and some value for a combination of both. From the data at a small roll angle of

ψ = 80◦ away from a pure sideslip, the rolling moment has a large gradient and is very

sentitive to small angles of attack. A state of pitched up and yawed left giving positive v′

and w′ produces a negative rolling moment K ′ to increase the yawing and pitching. The

rolling moment coefficient derivative in Equation 4.21 is constant for v′ > |0.06|. With only

one roll angle tested, nothing can be said if the hydrodynamic derivative is still constant for

large heave w′ and sway v′ velocities.
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K ′v0.5w =
K ′√
v′w′

= −0.045 (4.21)
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Figure 4.22: Rolling moment at combinations of normal and transversal velocities
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Figure 4.23: Rolling moment coefficient derivative at a range of v′
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The pitching moment M ′ in Figure 4.24 is reduced a great amount when inducing a small

amount of sideslip at the same time as the angle of attack is large enough to invoke cross-flow

separation.
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Figure 4.24: Pitching moment at combinations of normal and transversal velocities
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The yawing moment N ′ in Figure 4.25 increases slighly in magnitude with a small angle of

attack while at a large sideslip. Since the yawing moment is zero at pure angle of attack, the

interpolation will not give any information for combinations of large heave w′ and sway v′

velocities. No large discontinuities in slope can be observed for small v′ and w′ in the right

hand plots that already do not appear for larger v′ and w′. Several more roll angles need to

be tested in order to better give an explanation of how the forces and moments behave at

combinations of heave- and sway velocities.
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Figure 4.25: Yawing moment at combinations of normal and transversal velocities
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4.2 Ellipsoid unsteady maneuvers

Three different pitch motions are used for unsteady tests as shown in Figure 4.26. The first

one starts at a static angle of attack α, or sideslip β of −15◦ and ends at 0◦ after t′ ≈ 6. The

second motion starts with the same initial conditions as the first one, but continues with a

rotation past 0◦ at t′ ≈ 6 to a static +15◦ at t′ ≈ 12. The third motion starts at a static

angle of 0◦ and ends at 15◦ after t′ ≈ 6. All unsteady motions are repeated twenty times to

reduce ensemble uncertainties.

1 6
−15

−10

−5 

0  

5  

10 

15 
−15° → 0°

θ

t′ 1 6

0° → 15°

1 6 12

−15° → 15°

Figure 4.26: Three different pitch ramp unsteady motions

The idea is to perform unsteady motions of slender bodies similar in maneuvering enve-

lope and time to submarines. The results from the unsteady motions will also be used to

investigate the dependence on initial conditions as described in Chapter 1.
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Figure 4.27 shows the change in states during the −15◦ to +15◦ motion. Both states are

needed when conducting analytical force and moment predictions of the motions since the

body is rotated at ζ = 0.25. If the rotation had been at ζ = 0.5 where the origin of the

coordinate system is, then q = α̇.
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Figure 4.27: Change of states during an unsteady motion
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4.2.1 Unsteady motion – α : −15◦ → 15◦

When starting from a steady state with angle of attack α = −15◦ and rapidly increasing

the angle of attack by rotating around ζ = 0.25, the normal force in Figure 4.28 decreases

slower than what the quasi-steady approximation predicts. This continues as long as the

pitch angular velocity is increasing or is constant. At t′ ≈ 7 the model is aligned with the

freestream but with a pitch angular velocity. Continuing until t′ ≈ 13, the normal force

increases in magnitude faster than the quasi-steady prediction where the motion is slowed

down towards a steady angle of attack of α = 15◦
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Figure 4.28: Normal force α : −15◦ → 15◦
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The pitch moment in Figure 4.29 recorded during the unsteady motion is continuously lower

than the quasi-steady prediction.

0 5 10 15

−0.01

−0.005

0

0.005

0.01

t′

M′

Unsteady with uncertainty
Quasi−Steady

Ellipsoid geometry             
U∞=45 m/s                

Re
L
=4.5⋅106              

Transition trips at ζ=0.05  

Figure 4.29: Pitch moment α : −15◦ → 15◦

Due to difficulties in the filtering process described in Chapter 3, the initial conditions are

not correct. The middle part of the motion is however correct in both phase and amplitude.
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4.2.2 Unsteady motion – α : −15◦ → 0◦

When starting from a steady state with angle of attack α = −15◦ and rapidly increasing the

angle of attack by rotating around ζ = 0.25, the normal force in Figure 4.30 decreases slower

than what the quasi steady approximation predicts. This continues as long as the pitch

angular velocity is increasing or is constant. At t′ ≈ 7 the motion is slowed down towards a

steady angle of attack of α = 0◦ and the normal force approaches the quasi-steady value.
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Figure 4.30: Normal force α : −15◦ → 0◦
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The pitch moment in Figure 4.31 recorded during the unsteady motion is continuously lower

than the quasi-steady prediction until the motion is slowed down. Overall, the same behavior

is seen as for the first part of the α : −15◦ → 15◦ motion.
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Figure 4.31: Pitch moment α : −15◦ → 0◦
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4.2.3 Unsteady motion – α : 0◦ → 15◦

Starting from a steady state with angle of attack α = 0◦ and rapidly increasing the angle

of attack by rotating around ζ = 0.25, the normal force in Figure 4.32 increases faster than

what the quasi-steady approximation predicts. This continues as long as the pitch angular

velocity is increasing or is constant. At t′ ≈ 7 the motion is slowed down towards a steady

angle of attack of α = 0◦ and the normal force approaches the quasi-steady value.
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Figure 4.32: Normal force α : 0◦ → 15◦
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The pitch moment in Figure 4.33 recorded during the unsteady motion is continuously lower

than the quasi-steady prediction until the motion is slowed down. Overall, the same behavior

is seen as for the α : −15◦ → 15◦ motion.
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Figure 4.33: Pitch moment α : 0◦ → 15◦
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4.3 Unsteady maneuver video analysis

Still frames have been extracted from a recorded videoclip of the unsteady maneuvers. Be-

cause the video was recorded and later saved in Windows Media Video 9 [60] format, it is

slightly difficult to tell exactly what rate of still frames the video has, and if that framerate

is even consistent since WMV9 has adaptive compression. Video still frames are also not

synchronized with the model motion, so it is difficult to set an accurate timestamp to every

frame. The figures 4.34 to 4.39 seem to complete the motion within the 0.5s in Figure 4.42

and 4.43 such that there is a nominal 100ms between the frames. Figures 4.42 and 4.43

depict the stopping oscillation of the model.

The model is rotated about ζ = 0.25; this point has been marked with a red dot in ev-

ery frame. Alignment lines with 75mm spacing have been drawn from the slotted walls in

every frame.

4.3.1 Unsteady motion – α : −15◦ → 15◦

Figure 4.34 is before the motion has started. In the second figure 4.35 one can observe that

the red dot has moved vertically approximately 8cm from the original location in Figure 4.34.

The model is pitched up more rapidly than the correct motion.
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Figure 4.34: α : −15◦ → 15◦ t0 Figure 4.35: α : −15◦ → 15◦ t0 + 100ms

In Figure 4.36 and Figure 4.37 the ζ = 0.25 location is nearly constant, but still incorrect

location compared to the initial location.

Figure 4.36: α : −15◦ → 15◦ t0 + 200ms Figure 4.37: α : −15◦ → 15◦ t0 + 300ms

106



In Figure 4.38 and Figure 4.39 the model ζ = 0.25 position starts to drop down to the correct

location, and in Figure 4.41 the model ζ = 0.25 location is back at the correct location.

