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(Abstract)

This research is focused on the polymerization of 2-alkyl-2-
oxazoline homopolymers and 2-alkyl-2-oxazoline containing
copolymers with well defined structures. In addition, the potential
of selected materials as polymer blend compatibilizers was briefly
evaluated. The polymerization of 2-alkyl-2-oxazoline was
investigated with regard to the effects of initiator structures on
molecular weight control and molecular weight distribution, living
characteristics, and mechanisms and kinetics. The structure of
initiators was shown to greatly affect the molecular weight control
and molecular weight distribution of poly(2-ethyl-2-oxazoline). The
living nature of poly(2-ethyl-2-oxazoline) in chlorobenzene initiated
by benzyl iodide, benzyl chloride/Nal, or chloroethyl ethyl ether/Nal
has been established by Mn-conversion plots and sequential
monomer addition experiments. However, the molecular weight
distributions of these polymers were not as narrow as Poisson
distributions.  Mechanistic and kinetic studies of 2-ethyl-2-oxazoline
polymerizations suggested that, at very early stages of

polymerization, the active species is covalent. After that very early



stage of polymerization, ionic species are present and the overall
propagation rates increases. The rate determining step was found to
be the initial propagation step(s) using benzyl iodide as the initiator,
and initiation and/or the initial propagation step(s) in the case of
iodobutane as an initiator. A kinetic study of 2-methyl-2-oxazoline
polymerization in CD3CN also indicated slower initiation than
propagation rates using both butyl mesylate and butyl iodide as
initiators. Based on the knowledge of 2-alkyl-2-oxazoline
homopolymerizations, poly(2-alkyl-2-oxazoline) containing
copolymers were prepared using macroinitiator methods, with
poly(2-alkyl-2-oxazoline) being either the macroinitiator or the
second component synthesized.

Narrow distribution poly(dimethylsiloxane) oligomers
terminated with benzyl chloride endgroups were prepared by living
anionic ring-opening polymerization of hexamethylcyclotrisiloxane
followed by termination with a benzyl chloride containing
chlorosilane reagent. Cationic ring-opening polymerization of 2-
ethyl-2-oxazoline using these macroinitiators in combination with
Nal generated a series of well defined block copolymers.

Poly(butyl vinyl ether) and poly(methyl vinyl ether) oligomers
with Poisson distributions and precisely terminated on one end with
a chloroethyl ether functional group were prepared by living cationic
polymerization of alkyl vinyl ethers using a chloroethyl vinyl
ether/HI initiating system with Znlp as catalyst and terminated by

lithium borohydride. The chloroethyl ether functional groups were



used in conjunction with sodium iodide to polymerize 2-ethyl-2-
oxazoline blocks. In order to insure effective initiation and to narrow
the copolymer molecular weight and composition distributions, the
chloride to iodide conversion was made prior to the addition of
monomer. A series of these diblock materials was prepared wherein
the molecular weight distributions ranged from 1.3 to 1.4.

The bulk, solution and surface properties of these copolymers
were investigated by NMR, DSC, XPS and surface tension
measurements. Both types of materials described above are
currently being utilized for studying the parameters important for
steric stabilization of inorganic particles in polar media.

A less defined series of materials was also prepared. Using
poly(butyl vinyl ether-co-chloroethyl vinyl ether) random
copolymers as- macroinitiators, 2-methyl-2-oxazoline was
polymerized, resulting in poly(butyl vinyl ether-2-methyl-2-
oxazoline) graft copolymers. Poly(2-methyl-2-oxazoline-€-
caprolactone) block copolymers were prepared using hydroxy-
terminated poly(2-methyl-2-oxazoline) as macroinitiators.
Poly(butyl vinyl ether-g-2-methyl-2-oxazoline) (PBVE-g-PMOX) or
poly(2-methyl-2-oxazoline-b-g-caprolactone) (PMOX-b-PCL) were
screened as potential blend compatibilizers for poly(e-caprolactam)
(Nylon 6) and isotactic poly(propylene). Analysis of these blends by
SEM indicated that PBVE-g-PMOX might function as a blend
compatibilizer for Nylon 6/poly(propylene) blend while PMOX-b-PCL

would not.
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Chapter I
Introduction

