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A B S T R A C T

This paper presents strong scenario dominance cuts for effectively solving the multi-stage stochastic mixed-
integer programs (M-SMIPs), specifically focusing on the two most well-known M-SMIPs: stochastic capacitated
multi-item lot-sizing (S-MCLSP) and the stochastic dynamic multi-dimensional knapsack (S-MKP) problems.
Scenario dominance is characterized by a partial ordering of scenarios based on the pairwise comparisons of
random variable realizations in a scenario tree of a stochastic program. In this paper, we study the implications
of scenario-dominance relations and inferences obtained by solving scenario sub-problems to drive new strong
cutting planes to solve S-MCLSP and S-MKP instances faster. Computational experiments demonstrate that
our strong scenario dominance cuts can significantly reduce the solution time for such M-SMIP problems
with an average of 0.06% deviation from the optimal solution. The results with up to 81 random variables
for S-MKP show that strong dominance cuts improve the state-of-the-art solver solution of two hours by
0.13% in five minutes. The proposed framework can also be applied to other scenario-based optimization
problems.
1. Introduction

Practical decision problems involve a sequence of decisions over
multiple time periods, high levels of uncertainty in the data, and
discrete decision variables. Multi-stage stochastic mixed-integer pro-
grams (M-SMIPs) are widely used as a framework for formulating
such sequential decision-making problems under uncertainty, including
applications in finance (Mulvey and Vladimirou, 1992; Dantzig and
Infanger, 1993), production and capacity acquisition (Ahmed and Gar-
cia, 2003; Lulli and Sen, 2004), energy (Cerisola et al., 2009; Bruno
et al., 2016; Cobuloglu and Büyüktahtakın, 2017), health-care (Yin and
Büyüktahtakın, 2021, 2022; Yin et al., 2023b; Kıbış and Büyüktahtakın,
2019), and environment (Alonso-Ayuso et al., 2018; Kıbış et al., 2021;
Bushaj et al., 2021), among others (Birge and Louveaux, 2011).

One particular challenge regarding the multi-stage stochastic mixed-
integer programs is the non-convexity and discontinuity of the expected
recourse function. M-SMIPs can be cast into an extensive mixed-integer
programming (MIP) form where realizations of uncertain parameters
are represented by a scenario tree; however, the size of the MIP
grows exponentially in the number of decision periods and uncertainty
outcomes in each period. As a result, M-SMIPs are notoriously difficult,
requiring large-scale operations to solve practical size problems with
billions of variables and constraints.

Recently, Büyüktahtakın (2022) has introduced the concept of sce-
nario dominance to derive cuts based on the solution of a new scenario

E-mail address: esratoy@vt.edu.

sub-problem for speeding up the solution of general risk-averse M-
SMIPs. Scenario dominance is characterized by a partial ordering of
scenarios based on the pairwise comparisons of random variable real-
izations. Using this partial ordering and the solution of a new scenario
sub-problem, scenario dominance cuts are presented to effectively solve
the risk-averse M-SMIPs by a cut-and-branch algorithm. The concept of
scenario dominance, as defined in Büyüktahtakın (2022), is different
than stochastic dominance as considered in the literature (Müller and
Stoyan, 2002). In stochastic dominance, two random variables are
compared based on their probability distribution function, while in
scenario dominance, two scenarios are compared based on the discrete
realization of random variables at each time stage with respect to
the possible outcomes of one, two, or more variables. Later, Bushaj
et al. (2022a) have extended the definition of scenario dominance
presented by Büyüktahtakın (2022) under the case of endogenous
uncertainty. The authors have incorporated the surveillance pattern
in defining the scenario dominance and the associated cutting planes
to solve the surveillance and control of a non-native forest insect, the
emerald ash borer (EAB), while maximizing social benefits from healthy
ash trees. Yin et al. (2023b) have modified the scenario-based sub-
problems defined in Büyüktahtakın (2022) to create region-based sub-
problems for deriving lower and upper bounds to reduce the optimality
gap of a risk-averse M-SMIP. The authors particularly have focused
on solving a multi-stage stochastic epidemics-ventilator-logistics for-
mulation to address the resource allocation challenges of mitigating
COVID-19.
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In this paper, we present scenario dominance cutting planes and
bounds for effectively solving the risk-neutral multi-stage stochastic
mixed-integer programs (M-SMIPs). We first strengthen the scenario
dominance cuts driven by Büyüktahtakın (2022). Different than the
study of Büyüktahtakın (2022), we have driven and proved new and
specified strong scenario dominance cuts for both the stochastic capac-
itated multi-item lot-sizing problems (S-MCLSP) and for the risk-neutral
stochastic dynamic multi-dimensional knapsack (S-MKP). We introduce
strong scenario dominance cuts for both the S-MCLSP and S-MKP and
demonstrate the feasibility of the scenario dominance approach for
solving those M-SMIPs efficiently. Our computational results demon-
strate that the strong scenario dominance cuts are quite effective in
reducing the solution time of those M-SMIP problems. Yin et al. (2023b)
solve resource allocation problems in controlling epidemic diseases,
and Bushaj et al. (2022a) tackle a forest insect surveillance and con-
trol planning issue utilizing region-based bounds and dominance cuts,
respectively. Different than the works of Yin et al. (2023b) and Bushaj
et al. (2022a), in this paper, we focus on solving more general multi-
stage stochastic MIPs, such as the knapsack and lot-sizing problems.
In Yin et al. (2023b), the authors derive the lower and upper bounds
based on regional decomposition, while we use a scenario decomposi-
tion to generate those bounds. Also distinct from Bushaj et al. (2022a)
and Büyüktahtakın (2022), we have generated more aggressive forms
of scenario dominance cuts specified for S-MCLSP and S-MKP in this
study.