Figure 4.38: α : −15◦ → 15◦ t0 + 400ms Figure 4.39: α : −15◦ → 15◦ t0 + 500ms

Figure 4.40: α : −15◦ → 15◦ t0 + 600ms Figure 4.41: α : −15◦ → 15◦ t0 + 700ms
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Figure 4.42: α : −15◦ → 15◦ pitch angle
position
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Figure 4.43: α : −15◦ → 15◦ plunge vertical
position

Figure 4.42 and 4.43 show the position uncertainty bounds over twenty repetitions of the

vertical- and pitch actuators respectively. Repeatability uncertainties during motions are

0.5mm in plunge and 0.1◦ in pitch. One can observe that the motions are very repeatable

and no large oscillations in actuator position occur. At close inspection the pitch actuator

position has a minor oscillation at t ≈ 0.1s. The inaccurate pitch position and relatively

large uncertainty for t > 0.45s is after the motion has ended and when the model is abrubtly

slowed down.
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4.3.2 Unsteady motion – α : −15◦ → 0◦

Figure 4.44: α : −15◦ → 0◦ t0 Figure 4.45: α : −15◦ → 0◦ t0 + 100ms

In Figure 4.45 one can observe that the center of rotation location ζ = 0.25 has moved

up aproximately 5cm from the initial location in Figure 4.44. In Figure 4.46 the ζ = 0.25

location has moved up another 2.5cm from the location in Figure 4.46 only to move down

to the correct position in Figure 4.47.

Figure 4.46: α : −15◦ → 0◦ t0 + 200ms Figure 4.47: α : −15◦ → 0◦ t0 + 300ms
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Figure 4.48: α : −15◦ → 0◦ t0 + 400ms Figure 4.49: α : −15◦ → 0◦ t0 + 500ms

The center of rotation location ζ = 0.25 stays constant in the correct location throughout the

remainder of the motion as evident in Figure 4.48 and 4.49. Figure 4.50 and 4.51 shows the

position uncertainties over twenty repetitions of the vertical- and pitch actuators respectively.

One can observe that the motions are very repeatable and no large oscillations in actuator

position occur except a minor oscillation at t ≈ 0.1s.
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Figure 4.50: α : −15◦ → 0◦ pitch angle po-
sition
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Figure 4.51: α : −15◦ → 0◦ plunge vertical
position
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4.3.3 Unsteady motion – α : 0◦ → 15◦

Figure 4.52: α : 0◦ → 15◦ t0 Figure 4.53: α : 0◦ → 15◦ t0 + 100ms

The model is initially pitched rapidly from Figure 4.52 (causing a blurry picture) in Fig-

ure 4.53. In Figure 4.54 the model has pitched up too quickly so that the ζ = 0.25 location

is approximately 75mm higher up than what it is supposed to be.

Figure 4.54: α : 0◦ → 15◦ t0 + 200ms Figure 4.55: α : 0◦ → 15◦ t0 + 300ms
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During the remainder of the motion going from Figure 4.55 to 4.57 the model is rotated

around the correct position. In Figure 4.58 one can observe significantly larger pitch position

uncertainties than in Figure 4.59 for plunge. What is more alarming is the quite significant

oscillation in pitch at t ≈ 0.1s. This is a much larger oscillation than what is evident in the

two other motions.

Figure 4.56: α : 0◦ → 15◦ t0 + 400ms Figure 4.57: α : 0◦ → 15◦ t0 + 500ms
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Figure 4.58: α : 0◦ → 15◦ pitch angle posi-
tion
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Figure 4.59: α : 0◦ → 15◦ plunge vertical
position
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Is is evident in all three motions that there is a pitch impulse right after starting the mo-

tion that is believed to be the cause of the model pitching up too quickly and not hold the

ζ = 0.25 center of rotation in a fixed location. It is definitely a source of the inertial loads

on the model that makes is more difficult to extract the aerodynamic contribution. Since

the image frames have significant time separation, it is also difficult to judge the magnitude

of the incorrect motion of the model and effect it has on the forces and moments during the

entire motion, even when the model is following the correct motion in the middle and latter

stages of the motion.

Since the imperfection of the motion is very repeatable, it has to originate from the hy-

draulic control system in the pitch circuit of the DyPPiR. The history of repairs of the

DyPPiR in Appendix C go into depth why the electrohydraulic feedback control of the pitch

circuit is too sensitive and has difficulties controlling the position.
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4.4 Barebody Suboff steady data

4.4.1 Normal force

From Figure 4.60 one can observe a linear region for small translation velocities (or angles

of attack) for |α| < 5◦ or |w′| < 0.07 in Equation 4.22.
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Figure 4.60: Steady normal force as function of translation velocity

Z ′att = −0.009w′ (4.22)
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The cross-flow separation second order lift component shown in Figure 4.61 and Equa-

tion 4.23 for |w′| > 0.07 is
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Figure 4.61: Quadratic fit to normal force

Z ′vor = −0.098w′|w′|+ 0.0045w′ (4.23)
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The functional form of the normal force in Equation 4.24 fits within the uncertainty bounds

of the experimental data in Figure 4.62.
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Figure 4.62: Polynomial fit to normal force

Z ′vor = −0.009w′ +
1

1 + exp(−k|w′| − 0.07)
(−0.098w′|w′|+ 0.045w′) (4.24)
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4.4.2 Pitch moment

From Figure 4.63 one can observe a linear region for small translation velocities (or angles

of attack) for |α| < 5◦ or |w′| < 0.07 in Equation 4.25.

−0.4 −0.2 0 0.2 0.4
−6

−4

−2

0

2

4

6
x 10

−3

w′

M′

 

 

Experimental data with uncertainty
0.023w′ linear fit

Suboff barebody
U∞=45 m/s

Re
L
=6.2⋅106

Transition trips at ζ=0.05

Figure 4.63: Linear fit to pitch moment as function of translation velocity

M ′ = 0.023w′ (4.25)
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If we use the same form of equation to predict the pitch moment as for the ellipsoid body,

one can observe that there is no constant center of pressure for the vortical contribution that

will make Equation 4.26 fit the experimental data in Figure 4.64.
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Figure 4.64: Polynomial fit to pitching moment

M ′ = 0.023w′ +
(ζcp,v − ζM)Z ′vor

1 + exp(−k|w′| − 0.07)
(4.26)

For small angles slightly larger than w′ = 0.07, a ζcp,v ≈ 1 will fit the data. For larger angles,

a center of pressure location of the vortical contribution ζcp,v more upstream on the body

makes the analytical prediction fit the data. This is supported by the results by Hosder

and Simpson [49]. This behavior is unlike the ellipsoid, where the center of pressure for the

cross-flow separation contribution is a fixed location. An effect of this is that the longitudinal

instability of the Suboff is reduced less than for the ellipsoid.
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4.5 Suboff with sail steady data

