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Modeling of Shock Wave Propagation and Attenuation in Viscoelastic Structures

Razvan Rusovici

(ABSTRACT)

Protection from the potentially damaging effects of shock loading is a common design

requirement for diverse mechanical structures ranging from shock accelerometers to

spacecraft.  High-damping viscoelastic materials are employed in the design of

geometrically complex impact absorbent components.  Since shock transients have a

broadband frequency spectrum, it is imperative to properly model frequency dependence

of material parameters.  The Anelastic Displacement Fields (ADF) method is employed

to develop new axisymmetric and plane stress finite elements that are capable of

modeling frequency dependent material behavior of linear viscoelastic materials.  The

new finite elements are used to model and analyze behavior of viscoelastic structures

subjected to shock loads.  The development of such ADF-based finite element models

offers an attractive analytical tool to aid in the design of shock absorbent mechanical

filters.  This work will also show that it is possible to determine material properties’

frequency dependence by iteratively fitting ADF model predictions to experimental

results.

A series of experiments designed to validate the axisymmetric and plane stress finite

element models are performed.  These experiments involve the propagation of

longitudinal waves through elastic and viscoelastic rods, and behavior of elastomeric

mechanical filters subjected to shock.  Comparison of model predictions to theory and

experiments confirm that ADF-based finite element models are capable of capturing

phenomena such as geometric dispersion and viscoelastic attenuation of longitudinal

waves in rods as well as modeling the behavior of mechanical filters subjected to shock.
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CHAPTER 1.  INTRODUCTION

1.1. Introduction

Protection from the potentially damaging effects of shock loading is a common design

requirement for diverse mechanical structures, ranging from shock accelerometers to

spacecraft.  High-damping viscoelastic materials are often employed in the design of

impact absorbent components. Since shock transients have a wide frequency spectrum, it

is imperative to properly model the frequency dependence of material behavior, such as

the stiffness and loss moduli.

The current work focuses on the development and verification of two-dimensional finite

elements (FE), which incorporate the Anelastic Displacement Fields (ADF) time-domain

material damping model. A series of experiments designed to validate the axisymmetric

and plane stress finite element models  (FEM) were performed.  These experiments

involved the propagation of shock-generated longitudinal waves through elastic and

viscoelastic rods and behavior of elastomeric mechanical filters subjected to shock. The

development of such ADF-based finite element models presents an attractive analytical

tool to aid in the design of shock absorbent mechanical filters, and it offers an alternative

to theoretical investigations of longitudinal wave propagation through viscoelastic rods,

which are limited to circular or elliptical cross section rods.  The new ADF FEM also

create the possibility of determining material moduli frequency dependence by iteratively

fitting model predictions to experimental results.

This chapter reviews viscoelastic theory and damping modeling methods employed in a

structural dynamics framework.  Chapter 1 also discusses theoretical and experimental

investigations of shock longitudinal wave propagation through bars and the applications

to the calibration of shock accelerometers through the Hopkinson bar method. The

current chapter surveys and reviews the existing literature focused on the design of

mechanical filters.  The objectives, motivation, and an outline of this work are then
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presented.  The following section offers a survey of linear viscoelasticity and a survey of

current damping models used in structural dynamics.

1.2. Linear viscoelasticity

The classical theory of elasticity states that for sufficiently small strains, the stress in an

elastic solid is proportional to the instantaneous strain and is independent of the strain

rate.  In a viscous fluid, according to the theory of hydrodynamics, the stress is

proportional to the instantaneous strain rate and is independent of the strain.  Viscoelastic

materials exhibit solid and fluid behavior [1].  Such materials include plastics, rubbers,

glasses, ceramics, and biomaterials (muscle).  Viscoelastic materials are characterized by

constant-stress creep and constant-strain relaxation. Their deformation response is

determined by both current and past stress states, and conversely, the current stress state

is determined by both current and past deformation states.  It may be said that viscoelastic

materials have “memory”; this characteristic constitutes the foundation on which their

mathematical modeling is based [2].

Linear viscoelastic materials may be defined by either differential or integral constitutive

equations [3].  The differential form of the constitutive law for a one dimensional linear

viscoelastic solid is shown in Equation (1.1) [3].

P Qσ ε=  (1.1)

The quantities σ and ε are the one dimensional stress and strain, respectively; P and Q are

the time linear differential operators, which are further expressed as

P p j
j

t jj

m
p jD

j
j

m

Q q j
j

t jj

m
q jD

j
j

m

=
=
∑ =

=
∑

=
=
∑ =

=
∑

∂

∂

∂

∂

0 0

0 0

(1.2)



where pj and qj are constant.  The number of time derivatives retained in the operators P

and Q are denoted by m and n, respectively; j is the order of differentiation.  Equation

(1.2) can describe a spring-dashpot model made of multiple spring and dashpots.

The Maxwell model of a one-dimensional viscoelastic material consists of a linear spring

and a linear dashpot connected in series as shown in Figure 1.1a.  The Kelvin model is

consists of a linear spring and a linear damper connected in parallel.  If more than one

spring or linear damper are to be included in the model (to better approximate material

behavior over a frequency range), more terms may be retained in Equation (1.2).  The

three-parameter model of a standard viscoelastic solid is shown in Figure 1.1b.  It

consists of a linear spring K1 in series with a linear Kelvin element [4] (spring K and

dashpot C in parallel).

Linear viscoelastic stress-strain laws may also be described using hereditary integrals.

The applied load consists of infinitesimal steps; the response to each one of these steps is

summed to give the total response.  The integral form of the one-dimensional viscoelastic

constitutive laws is described in Equation 1.3.

Figure 1.1a. Maxwell model

Kelvin Chain

K1
Figure 1.1b.  Standa
K

3

r

C

K

C

d viscoelastic solid
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( ) ( )

( ) ( )

ε
∂τ

∂

σ
∂ε

∂

t J t t
t
t

dt
t

or

t Y t t
t
t

dt
t

= −










−
∫

= −










−
∫

( ' )
'
'

'

( ' )
'
'

'

0

0

(1.3)

J(t) is the creep compliance function and Y(t) is the relaxation modulus function [3].  The

creep compliance function and the relaxation modulus function characterize the

material’s memory of its past deformations and stresses [4].

Equations (1.1) and (1.3) are equivalent.  The creep compliance function and the

relaxation modulus may be obtained from the operators P and Q through Laplace

transforms. If harmonic stress and strain states are considered

σ σ ω

ε ε ω

=

=

0

0

e j t

e j t
(1.4)

the differential linear viscoelastic constitutive law (Equation 1.1) yields

σ ε0 0=

= +

K

K K jK

*

* ' "
(1.5)

where K* is the material complex modulus and K’ and K” are the material storage and

loss moduli, respectively, corresponding to the circular frequency ω [3].  Equation (1.5)

states that at a given frequency, a phase shift exists between an oscillatory stress and its

corresponding displacement response.  Experiments have shown that steady stress-strain

trajectories for a linear viscoelastic material are elliptical in shape [5].  Only the

relaxation modulus function is needed to completely determine the storage and loss
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moduli [4].  The material moduli of linear viscoelastic materials are functions of

frequency and temperature; however, they are independent of stress and strain.

1.3. Linear material damping

Damping is the dissipation of mechanical energy and is produced by the some non-

conservative forces acting on a given structure.  Damping may be classified into external

and internal, depending upon the nature of the non-conservative forces acting on the

structure.  External damping is caused by forces acting on the object, such as damping

due to air resistance or Coulomb damping due to friction.  Internal damping is caused by

physical phenomena intimately linked to the structure of the material [6].  In polymers,

material damping is a direct result of the relaxation and recovery of the long molecular

chains after stress [7].

As stated before, linear damping materials have material moduli that depend on

frequency and temperature, but not on strain and stress levels.  The loss modulus,

introduced in Equation (1.5), is written in terms of the loss factor η as

K K' ' '= η (1.6)

The material loss factor is equal to the tangent of the phase angle δ between a time

harmonic stress input and the corresponding harmonic strain

( )η δ= tan (1.7)

The phase angle may be written in terms of the storage and loss moduli as

δ = − 





tan "
'

1 K
K

(1.8)
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Both the loss and storage moduli are frequency dependent.  Plots of loss factor and

Young’s modulus versus frequency may be found in Reference [9] and Reference [10].

The frequency dependence of the complex modulus components must be captured

accurately; simple models such as Maxwell or Kelvin model are not able to do that. The

Maxwell model behaves like a fluid at low frequencies, while the Kelvin model becomes

infinitely stiff at high frequencies. Prediction accuracy increases by adding more springs

and dampers.

1.4. Damping modeling in finite element analysis

The structural response of a system is determined in computational structural dynamics

by solving a set of n simultaneous, time-dependent equations [11]

{ } ( ){ }M x C x K x f t
.. .











+












+ = (1.9)

where M, K and C are the mass, stiffness and damping matrices, respectively, and {f(t)}

is the time-dependent applied load.  Several methods may be used to compute the

damping matrix and each one is presented in what follows.

One of the first methods to model damping is that of proportional damping.  In this

method, the damping matrix is considered to be proportional to the mass and stiffness

matrices through two coefficients α and β (Rayleigh’s coefficients) [12]:

C M K= +α β (1.10)

The Rayleigh coefficients are calculated directly from the modal damping ratios ζi.  The

damping ratios are the ratio of actual damping to critical damping for a particular mode

of vibration.  If ωi is the natural circular frequency of the ith mode, the Rayleigh

parameters satisfy the following relationship:
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ζ α
ω

βω
i

i
i= +

2 2
(1.11)

The drawback of this method is that the damping matrix depends on the arbitrarily

determined parameters α and β, and thus has no physical motivation. 

 

Another well-known approach to model damping is the modal strain energy (MSE)

method [13], [14].  The main assumption is that the modes of the damped structure are

similar to the real normal modes of the undamped system.  Modal analysis of the

mechanical system is performed by choosing material properties corresponding to a given

frequency and temperature.  The effective modal loss factors ηr are given by the weighted

sum of the loss factors of each constituent material:

η
η

r i
r Ui

r
i

Ui
r

i

=
∑

∑
(1.12)

 where Ui
r is the strain energy corresponding to component i in vibration mode r.  The

modal loss factors are introduced in the uncoupled modal equations

( )α η ω α ω α
.. .r

r r
r

r r l r t+ + 



 =

2
(1.13)

where αr is the modal coordinate, ωr is the undamped frequency of mode r and lr is the

associated modal forcing.  The displacement {x} of the structure is the superposition of

all modes {Pr} of the undamped system multiplied by the corresponding modal

coordinate
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{ } { } ( )x Pr r t= ∑ α (1.14)

The disadvantage of the MSE method is that the effective modal loss factor is obtained

iteratively for each vibration mode, since material properties are frequency dependent.

The damped modes of vibration are not orthogonal and there is no information on the

relative phase of vibration at points on the structure.

Segalman uses a perturbation approach to model linear “slightly” viscoelastic structures

[15].  Hereditary integrals, see Equation (1.3) are used in conjunction with the equation

of motion and the corresponding nonlinear eigenvalue problem results.  This model only

applies to “slightly” damped structures.  The undamped eigenvalues and eigenmodes

need to be found before the computation of the stiffness and damping matrices can occur.

This method may not be used to model nonlinear or high-loss linear damping material

behavior.

Bagley and Torvik use differential operators of fractional order to model linear frequency

dependence of viscoelastic materials [16], [17].  The general form of such model is

( ) ( ){ } ( ) ( ){ }σ β σ ε α εt bmD m t
m

M
E t EnDn

n

N
t+

=
∑ = +

=
∑

1
0

1
(1.15)

where E0, En, bm, β, and α are all material properties to be determined experimentally.

Time-dependent stresses and strains are related by derivatives of fractional orders.  The

fractional derivative is

( ){ } ( )
( )

( )
D x t d

dt
x

t

t
dα

α
τ

τ α τ α=
− −

∫
1

1 0Γ
,   0 < < 1 (1.16)

and Γ is the gamma function.
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This model connected the molecular theories for uncrosslinked polymer solids and linear

viscoelastic models through fractional calculus.  By considering the first fractional

derivative in each series of Equation (1.15), a five-parameter model is obtained

( ) ( )
( )

( )σ ω
ω α

ω β ε ω* *j
E E j

b j
j=

+

+













0 1
1 1

(1.17)

where σ∗ (jω) and ε∗ (jω) are the Fourier transforms of the stress and strain time records,

respectively.  The frequency dependent complex modulus E* is

( )
( )

E
E E j

b j
* =

+

+













0 1
1 1

ω α

ω β (1.18)

This method only considers the case where α=β.  The stiffness matrix of a viscoelastic

element was built and the ensuing finite element equations were obtained in the

frequency domain.  The solutions of the system of equations had to be transformed from

the frequency domain back into the time domain.  Only loads that have a Laplace

transform may be included in subsequent analyses.  The Bagley-Torvik approach is only

applicable for uncrosslinked polymer solids of linear viscoelastic materials.

Padovan based his computational algorithms for finite element analysis of viscoelastic

structures on fractional integral-differential operators [18].  The basis for the model

formulation is the fractional derivative by Grunwald [19]

( ){ }D x t
N

t
N

Ak x t k
Nk

Nα
α

=
→∞







−
+ −









=

−
∑












lim 1 1

0

1
(1.19)

where
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( )
( ) ( )Ak

k
+ =

−
− +1 1
Γ

Γ Γ
α

α α
(1.20)

The model integrates the fractional derivative of Equation (1.19) in a displacement-based

finite element [20] framework by considering a truncated time record of the dependent

variable (stress or strain) in Equation (1.15).  A viscoelastic, displacement-based, time-

domain finite element model results, which may be solved for any type of loading.  The

Padovan model is valid only for viscoelastic materials that may be modeled through

fractional calculus.