1.1. Literature review and key contributions

The majority of recent research focuses on developing tailored
algorithms for solving two-stage stochastic MIPs or multi-stage stochas-
tic programs without discrete variables (for reviews, see Birge and
Louveaux, 2011, Römisch and Schultz, 2001, Sen, 2005). The progress
on general multi-stage stochastic mixed-integer programs is relatively
limited. Due to the large-scale nature of M-SMIPs, one commonly used
approach is to relax the coupling constraints (e.g., non-anticipativity)
in order to decompose the M-SMIP problem into scenario-based sub-
problems. Most solution algorithms for stochastic mixed-integer pro-
grams include some form of decomposition, including Lagrangian re-
laxation and scenario decomposition (CarøE and Schultz, 1999; Chen
et al., 2002; Escudero et al., 2016), column generation (Lulli and Sen,
2004; Alonso-Ayuso et al., 2003), and decomposition-based heuristics,
such as progressive hedging (Watson and Woodruff, 2011; Gade et al.,
2016).

Other approaches, such as nested decomposition and Stochastic
Dual Dynamic Programming (SDDP), focus on the convex relaxation
of expected recourse function (Löhndorf et al., 2013; Heitsch and
Römisch, 2003; Shapiro et al., 2013). Locally valid cuts are introduced
and integrated into an SDDP framework (Abgottspon et al., 2014).
McCormick cuts are studied to approximate the expected recourse func-
tion (Cerisola et al., 2012). This approach is later improved by Thome
et al. (2013) by optimizing the Lagrangian multipliers, resulting in
tighter cuts. Zou et al. (2019) propose Stochastic Dual Dynamic inte-
ger Programming (SDDiP) and Lagrangian cuts for solving multi-stage
stochastic programs with binary state variables. Guan et al. (2009)
present cutting planes for M-SMIPs based on combining inequalities
that are valid for the individual scenarios and apply those cuts to solv-
ing stochastic multi-stage knapsack problems and stochastic dynamic
lot-sizing problems. Hartman et al. (2010) present inequalities based on
the iterative solutions of a dynamic program (Büyüktahtakın, 2011) for
solving the capacitated lot-sizing (CLSP) problem. Büyüktahtakın et al.
(2018b) then derive valid bounds on the partial objective function of
the MCLSP formulation using dynamic programming and integer pro-
gramming techniques. Ruszczyński (2002) has considered the partial
ordering of the scenarios to study the two-stage stochastic program-
2

ming problems with probabilistic constraints and reformulate them as
a large-scale knapsack problem. The author has defined induced cov-
ers (Park and Park, 1997; Boyd, 1993) for the precedence-constrained
knapsack polyhedra based on the partial ordering of scenarios. Other
studies focus on developing problem-driven scenario reduction methods
based on scenario similarities, effectiveness, or distances (Arpón et al.,
2018; Rahimian et al., 2019; Bertsimas and Mundru, 2022). Despite
recent progress, M-SMIPs remain challenging and require the devel-
opment of advanced cutting-plane and scenario-based algorithms that
take advantage of decomposition.

In this paper, we address the computational difficulty of the exten-
sive formulation of M-SMIPs based on the scenario dominance concept
that has been recently introduced in Büyüktahtakın (2022). Different
from than former work, we derive new strong scenario dominance cuts
to solve the stochastic capacitated multi-item lot-sizing problems (S-
MCLSP) and stochastic dynamic multi-dimensional knapsack (S-MKP)
and prove that those aggressive cuts satisfy at least one feasible so-
lution. Our computational experiments show that the strong scenario
dominance cuts can reduce the solution time for M-SMIPs, such as
stochastic dynamic knapsack and lot-sizing problems, by one to two
orders of magnitude with an average of 0.06% deviation from the opti-
mal solution. We implement heuristics similar to a separation algorithm
to improve the quality of the scenario dominance cuts. Our heuristic is
different than the classical cutting plane separation by searching the
aggressive cuts that will potentially preserve the optimal solution. The
strong dominance cuts are also shown to improve the state-of-the-art
solver solution quality by 0.13% in five minutes for the S-MKP instances
with 81 random variables that cannot be solved in two hours.