4.5.1 Normal force

For the Suboff geometry with a sail, one can observe that the presence of a sail modifies the

coefficients from those for the barebody Suboff. The normal force slope Z ′w,att in Figure 4.65

is less steep than for the barebody in Figure 4.60.
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Figure 4.65: Linear fit to normal force
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The crossflow contribution component Z ′vor is different depending on whether the angle of

attack is negative in Figure 4.66 or positive in Figure 4.67. The quadratic term −0.098w′|w′|

from Equation 4.23 for the barebody Suboff is very similar in magnitude for the Suboff with

sail.
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Figure 4.66: Quadratic fit to normal force
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Figure 4.67: Quadratic fit to normal force
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The pitching moment M ′
w in Figure 4.68 is not different in the small angle linear range from

the barebody Suboff case in Figure 4.63. It is, at the time of writing, unclear of exactly how

to implement an analytical model extension to that of the barebody Suboff to also take into

account the effects of the sail.
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Figure 4.68: Linear fit to pitch moment
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4.6 Fully appended Suboff steady data

4.6.1 Angle of Attack

The normal force Z ′ and pitch moment M ′ in Figure 4.69 and 4.70 behave like expected and

similar as for both the Suboff with sail and ellipsoid cases. There is a slight asymmetry to

the curve because of the sail induced horseshoe vortex.
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Figure 4.69: Fully appended Suboff Normal force vs. AoA
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Figure 4.70: Fully appended Suboff Pitch moment vs. AoA
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The out-of-plane forces and moments are very small on the order of 5% of the in-plane forces

and moments in Figure 4.71, 4.72 and 4.73 indicating the model was properly aligned on

the sting. For the same reason as for the Suboff case with sail only, it is unclear at the time

of writing on how to incorporate the effects of the sail in the proposed analytical model for

normal force Z ′ and pitch moment M ′.
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Figure 4.71: Fully appended Suboff side force vs. AoA
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Figure 4.72: Fully appended Suboff Yaw moment vs. AoA
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Figure 4.73: Fully appended Suboff Rolling moment vs. AoA
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4.6.2 Sideslip

The side force Y ′ in sideslip in Figure 4.74 have small discontinuities at |v′| ≈ 0.2.
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Figure 4.74: Fully appended Suboff Side force vs. sideslip
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The yaw moment N ′ in sideslip in Figure 4.75 does not have any evidence of the disconti-

nuities from Figure 4.74. The source of the small assymetry at v′ ≈ 0.5 is unknown. The

model is symmetric in yaw and should produce a symmetric curve.
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Figure 4.75: Fully appended Suboff Yaw moment vs. sideslip
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The normal force Z ′ is positive for increasing sideslip, although the curve is not completely

symmetric.
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Figure 4.76: Fully appended Suboff Normal force vs. sideslip

130



The pitch moment M ′ is negative for small sideslip and increases to a positive value for

larger sideslip. There curve is symmetric.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

−3

v′

M′

Experimental data with uncertainty

Suboff AFF−8 geometry
U∞=45 m/s

Re
L
=6.2⋅106

Transition trips at ζ=0.05  

Figure 4.77: Fully appended Suboff Pitch moment vs. sideslip
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The slope discontinuities that are evident in Figure 4.74 and to a larger extent in Figure 4.78

at |v′| ≈ 0.19 are thought to come from the sail stalling at a too large sideslip angle.

This is not evident in the reults by Roddy [68] although those tests were conducted at

a ReL ≈ 14 · 106. It is possible that the lower ReL ≈ 6 · 106 this experiment was performed

at would produce laminar separation on the sail suction side.
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Figure 4.78: Fully appended Suboff Rolling moment vs. sideslip

The slight assymmetry in Figures 4.76 and 4.77 could be due to the not completely uniform

freestream in the windtunnel, or if the model was not perfectly aligned on the sting.
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Chapter 5

Conclusions

5.1 Experimental results

A low order functional form, based on flow physics, has been developed to better determine

normal force and pitching moment, as well as side force and yaw moment, for a non-Body-

of-Revolution ellipsoidal generic submarine shape, as well as for the Suboff submarine shape.

The force and moment model equations take into the account that flow over the body stays

attached for small angles of attack and/or sideslip and does not exhibit cross-flow separation.

The normal- and side force as well as the pitching- and yawing moment coefficient derivatives

are constant for small normalized heave- and sway velocities. At larger normalized heave-

and sway velocities, the normal- and side forces are proportional to the quadratic term of

the normalized heave- and sway velocities. The quadratic order comes from the almost

century-old assumption that the cross-flow component of the freestream velocity can be

observed as the drag over an infinite cylinder in freestream. The quadratic order has been

verified through experiments as well as CFD and semi-empirical methods, even though the

coefficients themselves have not yet been shown to be reliably predicted.
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For the Ellipsoid body, the center of pressure for the cross-flow separation second order con-

tribution to the forces and moments is at a fixed location. The analytical model predictions

to the forces and moments fall within low uncertainty experimental measurements. The cen-

ter of pressure for the cross-flow contribution on the Suboff model is not at a fixed location.

One case of a pitch angle sweep with a fixed roll angle was performed to obtain data at

a combination of heave-and sway velocities. Unfortunately, this data is insufficient for ob-

taining analytical functions with coefficients for cross-dependency of normalized velocities.

Low uncertainty force and moment data were acquired and analyzed for unsteady ramp

maneuvers and have been performed with different initial conditions for the ellipsoid geom-

etry. The unsteady force and moment data have been found to either lead or lag the data

at a fixed angle of attack during the maneuver. Since rotating arm data do not exist for

the combined envelope of angle of attack and rotational speed, analytical predictions from

time-dependent states against unsteady data cannot be performed.
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5.2 Equipment

Other constrained-motion equipment produce oscillatory motions where the model is made

to continuously vary the states, and all higher order derivatives of the states. Since the DyP-

PiR is a computer controlled apparatus that enables a model to follow a preprogrammed

path of motion in a in tunnel test section, one can use the ability to perform investigations

on how initial state affects the unsteady flow characteristics, unlike oscillatory motions that

have no initial conditions.

When conducting dynamic tests with the DyPPiR, one cannot use the wind–on minus wind–

off method as previously used by Granlund [41]. The reason for that is because the wind-off

measurements include, not only model inertial measurements, but also aerodynamic inertial

measurements. In this kind of process, one essentially includes the added-mass in the tare

measurements, which is wrong. The correct procedure is to compute the vertical acceleration

of the model and also the mass of the model when performing plunge-only maneuvers. For

pitch-maneuvers, the angular acceleration as well as the model moment of inertia is needed.

Because of the overhaul of the actuators and servovalves as well as cleaning the fluid and

installing finer filters, the entire hydraulic system of the DyPPiR is now believed to be free

of mechanical faults and be able to operate like such for a prolonged time without wear.
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5.3 Future work

It is not recommended that the unsteady data acquired prior to this dissertation be repro-

cessed with new filtering schemes. Improvements can be done, but at the expense of time

and money such that the payoff will not be worth it. The limitations to better data lies

in improving the hardware. Only after hardware improvements are efforts in improving the

post-processing worth it.

Recommended future upgrades to the DyPPiR consist of mounting the 760-557A servo-

valve from the D079-121A combination unit directly to the pitch actuator to achieve a more

linear control throughout the entire operational envelope of the DyPPiR. Pump #3 with

system pressure of 2200psi is also recommended to achieve faster valve response times and

higher oscillation frequency, if there still are oscillations.