Enelund and Lesieutre introduced a fractional derivative model of linear viscoelasticity

based on the decomposition of the displacement field into elastic and anelastic

displacement fields [21].  A differential equation of fractional order in time describes the

evolution equation of the anelastic field and allows this current model to represent weak

frequency dependence of damping characteristics.  The anelastic displacement field is

coupled to the total displacement field through a convolution integral with a Mittag-

Leffler function kernel.  This viscoelastic model is integrated in a structural dynamics

context through the development of related finite element.  This method was then used to

analyze the response of a viscoelastic bar.

Time- and frequency-domain finite element equations, based on fractional calculus

modeling of viscoelastic materials, were developed by Chern [22].  The stress-strain

relationship for a three-parameter model based on Equation (1.15) is

( ) ( ) ( ) ( ) ( )( ) ( )σ ε
α

τ α
τ

ε τ τ εt E t
E

t
t d

d
d= +

−
− −∫ ≥ =0

1
1 0

0
Γ

,   t 0,  0 (1.21)

This was then discretized with a first order forward difference,
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( ) ( )
σ α α

ε α α
εn E

E

t
n

E

t
ini

i

n
= +

−













−
−











 =

−
∑0

1
2

1
2 1

1

∆ Γ ∆ Γ
(1.22)

where

( ) ( )

( ) ( ) ( )

σ σ ε ε

α α α

n tn t n

n i n i n i

= =

= − − − − + − − − − + −

,  n
tn -  current time

ni
i = 0,.., n

1 1 2 1 1 1 (1.23)

Then Equation (1.22) and Equation (1.23) were integrated in a finite element model for a

three-dimensional isotropic case.

The model developed by Hughes and Golla incorporated the hereditary integral form of

the viscoelastic constitutive law in a finite element model [23].  The finite element

equations are derived in the Laplace domain through the Ritz technique.  The time

domain equations are obtained from the frequency domain equations by the linear theory

of realizations.  The Laplace transform material modulus used in the Golla-Hughes

equations is

( )G s
s

G k
s k ks

s k ks kk

n
= ∞ +

+

+ +=
∑

1 2 2
2 2 21

( )α
ς ω

ς ω ω
(1.24)

where s=jω, G∞  is the equilibrium modulus, and aj and bj are experimentally

determined material constants.  The method yields a system of second-order matrix

differential equations.  Internal dissipation coordinates augment the stiffness, damping,

and mass matrices.  This technique is applicable only for linear viscoelastic materials and

may be applied only when the system is initially at equilibrium.
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McTavish and Hughes extended the Golla-Hughes model and formulated the GHM

(Golla-Hughes-McTavish) model for linear viscoelastic structures [24], [25].  In this new

formulation, the material modulus in the Laplace domain becomes

( )G s G i
s i is

s i is ii
= ∞ +

+

+ +
∑













1

2 2
2 2 2α

β ξ

β ξ ξ
(1.25)

where G∞  is the equilibrium modulus, ai, bi and ξi are experimentally determined

material constants.  The material modulus is modeled as the sum of mini-oscillators, as

shown in Equation (1.25).  These oscillators are characterized by the three constants, ai,

bi, ξi, and are characterized by a viscous damper, spring and mass.  The motion of the

mass represents the internal dissipation coordinate.  Again, this method leads to a system

of second order differential equations of motion in the frequency domain, where the

mass, stiffness, and damping matrices are augmented by the internal dissipation

coordinates.  The stiffness matrix is ill-conditioned and spectral decomposition is needed

to remedy the problem.

Yiu introduced another time-domain technique developed to include frequency-

dependent damping behavior of linear viscoelastic materials in a finite element

framework [26], [27].  This technique employs a generalized Maxwell model to represent

material behavior and the dynamic material modulus is defined as

( ) ( )G s G s= ∞ν (1.26)

where ν(s) is the viscoelastic operator defined as

( )υ
α τ

τ
s i is

isi

m
= +

+=
∑1

11
(1.27)
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and αi, and τi are constants of the ith Maxwell element.  This modeling technique is a first

order method.

The viscoelastic operator acts on the static elastic stiffness matrix of the structure.  As a

result, the dynamic stiffness matrix in the Laplace domain is obtained.  Internal

coordinates are needed so that frequency domain equations may be converted to the time

domain.  Each internal coordinate is related to a Maxwell element.  The viscoelastic

operator was modified to be

( )υ τ
α τ

τ
s s i is

isi

m
= +

+=
∑1 0 11

(1.28)

With this change, a dashpot is added in parallel with the generalized Maxwell model to

rule out instant elastic response.  As with the GHM method, the Yiu method only models

linear viscoelastic materials.

Lesieutre developed the “augmenting thermodynamic fields” (ATF) method to model

frequency dependent material damping of linear viscoelastic structures in a finite element

context [28].  The ATF model the dissipative behavior of linear damping materials.

Partial differential equations of evolution and coupled ATF-displacement field equations

are found from irreversible thermodynamic theory [29].  A finite element model is then

obtained from the discretized system of equations.

An one-dimensional formulation of the ATF model was introduced by Lesieutre and

Mingori [30].  The material constitutive equations are derived from the Helmholtz free

energy function f.  Stress-strain equations for a simple rod vibrating longitudinally are
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σ ∂
∂ε

ε δξ

∂
∂ξ

δε αξ

= = −

= −

f Eu

fA = -

(1.29)

where EU is the unrelaxed or low frequency modulus of elasticity, ξ is a single ATF, and

the affinity A is to the ATF just as the stress σ is thermodynamically conjugate to the

strain ε.  The coupling material property between the mechanical displacement field and

the ATF  is δ while α relates the change in affinity A to those in the ATF ξ.

The ATF evolution equation is determined from the irreversible thermodynamics

assumption that the rate of change ξ is proportional to its deviation from an equilibrium

value.  This results in coupled partial differential equations in terms of the displacement

field u and the gradient of the ATF γ:

ρ δγ

γ γ δ
α

u Euu

B B u

..
"

.
"

− = −

+ = 





(1.30)

where B is the inverse of the relaxation time constant at constant strain and ρ is the

density.

The coupled equations of motion are discretized using the method of weighted residuals,

and a first order equation system is obtained.  The single ATF, rod finite element is

shown in Figure 1.2.
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Figure 1.2.  ATF rod finite element
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 are sometime needed to better approximate frequency

1], [32].  The complex modulus may be written as
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(
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= +

+=
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


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

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+=
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
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∆ ∆

ω
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ω
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is the relaxed modulus and ∆i is the relaxation streng

, or high frequency modulus, and the relaxation strength
q2
p2
 (1.31)

 dependence of material

)
)

i
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





2

2 (1.32)

th of the ith ATF.  The

 ∆i is



16

Eu Er i
i

N

i
i

Er i

= +
=
∑











=

1
1

2

∆

∆
δ

α

(1.33)

The ATF parameters are obtained by iteratively curve fitting the complex modulus of

Equation (1.32) to experimental data [33].

The “Anelastic Displacement Field” ADF, method was developed to extend the ATF

method to three-dimensional states [34], [35].  The effect of material anelasticity on the

displacement field was considered.  The displacement field u was made of an elastic

component and an anelastic component: uE(x,t) and uA(x,t), respectively

( ) ( ) ( )u x t uE x t uA x t, , ,= + (1.34)

For a one-dimensional bar, see Figure 1.3., with properties constant along the length, the

equation of motion is

ρu Euu Euu A f t
..

" " ( )− + = (1.35)

where f(t) is the applied load.

Figure 1.3.  One-di

u(x,t)

x

mensional bar
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The anelastic strain rate is expressed as

∂ε
∂

ε ε
A

t
A A= − −



Ω (1.36)

where Ω is the inverse of relaxation time at constant strain and the equilibrium anelastic

strain rate εA is coupled to the total strain ε by a coupling parameter c

ε εA
c

=  (1.37)

Equations (1.36) and (1.37) may be combined in the following form

u
A

u A
c

u"
.

" "+ =Ω Ω  (1.38)

To build a one ADF model, three independent constants are needed: EU, c, and Ω.  The

complex modulus for a single ADF is, assuming harmonic time dependence of the

displacement field u,

E Eu ic c

* = −
+



































1 1
ω

Ω

(1.39)

where ω is the circular frequency.

Just like in the ATF model, the ADF parameters are obtained by curve fitting ADF

complex moduli to the corresponding experimental data [34].  The equations of motion

are discretized by the weighted residuals method to obtain a finite element model.
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Multiple ADF may be used to better approximate experimental frequency dependent

modulus data.  For a one-dimensional rod, the finite element equations are presented in

Equation (1.40). ADF rod finite elements, shown in Figure 1.4., were first used in

numerical simulation of longitudinal wave propagation through a clamped-free rod by

Govindswamy [36].
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Figure 1.4.  ADF rod finite element

Banks introduced a dynamic partial differential equation model based on large

deformation elasticity theory [37].  Simple extension and generalized simple shear

models are presented.

1.5. Longitudinal wave propagation through bars

In this section, a brief introduction to the theory of longitudinal wave propagation

through bars is presented.  The wave equation governing the elastic longitudinal rod

motion is [38]

u1

uA
2

u2

Lel

x

uA
1
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∂
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ρ ∂

∂x
E u

x
q u
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



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+ =
2

2 (1.41)

where E is the Young’s modulus of elasticity, which may be frequency dependent, ρ is

the material density, u(x) is the displacement at a station x along the rod and q(x) is a

body force acting along the bar.  The main assumption is that during deformation,

initially plane sections of the rod remain plane.  This equation assumes uniaxial stress

and neglects the effects of the Poisson’s ratio on the lateral displacements.  In an elastic

rod, i.e., the Young’s modulus has weak or no frequency dependence, the bar velocity is

defined as

c E=
ρ

(1.42)

Propagation or bar velocities in most metals are around 5000 m/s.  In contrast, particle

velocities in bars are several orders of magnitude less.  In an elastic bar, the particle

velocity is defined by, [38],

( ) ( ) ( )V x t
c x t

E
c t,

,
= − =0

0
σ

ε (1.43)

where σ is the stress in the bar at the given time and location, ε is the corresponding

strain, and c0 is the bar velocity.

The propagation of stress pulses through longitudinal bars is analyzed next.  Consider

that an incident stress pulse reaches the fixed boundary of a fixed-free rod.  At the fixed

boundary, the reflected stress pulse has the same sign as the incident stress pulse.  At the

free boundary, the reflected pulse has an inverted sign compared to the incident pulse.

On a free-free rod, the initial stress pulse reflects repeatedly due to end reflections.  Also,
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at the free ends of the bar, velocity doubling occurs.  All points on the bar move in a

series of steps [38], as shown in Figure 1.5.

Figure 1.5. Time record of displacement at end and in middle of a free-free elastic bar

During longitudinal wave propagation through a bar, a phenomenon called geometrical

dispersion is encountered.  As a result of the longitudinal displacement and Poisson’s

ratio ν, displacements in the other two coordinates y and z occur (v and w, respectively)

v y u
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z u
x

= −

−

υ ∂
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The wave propagation equation accounting for lateral inertia effects has been developed

by Love [38].  If a rectangular pressure pulse incident on one end of a free-free rod

occurs, the resulting displacement, as predicted by the distortionless bar theory, would be

a ramp function.

The geometrical dispersion phenomenon smoothes the discontinuity at the base of the

ramp.  It also accounts for small oscillations about the classical displacement result.

These results were verified experimentally [38], [40].  Davies [38] presented another

interesting result caused by dispersion in a free-free bar of an incident step pulse.  The

ensuing stress in the bar has an oscillatory character about the result predicted with the

distortionless bar theory.  Geometrical dispersion becomes a factor only when the

wavelength of a given frequency component present in the incident stress pulse Λ,

Λ = 2π
ω

c , (1.45)

is on the same order or shorter than the bar radius a.  Lateral inertia causes high-

frequency pulse components to travel at lower velocities than lower frequency

components, as observed by Kolsky [38] from experimental data.  A very sharp pulse

ultimately spreads out into a shape several bar diameters in length.  Also, there is no

sharp discontinuity at the pulse’s arrival at a given station long the bar.

Kolsky [38] studied the propagation of stress pulses through viscoelastic rods both

analytically and experimentally.  In a viscoelastic rod, both viscoelastic attenuation and

viscoelastic dispersion phenomena are present.  Since viscoelastic materials exhibit

frequency dependence of their material moduli, the bar velocity also varies with

frequency.  If a plane sinusoidal stress wave of amplitude ( )σ ω0 cos t  propagates along a

viscoelastic medium, it attenuates as it reaches a distance x from the origin and the new

amplitude is ( ) ( )( )σ α ω0 exp cos /− −x t x c .  The attenuation coefficient is α and is

related to the loss factor tan(δ) by
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( )α ω δ=
2c

tan (1.46)

When a mechanical pulse propagates down a viscoelastic bar and is attenuated, high-

frequency pulse components travel faster and are attenuated more rapidly than those of

lower frequency; note that this effect is opposite to that produced by geometric

dispersion.  Kolsky [38] has shown by numerical Fourier methods, that it is possible to

predict the shape of a mechanical pulse as it propagates down a viscoelastic bar if the

material moduli dependence on frequency is known.  Furthermore, he was able represent

the pulse shape as it travels along a bar in an “Universal Shape” which applies to all high

damping polymers and all distances of travel only if the attenuation coefficient is directly

proportional to the circular frequency ω [40], [41].  These facts were demonstrated

experimentally by observing the propagation of a stress pulse, generated by charges of

lead azide, along various viscoelastic bars.