As the requirement for materials becomes more stringent and
diversified, the constitution of materials becomes more complex.
often multicomponent systems provide properties that are not
obtainable from single component systems. The oldest examples are
metal alloys. Then there are composites, polymer blends, and
copolymers. Copolymers such as thermoplastic elastomers have been
used alone, or used as additives to various systems. The latter
application involves various interfaces: polymer-polymer (blend
compatibilizer), polymer-air (surface modifier), polymer-water
(emulsion particle stabilizer), ceramic-solvent (particle stabilizer).
As the need for functional polymeric materials increases, copolymers
for the latter application become more important. These applications
require diverse copolymer structures (chemical, compositional, etc.)
and well defined block or graft copolymers are often very desirable.
The preferred technique, or perhaps the only technique available, for
preparing well defined block or graft copolymers is living
polymerizationl. The term "living" polymers was first used by
Sz'warc2 to describe polystyrene prepared via "termination free"
anionic polymerization. Since then living polymerization has
extended into other types of polymerization mechanisms, such as
cationic polymerization and group transfer polymerization. Many

characteristics are associated with living polymerization. They



include: (1) fast initiation relative to propagation (ki>kp), and (2), the
concentration of active species remains constant throughout the
polymerization. As a result, the number average degree of
polymerization is proportional to monomer conversion, and the
molecular weight distribution follows a Poisson distribution3.4.
Living polymerization techniques provide possibilities for sequential
polymerization, and quantitative incorporation of functional groups
via initiation and termination. Thus, block and graft copolymers with
controlled molecular weights and narrow polydispersity can be
prepared.

Living polymerizations are mostly observed in anionic
polymerization. For many years, researchers have been searching
for perfect living cationic polymerization systems. There are
generally two types of monomers synthesized by cationic
polymerization, namely, heterocycles and electron rich vinyl
compounds. In the field of cationic ring-opening polymerization, as
stated by Penczek and Kubisa?, none of these systems fulfill all the
requirements for a living system. The term living polymerization is
used by many authors to simply indicate that the active species are
"long lived". This causes confusion in terms of what people can
expect from a so-called "living" system when limitations or
deviations from a true living system are not pointed out. It is
important to define a system as precisely as possible so that useful
applications can be developed based on knowledge of the capabilities

and limitations of the systems. In the field of cationic polymerization



of vinyl monomers, living polymerization has long been regarded as
extremely difficult, although not impossible5-6, Since the growing
carbocations are inherently unstable, many side reactions, such as
chain transfer and termination, may occur. Living cationic
polymerization of vinyl compounds did not become a reality until the
early 1980's6.

For a long time, ring-opening polymerizations of many 2-
oxazoline monomers have been regarded as "living”". However, a
detailed evaluation according to the definition of living
polymerization has not been reported. In addition, changes in
monomer, initiator, solvent, temperature, or combinations of these
factors often alter the living nature of a system to some extent or
completely. Since there are many attractive features of 2-oxazoline
polymerizations and 2-oxazoline polymers, it is important to define
their polymerization systems more precisely. Poly(2-ethyl-2-
oxazoline) and poly(2-methyl-2-oxazoline) are polar, water soluble,
and relatively easy to make. In addition, their propagating species
are "long lived"7. Combinations of these polymers with other
nonpolar or polar polymers may provide a spectrum of materials
including surface modifiers, nonionic surfactants, blend
compatibilizers, and ceramic particle stabilizers. In this research, the
polymerization of 2-ethyl-2-oxazoline and 2-methyl-2-oxazoline
were investigated with the objective of preparing well defined
poly(2-oxazoline) segments. Specifically, the following aspects were

studied: the effects of initiator structure on molecular weight control



and molecular weight distribution, the living nature of these
polymerization systems using Mn-monomer conversion plots and
sequential monomer addition experiments, and mechanisms and
kinetics of these polymerizations using on-line NMR spectroscopy.
The synthesis of poly(2-alkyl-2-oxazoline) containing copolymers
was based on both a fundamental and a practical approach. Living
techniques for preparing poly(dimethylsiloxane) and poly(alkyl vinyl
ethers) were utilized to obtain functional oligomers with controlled
molecular weights and very narrow molecular weight distributions.
Both 2-alkyl-2-oxazolines and alkyl vinyl ethers are polymerized by
cationic catalysts. Theoretically the possibility exists that their block
copolymers might be prepared via sequential polymerization.
However, due to the unique chain ends of living poly(alkyl vinyl
ethers), the block copolymers so synthesized have unstable
linkagesS0. Using the functional oligomers as macroinitiators and
based on the knowledge gained from 2-alkyl-2-oxazoline
homopolymer studies, well defined poly(2-alkyl-2-oxazoline)
containing block copolymers were prepared. Their molecular weight
distribution, composition, and phase separation behavior were
characterized by GPC, NMR, solid state NMR, DSC. The surface
properties of poly(dimethylsiloxane-2-ethyl-2-oxazoline) block
copolymers were studied using XPS. These well defined block
copolymers are intended for fundamental investigations of the
stabilization of concentrated ceramic particle suspensions and