By attenuating the oscillations in the lower frequency range, one can analyze how, and

if, the unsteady forces and moments exhibit transient leads and lags versus quasi-steady

forces and moments during different parts of a maneuver.
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Appendix A

Model Equations

A.1 Suboff

R = 0.13335m

L = 2.2369272m

0 ≤ x[m] ≤ 0.5334

r(x) = R

[
1 + 0.054x2

(
x

0.5334
− 1

)3

− (1 + 0.0393x)
(

x

0.5334
− 1

)4
] 1

2.1

0.5334 ≤ x[m] ≤ 1.7035272

r(x) = R
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rh = 0.1175

K0 = 10

K1 = 44.6244

ξ =
2.2369272− x

0.5334

1.7035272 ≤ x[m] ≤ 2.2369272

r(x) = R
[
r2
h + rhK0ξ

2
]
.

+
(

20− 20r2
h − 4rhK0 −

1

3
K1

)
ξ3

+
(
−45 + 45r2

h + 6rhK0 +K1

)
ξ4

+
(
36− 36r2

h − 4rhK0 −K1

)
ξ5

+ (−10 + 10r2
h + rhK0 +

1

3
K1

)
ξ6
] 1

2

A.2 Ellipsoid

a = 0.4

b = 0.2

c = 0.1155

ε =

√
1−

(
c

b

)2

= 0.8164
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0 ≤ x[m] ≤ 0.4

y′ = b

√
1−

(
x

a
− 1

)2

r =
y′ (1− ε2)
1 + εcosθ

y = rcosθ

z = rsinθ

0.4 ≤ x[m] ≤ 1.2

r = b

y = rcosθ

z = rsinθ

1.2 ≤ x[m] ≤ 1.6

y′ = b

√
1−

(
x− 1.2

a

)2

r =
y′ (1− ε2)
1 + εcosθ

y = rcosθ

z = rsinθ
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Appendix B

Loadcell calibration data

All loadcells calibrated with a gain of 1000. Numbered loadcells are made of aluminum,
those with letters are of steel.

B.1 Loadcell 1

V1 =

[
0.0914 0.0011
0.0021 0.0879

]
F1

V ar [a1,yy] = 3.5e− 6

V ar [a1,yz] = 8.5e− 8

V ar [a1,zy] = 7.3e− 8

V ar [a1,zz] = 2.2e− 6

F1 =

[
11.062 −0.5412
−0.264 11.3895

]
V1

V ar [F1,y] = 0.0537 ∗ V 2
1,y + 0.0013 ∗ V 2

1,z + 112.37 ∗ V ar [V1,y]

V ar [F1,z] = 0.0012 ∗ V1,y1
2 + 0.0369 ∗ V 2

1,z + 129.72 ∗ V ar [V1,z]
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B.2 Loadcell 2

V2 =

[
0.0860 0.00473
0.00264 0.08546

]
F2

V ar [a2,yy] = 7.1e− 6

V ar [a2,yz] = 6.6e− 8

V ar [a2,zy] = 6.2e− 8

V ar [a2,zz] = 4.8e− 6

F2 =

[
11.6477 −0.6447
−0.3598 11.7213

]
V2

V ar [F2,y] = 0.123 ∗ V 2
2,y + 0.0122 ∗ V 2

2,z + 123.67 ∗ V ar [V2,y]

V ar [F2,z] = 0.0011 ∗ V 2
2,y + 0.090 ∗ V 2

2,z + 137.39 ∗ V ar [V2,z]

B.3 Loadcell 3

V3 =

[
0.0908 −0.0023
−0.0044 0.0864

]
F3

V ar [a3,yy] = 7.1e− 6

V ar [a3,yz] = 6.6e− 8

V ar [a3,zy] = 6.2e− 8

V ar [a3,zz] = 4.8e− 6

F3 =

[
11.0325 0.2928
0.5649 11.59

]
V3

V ar [F3,y] = 0.104 ∗ V 2
3,y + 0.0011 ∗ V 2

3,z + 121.72 ∗ V ar [V3,z]

V ar [F3,z] = 0.001 ∗ V 2
3,y + 0.0861 ∗ V 2

3,z + 134.33 ∗ V ar [V3,z]
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B.4 Loadcell 4

V4 =

[
0.0918 0.0044
0.0022 0.0852

]
F4

V ar [a4,yy] = 4.3e− 6

V ar [a4,yz] = 7.0e− 8

V ar [a4,zy] = 8.4e− 8

V ar [a4,zz] = 4.5e− 6

F4 =

[
10.9067 −0.5633
−0.2817 11.721

]
V4

V ar [F4,y] = 0.0605 ∗ V 2
4,y + 0.0114 ∗ V 2

4,z + 118.96 ∗ V ar [V4,y]

V ar [F4,z] = 0.0014 ∗ V 2
4,y + 0.0854 ∗ V 2

4,z + 137.38 ∗ V ar [V4,z]

B.5 Loadcell 5

V5 =

[
0.0809 0.00331
−0.00325 0.0797

]
F5

V ar [a5,yy] = 1.6e− 6

V ar [a5,yz] = 1.4e− 6

V ar [a5,zy] = 6.3e− 7

V ar [a5,zz] = 8.1e− 7

F5 =

[
12.304 −0.50125
0.5032 12.5262

]
V5

V ar [F5,y] = 0.0373 ∗ V 2
5,y + 0.0337 ∗ V 2

5,z + 152.3 ∗ V ar [V5,y1]

V ar [F5,z] = 0.0152 ∗ V 2
5,y + 0.0201 ∗ V 2

5,z + 156.9 ∗ V ar [V5,z]
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B.6 Loadcell 6

V6 =

[
0.0825 0.00543
−0.0049 0.0806

]
F6

V ar [a6,yy] = 1.2e− 6

V ar [a6,yz] = 4.6e− 8

V ar [a6,zy] = 1.2e− 8

V ar [a6,zz] = 3.6e− 6

F6 =

[
12.0729 −0.8133
0.7340 12.3575

]
V6

V ar [F6,y] = 0.026 ∗ V 2
6,y + 0.104 ∗ V 2

6,z + 145.75 ∗ V ar [V6,y]

V ar [F6,z] = 0.027 ∗ V 2
6,y + 0.085 ∗ V 2

6,z + 152.71 ∗ V ar [V6,z]

B.7 Loadcell 7

V7 =

[
0.0749 0.0055
0.00463 0.0762

]
F7

V ar [a7,yy] = 2.4e− 7

V ar [a7,zy] = 1.6e− 6

V ar [a7,zy] = 1.0e− 6

V ar [a7,zz] = 1.0e− 6

F7 =

[
13.411 −0.968
−0.8149 13.1822

]
V7

V ar [F7,y] = 0.0076 ∗ V 2
7,y + 0.049 ∗ V 2

7,z + 179.85 ∗ V ar [V7,y]

V ar [F7,z] = 0.0307 ∗ V 2
7,y + 0.030 ∗ V 2

7,z + 173.77 ∗ V ar [V7,z]
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B.8 Loadcell 8

V8 =

[
0.0708 0.0052
0.0010 0.0783

]
F8

V ar [a8,yy] = 3.6e− 6

V ar [a8,yz] = 7.8e− 8

V ar [a8,zy] = 1.4e− 7

V ar [a8,zz] = 9.6e− 6

F8 =

[
14.1376 −0.9389
−0.1806 12.7834

]
V8

V ar [F8,y] = 0.143 ∗ V 2
8,y + 0.0253 ∗ V 2

8,z + 199.87 ∗ V ar [V8,y]

V ar [F8,z] = 0.046 ∗ V 2
8,y + 0.0255 ∗ V 2

8,z + 163.41 ∗ V ar [V8,z]