1.6. Hopkinson bar shock accelerometer calibration procedure

One practical implementation of longitudinal wave propagation through elastic bars is the

Hopkinson bar calibration procedure for shock accelerometers.  The following paragraph

describes the current Hopkinson bar calibration methodology in general [42-44] and the

calibration system currently in use at PCB Piezotronics Inc. in particular [44].  This

system is shown in Figure 1.6.

A Hopkinson (or Davies) bar is a long, thin, elastic rod, in which a stress pulse is

generated by a projectile (bullet or striker bar) impact at one end of the bar.  The test

accelerometer is fixed at the other free end.  The bar is simply supported at two

longitudinal locations.  Two resistive strain gauges, located in the middle of the bar and

diametrically opposite, are used as reference and to compensate for any bending strains

that might occur. The compressive stress pulse generated by the projectile impact

resembles a half sine or versed cosine shape.  It propagates along the elastic bar at a

velocity of c0.  The pulse is reflected at the free end as a tension wave.
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Figure 1.6.  Hopkinson bar test setup

The particle velocity at the end of the bar is proportional to the measured strain, Equation

1.43.  The reference acceleration at the end is obtained by differentiating the doubled

reference particle velocity with respect to time

ar
dv
dt

c d
dt

= = 2 0
ε (1.47)

The sensitivity of the test accelerometer is obtained, for a chosen frequency range, by

computing the transfer function between the accelerometer output and the reference

acceleration.  This method is called the spectral method.  The test accelerometer

sensitivity SA over the frequency range of interest is

( ) ( )
( )SA j

VA j
Vref j

ω
ω
ω

= , (1.48)
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where ( )VA jω  and ( )Vref jω are the Fast Fourier Transform (FFT) of the accelerometer

output and of the reference, respectively.  The frequency range of interest is usually from

1 to 10 kHz.  An average of the sensitivity array for the entire frequency range of interest

is made to yield a single sensitivity value.

This calibration technique relies upon the following assumptions [44]:

1. The bar is elastic; thus the pulse attenuation due to internal friction is negligible.

2. Geometrical dispersion is kept small in the calibration frequency range of interest by

choosing a small enough bar diameter.

3. Impact levels must be small enough to keep strain levels within elastic limits so that

linear elastic stress-strain relationships apply.

4. The Hopkinson bar must be long enough to permit the propagating stress pulse to

become uniform, i.e. attain a half-sine shape.  Such an uniform shape does not

develop initially at the impacted end of the bar due to transients caused by

projectile/bar interaction [40]. The stress pulse becomes uniform after traveling a

distance more than 15 bar diameters.

5. The compression pulse that reaches the accelerometer end must be unaffected by the

presence of the test gauge.  This is achieved by keeping the length of the

accelerometer small in comparison to the wavelengths included in the frequency

range of interest and by keeping the accelerometer diameter small in comparison to

the bar diameter.

The Hopkinson bar used at PCB Piezotronics is 2.03m long, has a 1.9-cm diameter, and

is made out of titanium alloy Ti6Al4V, [44].  For frequencies less than 80 kHz,

geometrical dispersion is negligible.  The measured attenuation for this titanium alloy bar

is less than 3%.  A technician releases a trigger that allows compressed air from the air

plenum to push a projectile through the launch tube.  The projectile strikes the bar at one

of the free ends.  The velocity of the projectile and the amplitude of the stress pulse are

controlled by the air pressure inside the plenum chamber.  The impact projectile may be

made out of steel or DELRINTM, a plastic material.  The shape (blunt or sharp impact



25

end) and material of the projectile also influence the duration and shape of the resulting

stress pulse.  The stress pulse generated by a steel bullet has a shorter duration and higher

amplitude than the one created by a plastic bullet; a flat-end bullet causes a shorter and

stronger stress pulse than a sharp-end projectile.

A fast GageTM data acquisition board (5 megasamples/second and 12 bit A/D) controlled

by a LabviewTM based code (developed by the author) acquires and displays both strain

gauge and accelerometer traces, corresponding to the first and second stress pulses, as

shown in Figure 1.7.  The technician then selects the data record of the first incident

strain gauge pulse and another record of the first accelerometer transient with the cursors

provided.  The code computes and displays the sensitivity of the accelerometer for the

corresponding reference acceleration level, in g’s (1 g = 9.806 m/s2), as shown in Figures

1.7. and 1.8.  It also displays the particle velocity along the bar, the power spectrum of the

accelerometer and strain gauge incident responses, between the incident and the reflected

strain gauge power spectrum and the sensitivity deviation with respect to the vibration

sensitivity measured at 100 Hz, Figure 1.8.  After repeating the calibration procedures for

various shock levels and recording sensitivity and zero-shift, a linearity plot of sensitivity

versus reference acceleration is obtained.

Zero-shift is defined as an undesired change in the accelerometer’s zero acceleration level

after the accelerometer has been subjected to high g shock levels, see Figure 1.7.  It is

expressed as a percentage of the peak acceleration.  Some shock accelerometer designs

employ a mechanical filter (usually made of a viscoelastic material) to protect the sensing

element from the effect of very high shock transients. The response of such

accelerometers may exhibit significant zero-shift when subjected to very high shock

levels [44].  Some shock accelerometer designs employ a mechanical filter (usually made

of a viscoelastic material) to protect the sensing element from the effect of very high

shock transients. The response of such accelerometers may exhibit significant zero-shift

when subjected to very high shock levels [44].
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Figure 1.7.  Front panel of LabviewTM data acquisition code showing acquired signals,

computed sensitivity, zero-shift and shock level
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Figure 1.8.  Sensitivity data for an accelerometer

1.7. Viscoelastic mechanical filter designs for shock accelerometers

As mentioned in Section 1.6, shock accelerometer sensing elements require protection

from frequency components of input shock spectra found beyond the frequency range of

interest.  Shock accelerometers are generally designed to have their resonant frequency

well above the frequency range of interest; however some short duration shock transients,

whose shape approach that of a Dirac delta function, contain frequency components

above the resonant frequency of most shock accelerometers [44]. Proper design of

mechanical filters for shock accelerometers allows good protection of the sensing
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element from harmful shock transients.  Very few papers address the design of

mechanical filters for shock accelerometers.  Even fewer use a finite element approach to

study the shock response of a shock accelerometer model comprising a mechanical filter.

One paper that addresses the use of finite elements and frequency dependent damping

models for design of shock accelerometer comprising a mechanical filter is that published

by Oyadiji et al. [45].  In this paper, a model of a mechanical filter made of a 4-mm thick

and 40-mm diameter viscoelastic disk sandwiched between two identical metal plates is

analyzed with a finite element approach.  The frequency-domain complex Young’s

modulus is transformed to the time-domain extensional relaxation function using a

collocation method.  The finite element code accepts viscoelastic data in terms of Prony

series coefficients.  The Wiechert-Kelvin model of viscoelasticity states that the

extensional relaxation modulus is

( ) ( )E t Ee Ek t k
k

= + −∑ exp / τ (1.49)

where τ k is the relaxation time constant, t is the time, Ee is the equilibrium or long-term

modulus, and Ek are the relative relaxation moduli.  This model is applied to the time-

domain data, and Equation (1.49) is rewritten to include the instantaneous modulus (the

modulus at time t=0 or when k=0),

( )E j E t j Eg ek
k

t

kk
= = −∑ − −







∑





















1 1 exp

τ
, (1.50)

where ek Ek Eg= / ;  k = 0,1,2,..N;  j = 1,2..k ; Ej are the derived relaxation moduli, Eg

is the glassy modulus, ek is the modulus ratio.  Equation (1.50) represents the Prony

series.  These coefficients are derived by curve fitting the derived time-domain

extensional relaxation modulus data to experimental data.  The curve fit coefficients are

determined through a collocation method.  The finite element mesh employs

axisymmetric finite elements for incompressible and near incompressible material

behavior.  The filters are subjected to a half sine acceleration pulse of 10000 m/s2 and of
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10-4 second duration.  The paper analyzes the shock response of five mechanical filter

viscoelastic materials.  No comparison to experiment is made.  Frequency-dependent

modulus data is given for the five materials, but no density information is presented.

Tomlinson et al. [46] continued to investigate methods of designing mechanical filters

with commercial finite element code.  The finite element code ABAQUSTM was used to

predict large static and dynamic strains, and to investigate the optimum finite element

mesh from a computational point of view.  The predicted results matched well the

experimental results.

Bateman developed a mechanical filter for a piezoresistive shock accelerometer [47].

The design approach was purely experimental.  The Hopkinson bar was used to perform a

frequency response analysis between the accelerometer with mechanical filter and the

reference acceleration obtained from strain gauge readings (see previous Section 1.6).

The mechanical filter was tuned so that its power spectrum matched that of the reference

acceleration in order to prevent the filter from amplifying the shock pulse.

Chu discussed the critical design parameters for a mechanical filter [48].  They are

a) filter-accelerometer combination must be robust to shock levels;

b) amplification of the mechanical filter must be very low since, otherwise, the linearity

of the passband data would be negatively affected; and

c) relative displacement between transducer and mounting surface must not exceed the

linear range of spring/ damping materials and also must prevent the accelerometer

from “bottoming” out.

An accelerometer with a mechanical filter was successfully built and tested, based on

these above principles.

1.8. Objectives and Motivation of the Current Research

The objectives of the current research are listed below.
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1) To model mechanical filters subjected to shock loading

It is desirable to accurately model mechanical filters since they are used often in

engineering practice to alleviate or eliminate shock transients. Theoretical simulations

and experiments involving mechanical filters subjected to shock will be conducted, and

the results will be compared to ADF model predictions.

2) To study longitudinal wave propagation through viscoelastic bars.

Longitudinal wave propagation along a viscoelastic PERSPEXTM bar will be studied with

an ADF axisymmetric and plane-stress finite element model.  Finite element model

predictions will be compared to theory and experiment.  The ability of the new models to

capture such phenomena as geometric dispersion, and viscoelastic dispersion and

attenuation will be analyzed.

3) To develop single and multiple ADF axisymmetric and plane stress finite elements.

Finite elements are needed to properly model three-dimensional and bi-dimensional

viscoelastic structures with frequency dependent material properties.  These new finite

elements will be based upon the Anelastic Displacement Fields (ADF) theory.

Theoretical simulations and experiments, involving longitudinal wave propagation

through elastic and viscoelastic bars, will be used to validate ADF plane stress and

axisymmetric finite element model results.

4) Determine material moduli frequency dependence using Hopkinson bar experiments

This study will also focus on the determination of material moduli frequency dependence

by curve fitting ADF model predicted results to experimental displacement data, i.e.,

match frequency content and magnitude of predicted and experimental displacement

pulses.
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1.9.       Outline

To attain the goals set forth in the preceding section, this work addresses the enumerated

topics in the following Chapters:

Chapter 2: This chapter presents the theoretical framework and develops single and

multiple ADF plane stress and axisymmetric linear finite elements.  These new types of

finite elements are created to aid in the modeling of complicated three-dimensional and

two-dimensional structures, such as viscoelastic mechanical filters, beams with

viscoelastic damping layers etc.;

Chapter 3: This chapter compares results of the ADF axisymmetric and plane stress

finite elements against theoretical and experimental results.  The new finite elements are

used to study longitudinal wave propagation in elastic and viscoelastic bars, and to model

behavior of mechanical filters subjected to shock transients.  It presents a method to

determine material moduli frequency dependence by curve fitting ADF model results to

corresponding experimental values;

Chapter 4: This chapter summarizes current work and suggests future research.
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CHAPTER 2.  MODEL DEVELOPMENT

2.1.       Development of the plane stress triangular ADF finite element

This chapter shows how frequency-dependent material behavior modeled with anelastic

displacement fields (ADF) is incorporated in a finite element framework and presents the

development of two new types of ADF finite elements: the displacement based triangular

plane stress and the triangular axisymmetric finite element.  These new types of finite

elements permit the modeling of complex 3-D viscoelastic structures and the

understanding of frequency dependence in such structures.  First, the linear ADF

equations of motion and the material constitutive equations are presented; then, the ADF

finite element equations are developed.

The ADF method was chosen to develop a finite element model since [33]

•  it is has a physical basis based on the principles of irreversible thermodynamics and

•  it has the potential to model both weak and strong frequency dependent material

behavior.

 An ADF-based model is characterized by time domain equations.  These time domain

equations coupled with an appropriate time integration scheme offer the possibility of

predicting structure response to shock loads.

 

2.1.1.    Assumptions and stress-strain equations

 In this work, the single-ADF, plane-stress, triangular finite element is created to model

bars of rectangular cross section subjected to transient loading.  The two-dimensional

plane stress finite element allows the capturing of longitudinal wave propagation

phenomena such as geometric dispersion.



33

2.1.1.1. Plane stress approximation

 According to the theory of elasticity, the following assumptions exist for plane stress
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 The plane stress element is shown in Figure 2.1.  The displacement field is given only by

displacements u and v in the Cartesian and orthogonal x and y directions, respectively

[20].  Only the stresses in the x and y direction are nonzero and contribute to internal

work; however, from Equation (2.1) it may be seen that the strain in the z direction is not

zero.