compatibilization of immiscible blends. From a utility point of view,



less defined but practical graft copolymers of butyl vinyl ether and
2-methyl-2-oxazoline were prepared, where butyl vinyl ether
constituted the backbone and was polymerized using an aluminum
hydrogen sulfate catalyst with ca. 3 mole percent of chloroethyl vinyl
ether. The pendent chlorine groups are used in conjunction with
sodium iodide as initiators for the polymerization of poly(2-methyl-
2-oxazoline) grafts. Their potential applications as compatibilizers
for poly(e-caprolactam) (Nylon 6) and poly(propylene) blends were

investigated using SEM.



Chapter II

Literature Review

2.1 Cationic Polymerization of 2-Oxazolines
2.1.1 Introduction

Oxazolines belong to the family of compounds known as
cycloimino ethers. They are five-membered heterocyclic compounds
containing nitrogen, oxygen and one double bond in the ring8.9.
Depending on the location of the double bond, three types of

oxazoline rings are possible:

3N 3IN— 3N
LIS N 5 N
1 1 |

Among those oxazolines, only the 2-oxazoline and its derivatives
have been widely used in organic and polymer synthesis8.9. The
substituents can be present on the 2, 4, and/or 5 position of the 2-
oxazoline ring. Earlier work on the polymerization of 2-aryl- and 2-
alkyl-2-oxazolines dates back to the mid-1960's10-14, Cationic
catalysts, such as stannic chloride, boron trifluoride etherate, methyl
p-toluenesulfonate induced the polymerization of 2-methyl-2-
oxazoline and 2-phenyl-2-oxazolinel0-13, but anionic catalysts such
as potassium methylate and n-butyl lithium or free radical initiators
were not effectivel0. In fact, selective anionic, free radical, or

cationic polymerizations of 2-p-styryl-2-oxazoline have been

demonstrated recentlyl5. Oxazoline salts of the monomer with strong



acids, alkyl iodides, dialkyl sulfates are also effective initiators.
Simple carboxylic acids and their anhydrides are not suitable
because the corresponding anions are too nucleobhiliclz. Further
investigations on the polymerization of 2-oxazolines have been
concentrated on the kinetics and mechanisms of the polymerization.
Synthesis of poly(2-oxazoline) containing copolymers continues to be

developed along with the applications of these homo and copolymers.

2.1.2 Mechanisms and Kinetics

Based on hydrolysis products and infrared spectra of the
polymers, it was proposed that 2-substituted-2-oxazolines
polymerized with ring opening between the 1-5 bond to form the N-

acyl-substituted polyethyleneimine structuresl0.11:

3N 4 /
ZJI\ = CH2CH2-I?I
R 5 catalyst K (,:= 0

1 R

n

As supporting evidence for this mode of ring opening, lH NMR
spectra showed the deshielding of the 5-position protons in 2-
methyl-2-oxazoline/BF3 complex (4.76ppm) relative to that in the
monomer (4.24ppm)!l. Studies on the bulk polymerization of 2-
phenyl-2-oxazoline initiated by salts of the monomer with perchloric
acid (HClO4) and p-toluenesulfonic acid(p-C7H7SO3H) were the most
effective catalysts in terms of polymerization rate. On the other

hand, the salts with hydrogen chloride (HCI), trichloroacetic acid



(CCl13COOH) and nitric acid (HNO3) did not initiate the

polymerizationl6. These observations appear to agree with the
thermal stability of various salts. For example, the salt with
perchloric acid is stable at 150°C, while the salt with HBr, HCI,
CCI3COOH and HNOj rearranged to ring-opened structures at

temperatures over 100 C16:

HN-CH,CH,X
C:0

In addition, it was observed that when the salt with perchloric acid
was used as a catalyst, the number average molecular weight of
poly(2-phenyl-2-oxazoline) increased linearly with the feed molar
ratio of monomer to the catalystl5, which indicated that the
polymerization system was termination and chain transfer free.
Similar behavior was also noted by Litt et al.13. Based on these
observations, Kagiya and Matsada proposed two types of
polymerization routes involving different initiators16 (Scheme 2.1.1 a
and b). When X = ClO4~ or HSO4", route 1 applies; when X = I" or Br~
route 2 applies. Similar mechanisms were proposed by Saegusa and
his co-workers based on the polymerization of unsubstituted 2-
oxazoline initiated by methyl tosylate and methyl iodidel7.18, In
their study, the formation of oxazolinium tosylate was observed by

IH NMR, leading to the conclusion that the polymerization initiated



Scheme 2.1.1 a Polymerization Mechanism of

2-Oxazolines (Route 1) via Ionic Propagating Species16
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Scheme 2.1.1 b Polymerization Mechanism of

2-Oxazolines (Route 2) via Covalent Propagating Specises16
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by methyl tosylate proceeded through a route similar to that in
Scheme 2.2.1 a, while the absence of the oxazolinium ion in the
polymerization initiated by methyl iodide implied that the
polymerization went through a route similar to Scheme 2.2.1 b.