B.9 Loadcell A

VA =

[
0.01419 0.000623
0.000768 0.01484

]
FA

V ar [a8,yy] = 3.84e− 9

V ar [a8,yz] = 8.8e− 10

V ar [a8,zy] = 1.43e− 9

V ar [a8,zz] = 1.67e− 9

FA =

[
67.2144 −2.8217
−3.4785 67.5315

]
VA

V ar [FA,y] = 0.0777 ∗ V 2
A,y + 0.0180 ∗ V 2

A,z + 4518 ∗ V ar [VA,y]

V ar [FA,z] = 0.0292 ∗ V 2
A,y + 0.0344 ∗ V 2

A,z + 4560 ∗ V ar [VA,z]
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B.10 Loadcell B

VB =

[
0.01400 0.00235
0.000977 0.01408

]
FB

V ar [aB,yy] = 3.55e− 9

V ar [aB,yz] = 6.03e− 9

V ar [aB,zy] = 5.01e− 10

V ar [aB,zz] = 3.82e− 9

FB =

[
72.2703 −12.062
−5.0148 71.8597

]
VB

V ar [FB,y] = 0.0924 ∗ V 2
B,y + 0.155 ∗ V 2

B,z + 5223 ∗ V ar [VB,y]

V ar [FB,z] = 0.0129 ∗ V 2
B,y + 0.097 ∗ V 2

B,z + 5164 ∗ V ar [VB,z]

B.11 Loadcell C

VC =

[
0.01327 0.000769
−0.000824 0.01362

]
FC

V ar [aC,yy] = 2.88e− 9

V ar [aC,yz] = 6.07e− 9

V ar [aC,zy] = 1.33e− 9

V ar [aC,zz] = 1.69e− 9

FC =

[
75.0947 −4.2399
4.5432 73.1649

]
VC

V ar [FC,y] = 0.0929 ∗ V 2
C,y + 0.186 ∗ V 2

C,z + 5639 ∗ V ar [VC,y]

V ar [FC,z] = 0.0407 ∗ V 2
C,y + 0.049 ∗ V 2

C,z + 5353 ∗ V ar [VC,z]
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Appendix C

DyPPiR repairs

Granlund [41] observed problems with the equipment as early as 2001. During the data

reduction process, large oscillations prevented the author in obtaining low uncertainty force-

and moment data. Unsuccessful attempts were made to remove the oscillation with a notch

filter in the post-processing of data, but the noise turned out to vary in frequency with time

of the motion. Attempts were made to understand the nature of the non-linearities of the

system via a Simulink [56] model of the entire DyPPiR system. It had to be aborted due

to the magnitude and complexity of the problem in introducing non-linear modules every-

where in the system and via either manually varying the constants, or automatic parameter

identification.

In the spring of 2007, it was found that the hydraulic fluid of the DyPPiR had not been

changed, nor were there any records of the filter cartridges in the system being changed since

the assembly of the system in 1989 by Ahn [3]. A fluid analysis revealed a heavy contamina-

tion of copper particles ranging in size from 1µm to 100µm. The use of an external filtering

pump did bring the contamination level down significantly, but still not down to ASTM
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levels permitted for continuous servovalve operation. According to the servovalve manufac-

turer Moog, the 79-series and 760-series servovalves in use in the DyPPiR system must be

operated with a hydraulic fluid conforming to ASTM 4406:99 14/11 [18]. Because of the very

elevated particle content in the fluid for a long time, wear on the servovalves was suspected

and confirmed. All servovalves were subsequently overhauled by Moog. Only after several

cycles of external filtering and repeated sludge removal from the hydraulic fluid reservior

tank is the particle content down to the long term operational limits. Unfortunately, after

two wind tunnel entries with the DyPPiR, the particle levels were back up again. The parti-

cles are belived to originate from the water/oil heat exchanger, which is needed to keep the

hydraulic fluid at a constant temperature. New hydraulic line filters (Pall HC9601FDP) [15]

with finer filter ratings have been installed to minimize the problem.

During a wind tunnel entry in May 2007, another problem with the pitch circuit was dis-

covered. With a 0.6m sting mounted and the DyPPiR commanded to a fixed position, the

pitch actuator shaft could be rotated approximately 1◦ without any significant resistance.

The angle resolver on the actuator shaft recorded the change, so the problem was under-

stood to be internal in the actuator or servovalves. Despite several motions with all internal

sensor parameters on the pitch circuit recorded, the faults could not be isolated to either

the actuator or the servovalves. Both units were sent in to the respective manufacturer for

evaluation and repairs.

A problem with a leaking weld was discovered in the pitch actuator allowing hydraulic

fluid to pass through the vane between the chambers. This problem is also believed to

have caused the large non-constant frequency oscillations in data reported by Granlund in

2002[41]. Together with the pitch actuator, the roll actuator was also sent in for overhaul

due to excessive internal leakage causing burst return hoses.
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The pitch servovalves were also discovered to have internal wear and clogged filters due

to the contaminated fluid. Because of this, the roll and plunge servovalves were also over-

hauled. Because of the construction of the servovalve system, the contaminated fluid is in

constant flow inside the 760-series valves, causing wear on the nozzles. The 79-series servo-

valves can be seen as hydraulic amplifiers, driven by the 760-series servovalves. As long as

the actuator is in a fixed position, there is no flow across the 79-series valves and therefore

much less chance of wear.

During an entry in October 2007, loose wires on the backplane connection to the DyP-

PiR control cards caused the plunge actuator to shake violently and destroy a model. After

the problems were rectified and testing continued, it was discovered that the DyPPiR was

severely lacking in dynamic performance to the point of being unusable. 0.3s long pro-

grammed pitch ramp motions took seveal seconds to execute for the hydraulic actuators.

The rubber bladders in the pressure accumulator tanks were replaced since they had been

continuously pressurized to 2000psi despite instructions on depressurizing after 1 month of

non-use. Another test showed that the hydraulic pumps were not producing the rated pres-

sure of 3000psi. Pump 1 and 2 were both down to 1500 psi which was less than the pressure

in the bladders. An inspection of the system by Salem Hydraulics indicated rapid wear

towards catastrophic failure of pump 1 and 2. Pump 2 also had a cloth rag blocking the

inlet port. All three pumps have been overhauled.

An investigation of the plunge servovalves indicate a problem with the middle servo and

spool. During inspection by Salem Hydraulics, the valve body was found to be scored and

the LVDT pin bent. After repair and installation, all the hydraulical parts are believed

to function correctly. During a two week entry in August 2008, several problems with the
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electronic servocontrol cards are found. The pitch position resolver card produces a very

non-sinusoidal carrier signals due to negligent design of the custom made board. In addi-

tion, the Least- and Second Least Significant Bits of the ADC chip resolver are swapped and

most certainly did not contribute to position stability. All these issues have been corrected.

After examination of the hydraulic valve position data during maneuvers, it was revealed

that the power spool valve that directs fluid to the pitch actuator opens a maximum of 1.5%

during a dynamic maneuver. This becomes a problem, since the valve flow is very linear

with spool position, as in Figure C.1 - except at very close to dead center of the spool, as

in Figure C.2 according to Moog [19]. The uncertainty bounds are 50% to 200% of nominal

valve gain in the near-zero region.
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Figure C.1: Servovalve full range uncertainty characteristics

151



−10 −5 0 5 10
−10

−8

−6

−4

−2

0

2

4

6

8

10

Input signal %

O
ut

pu
t f

lo
w

 %

Nominal gain
Gain uncertainty

Figure C.2: Servovalve nonlinearity uncertainty region near zero

The last measure to compensate for this issue was to adjust the pressure on the hydraulic

pump relief valves for the valves to open more. The pressure was set to 1400, 1800 and

2200 psi on pump #1, #2 and #3 respectively. In addition, the pressure accumulators were

adjusted to 1100psi. Unfortunately, not even the lowest pressure produced a flowrate low

enough for the pitch power valve to open enough to constantly be in the linear range. Low-

ering the pressure more would cause problems reliably controlling the plunge actuator. The

remaining option is to use a smaller control valve for the pitch actuator.