Figure 2.1.  Plane-stress finite element

2.1.1.2. ADF constitutive equations

 The ADF approach focuses on the effects that irreversible thermodynamical processes

have on the displacement field.  The total displacement field is considered to be the sum

of elastic and anelastic components [33]

t

m

ji

Z(3)X(1)

Y(2)
O
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 ( ) ( ) ( )u x t uE x t uA x t, , ,= + (2.2)

 

where uE(x,t) is the elastic displacement fields and the uA(x,t) is the anelastic

displacement field.  The strain tensor is defined by linear strain-displacement equations

 ε
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u l
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2
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Strains are also described in compressed matrix notation, using the conversion

 

 

ε ε
ε ε
ε ε
ε ε
ε ε
ε ε

1 11
2 22
3 33
4 2 23
5 2 31
6 2 12

=
=
=
=
=
=

(2.4)

 

 The stress-strain relationship for an elastic material may be expressed in tensor form as

 σ εij Eijkl kl
E= (2.5a)

or in compressed matrix form

 

 { } [ ]{ }σ ε= E E (2.5b)

 

where εE







 is vector consisting of the elastic strains and [E] is a matrix consisting of

unrelaxed or high frequency material elastic constants.  Equation (2.5) may be expressed

with the help of invariant scalar moduli as, [33]
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where [Mm] is the strain weighting matrix and βm is the corresponding scalar modulus.

For an isotropic material, Equation (2.6) takes the form

 

 { } { } { }σ β ε β ε= +KMK
E

G MG
E (2.7)

where βK and βG are the bulk and shear moduli, respectively, and the matrices MK and

MG are
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Since the elastic strain is the difference between the total strain and the anelastic strain,

the Equation (2.5) may be written in compressed matrix and vectorial form as,

respectively,
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where { }ε  and { }εA are vectors containing the total and anelastic strains, respectively.

The stresses (σi, i=1,2..6), and anelastic stresses (σA
i) may be expressed in terms of the

anelastic strain εA
i and total strains εi as [33]
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 If the plane stress approximations are used, Equation (2.10b) may be simplified to
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In the plane stress case, the stress in the Z Cartesian direction is zero, however
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As a result, the relationship between the strains ε3 and εA
3 may be found in terms of the

strains in the Cartesian X and Y directions (ε1 and ε2, respectively):
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If the anelastic strains would be neglected, Equation (2.13) would be reduced to the well-

known formula from the theory of elasticity [20]
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 The relationship between the anelastic stresses and the total and anelastic strains must be

found.  The same hypotheses that were valid for the elastic stress and strains are

considered for the anelastic stresses and strains; the plane stress approximations are
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 The relationship between the anelastic stresses, and the total and anelastic strains is found

from thermodynamics by selecting the total and anelastic strains as dependent field

variables.  For a reversible isothermal process, the differential of the Helmholtz free

energy density function is [28]

 

 dF ijd ij= σ ε (2.17)

 

 It may be seen that for isothermal reversible processes, the strain energy density function

equals the Helmholtz function.  Both anelastic and total stress must satisfy the following

conditions respective to the Helmholtz function [33]:
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 From thermodynamic considerations and for small deformations, the strain energy

density function is a positive definite function of the strains [28].  The quadratic form of

the free energy function may be found by considering Equation (2.9a)
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 where [EA] is a matrix made of anelastic material constants.  If the tensor form of

Equation (2.19) is substituted into Equation (2.18), the following equation is obtained in

tensor and matrix form, respectively
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A
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A E EA A
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= − 
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(2.20)

 

 Equation (2.20b) can be expressed as

 

 { } { } { }σ β ε εA
m Mm Cm

A
m

= −



∑ [ ] (2.21)

 

 if the assumption that anelastic behavior is similar to elastic behavior is made.  The scalar

parameter Cm is equal to

 

 Cm
m
A

m
m

m
= =

+β
β

1 ∆
∆

,     m = K,G (2.22)
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 and describes the coupling between the physical relaxation process (characterized by the

relaxation strength ∆m) and the total displacement field (K and G refer to the bulk and,

respectively, shear moduli).  By further expanding Equation (2.21), the constitutive

equations for the anelastic stress are found to be

 

 { } { } { } { } { }σ β ε ε β ε εA
KM K Ck

A
G MG CG

A= −



 + −



 (2.23)

 

By expanding Equation (2.23), as in [33], the following results are obtained
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(2.24)

 

By using the plane stress assumptions and simplifying Equation (2.24), a new

relationship between the anelastic stresses and elastic strains is obtained, similar to

Equation (2.11)
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The anelastic stress in the Z Cartesian direction is assumed to be zero, and an additional

relationship between the strains ε3 and εA
3 in terms of the strains in the X and Y Cartesian

orthogonal directions may be found.  First, let
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Then
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From Equations (2.13), (2.26) and (2.27), the strains ε3 and εA
3 are found to be
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The term E EA A
2 3 2 3ε ε−  appears in the σ1

A and σ2
A  stress-strain equations.  This term

may be developed using the expressions for strains ε3 and εA
3
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where
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(2.30)

As a result of these simplifications, the stress matrix expressed as a function of only the

ε ε ε1 2 6, ,   strains is
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By grouping the total stresses and anelastic stresses in the vectors { }σ  and { }σA ,

respectively, and all the total strains and anelastic stresses in the vectors { }ε  and { }εA ,

Equation (2.31) which can be condensed further to
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(2.32)

 

where matrices [ ]D1  and DA
1







 are, respectively
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2.1.2. Governing Equations

 The governing equations of a viscoelastic structure modeled with ADF are represented by

•  equations of motion describing the motion of the viscoelastic material particles as a

function of the total displacement field; and

•  relaxation equations describing the time history of the anelastic displacement field.

Together with the boundary conditions, the governing equations completely describe the

frequency and time dependent behavior of the viscoelastic material.

2.1.2.1. Equations of motion

The tensor form of the equation of motion for a material of density ρ, acted upon by a

body force fi, in Cartesian direction i (i=1,2,3) is [28]

ρ σui tt ij j fi, ,− = (2.35)

The stress may now be expressed in terms of the total and anelastic strains; Equation

(2.35) now becomes [33]

ρ ε εui tt Eijkl kl kl
A

j
fi,

,
− −



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



 = (2.36)



45

For the plane stress case, Equation (2.35), in terms of the total displacement u and v and

stresses is

ρ
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∂
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x y
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..
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(2.37)

The stresses are expressed in terms of the total and anelastic displacements
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 (2.38)

2.1.2.2. Relaxation equations

The relaxation equations may be obtained from a nonequilibrium thermodynamics

assumption, which states that the time rate of change of the state variable is proportional

to the conjugate quantity.  Here, the preceding assumption means that the rate of change

of the anelastic strain is proportional to the anelastic stress [33]
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ε σkl t
A Lklij ij

A
, = (2.39)

In what follows, a single anelastic displacement field (ADF) is considered.  The rate of

change of the anelastic strain is proportional to the difference between its equilibrium and

actual value ( εA )

ε ε εkl t
A

kl
A

kl
A

, = − −



Ω (2.40)

where Ω is the inverse of the relaxation time at constant strain.

The equilibrium value of the anelastic strain εA corresponds to a null anelastic stress

ε εA E ijkl
A Eijkl kl= 



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−1
(2.41)

The time rate of change of the anelastic strain becomes
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A
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A E ijkl

A
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
Ω (2.42)

or, extracting the anelastic stress, [33]
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The divergence of Equation (2.43) is
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Equation (2.44) may be developed in terms of the strains, Reference [33] as
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Equation (2.45) shows the coupling between the elastic and anelastic fields.  For the

plane stress case, Equation (2.45) becomes, after taking into account Equation (2.31),
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 (2.46b)

2.1.3.    Model development

In what follows, the elemental stiffness, mass and damping matrices for the plane stress,

single-ADF, triangular, finite element are developed.
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A single ADF, plane-stress, triangular finite element, is now defined.  Each node has two

degrees of freedom: u, displacement in the horizontal X direction, and v, displacement in

the vertical Y direction.  The element thickness is t and ∆ is the element area, as shown in

Figure 2.1.  The displacements are approximated using the following shape functions at

each node (denoted by subscripts i, j and m, respectively) of the triangular finite element

( ) [ ]Ni x, y
ai bix ciy

N x, y Ni j m=
+ +

2 1∆
  and  [ ( )] =  N  N (2.47)

where

a i x jym xmy j

bi y j ym y jm

ci xm x j xmj

= −

= − =

= − =

(2.48)

The shape functions Nj and Nm are obtained similarly to Ni.  In terms of the shape

function, the total and anelastic displacements of the finite element are, respectively
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(2.49a)
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The total and anelastic displacements are as a function of the shape function matrix [N]
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where the matrix [N] is
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and where {δ} and {δA} are the total and anelastic time dependent parameter coordinates,

respectively
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If the shape functions are substituted, the strain matrix as a function of the displacements

is obtained

{ }
{ } [ ]

( ){ }
( ){ }

ε

ε

δ

δA B
t

A t












=












(2.53)

and the matrix [B] is
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where
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In detailed matrix form, Equation (2.53) is expressed as
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The elemental mass matrix [m] is obtained from the expression of the kinetic energy, as

follows [33]
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Finally, the mass matrix may be written in the following form, if the thickness is constant

over the element
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where
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Note that
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The elemental stiffness matrix [k] can be extracted from the strain energy expression

[20].  The strain energy is shown in Equation (2.61) and the stiffness matrix in Equation

(2.62) [33]
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If the thickness of the element is constant, Equation (2.62) becomes

[ ]
[ ] [ ]
[ ]

[ ] [ ]
[ ]k BT D D

D DA Bt
K x K x
K x KA

x x

=
−

− 

















=
−

− 



















1 1
1 1

1 6 6 1 6 6

1 6 6 1 6 6 12 12

∆ (2.63)



54

The damping matrix may be extracted similarly from the first term of the equation for

virtual work (Equation (2.46) and [33])
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where {f} is the distributed force vector.  The damping matrix [c] is
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If the thickness t is constant across the element, the damping matrix becomes
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2.2.       Development of the axisymmetric triangular ADF finite element

In the current work, an axisymmetric triangular element is developed to address modeling

of more complex viscoelastic structures, such as viscoelastic O-rings.

2.2.1. Assumptions and stress-strain equations

According to the theory of elasticity, the following hypotheses are advanced for the

axisymmetric case [20]
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where u is the displacement in the radial direction r and v is the displacement in the

vertical direction z.

The shear stresses in the circumferential polar direction θ are null.  Note that any radial

strain induces a circumferential strain (ε2).  The coordinate system and the axisymmetric

finite element are shown in Figure 2.2.

Figure 2.2.  Axisymmetric finite element

2.2.2. Governing equations

The ADF constitutive equations for the axisymmetric case may be developed in a manner

similar to that used in the plane stress case (see Section 2.1.2) and are
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(2.68)
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where

E K G1
4
3

= +β β (2.69)

E K G

E G

2
2
3

3

= −

=

β β

β
(2.69 cont.)

The anelastic stresses may also be obtained in the same way as in Section 2.1.2.  The

axisymmetric hypotheses also apply to the anelastic stresses and strains
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∂
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

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
 = 0

(2.70)

In a similar way to Section 2.1.2, the relationship between anelastic stresses and anelastic

and total strains is obtained



57

σ

σ

σ

σ

β

ε
ε
ε
ε

ε

ε

ε

ε

β

1

2

3

5

1 1 1 0
1
1

1
1

1
1

0
0

0 0 0 0

1
2
3
5

1

2

3

5

4
3

2
3

2
3

0

2
3

4
3

2
3

0

2
3

2
3

4
3

0

0 0 0 1

A

A

A

A

K CK

A

A

A

A

G

























=





































−























































+

− −

− −

− −













...

+































−

























































ε
ε
ε
ε

ε

ε

ε

ε

1
2
3
5

1

2

3

5

CG

A

A

A

A

(2.71)

First, let

EA
KCK GCG

EA
KCK GCG

EA
GCG

1
4
3

2
2
3

3

= +

= −

=

β β

β β

β

(2.72)

In matrix form, the stress-strain relationship becomes, expressed in complex matrix form

{ }
{ }

[ ] [ ]
[ ]

{ }
{ }

σ

σ

ε
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D D

D DA A


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
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











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

1 1

1 1
(2.73)

or in expanded matrix form
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where the elastic and anelastic stress matrices are, respectively
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where matrix [D1] is
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The strains in expanded matrix form are
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2.2.3. Model development

In what follows, the elemental stiffness, mass, and damping matrices for the

axisymmetric, single ADF, triangular finite element are developed.

Each node has two degrees of freedom (DOF): u, displacement in the radial direction r, v,

displacement in the vertical direction z.  The element area is denoted by ∆.  The

displacements are approximated using the following shape functions at each node

(denoted respectively by subscripts i, j and m) of the triangular finite element [20]

( ) [ ]Ni r z
ai bi r ci z

N r z Ni j m, =
+ +

2 2∆
  and  [ ( , )] =  N  N (2.79)

Thus, the total displacements and anelastic displacements of the finite element are,

respectively
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Equation (2.80) can be condensed into Equation (2.81)
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Matrix [N] is
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where {δ} and {δA} are the total and anelastic time dependent parameter vectors,

respectively,
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By substituting the shape functions, the strain matrix is obtained as a function of the

displacements
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where matrix [B] is
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r
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d i= = =
2 2 2∆ ∆ ∆

  ;   
ci   ; (2.86)

In more detailed form, Equation (2.85) becomes
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For an axisymmetric three node triangular finite element with one ADF, the elastic strain

energy is given by Equation (2.88)
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After integrating over the volume, the element stiffness matrix becomes

[ ] [ ]
[ ] [ ]
[ ] [ ]k B T D D

D DA B rdrdz= ∫
−

− 

















∫2
1 1

1 1
π (2.89)

Note that matrix [B] depends on the coordinates, unlike in the plane stress case.  Thus,

the integration in Equation (2.89) is more difficult to do.  A simple approximate
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integration procedure is used to determine [B] for a centroidal point of coordinates

( r , z )

( )

( )

  

r
ri r j rm

z
zi z j zm

=
+ +

=
+ +

3

3

(2.90)

where ri j m, ,  and zi j m, ,  are the coordinates of the three nodes of the finite element.