Investigation of the polymerization of 2-methyl-2-oxazoline in
acetonitrile initiated by benzyl chloride, benzyl bromide, methyl p-
toluenesulfonate and methyl iodidel9.20.21 also suggested two types
of polymerization routes. With tosylate and iodide as counter-anion,
the propagating species in the polymerization of 2-methyl-2-
oxazoline was "exclusively an oxazolinium ion" 21, The presence of
oxazolinium ion was also detected with bromide as the counter-
anion. With chloride as counter-anion, the polymerization was found
to proceed through covalent species.

The existence of two types of propagating épecics was believed
to be due to the difference in nucleophilic reactivity2l. The

nucleophilicity in the order of:

N
Cl > /”\ >Br >I > TsO’
CH

3

explained the formation of covalent species when Cl~ was the
counter-anion and the existence of oxazolinium ion when Br-, I" or
TsO- was the counter-anion.

More recent investigations on the polymerization of 2-
perfluoroalkyl-2-oxazolines have indicated these two types of

polymerization mechanism as well22,.23, With methyl tosylate or

11



methyl nosylate (p-nitrobenzenesulfonate) as initiator, the
propagating species was a covalent ester. However, with a methyl
trifluoromethanesulfonate (triflate) initiator, the propagating species
was the oxazolinium triflate. Again, these two types of propagating
species are believed to be caused by the relative nucleophilicity of
monomer and counter-anion. The tosylate anion is more nucleophilic
than 2-perfluoroalkyl-2-oxazoline monomers, thus it reacted with
the oxazolinium intermediate and formed the tosylate ester. Triflate
anion is much less nucleophilic than the monomer and did not react
with the oxazolinium cation. Thus the resulting propagating species
is the oxazolinium cation with a triflate counter-anion22, Based on
the results of the mechanistic studies, the order of relative

nucleophilicity among monomer and counter-anion was summarized

as22;

N N N
Cl > l SBr>I > JI\ > TsO > Jl\ > TfO
CH H o_/ C,F;

3

It has also been suggested that polar medium and lower temperature
favor propagation through the oxazolinium ion. However, the effects
of solvent and temperature are believed to be minor compared with
the nucleophilicity of counter-anion relative to that of monomer24.
Quantitatively, propagation rate constants for the above
mentioned systems further demonstrate the presence of two

polymerization mechanisms. The rate constants cited hereafter were

12



obtained based on the following assumptions: there is no termination
or chain transfer in the polymerization. Evidence for this assumption
included: (1) the molecular weight of poly(2-phenyl-2-oxazoline)
initiated by 2-phenyl-2-oxazolinium perchlorate in bulk as well as in
DMAC increased linearly with a decrease in feed initiator
concentration16.25; (2) the molecular weight of poly(2-methyl-2-
oxazoline) initiated by methyl tosylate in CD3CN measured by vapor
pressure osmometry was the same as the calculated value within
10% error!9. This assumption is indirectly supported by chain
transfer constants for bulk polymerization initiated by 2-p-
chlorophenyl-2-oxazolinium perchlorate26. At 130°C, with [Mol/[Io]
= 9810, the chain transfer constant for 2-(n-heptyl)-2-oxazoline is
about 1/300. For 2-isobutyl-2-oxazoline at 160°C, with [Mpl/[Io] =
500, monodisperse polymer was obtained . At higher [Mp]/[Io]
ratios, the chain transfer constant was estimated to be near 1/800.
For bulk polymerized 2-ethyl-2-oxazoline initiated by methyl
tosylate, about 3.5 branching points per chain were detected with
[Mo]/[1o]1=400027, Since the ratios of [My]/[Io] in the kinetic studies
reported were well below 300, the assumption of no chain transfer is
valid. The termination free assumption is also supported by the
observation that the amount of propagating species, oxazolinium ion,
equals the amount of consumed initiator!®. The generic scheme used
for derivation of the rate constants, in spite of the propagating

species, is summarized as follows19,25:
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