The oscillations in data reported by Granlund [41] still remain, present only during ma-

neuvers as low frequency oscillations. The oscillations increase in frequency with increasing

maneuver motion velocity and have a lower frequency with lower hydraulic system pressure.

With the pressure set at 2000psi, the second order 10Hz low pass filters in the loadcell am-
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plifiers were capable of just barely remove enough noise to reduce the data. Unfortunately,

with the aforementioned reduction in hydraulic system pressure to 1400psi, the oscillation

frequency was lowered to a range where the loadcell amplifier filters modified to sixth order

5Hz low pass were again just barely capable of removing enough noise to extrat useful data.

The DyPPiR was designed to carry and maneuver a 50kg model and sting and reliably

oscillate the model ±30◦ large angle amplitudes at 5Hz frequency. The pitch hydraulic

circuit with a Moog D079-121A electrically controlled hydraulic primary servovalve, itself

hydraulically operating a larger hydraulic powervalve that applies torque to a rotary hy-

draulic actuator. During the years the DyPPiR research evolved, the model mass was found

to produce overwhelmingly large inertial noise to aerodynamic signals during dynamic test-

ing. The mass of the sting and model has been reduced to a tenth of what was initially

planned [3]. Since the hydraulically controlled available pitch torque never changed with

the reduction in model mass, pitch sensitivity essentially increased tenfold with the present

lightweight sting and models. The simplest and least expensive solution to reducing the

sensitivity is to separate the D079-121A/760-557A combination servovalve unit and use the

electrically controlled 760-557A servovalve directly mounted to the pitch actuator. Accord-

ing to Moog, at the rated pressure the 760-C557A produces one fifteenth of the flow rate

at full valve openeing compared to with the whole D079-121A/760-557A combination unit.

The control system will also be easier since the double, nested feedback loops - one outer,

and one inner loop, will be reduced to a single feedback loop. Finally, since the valve spool

is smaller with a smaller mass, the step response time will be decreased to 4ms from 12ms.

In addition to the aforementioned sensitivity modification and system simplification, the

valve spool of the 760-servovalve will be oriented horizontally and not, as before, vertically

and therefore not subjected to the plunge acceleration inertial forces.

153



References

[1] Vectorworks Marine LLC. http://www.vectorworksmarine.com, 2007.

[2] S. Ahn, , and R. Simpson. Cross Flow Separation on a Prolate Spheroid at Angle of

Attack. AIAA Paper 92-0428, 1992.

[3] S. Ahn, K. Choi, , and R. Simpson. The Design and Development of a Dynamic Plunge-

Pitch-Roll Model Mount. AIAA Paper 89-0048, 1989.

[4] A.J. Allen. Estimation of the Forces and Moments Acting on Inclined Bodies of Revo-

lution of High Fineness Ratio. NACA Research Memorandum A9I26, 1949.

[5] A.J. Allen and E.W. Perkins. Characteristics of Flow over Inclined Bodies of Revolution.

NACA Research Memorandum A50L07, 1951.

[6] Autodesk. AutoCAD 2006.

[7] R. Bensow. Large Eddy Simulation of the Flow Around a non-Body of Revolution

Ellipsoidal Model. AIAA Paper in progress, 2009.

[8] Bondo. Automotive Body Filler Product Data. http://www.3m.com/US/auto_marine_

aero/Bondo/catalog_item3aa7.html?itemNbr=268, 2005.

[9] Bondo. UV Glazing and Spot Putty Product Data. http://www.3m.com/US/auto_

marine_aero/Bondo/catalog_item9cc2.html?itemNbr=757, 2005.

154

http://www.vectorworksmarine.com
http://www.3m.com/US/auto_marine_aero/Bondo/catalog_item3aa7.html?itemNbr=268
http://www.3m.com/US/auto_marine_aero/Bondo/catalog_item3aa7.html?itemNbr=268
http://www.3m.com/US/auto_marine_aero/Bondo/catalog_item9cc2.html?itemNbr=757
http://www.3m.com/US/auto_marine_aero/Bondo/catalog_item9cc2.html?itemNbr=757


[10] G.H. Bryan. Stability and Control. Wiley, 1911.

[11] B. Chanetz and J. Délery. Experimental Analysis of Turbulent Separation on an Oblate

Ellipsoid-Cylinder. La Recherche Aerospatiale, English Ed., (3):59–77, 1988.

[12] M.S. Chang and L.P. Purtell. Three-dimensional Flow Separation and the Effect of

Appendages. 16th Naval Hydrodynamics Symposium, 1987.

[13] C. Chesnakas and R. Simpson. Detailed Investigation of the Three-Dimensional Cross-

flow Separation About a 6:1 Prolate Spheroid. AIAA Journal, 35(6):990–999, 1997.

[14] K. Choi and R. Simpson. Some Mean Velocity, Turbulence and Unsteadiness Charac-

teristics of the VPI& SU Stability Wind Tunnel. VPI-AOE-161, 1987.

[15] Pall Corporation. Ultipor III Filter Elements Datasheet. http://www.pall.com/

datasheet_hydraulic_3103.asp, 2008.

[16] J. DeMoss. Drag Measurements on an Ellipsoidal Body. Master’s thesis, Dept. of

Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, 2007.

[17] Analog Devices. Interactive Design Tools:Active Filter Synthesis. http://www.analog.

com/Analog_Root/static/techSupport/designTools/interactiveTools/filter/

filter.html, 2008.

[18] Moog Industrial Controls Division. 79 Series Servovalves Technical Data. http://www.

moog.com/media/1/79series.pdf, 2007.

[19] Moog Industrial Controls Division. Electrohydraulic Valve Applications. http://www.

moog.com/Media/1/technical.pdf, 2008.

[20] Dupli-Color. Premium Filler Primer. http://www.duplicolor.com/products/

premium.html, 2005.

155

http://www.pall.com/datasheet_hydraulic_3103.asp
http://www.pall.com/datasheet_hydraulic_3103.asp
http://www.analog.com/Analog_Root/static/techSupport/designTools/interactiveTools/filter/filter.html
http://www.analog.com/Analog_Root/static/techSupport/designTools/interactiveTools/filter/filter.html
http://www.analog.com/Analog_Root/static/techSupport/designTools/interactiveTools/filter/filter.html
http://www.moog.com/media/1/79series.pdf
http://www.moog.com/media/1/79series.pdf
http://www.moog.com/Media/1/technical.pdf
http://www.moog.com/Media/1/technical.pdf
http://www.duplicolor.com/products/premium.html
http://www.duplicolor.com/products/premium.html


[21] L. Ericsson. Prediction of Slender Body Coning Characteristics. AIAA Journal of

Spacecraft and Rockets, 28(1):43–49, 1991.

[22] N. Alin et.al. Large Eddy Simulation of the Transient Flow around a Submarine during

Maneuver. AIAA Paper 07-1454, 2007.