The stiffness matrix then becomes
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K1 - K1

- K1 K1
A (2.91)

Zienkiewicz [20] considers the approximate integration to be superior to the exact

integration, since the exact formulation yields logarithmic terms, which at large distances

from the axis of symmetry may yield inaccurate results.

The damping matrix is found using similar considerations as in the plane stress case [33]
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For a centroidal point of coordinates ( r , z ), the damping matrix becomes
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Just like in the plane stress case, the mass matrix of the ADF axisymmetric element does

not include any contribution from the anelastic displacement fields and resembles the

mass matrix of a simple, elastic, triangular axisymmetric finite element

[ ]
[ ]

[ ]
[ ]

[ ]

[ ]
[ ]

[ ]
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N
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or
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The mass matrix evaluated around the centroidal point is
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where
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2.3. Boundary conditions

A complete set of equations describing the time evolution of a continuum requires a set

of geometric and force boundary conditions.  In the ADF case, the total displacement

field requires the specification of either geometric or force boundary conditions [33].

The anelastic displacement field is coupled to the total displacement field through strain

and cannot have its own force boundary conditions.  However, boundary conditions

applied to the total displacement field induce certain boundary conditions on the ADF

[33].  Consider the dynamic ADF finite element analysis of a free-free continuum; i.e.,

longitudinal wave propagation through a free-free bar caused by a sharp impact at one

end of the bar. Since the anelastic displacement field does not contribute to the mass

matrix, the latter is ill conditioned.  To solve the system of equations, the ADF degrees of

freedom of at least one node must be fully constrained.  This constraint improves the

conditioning of the matrix and allows the system to be solved.  It means physically that

rigid body motion of an internal variable associated with the ADF is not permitted.

Eliminating rigid body motion from the anelastic field does not affect coupling.

2.4. Multiple Anelastic Displacement Fields

Multiple ADF are required if the behavior of materials that exhibit weak frequency

dependence is to be modeled accurately.  The anelastic displacement field may be

expressed as a sum of ADF corresponding to individual relaxation phenomena [30]

( ) ( )uA x t un
A x t

n

N
, ,=

=
∑

1
, (2.96)
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and the constitutive equations become

σ ε εij Eijkl kl nkl
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(2.97)

and

σ ε εnij
A Eijkl kl Enijkl

A
nkl
A= − (2.98)

The equation of motion and the relaxation equation become a set of N equations [33]
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The multiple ADF mass, stiffness, and damping matrices are obtained in the same way as

for a single ADF case.  For example, the stiffness matrix for a five ADF, axisymmetric,

triangular, finite element is
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(2.101)
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where, for i=1,2,.5,
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and
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The damping matrix is

{ } { } { } { } { } { }

{ } { } { } { } { }

{ } { } { } { } { }

{ } { } { } { } { }

{ } { } { } { } { }

{ } { } { } { } { }

[ ][ ] [ ]c B
V

T

X
DA

DA

DA

DA

DA

X

B dV= ∫















































































0 4 4 0 0 0 0 0

0
1

1
0 0 0 0

0 0
2

2
0 0 0

0 0 0
3

3
0 0

0 0 0 0
4

4
0

0 0 0 0 0
5

5 24 24

Ω

Ω

Ω

Ω

Ω

(2.104)



69

The mass matrix has no contribution from the anelastic fields and is shown in Equation

(2.105).
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2.5. Determination of model input from material complex moduli data

The ADF method can describe the material moduli frequency dependence.  The value of

an individual scalar modulus βm
* , at a given circular frequency ω (rad/s), is [33]
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where β m
*  is the complex modulus, β mr  is the relaxed or low-frequency modulus and

Ωn is the characteristic relaxation time at constant strain corresponding to the n-th

anelastic displacement field.  The high-frequency (or unrelaxed) modulus is [33]

( )β βm mr mtotal= +1 ∆ (2.107)

where

∆ ∆mtotal mn
n

N
=

=
∑

1
(2.108)
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For an isotropic material, the ADF model input parameters are determined by curve

fitting the predicted material moduli (bulk and shear) to the corresponding experimental

values.  The input parameter values are adjusted iteratively to minimize differences

between predicted and experimental values in a least square approximation method.  The

number of anelastic displacement fields used determines how well the predicted material

data compares to the measured value over a given frequency range.  More than one ADF

are required to approximate material moduli that exhibit weak frequency dependence,

especially if the frequency range of interest spans several decades.  In the case of impact,

for example, the frequency spectrum usually contains important frequency components

extending from DC to a few kHz.

Lesieutre [34] and Govindswamy [35] use the following formula to compute the

relaxation magnitude for a single ADF finite element:

∆ = + +













2 1 2η η ηp p p (2.109)

where ηp  is the peak loss factor and the inverse of the relaxation time is

( )Ω ∆= +ωp 1 1/2 (2.110)

where ωp is the circular frequency corresponding to the peak loss factor value.
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CHAPTER 3.  RESULTS AND DISCUSSION

The main purpose of this chapter is to present and analyze the ability of axisymmetric

and plane stress ADF (anelastic displacement field) finite elements (FE) to accurately

model and investigate the dynamic behavior of two- and three-dimensional structures

subjected to shock loads.

One application of these particular finite element models (FEM) is the design of

mechanical filters and in particular filters used in shock accelerometers.  Shock sensors

must withstand severe acceleration environments, sometimes in excess of 1,000,000 m/s2.

As a result, it is often necessary to protect the sensing element (usually made of quartz

crystal) from the shock loads with a viscoelastic mechanical filter.  The mechanical filter

may be an O-ring or a round plate.

Another ADF-based FE application is the investigation of shock wave propagation

through structures characterized by weak or strong frequency dependence of material

properties.  In particular, the study of longitudinal wave propagation through bars relates

to the Hopkinson bar shock sensor calibration procedure.  A bar with a high- or low-loss

factor may be used in this calibration procedure, depending on the desired frequency

content of the shock pulse.  If the same impact force is applied to the end of a low- and

high-loss bar, the resulting pulse that propagates through the high loss-factor bar

generally has longer duration and lower shock level, than the pulse propagating through

the lower loss-factor bar.  That is because of viscoelastic dispersion and attenuation that

occur in the high loss bar.  Thus, it would be of interest to predict the peak magnitude and

the frequency content of the shock pulse hitting the test shock accelerometer, which is

mounted at the other end of the bar.  Longitudinal wave propagation has been studied

extensively and results obtained through the ADF FE method may be compared against

previous experiments and theoretical predictions.  ADF finite elements allow the

modeling of longitudinal wave propagation through an elastic bar with a viscoelastic

mechanical filter at one end.  Such is the case when a shock accelerometer featuring a

mechanical filter is calibrated on a Hopkinson bar. ADF plane stress FE may also be
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employed to study wave propagation in viscoelastic bars with square or rectangular cross

sections, since exact solutions do not exist for these types of problems, or study vibration

of beams with damping layers.

3.1. Numerical and computational considerations

The transient response of the finite element models considered in what follows is

obtained through direct integration of the equations of motion by the Newmark

trapezoidal rule (or constant average acceleration method) [49-50]. The Newmark

method is characterized by two factors: α  and  β.  The trapezoidal rule, or constant

average acceleration method is characterized by α=1/4 and β=1/2.  This method was

chosen because it is implicit, and unconditionally stable for the chosen α  and  β; due to

accuracy reasons, however, the time step must be chosen properly in relation to the finite

element length.  The time step may be taken to be greater than the one chosen in the

central difference method, which allows for savings in computation time. This choice of

parameters allows no amplitude decay and retains the high frequency response.  In order

to allow for amplitude decay, β must be greater than 0.5 and α is

( )α β= +1
4

05 2. (3.1)

Since in shock problems a large number of frequencies are excited, it is necessary for

analysis purposes to define a high cutoff frequency needed to obtain reasonable solution

accuracy [49].  The goal is to determine that cutoff frequency ωc0 and to define a finite

element mesh accordingly.  The cutoff frequency to be included determines the critical

wavelength to be represented, Lw.  The total time for the corresponding wave to travel

past a point is [49]

tw
Lw

c
= (3.2)
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where c is the wave velocity at the corresponding frequency.  Assuming that n time steps

are necessary to properly represent the waveform of wavelength Lw, the time step is

∆t
tw
n

= (3.3)

In finite element practice, n is reccommended to be equal or greater than 20 [49].  The

element length is thus

Le c = ∆t (3.4)

Numerical damping is introduced to alleviate integration errors if the ratio ∆t/tw is large.

3.2. Longitudinal wave propagation through bars-comparison of finite element results

to theory

In this section, the validity of results predicted with plane stress and axisymmetric ADF

FEM are compared against theoretical results. The first case considered is the

propagation of a longitudinal wave along a clamped-free, titanium alloy bar.  The

longitudinal wave is generated by the sudden release of a force initially acting on the free

end of the bar [51].  The second case studied is the propagation of a longitudinal wave

along a free-free titanium alloy bar.  In this case, a versed sine impact force at one free

end generates the longitudinal wave.

In both wave propagation studies, an elastic FEM could have provided similar answers to

an ADF FEM model, since material properties of metals generally show weak frequency

dependence. However, the ability of ADF FEM to properly approximate weak frequency

dependence and to accurately predict displacement and wave propagation velocities

under these conditions is established.
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3.2.1. Longitudinal wave propagation through an elastic clamped-free bar

The first theoretical case considered was the longitudinal wave propagation along a

titanium-alloy (Ti6Al4V), clamped-free bar 2.033 m long with a 1.9-cm cross section

diameter, loaded initially by a 20-kN force (F0) at the free end (Reference [1]).  The force

loading was equivalent to an initial displacement along the length of the bar of

( )u x z t
F x
AE

, = =0
0 , (3.5)

where L and A are the length and area, respectively, of the bar,  E is the low frequency

Young's modulus, and ε0(x,t=0) is the initial strain at a station x along the bar.  After the

force is released, theory predicts a displacement u(x,t) at time t and longitudinal station x

along the bar equal to (c is the velocity of sound in the bar) to be
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The material input parameters that characterize the titanium alloy are shown in Table 3.1.

Table 3.1.  Material parameters for Ti6Al4V

Density(kg/m^3) Relaxed shear

modulus (Pa)

Young's

modulus (Pa)

Poisson's ratio Loss factor*

4408.2 4.206e10 1.1377e11 0.29 0.0018
*assumed to be constant over chosen frequency range of interest: 0.1 to 2500 Hz

The release of the initial force F0 is equivalent to a displacement step input.  The

amplitude spectrum of the step force input has the highest energy density concentrated at

low frequencies.  Thus, the material properties' frequency dependence is modeled with
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ADF over a 1Hz to 2.5 kHz frequency range.  The limits of the approximation frequency

range are determined by the number of ADF used (the more ADF, the wider the

frequency range that may be modeled).  Table 3.2. shows the ADF parameters used to

model the material properties for the Ti6Al4V alloy.

Table 3.2.  ADF parameters used (five ADF) for Ti6Al4V alloy

Parameter 1 2 3 4 5

Ω/2π (Hz) 1E-1 1E0 1E1 2E2 3E3

∆G
* 0.0013 0.00116 0.0012 0.0011 0.0014

*∆G= ∆K relaxation strengths corresponding to the shear and bulk modulus, respectively, are assumed equal.

The results of the ADF approximation of the storage and loss moduli are shown in Figure

3.1.  The approximation was performed using a least square method based code

developed at Penn State.  It may be seen that the curve fit approximates within 10% both

the loss and storage moduli at any frequency included in the frequency range of interest.

0.1 1e50
1
2
3
4
5

x 1e10
Storage (Pa)

0.1 1e50
2

4
6

8
10

x 1e7
Loss (Pa)

Hz Hz

Figure 3.1.  Ti6Al4V alloy loss and storage moduli data fit with five ADF

For comparison purposes, the material data of Ti6Al4V is also approximated using one

ADF terms.  The parameters used to approximate material data over the frequency range

of interest, using one ADF, are shown in Table 3.3.
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Table 3.3.  ADF parameters used for Ti6Al4V alloy (one ADF)

Parameter 1

Ω/2π (Hz) 10

∆G
* 0.003

*∆G= ∆K relaxation strengths of the shear and bulk modulus, respectively, are assumed equal

The results of the approximation of the storage and loss moduli with one ADF are shown

in Figure 3.2.
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Figure 3.2.  Ti6Al4V alloy loss and storage moduli data fit with one ADF

The storage modulus’ frequency dependence is well approximated (within 2%), while the

loss modulus’ frequency dependence is not.  At low and at high frequencies, the loss

factor approximated with one ADF is much lower than desired.  As a result, high-

frequency components of the velocity or displacement spectrum are less damped than

they would be in reality.