[23] B. Etkin. Dynamics of Atmospheric Flight. Wiley, 1972.

[24] Y. Fan and F. Lutze. Identification of an Unsteady Aerodynamic Model at High Angles

of Attack. AIAA Paper 96-2407, 1996.

[25] Y. Fan and F. Lutze. Unsteady Aerodynamic Tests and Data Reductions Using Digital

Signal Processing Approach. AIAA Paper 98-4454, 1998.

[26] J. Feldman. DNTSRDC Revised Standard Submarine Equations of Motion.

DNTSRDC/SPD-0393-09, 1979.

[27] J. Feldman. Straightline and Rotating Arm Captive-Model Experiments to Investigate

the Stability and Control Characteristics of Submarines and Other Submerged Vehicles.

DTRC/SHD-0393-20, 1979.

[28] J. Fussell and R. Simpson. Laminar Boundary Layer Calculations on a Submarine Body,

Sail, and Stern Appendages, Using Integral Boundary Layer Equations. VPI-AOE-303,

2000.

[29] M. Gertler and G. Hagen. Standard Equations of Motion for Submarine Simulation.

NSRDC SR 0090101, 1967.

[30] Fibre Glast. 3K, 2x2 Twill Weave Carbon Fiber Fabric Product Data. http://www.

fibreglast.com/documents/193.pdf, 2005.

156

http://www.fibreglast.com/documents/193.pdf
http://www.fibreglast.com/documents/193.pdf


[31] Fibre Glast. 4 Oz/Sq Yd. Fiberglass Surfacing Fabric Product Data. http://www.

fibreglast.com/documents/157.pdf, 2005.

[32] Fibre Glast. Breather and Bleeder Cloth Product Data. http://www.fibreglast.com/

documents/180.pdf, 2005.

[33] Fibre Glast. Epoxy Surface Coat Product Data. http://www.fibreglast.com/

documents/477.pdf, 2005.

[34] Fibre Glast. Glass Microspheres Product Data. http://www.fibreglast.com/

documents/106.pdf, 2005.

[35] Fibre Glast. Modeling Clay Product Data. http://www.fibreglast.com/documents/

252.pdf, 2005.

[36] Fibre Glast. Nylon Release Film Product Data. http://www.fibreglast.com/

documents/182.pdf, 2005.

[37] Fibre Glast. Polyethylene Bagging Film Product Data. http://www.fibreglast.com/

documents/178.pdf, 2005.

[38] Fibre Glast. PVA Release Film Product Data. http://www.fibreglast.com/

documents/105.pdf, 2005.

[39] Fibre Glast. Sealant Tape Product Data. http://www.fibreglast.com/documents/

181.pdf, 2005.

[40] M. Goman and A. Khrabrov. State-Space Representation of Aerodynamic Characteris-

tics at High Angles of Attack. AIAA Journal of Aircraft, 31(5):1109–1115, 1994.

[41] K. Granlund. Methods for Obtaining Unsteady Force and Moment Data on a Submarine

using the DyPPiR. Master’s thesis, Dept. of Aeronautics , Royal Institute of Technology,

Stockholm, Sweden, 2002.

157

http://www.fibreglast.com/documents/157.pdf
http://www.fibreglast.com/documents/157.pdf
http://www.fibreglast.com/documents/180.pdf
http://www.fibreglast.com/documents/180.pdf
http://www.fibreglast.com/documents/477.pdf
http://www.fibreglast.com/documents/477.pdf
http://www.fibreglast.com/documents/106.pdf
http://www.fibreglast.com/documents/106.pdf
http://www.fibreglast.com/documents/252.pdf
http://www.fibreglast.com/documents/252.pdf
http://www.fibreglast.com/documents/182.pdf
http://www.fibreglast.com/documents/182.pdf
http://www.fibreglast.com/documents/178.pdf
http://www.fibreglast.com/documents/178.pdf
http://www.fibreglast.com/documents/105.pdf
http://www.fibreglast.com/documents/105.pdf
http://www.fibreglast.com/documents/181.pdf
http://www.fibreglast.com/documents/181.pdf


[42] K. Granlund and R. Simpson. Modeling Unsteady Maneuvers of Slender Bodies. AIAA

Paper 07-6721, 2004.

[43] K. Granlund and R. Simpson. Unsteady Force and Moment Data on a Maneuvering

Undersea Vehicle. AIAA Paper 04-0729, 2004.

[44] D. Greenwell. Frequency Effects on Dynamic Stability Derivatives Obtained from Small-

Amplitude Oscillatory Testing. AIAA Journal of Aircraft, 35(5):776–782, 1998.

[45] D. Greenwell. A Review of Unsteady Aerodynamic Modeling for Flight Dynamics of

Maneuverable Aircraft. AIAA Paper 04-5276, 2004.

[46] Hexcel. HexWeb HRH-10 Aramid Fiber/Phenolic Resin Honeycomb Product Data.

http://www.hexcel.com/Products/Downloads/HexwebHoneycombDataSheets, 2005.

[47] Hexcel. HexWeb HRH-35 FlexCore Honeycomb Product Data. http://www.hexcel.

com/Products/Downloads/HexwebHoneycombDataSheets, 2005.

[48] J. P. Holman. Experimental Methods for Engineers 7th edition. McGraw Hill, 2000.

[49] S. Hosder and R. Simpson. An Experimental Investigation of Unsteady Flow Separation

on a Maneuvering Axisymmetric Body. Journal of Aircraft, 44(4):1286–1295, 2007.

[50] National Instruments. Labview.

[51] Robert T. Jones. Effects on Sweepback on Boundary Layer and Separation. NACA

Technical Report 884, 1947.

[52] K. Karamcheti. Principles of Ideal-Fluid Aerodynamics. Krieger, 1966.

[53] J. Larssen and W. Devenport. Acoustic Properties of the Virginia Tech Stability Wind

Tunnel. VPI-AOE-263, 1999.

158

http://www.hexcel.com/Products/Downloads/Hexweb Honeycomb DataSheets
http://www.hexcel.com/Products/Downloads/Hexweb Honeycomb DataSheets
http://www.hexcel.com/Products/Downloads/Hexweb Honeycomb DataSheets


[54] F. Lutze. Experimental Determination of Pure Rotary Stability Derivatives using a

Curved and Rolling Flow Wind Tunnel. AIAA Paper 80-0309, 1980.

[55] K. Makovec. The Use of PMARC for Pressure Coefficient and Vorticity Calculations

on 688 and DARPA2 Submarines. Internal document, 1998.

[56] The Mathworks. Simulink.

[57] W.J. McCroskey. Some Current Research in Unsteady Fluid Dynamics. Journal of

Fluids Engineering, 99:8–38, 1977.

[58] M. Mendenhall and D. Lesieutre. Prediction of Vortex Shedding from Circular and

Noncircular Bodies in Subsonic Flow. NASA Contractor Report 4037, 1987.

[59] M. Mendenhall and S. Perkins. Prediction of Vortex-Induced Fluid Mechanics of Ma-

neuvering Submarines. AIAA Paper 93-0638, 1993.

[60] Microsoft. Windows Media Video 9 Series Codecs. http://www.microsoft.com/

windows/windowsmedia/forpros/codecs/video.aspx, 2009.

[61] M. Munk. The Aerodynamic Forces on Airship Hulls. NACA Technical Report 184,

1924.