The ADF axisymmetric finite element model mesh for the bar uses a grid of 4 nodes

along the radius by 20 nodes along the length of the bar.  This mesh is shown

schematically in Figure 3.3. (the length of the element in the Z direction is greater than the

length of the element in the radial dimension).  The force F0 is applied at the center of the

bar.  Clamped boundary conditions are applied on all four nodes found at the clamped
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end of the bar on the elastic degrees of freedom.  The ADF degrees of freedom are also

constrained for just one node, due to reasons explained in Section 2.3.

The element size is 0.1 cm and is chosen in part due to numerical reasons.  A time step of

1.99e-5 seconds is determined based on Equation (3.4), which corresponds, in turn, to a

critical frequency of approximately 2.5kHz.  The time step used is, however, 6.5e-7

seconds, to improve the time resolution.

Figure 3.3.  Finite element mesh for the clamped-free bar, ADF axisymmetric FE

In Figures 3.4. and 3.5., the longitudinal displacement time history predicted using

axisymmetric finite elements with one and five ADF is compared to theory.  Good

agreement between the finite element predicted and theoretical displacement time

histories is observed.  For example, after 325 microseconds at one meter away from the

clamped end, the relative error of the predicted vs. theoretical displacements is 7.5%, and

4% for one and five ADF FEM, respectively.  Little difference in results is observed

between the one ADF and five ADF predictions, although the five ADF FEM yields

slightly better results in terms of magnitude.
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Figure 3.4.  Time record of predicted  longitudinal displacement vs. theory (one ADF)
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Figure 3.5.  Time record of predicted  longitudinal displacement vs. theory (five ADF)

The finite element predicted wave propagation velocity agrees well with speed of sound

in the titanium alloy (c=5080.2 m/s computed using the relaxed Young’s modulus Er): the
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FEM predicts a sound velocity of approximately 5153 m/s - a relative error of 1.5%

compared to the experimental value.

Next, a plane stress ADF finite element model is used to model the wave propagation for

the same problem as above.  The plane stress FE mesh modeling the bar is different from

the mesh used in the axisymmetric case in that there are 2 rows of elements by 96

elements for each row.  A representation of the mesh is shown in Figure 3.6.

 

x

y F0/2

F0/2

Figure 3.6. Plane stress finite element mesh for clamped-free bar

Five ADFs are used to model material behavior.  The round cross section of the bar is

substituted with a rectangular cross section of equivalent area (3-mm thickness by 100-

mm depth).  The element size is chosen to be approximately 0.01 m long.  This type of

grid has little resolution in the cross section, but has more elements in the longitudinal

direction.  A time step of 1.97e-6 seconds is determined based on Equation 3.4, which

corresponds, in turn, to a critical frequency of approximately 25 kHz.  The time step used

is, as before, 6.5e-7 seconds, for better time resolution.  The time step and element size

chosen for this type of mesh and FE allow good modeling of high frequency (up to 25

kHz) content in the transient response.

There is very good agreement between the finite element predicted longitudinal

displacement and theory (as shown in Figure 3.7.).  For example, after 195 microseconds,

the predicted displacement has a relative error of approximately 2% when compared to

theory.  Predicted propagation velocity is less than 1% in error versus the experimental

value.
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Figure 3.7.  Time record of predicted longitudinal displacement vs. theory, plane stress

element with five ADF

3.2.2. Longitudinal wave propagation along a titanium alloy free-free bar

In this section, the ability of the new finite elements to predict shock behavior of

structures consisting of materials with weak frequency dependence is investigated. The

second theoretical case considered is the longitudinal wave propagation along a titanium

alloy (Ti6Al4V) bar with free-free boundary conditions after one of the ends is subjected

to impact.  A compressive, versed-sine force F with a period T of 26.2 microseconds,

described in Figure 3.8. and Equation 3.3, produces the impact.

[ ]F t
T

= − 











237 73 1 2. cos π     N  (2.13)

As in the previous theoretical case, the bar considered is 2.03-m long, with a diameter of

1.9-cm.  A grid of 120 nodes (4 rows by 30 columns), similar to the one shown in Figure

3.3., models the bar. The corresponding time step, considering a propagation velocity of

5080 m/s, is 13 microseconds.  For better time resolution, the time step is chosen to be 1
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microsecond.  The grid size and time step size allow critical frequencies up to 3.75 kHz

to be accurately represented in the transient response.

Figure 3.9. shows the time history of the longitudinal displacement at the free end and in

the middle of the bar. The end of the bar moves in small steps, as opposed to having one

continuous motion, at time intervals of 2L/c0, where c0 is the velocity of sound through

the bar. These predicted results compare well qualitatively to both theory and

experiments [39]. The middle of the bar is moving twice as often as the end of the bar,

because the wave travels through it twice for each reflection at an end.
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Figure 3.8.  Impact force on end of bar
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Figure 3.9.  Longitudinal displacement time history at free end and in middle of bar

The change in the magnitude of the longitudinal displacement in the middle is half of that

at the free end (the small "bumps" present at the beginning of each displacement step are

caused by coarseness of the node mesh).

Figure 3.10. shows the longitudinal velocity of the middle and of the end of the bar.

Figure 3.11. shows the velocity pulse along the bar at various time instances. The

amplitude of the pulse varies little as it reflects back and forth along the bar, since the

loss factor of the Ti alloy is small (approximately 0.0018 [52]).  The predicted

propagation velocity matches the speed of sound in Ti6Al4V (c=5080 m/s).
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Figure 3.10.  Longitudinal velocity's time history at the free end and at the middle
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Figure 3.11.  Propagation of particle velocity pulse along bar

3.2.3. Longitudinal wave propagation along a viscoelastic free-free bar

The next numerical study is the propagation of a longitudinal wave along a PERSPEXTM

free-free bar. PERSPEXTM is a plastic material characterized by high loss factor (three

orders of magnitude higher than that of most metals), has a relaxed Young’s modulus of
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Er=4.18GN and a density of ρ=1185 kg/m3.  Numerically, the longitudinal wave is

generated by a half sine force of 1000N magnitude and 3333 Hz frequency acting on one

free end of the bar.  The bar is 2.0 m long and has a cross sectional area of 2.85e-4 m2.

The models employ both ADF plane stress and ADF axisymmetric FE.  Table 3.4. shows

the input ADF parameters.

Table 3.4.  ADF parameters used for PERSPEXTM (one ADF)

Parameter 1

Ω (rad/s) 27000

∆G
* 0.185

*∆G= ∆K relaxation strengths of the shear and bulk modulus, respectively, are assumed equal

The particle velocity record obtained with a one-ADF plane stress FEM, at three

longitudinal stations as a function of time, is depicted in Figure 3.12.  The effects of wave

attenuation due to the rheological properties of the bar are clearly shown.  Since the high

frequency components travel faster (the front of the pulse is steeper than the back) and

are attenuated more rapidly than those of lower frequency, the velocity pulse decreases in

magnitude and lengthens as it travels along the bar.  As time progresses, the pulse spreads

until it merges with the pulse going in the opposite direction; this can be clearly seen at

the middle of the bar.  Note that at the free end, the velocity doubles.  The predicted

propagation velocity is 1858 m/s, which is close to the velocity of sound computed with

the relaxed Young’s modulus, c=1738 m/s.  As the pulse spreads, it tends to attain what is

called an "Universal Pulse Shape" [38].  Figure 3.13. depicts the longitudinal history of

the displacement as it travels along the bar.  The sharp succession of displacement steps

characterizing the first reflections slowly tend to become more rounded with time [39].

Eventually, these steps merge into a straight line corresponding to a constant bar velocity.

The same displacement and velocity record are obtained using an ADF axisymmetric

FEM (see Figure 3.14. and Figure 3.15.).
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Figure 3.12.  Longitudinal wave particle velocity vs. time at three stations along

PERSPEXTM bar, ADF plane stress element

Figure 3.16. shows the ADF predicted acceleration at three longitudinal stations along the

bar.  The mechanical energy is the sum of the strain and kinetic energy.  The mechanical

energy dissipation is shown in Figure 3.17., where the normalized power spectrum

(normalized to its DC component) of the incident stress pulse has more energy than the

reflected pulse.  That is because because high frequency components are dissipated from

the incident to the reflected pulse.  Next, an axisymmetric, elastic FEM is considered to

model the PERSPEXTM bar.  Figure 3.18. shows the predicted displacements.  The

displacement steps are equal in magnitude and the slope does not change from one step to

the other.  As opposed to the ADF models, the predicted velocity pulses are symmetrical

with respect to their center, since no attenuation is considered and all frequency

components travel with the same velocity, as shown in Figure 3.19.

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

2.5

m/s

time (ms)

@0.33m
@1m
@2m



86

The predicted velocity of propagation is within 2% of that given by

c
Er=
ρ

(3.7)

Since it is assumed that the frequency components are considered to have the same

velocity of propagation, the stress pulse magnitude is higher than the corresponding ADF

predicted stress pulse magnitude by 40% and does not attenuate as it propagates.  Figure

3.20. shows the ADF model versus the elastic model predicted mechanical energy (equal

to the sum of the kinetic and strain energy) as a function of time.  The ADF predicted

mechanical energy dissipates in time, as opposed to the elastic FEM predicted

mechanical energy.

Figure 3.13.  Longitudinal wave displacement vs. time at three stations along

PERSPEXTM bar, ADF plane stress element
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Figure 3.14.  Longitudinal wave displacement vs. time at three stations along

PERSPEXTM bar, ADF axisymmetric FE
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Figure 3.15.  Longitudinal wave particle velocity vs. time at three stations along

PERSPEXTM bar, ADF axisymmetric FE
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Figure 3.16.  Longitudinal wave acceleration vs. time at three stations along PERSPEXTM

bar, ADF axisymmetric FE
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Figure 3.17.  High frequency components dissipate from 1st (incident) to 2nd (reflected)

stress pulse at free end
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Figure 3.18.  Time record of elastic longitudinal displacement along PERSPEXTM bar
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Figure 3.19.  Time record of longitudinal velocity along PERSPEXTM bar, elastic FEM
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Figure 3.20.  Time record of mechanical energy predicted by the axisymmetric ADF and

elastic FEM, respectively
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3.2.4. Numerical study of longitudinal wave propagation along split Hopkinson bar

In this section, the longitudinal wave propagation along a split Hopkinson bar is studied.

The bar, made of two equal length segments of titanium and PERSPEXTM, is 2.4 m long

and has a 1.9-cm diameter.  The time step chosen is 1 millisecond and the triangular

axisymmetric ADF FEM grid, representatively shown in Figure 3.21., has 200 nodes.

 

Z

r

F0

Figure 3.21.  Axisymmetric grid

The longitudinal wave is generated by a 1000 N, half-sine force with a frequency of 3.33

kHz, shown in Figure 3.22., acting at the free end of the PERSPEXTM segment.  The force

F0 is applied at the center of the bar, as shown in Figure 3.21.  The time step and element

length ensure proper representation of frequency components in the force pulse.

Figure 3.23. shows the velocity profile along the bar after 100, 200 and 300 time steps.

After the interface is encountered, part of the stress pulse is transmitted in the titanium

bar, while most of it is reflected back in the PERSPEX bar due to the impedance

mismatch between the segments of rod.  In Figure 3.24., the particle velocity along the bar

is shown just as the pulse is beginning to reach the interface between the two materials.

Figure 3.25. shows that after a few reflections, two stress-waves, travelling in opposite

directions, appear on the PERSPEXTM side of the bar.  This is explained by the fact that

the velocity of sound in titanium is higher than that in PERSPEXTM.  Also, the

attenuation of the stress pulse as it travels along the PERSPEXTM bar is clearly seen.

Figure 3.26. and Figure 3.27. show the longitudinal displacement corresponding to the

time instances of Figure 3.23. and Figure 3.25.  Finally, Figure 3.28. shows the

displacement record at both free ends of the Hopkinson bar.  Figure 3.29. shows the
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mechanical energy, which is the sum of the strain and the kinetic energies, in the split bar

as a function of time.  Note that in Figure 3.28. the displacement time record of the split

bar’s PERSPEX free end does not follow the usual step change pattern observed

previously for a single material bar.  It periodically increases and decreases (although

slightly growing on the average), as a function of the sign and magnitude of the particle

velocity.  If the impedance of the boundary were infinite, the displacement at the free end

of the bar would have cyclically increased and decreased around a zero average value.

Figure 3.22.  Force acting on free end of split Hopkinson bar
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Figure 3.23.  Particle velocity at various time instances
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Figure 3.24.  Particle velocity as the pulse hits the boundary (0.65 msec. after impact )
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Figure 3.25.  Particle velocity along bar at various instances
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Figure 3.26.  Longitudinal displacement along bar at various instances
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Figure 3.27.  Longitudinal displacement along bar at various instances
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Figure 3.28.  Longitudinal displacement time record at bar ends
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Figure 3.29.  Mechanical energy in Hopkinson bar vs. time

3.2.5. Modeling of geometrical dispersion in a PerspexTM bar

Another phenomenon encountered in longitudinal wave propagation along bars is

geometric dispersion.  Geometric dispersion occurs when the diameter of the bar is on the

same order of magnitude or longer as the wavelength of frequency components contained

in the stress pulse.  The stress pulse is dispersed as a result of the effect of lateral inertia.

Geometric dispersion causes high frequency pulse components to travel slower than

lower frequency pulse components [39].  As a result, high-frequency oscillations follow

the displacement step pulse associated with longitudinal wave propagation along bars.

These high-frequency oscillations that followed a step displacement pulse, indicative of

geometric dispersion, were recorded and published by Kolsky [39].
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In the numerical simulations considered, a free-free PERSPEXTM bar is hit at one end by

a half sine force of 1368 N magnitude and 4.35 kHz central frequency.  In one simulation

the bar has a 15-cm diameter, and in the other simulation the bar has a 1.5-cm diameter.

The bar is 1.8 m long.  The FE mesh that models the bar, shown in Figure 3.21., has 200

nodes and the element length is 0.75 cm.  A single-ADF, triangular, axisymmetric FE is

used.  The time step chosen is 2.5 microseconds.  This numerical arrangement allows

good modeling of frequency components of up to 14.5 kHz in the response.  Pulse

dispersion is expected in the 15-cm diameter bar, since the wavelength corresponding to a

14.5 kHz frequency is on the same order of magnitude as the larger diameter.

Figure 3.30. compares the predicted bar end displacements for the two simulations.  Each

end displacement is normalized to its maximum value.  The two bars have different

masses, but the same force acts upon them: as a result, the magnitudes of the

corresponding end displacements are different.  Note in Figure 3.30. that a series of high-

frequency oscillations follow each sharp rise of the end displacement corresponding to

the 15-cm diameter bar, which are the effects of geometrical dispersion.  Note that

geometrical dispersion effects are not observable in the end displacement of the smaller

diameter bar.  The effects of viscoelastic attenuation are present in both displacement

traces and are represented by slope changes in the displacement time record.  Figure 3.31.

shows the mechanical energy in the 15-cm bar, which is the sum of the kinetic and strain

energies.  The strain energy component decays and the mechanical energy reaches

asymptotically towards the constant-velocity kinetic energy of the bar.
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Figure 3.30.  Dispersion: comparison of normalized end displacement at end of two

PERSPEXTM bars
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Figure 3.31.  Mechanical energy in 15-cm diameter bar vs. time

3.2.6. Modeling of longitudinal wave propagation through an elastic bar with

mechanical filter and mass at end

The next numerical case investigates the behavior of a shock accelerometer placed on an

elastic Hopkinson bar.  A mechanical filter, of 6.25-mm thickness, made of a

hypothetical viscoelastic material (Er=4.7e10 Pa), in series with a mass of 29.2 grams

models the shock accelerometer.  Two analysis cases are considered, corresponding to

different mechanical filter loss factors.  In the first case, the peak loss factor is 0.98; in

the second case, it is 0.46, corresponding to a frequency of 3.33 kHz.  The FEM mesh for

both filter and bar is represented by the mesh shown in shown in Figure 3.21. and consists

of 200 nodes: 100 nodes for the filter and 100 for the bar.  The bar is modeled with

elastic, triangular, axisymmetric FE and the filter is modeled with single-ADF, triangular,

axisymmetric FE.  The one-meter-long Hopkinson bar is impacted at one free end by a
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half-sine force of 1000 N and 3.33 kHz central frequency.  The ADF relaxation

magnitude and inverse of relaxation time are obtained through Equation (2.109) and

Equation (2.110), respectively, and are presented in Table 3.5.  Both the bar and the

mechanical filter have a diameter of 0.75 inches.  The time step chosen is 2

microseconds.

Figure 3.32. shows the difference in the displacement of the mass and that of the end of

the bar.  While the displacement steps at the end of the bar are sharp, the displacement

steps at the mass location are more rounded.  The displacement steps at the mass location

decrease slightly in magnitude as time progresses, since the influence of the filter is

relatively small on the energy dissipation in the bar.  Figure 3.34. shows that while the

velocity on the bar changes little in magnitude (decreases by 6% from the start to the end

of the record), the velocity of the mass does not return to zero after the shock pulse

passes.  That is because the incoming pulses keep hitting it before it has time to fully

relax.  In Figure 3.33., the velocity shift after 3.8 milliseconds is 0.05 m/s, which

represents 25% of the peak velocity value at 3.5 milliseconds.  Figure 3.35. shows a

comparison of the mass displacement predicted for the low- and high-loss filters.

Table 3.5.  Material parameters for viscoelastic material

Peak Loss Factor

ηp

Relaxation Strength ∆ Inverse of Relaxation Time

Ω (rad/s)

0.46 1.46 32820

0.96 4.58 49424

If the mass is mounted on the filter with the higher loss factor, the velocity and

displacement are smaller.

The attenuation of the displacement is more pronounced when the longitudinal wave

passes through the filter with higher loss factor.  Figures 3.36. and 3.37. show the velocity

time record and the displacement time records of the bar’s end.  The velocity and
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displacement at the end of the bar with the higher loss filter are slightly smaller and this

effect accentuates in time.  In Figure 3.38., the mechanical energy of the bar/low-loss

filter system is decreasing slower than that of the bar/high-loss filter system.

Figure 3.32.  Time record of displacement at bar’s end and at mass
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Figure 3.33.  Particle velocity of end of bar and of mass

0 0.5 1 1.5 2 2.5 3 3.5 4
-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

m
/s

msec

end of bar
mass



109

Figure 3.34.  Velocity of mass: low loss and high loss filters
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Figure 3.35.  Displacement of mass: low loss and high loss filters
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Figure 3.36.  Velocity at bar end vs. time: low loss and high loss factor filters
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Figure 3.37.  Displacement at end of bar: low loss and high loss filters
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Figure 3.38.  Energy in system vs. time
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3.3. Comparison of finite element results to experimental results

This section compares results obtained with ADF axisymmetric FEM to experimental

results.  The behavior of various structures under shock loads is investigated.  The

structures are comprised of materials with either weak or strong frequency dependencies.

3.3.1.  ADF modeling of mechanical filters subjected to shock and comparison to

experiments

This section investigates the ability of ADF axisymmetric FE to model shock behavior of

structures consisting of materials with high-loss factors.

Two similar simple mechanical filters are investigated, each comprising a 3.5-mm-thick

and 25.4-mm-diameter tungsten disk glued to a variable thickness and 25.4-mm-diameter

Buna N rubber (nitrile rubber) Durometer 60 disk (see Table 3.6. for nitrile rubber

material information).  The thickness of the filter is in the first case 3.5 mm, and in the

second experiment 7.0 mm.

Table 3.6.  Material parameters for Buna N rubber Durometer 60

Density(kg/m^3) Relaxed shear

modulus (Pa)

Young's

modulus (Pa)

Poisson's ratio

1280 1.26e6 4.2e6 0.495

An accelerometer (PCB 305A05 accelerometer S/N 9998, 1.8 mV/g sensitivity) is

attached to the tungsten disk. The filter is dropped, viscoelastic disk first, on a force

gauge (PCB 208B05, 1.05mV/lb sensitivity), as shown in Figure 3.39.
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  Accelerometer

   To DAQ      Tungsten

Viscoelastic disk

        To DAQ
         Force gauge

Figure 3.39.  Drop test

Both the accelerometer and the force gauge signals are recorded and processed using a

LABVIEWTM code developed by the author.  The force signal is then used as input to a

five-ADF axisymmetric finite element code.  The experimental acceleration, velocity,

and displacement signals are then compared to the predicted acceleration, velocity, and

displacement signals.  The finite element mesh used is represented schematically in

Figure 3.39.: 4 rows with 15 nodes each for the viscoelastic material, and 4 rows with 4

nodes each for the tungsten disk.

The frequency range of interest is chosen to coincide with the frequency band over which

the input pulse power spectrum has most of its energy distributed.  Note that the

properties of Buna N rubber vary widely with the manufacturer.  The current moduli vs.

frequency data of Buna N rubber is obtained from Nashif and Jones [9], for a temperature

of approximately 100C, although the experiments are conducted at room temperature

(230C).  The ADF parameters are obtained from a least-square curve-fitting subroutine

developed at Penn State.  The ADF parameters are then adjusted so that predicted

quantities match the experiment.  The new ADF parameters are then re-verified against

the new experimental case, i.e. the mechanical filter with 7.0-mm thickness.  Figure 3.40.

shows the loss factor and storage moduli of Buna N rubber Durometer 60 versus the
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adjusted five-ADF model curve-fit.  The ADF parameters used to model the frequency-

dependent material properties of Buna N rubber are shown in Table 3.7.; these parameters

are used as input in all numerical studies.

Table 3.7.  ADF parameters used (5 ADF) for Buna N rubber

Parameter 1 2 3 4 5

Ω(rad/s) 1E2 5E2 1E3 3E3 1E4

∆G
* 0.05 0.1 0.2 1 5

*∆G= ∆K; the relaxation strengths of the shear and bulk modulus, respectively, are equal.

Figure 3.40 (a).  ADF curve-fit of storage modulus

101 102 103 104
106

107

108

P
a

frequency (Hz)

Buna rubber 50F
curve-fit



117

Figure 3.40 (b).  ADF curve-fit of loss factor

3.3.1.1. Mechanical filter with 3.5-mm-thick Buna N 60 Durometer rubber layer

The first mechanical filter built has a rubber layer with 3.5-mm thickness.  Figure 3.41.

shows the input force, which has an almost half sine shape, with the front of the pulse

steeper than the tail.  The rise time of the force is approximately 0.3 milliseconds.  Figure

3.42. shows the input force power spectrum (DC power spectrum value is reference).  The

highest density of the power spectrum occurs between 0 to 1 kHz (as shown in Figure

3.42.); the ADF model predicts well the material properties in that frequency range.

Figure 3.43. shows the predicted displacement on the top of the filter versus the

experimental displacement (obtained by integrating twice the acceleration signal).  The

agreement of the predicted displacement traces to the experiment is within 2% relative

error.  The shape of the displacement trace closely resembles the theoretical displacement

time history associated with a half-sine pulse [53].  Figure 3.44. shows the predicted

velocity at the end versus the experimental velocity obtained by integrating the

acceleration signal.
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Figure 3.41.  Force input for filter with 3.5-mm rubber layer
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Figure 3.42.  Force power spectrum for filter with 3.5-mm rubber layer
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Figure 3.43.  Predicted vs. experimental displacement for filter with 3.5-mm rubber layer

0 0.5 1 1.5 2 2.5 3 3.5
-0.5

0

0.5

1

1.5

2

2.5

m/s

msec

top

experiment

Figure 3.44.  Predicted velocity vs. experiment, for filter with 3.5-mm thick rubber layer
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The agreement of the predicted traces to the experiment is within 10% relative error (at

the end of the record) for the first two milliseconds of the time record, after which, they

start to diverge slightly from the experimental velocity.  The predicted shape of the

velocity trace resembles the shape of the velocity profile associated with a half-sine

pulse.  Figure 3.45. shows the predicted acceleration on the top of the filter versu the

experimental acceleration.  The agreement of the predictions to the experimental trace is

good, with the exception of the high frequency components present in the ADF model.

The high-frequency components appear damped lighter than in reality, because the ADF

model only covers a limited frequency range and also due to the finite element grid size.

It may be observed that the experimental acceleration exhibits a nonlinear feature called

"zero shift": the acceleration does not return to zero after the impact is over, but it

remains slightly negative as the rubber continues to recover slowly.
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Figure 3.45.  Predicted vs. experimental acceleration for filter with 3.5-mm rubber layer

Figure 3.46. shows the power spectrum of the input force versus the acceleration. The

acceleration spectrum is well predicted to around 1 kHz, as shown in Figure 3.46.
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Figure 3.46.  Experimental vs. predicted acceleration power spectrum

3.3.1.2. Mechanical filter with 7-mm-thick Buna N 60 Durometer rubber layer

The second mechanical filter built has a rubber layer of 7-mm thickness.  Figure 3.47.

shows the input force.  The input force rise time is approximately 0.4 milliseconds.

Figure 3.48. shows the input force power spectrum normalized to its DC value.  Figure

3.49. shows the predicted displacement on the top of the filter versus the experimental

displacement.  The prediction agrees within 5% with the experiment.  Figure 3.50. shows

the predicted velocity on the top of the filter vs. the experimental velocity.  The

agreement of the predicted traces to the experiment is within 5% relative error; the

experimental velocity is slightly higher in magnitude.  Figure 3.51. shows the predicted

acceleration on the top of the filter vs. the experimental acceleration.  The relative error

of the predicted to the experimental trace is less than 10%, with the exception of the high

frequency components present in the ADF model (caused by the size of the finite element

mesh).  A slight "zero shift" phenomenon may also be observed in the experimental trace.

Figure 3.52. shows the normalized power spectrum (to its own DC value) of the input

force vs. the acceleration.  Again, the acceleration spectrum is well predicted to around 1

kHz.
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Figure 3.47.  Force input for filter with 7-mm rubber layer
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123

0 0.5 1 1.5 2 2.5 3 3.5
-1

0

1

2

3

4

5
x 10

-3

m

msec

 top

experiment

Figure 3.49.  Predicted vs. experimental displacement for filter with 7-mm rubber layer
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Figure 3.50.  Predicted vs. experimental velocity for filter with 7-mm rubber layer
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Figure 3.51.  Predicted vs. experimental acceleration for filter with 7-mm rubber layer
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Figure 3.52.  Experimental vs. predicted acceleration power spectrum, for filter with 7-

mm rubber layer
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3.3.2. Modeling of wave propagation through metal bars and comparison to experiments

The ability of ADF axisymmetric finite elements to model weakly frequency-dependent

damping is researched next.  The longitudinal wave propagation along a free-free

titanium alloy Ti6Al4V bar is considered.  The longitudinal wave is physically generated

by the impact of a DELRINTM
 bullet on one end of the bar.  The dimensions of the bar,

along with the material properties, were presented in Section 3.1.1.  The finite element

mesh used was schematically the same as the one presented in Figure 3.3.