[62] M. Munk. Remarks on the Pressure Distribution over the Surface of an Ellipsoid,

Moving Translationally Through a Perfect Fluid. NACA Technical Note 196, 1924.

[63] Robert C. Nelson and Alain Pelletier. The Unsteady Aerodynamics of Slender Wings

and Aircraft Undergoing Large Amplitude Maneuvers. Progress in Aerospace Sciences,

39:185–248, 2003.

[64] B. Pamadi, P. Murphy, V. Klein, and J. Brandon. Prediction of Unsteady Aerodynamic

Coefficients at High Angles of Attack. AIAA Paper 01-4077, 2001.

159

http://www.microsoft.com/windows/windowsmedia/forpros/codecs/video.aspx
http://www.microsoft.com/windows/windowsmedia/forpros/codecs/video.aspx


[65] 3M Industrial Products. Spray Adhesive 6070 for Styrofoam. http://solutions.3m.

com/wps/portal/3M/en_US/Products/ProdServ/, 2005.

[66] B. Racine and E. Paterson. CFD-Based Method for Simulation of Marine-Vehicle Ma-

neuvering. AIAA Paper 05-4904, 2005.

[67] S.H. Rhee and T. Hino. Numerical Simulation of Unsteady Turbulent Flow Around

Maneuvering Prolate Spheroid. AIAA Journal, 40(10):2017–2026, 2002.

[68] Robert F. Roddy. Investigation of the Stability and Control of the DARPA Suboff

Model (DTRC Model 5470) from Captive-Model Experiments. DTRC/SHD-1298-08,

1990.

[69] R.P. Sallen and E.P. Key. A Practical Method of Designing Active Filters. IRE Trans-

actions on Circuit Theory, pages 74–85, 1955.

[70] R. Schmitt and B. Chanetz. Experimental Investigation of Three-Dimensional Separa-

tion on an Ellipsoid-Cylinder Body at Incidence. AIAA Paper 85-1686, 1985.

[71] National Semiconductor. LM741 Operational Amplifier Datasheet. http://www.

national.com/ds/LM/LM741.pdf, 2008.

[72] K. Sibilski. Problems of Manoeuvering at Post-Critical Angles of Attack – Continuation

and Bifurcation Methods Approach. AIAA Paper 03-0395, 2003.

[73] R. Simpson. Some Experience with the Dynamic-Plunge-Pitch-Roll (dyppir) Mount in

Unsteady Aeridynamics Research. AIAA Paper 02-0170, 2002.

[74] A.M. Skow. An Anlysis of the Su-27 Flight Demonstration at the 1989 Paris Airshow.

SAE Technical Paper 901001, 1990.

160

http://solutions.3m.com/wps/portal/3M/en_US/Products/ProdServ/
http://solutions.3m.com/wps/portal/3M/en_US/Products/ProdServ/
http://www.national.com/ds/LM/LM741.pdf
http://www.national.com/ds/LM/LM741.pdf


[75] L.H. Smith and R.H. Nunn. Aerodynamic Characteristics of an Axisymmetric Body

Undergoing a Uniform Pitching Motion. AIAA Paper 75-0803, 1975.

[76] West System. 105 Epoxy Resin and 206 Epoxy Hardener Product Data. http://www.

westsystem.com, 2005.

[77] Virginia Tech Department of Aerospace and Ocean Engineering. Stability Tunnel. http:

//www.aoe.vt.edu/research/facilities/stab/tunnel_descrip.php, 2009.

[78] M. Tobak. On the use of the Indicial Function Concept in the Analysis of Unsteady

Motions of Wings and Wing-Tail Combinations. NACA Report 1188, 1954.

[79] M. Tobak and L. Schiff. Generalized Formulation of Nonlinear Pitch-Yaw-Roll Coupling.

AIAA Journal, 13(3):323–332, 1975.

[80] R. Upson and W. Klikoff. Application of Practical Hydrodynamics to Airship Design.

NACA Techical Report 405, 1931.

[81] Vishay. Vishay 2310 Signal Conditioning Amplifier Product Data. http://www.vishay.

com/brands/measurements_group/guide/inst/2300/2310.htm, 2005.

[82] T. Wetzel and K. Granlund. Dynamic Plunge Pitch Roll (DyPPiR) Model Mount Man-

ual. Internal report.

[83] T. Wetzel and R. Simpson. Unsteady Crossflow Separation Location Measurements on

a Maneuvering 6:1 Prolate Spheroid. AIAA Journal, 36(11):2063–2071, 1998.

[84] T. Wetzel, R. Simpson, and C. Chesnakas. Measurement of Three-Dimensional Cross

Flow Separation. AIAA Journal, 36(4):557–564, 1998.

[85] C. Whitfield. Steady and Unsteady Force and Moment Data on a DARPA2 Submarine.

Master’s thesis, Dept. of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg,

VA, 1999.

161

http://www.westsystem.com
http://www.westsystem.com
http://www.aoe.vt.edu/research/facilities/stab/tunnel_descrip.php
http://www.aoe.vt.edu/research/facilities/stab/tunnel_descrip.php
http://www.vishay.com/brands/measurements_ group/guide/inst/2300/2310.htm
http://www.vishay.com/brands/measurements_ group/guide/inst/2300/2310.htm


[86] K. Willet. Design, Development and Implementation of a Low Cost Slotted Wall Test

Section and Race Car Model for use in Dynamic Wind Tunnel Testing(unfinished). Mas-

ter’s thesis, Department of Aerospace and Ocean Engineering, Virginia Tech, Blacks-

burg, VA.

162


	Introduction
	Coordinate system definition
	Vehicle motion
	Forces and moments
	Equations of motion
	Characterising motion of vehicles
	Slender bodies
	Computational simulations

	Analytical models for unsteady motions
	Indicial functions
	Time-lead/lag equations
	Previous experiments

	This research contribution

	Equipment
	Models
	Mass and moment of inertia
	Suboff
	Ellipsoid body
	NNEMO
	Boundary layer trips

	Wind tunnel
	DyPPiR
	Sting
	Loadcells
	Loadcell calibration

	Data acquisition system
	Loadcell amplifier filter modification
	External filter modules


	Postprocessing
	Filtering signals
	Filtering history

	Analog filtering
	Effects of filtering
	Filtering correction

	Linear vs. nonlinear phase filters
	Data reduction

	Experimental results
	Ellipsoid steady data
	Angle of Attack
	Center of pressure
	Sideslip
	Potential flow slender body theory results
	Combination of Angle of Attack and Sideslip

	Ellipsoid unsteady maneuvers
	Unsteady motion -- :-1515
	Unsteady motion -- :-150
	Unsteady motion -- :015

	Unsteady maneuver video analysis
	Unsteady motion -- :-1515
	Unsteady motion -- :-150
	Unsteady motion -- :015

	Barebody Suboff steady data
	Normal force
	Pitch moment

	Suboff with sail steady data
	Normal force

	Fully appended Suboff steady data
	Angle of Attack
	Sideslip


	Conclusions
	Experimental results
	Equipment
	Future work

	Acknowledgements
	Model Equations
	Suboff
	Ellipsoid

	Loadcell calibration data
	Loadcell 1
	Loadcell 2
	Loadcell 3
	Loadcell 4
	Loadcell 5
	Loadcell 6
	Loadcell 7
	Loadcell 8
	Loadcell A
	Loadcell B
	Loadcell C

	DyPPiR repairs
	References