A force gauge mounted at one free end is impacted by the DELRINTM and records the

impact force data.  Two strain gauges measure the strain in the middle of the bar.  Two

gauges are used to compensate for any bending strains and to accurately indicate only

longitudinal strains.  Both force and strain gauge data are acquired and processed using a

LABVIEWTM code developed by the author.  The force data is used as input to the five-

ADF axisymmetric finite element code.  The first pulse through the middle of the bar is

captured and analyzed.  A Newmark integration scheme was used to find the wave

propagation parameters.  Figure 3.53. shows the compressive impact force of the

DELRINTM bullet.  The rise time of the force is approximately 0.7 milliseconds.
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Figure 3.53.  Impact force of DELRINTM bullet at end of bar
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Figure 3.54. shows the predicted and experimental displacement in the middle of the bar.

The strain gauge signal is scaled by multiplying it with the propagation velocity (c=5080

m/s for Ti6Al4V), which varies little with frequency for metals, thus finding the phase

velocity of the pulse through the bar.  The experimental displacement trace is obtained by

integrating the particle velocity time record at that particular location.
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Figure 3.54  Predicted vs. experimental longitudinal displacement on the bar

The predicted displacement record agrees within 5% relative error with the experiment.

The model correctly predicts the incremental displacement profile; the magnitude of the

predicted displacement step is slightly lower than the measured value.  The shape of the

predicted trace shows high frequency components introduced by the relatively rough size

of the finite element mesh (4 rows by 50 nodes each); a finer mesh would yield better

results.

Figure 3.55. shows the predicted and experimental particle velocity in the middle of the

bar.  The velocity is predicted within 2% relative error by the ADF model.  The shape of

the predicted pulse is consistent with the experiment, and has approximately the same

duration of 0.15 milliseconds, which means that the model accounts for any dispersion.
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Figure 3.55.  Predicted vs. experimental longitudinal velocity on bar

Figure 3.56. shows the predicted and experimental acceleration in the middle of the bar.

Again, the magnitude and duration of the acceleration is predicted within 5% relative

error by the ADF model.  Note the high frequency content of the experimental

acceleration trace (obtained by scaling and differentiating the strain gauge signal).  Figure

3.57. shows the predicted and experimental power spectrum of the velocity in the middle

of the bar, normalized to their respective DC components.  The model accurately predicts

the first resonance, which is slightly above 10 kHz.
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Figure 3.56.  Predicted vs. experimental longitudinal acceleration on bar

100 1000 10000
-100

-80

-60

-40

-20

0

20

dB
predicted
experiment

Figure 3.57.  Predicted vs. experimental longitudinal velocity power spectrum on bar
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3.3.3. Modeling of wave propagation through viscoelastic bars and comparison to

experiments

ADF axisymmetric finite elements are employed to model damping in structures with

material properties characterized by strongly frequency-dependent material properties.

Examples of such structures include viscoelastic bars.  The longitudinal wave

propagation along a free-free PERSPEXTM bar is investigated.  The longitudinal wave is

created by the impact of a DELRINTM bullet on one end of the bar.  The bar is 1.73-m

long and has a 1.6-cm diameter.  The finite element mesh used is presented in Figure 3.3.

A force gauge is mounted at the impacted end of the bar to monitor the impact force.

Two strain gauges measure the strain in the middle of the bar.  The force data is acquired

and used as input to the one ADF axisymmetric finite element modeling code.  A

Newmark integration scheme (α=1/4 β=1/2) along with a 200-node grid (see Figure 3.3.)

are used in the modeling.  The grid size and time step chosen assure that frequency

components of up to 15 kHz are accurately represented in the response.  The ADF

parameters used are given in Table 3.4.  The comparison of predicted versus

experimental strain at a longitudinal location 0.92 meters from the impacted end of the

bar is shown in Figure 3.58.  The model predicts the peak value of the first pulse to

within 9% relative error to the experiment, while the second pulse is predicted within 4%

relative error.  The longitudinal phase velocity is predicted within 2% relative error.  The

frequency content of the predicted second pulse shows slightly less dispersion than in

reality.  That is because ADF material parameter approximation is valid over a limited

frequency range.  Figure 3.59. shows how the mechanical energy of the bar (the sum of

the strain and kinetic energies) decays with time in an almost exponential manner, to a

value equal to the constant-velocity kinetic energy.  Figure 3.60. and 3.61. show the

predicted displacement and velocity, respectively, at the longitudinal station mentioned

above.  Note that the displacement steps become more rounded as time progresses.
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Figure Strain at 0.92 m along Perspex bar

Figure 3.58.  Predicted vs. experimental strain time record at middle of PERSPEXTM bar
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Figure 3.59.  Mechanical energy in PERSPEXTM bar
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Figure 3.60.  Predicted displacement time record at middle of PERSPEXTM bar
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Figure 3.61.  Time record of predicted particle velocity at strain gauge location, on

PERSPEXTM bar
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3.3.4. Modeling of mechanical filters in shock conditions

Mechanical filters are often found as components in shock accelerometers, where they

protect the sensing element from shock transients.  It is of interest to quickly determine

the frequency dependence of the filter material properties.  One reason is that large

parameter variations may exist between different batches of a given material; the second

is that such material data may be unpublished or hard to find.  The ADF method along

with the Hopkinson bar technique may be used to find the frequency dependence of the

viscoelastic materials’ moduli.

To verify this approach, a mechanical filter made of nitrile rubber is glued at the end of a

2.03 m long Hopkinson bar.  The filter is 3-mm thick and has a diameter of 1.9 cm, same

as the bar.  A 30-gram mass is glued on to the filter; the mass has a shock accelerometer

screwed into it.  The shock accelerometer (PCB 305A05) does not have itself a

mechanical filter.  A force gauge (PCB 218 C) is screwed into the opposite end of the

bar.  A DELRINTM bullet driven by compressed air hits the force gauge.  The impact

force (shown in Figure 3.62) and acceleration are recorded using a 1 MHz sampling rate

GageTM data acquisition board.  The force data is used as input into the finite element

code; the acceleration record is integrated with respect to time and the resulting velocity

record is compared to the prediction.  Axisymmetric, single-ADF finite elements are used

to model the bar and filter.  The bar is represented with a 200-node grid, similar to the

one shown in Figure 3.7.  To allow proper representation of frequency components, a

time integration step of 1 microsecond is chosen.

The ADF model parameters must be estimated next.  The initial input relaxation strength

and inverse of relaxation time are approximated from available experimental data [9], and

from Equations (2.109-2.110).  These values offer an initial guess of the ADF parameters

that is in the neighborhood of the actual values.  In Reference [9], the shear modulus is

plotted versus frequency up to a temperature of 100C.  The actual experiment occurs at

room temperature, 230C.  As a result, the peak loss-factor frequency, at room

temperature, should be higher than the corresponding frequency at 100C.  The ADF
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model predictions, such as mass velocity, are then iteratively fit to experimental data, and

the corresponding ADF input parameters are presented in Table 3.8.

Table 3.8.  ADF parameters used (1 ADF) for nitrile rubber

Parameter Initial** Final

Peak loss factor ηP 0.72 -

Frequency at peak loss factor (Hz) 2000 -

Ω(rad/s) 2.5e4 2.1e5

∆G
* 2.8 6

*∆G= ∆K; the relaxation strengths corresponding to the shear and bulk modulus, respectively, are equal
**at 100C

Figures 3.63. shows a comparison of the single-ADF curve-fit of the shear modulus and

loss factor.  The predicted longitudinal particle velocity and experimental velocity of the

mass versus time are compared in Figure 3.64.  The magnitude of the first velocity peak

is predicted within 5% relative error to the experimental value.  Figure 3.65. shows the

predicted longitudinal displacement of the mass versus time.   Note how the filter

resonances are superimposed on the displacement steps.  Figure 3.66. shows the

mechanical energy in the bar versus time.  The filter absorbs the energy as the pulse

passes through it and causes the steps observed in the energy time record.

In conclusion, these experiments and simulations show that the ADF axisymmetric finite

element model can approximate well damping behavior of viscoelastic materials.  An

approximation of material moduli frequency dependence of a viscoelastic structure may

be achieved by iteratively matching ADF model predicted quantities (i.e., velocity) to

corresponding experimental results, obtained with the Hopkinson bar method.
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Figure 3.62.  Impact force
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Figure 3.63.  Comparison of single-ADF generated loss factor (a) and shear modulus

(b), at 200 C, to corresponding experimental quantities at 100C
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Figure 3.64.  Particle velocity of mass
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Figure 3.65.  Longitudinal displacement of mass vs. time, 3-mm thick filter
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Figure 3.66.  Mechanical energy in bar vs. time, 3-mm thick filter
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CHAPTER 4.  CONCLUSIONS AND FUTURE WORK

4.1. Conclusions

The objectives of the current research, as stated in Section 1.7, have been achieved.

These objectives were

5) to model mechanical filters subjected to shock loading;

6) to study longitudinal wave propagation through viscoelastic bars;

7) to develop single and multiple ADF axisymmetric and plane stress finite elements;

and

8) to determine material moduli frequency dependence using Hopkinson bar

experiments and ADF model curve-fitting

The following paragraphs provide a summary of the presented research.

1) Plane stress and axisymmetric single and multiple ADF axisymmetric and plane

stress finite elements were developed to model three-dimensional and two-dimensional

viscoelastic structures.  These finite elements are based upon the Anelastic Displacement

Fields (ADF) theory.  Theoretical simulations and experimental data of longitudinal wave

propagation through elastic and viscoelastic bars were used to check results predicted by

models employing ADF plane stress and axisymmetric finite elements. Good

correspondence between finite element and theoretical data was observed.  An ADF

axisymmetric model was also employed to study wave propagation along a split

Hopkinson bar, made of titanium alloy and PERSPEXTM.  Plane-stress, ADF finite

elements allow the study of longitudinal wave propagation through viscoelastic rods of

rectangular cross section.
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2) Longitudinal wave propagation through bars, with strong- or weak-frequency

dependent material properties, was studied with the newly developed finite elements.

The ADF models demonstrated their capability to capture well both geometric dispersion

(when compared to theory), and viscoelastic attenuation phenomena.  The strain pulses

travelling through a PERSPEXTM bar (high loss factor) and a titanium alloy bar (low loss

factor) were well predicted by axisymmetric ADF models.

3) Mechanical filters are often used in engineering applications to alleviate or eliminate

shock transients that may damage sensitive components.  Experiments involving

mechanical filters subjected to shock were conducted.  In these experiments,

axisymmetric filters made of a rubber disk and an identical diameter steel disk were

dropped onto a force gauge.  The recorded force served as input to the axisymmetric

finite element model.  Displacement, velocity and acceleration data compared reasonably

well to ADF model predictions.  ADF input parameters (inverse of relaxation time and

relaxation strengths) were determined by curve fitting to experimental modulus data.

These tests also provided a method of checking the validity of the input ADF parameters.

Mechanical filters were then used to isolate a mass placed at one end of a Hopkinson bar

from high g levels generated by a projectile impact at the other end.  The velocity of the

mass was well predicted with a mixed elastic/one-ADF finite element model (i.e., elastic

finite elements for the bar and ADF finite elements for the mechanical filter).  Model

predictions compared well to acquired data. ADF 3D finite element models may thus be

succesfully employed to design mechanical filters for various shock-isolation

applications.  Another result is that the Hopkinson bar method may be used along with

ADF finite element codes to determine material moduli frequency dependence.  In this

mixed experimental-analytical approach, predicted quantities, such as particle velocity,

are curve-fitted to experimental values.  The ADF parameters that lead to the best fit are

then used to generate material moduli vs. frequency nomograms.

4.2. Future work

Suggestions for future research include
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1. The development of a more comprehensive database for viscoelastic materials.

Current databases often lack data that relates material moduli to frequency; even

manufacturer databases are not complete from this point of view.  Few books offer

such information and even they offer a listing of no more than thirty materials [9-10].

Such databases would considerably ease the design of structures incorporating

damping materials, since the design engineer would not have to replicate expensive

material characterization tests.

2. Development of 3D ADF finite elements which accurately model temperature, strain,

and frequency dependence of material properties, and the development of 3D ADF

nonlinear finite elements.  The ADF finite elements presented in this work do not

model large-displacement viscoelastic material behavior, nor do they incorporate

thermal effects. A suggested reference is Govindswamy [36], who developed single

degree-of-freedom, nonlinear, ADF finite elements, which incorporate both thermal,

strain and frequency effects.

3. Development of other types of 3D ADF finite elements, such as bricks and

tetrahedrons.  Such elements could model frequency behavior in 3D structures loaded

by arbitrary forces. Suggested references include Lesieutre and Bianchini [32-33],

who developed linear ADF plate elements.

4. Reduction of variables in an ADF model. Analysis of shock behavior of viscoelastic

structures requires proper modeling of material moduli frequency dependence over a

broad frequency range, leading to an increased number of ADF degrees of freedom.

This increases both memory and CPU requirements.  As a result, degrees of freedom

reduction methods are needed to keep solver matrices dimensions reasonable.

Suggested bibliography includes Inman and Park [54], Yae and Inman [55], who

concentrated on the reduction of degrees of freedom in the GHM model.
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5. Incorporation of the new plane stress and axisymmetric ADF finite element in a

commercial code.  Finite element software packages, such as ANSYSTM or

ABAQUSTM allow the user to design its own finite elements.  It would obviously be

advantageous to use powerful meshing subroutines.
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