The remainder of this paper is organized as follows. In Section 2,
we review the multi-stage mixed-integer program and its extensive for-
mulation and present the scenario sub-problem, bounds, and scenario
dominance cuts for the risk-neutral M-SMIPs. Sections 3 and 4 present
bounds and scenario dominance and the strong scenario dominance
cuts specifically driven for the multi-stage stochastic lot-sizing and
the multi-stage stochastic knapsack problems, respectively. Section 5
presents computational results, and Section 6 gives conclusions and
directions for future research.

2. Scenario dominance to M-SMIPs

This section gives the general and extensive formulations of M-
SMIP. We then present the scenario sub-problem and the associated
bounds, the scenario dominance concept, and the scenario dominance
cutting plane algorithm for the risk-neutral M-SMIPs.

2.1. Multi-stage stochastic mixed-integer programs

Here, we present the M-SMIP formulation, which represents multi-
period discrete optimization models with dynamic stochastic data over
time (Birge and Louveaux, 2011). We consider a finite multi-stage
stochastic sequential decision-making process. Each decision is made at
a discrete time period or stage 𝑡 ∈  = {1,… , 𝑇 } based on the available
information up to that stage. Let 𝜉1 be known, or deterministic, and
𝜉2,… , 𝜉𝑇 denote a sequence of random vectors that are observed as
𝜉2,… , 𝜉𝑇 , where 𝜉[𝑡] ∶=

{

𝜉2,… , 𝜉𝑡
}

is the information observed by
stage 𝑡. Define also 𝜉[𝑡] ∶= (𝜉2,… , 𝜉𝑡) for 𝑡 = 2,… , 𝑇 . We assume that
[̃2],… , 𝜉[𝑇 ] is a discrete-time stochastic process with a finite probability
pace (𝛯𝑡, 𝐹𝑡, 𝑃𝑡), where 𝛯𝑡 represents a finite sample space for 𝑡 =
,… , 𝑇 , and 𝛯 = 𝛯𝑇 .

Let 𝑛𝑡, 𝑞𝑡, and 𝑚𝑡 represent the number of decision variables, the
umber of integer variables, and the number of constraints, respec-
ively, at time 𝑡. Let R denote the set of real numbers, and R+ and
+ denote the set of positive real numbers and positive integers,
espectively. The general multi-stage stochastic mixed-integer program
ith recourse (M-SMIP) can then be expressed as follows:
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min 𝑓1(𝑥1) + E𝜉2

[

min
𝑥2

𝑓2(𝑥2, 𝜉2)

+E𝜉3|𝜉[2]

[

⋯ + E𝜉𝑇 |𝜉[𝑇−1]

[

min
𝑥𝑇

𝑓𝑇 (𝑥𝑇 , 𝜉𝑇 )
]]]

(1a)

s.t. 𝐴1𝑥1 ≥ 𝑏1, (1b)
𝐴2

(

𝜉1
)

𝑥1 +𝐻2
(

𝜉[2]
)

𝑥2
(

𝜉[2]
)

≥ 𝑏2
(

𝜉[2]
)

, (1c)
𝐴𝑡

(

𝜉[𝑡−1]
)

𝑥𝑡−1
(

𝜉[𝑡−1]
)

+𝐻𝑡
(

𝜉[𝑡]
)

𝑥𝑡
(

𝜉[𝑡]
)

≥ 𝑏𝑡
(

𝜉[𝑡]
)

∀𝑡 ∈  ∖{1, 2}, (1d)
𝑥1 ∈ R𝑛1−𝑞1

+ × Z𝑞1
+ ; 𝑥𝑡

(

𝜉[𝑡]
)

∈ R𝑛𝑡−𝑞𝑡
+ × Z𝑞𝑡

+ ∀𝑡 ∈  ∖{1}. (1e)

where 𝑥 ∶= (𝑥1, 𝑥2,… , 𝑥𝑇 ) is the decision vector with 𝑥𝑡 ∈ R𝑛𝑡−𝑞𝑡
+ × Z𝑞𝑡

+ ;
𝐴1 ∈ R𝑚𝑡×𝑛𝑡 and 𝑏1 ∈ R𝑚𝑡 are known; and the uncertain parameters
realizing as the stochastic process 𝜉 evolves are given by 𝐴𝑡(𝜉) ∈ R𝑚𝑡×𝑛𝑡 ,
𝐻𝑡(𝜉) ∈ R𝑚𝑡×𝑛𝑡 , and 𝑏𝑡(𝜉) ∈ R𝑚𝑡 ; 𝑓𝑡(⋅) ∶ R𝑛𝑡 → R𝑚𝑡 represents a linear
finite-valued function for positive integers 𝑚𝑡 and 𝑛𝑡, i.e., 𝑓 (𝑥) = 𝑐𝑇 𝑥
with 𝑐𝑡(𝜉) ∈ R𝑛𝑡

+ ; and E𝜉𝑡|𝜉[𝑡−1] [∙] is the expectation with respect to 𝜉𝑡
conditioned on the realization 𝜉[𝑡−1], for 𝑡 = 3,… , 𝑇 . Note that for 𝑇 = 2,
the M-SMIP (1a)–(1e) is a two-stage stochastic mixed-integer program.

To obtain a mathematical formulation that is more amenable to
numerical optimization, we consider a finite number of realizations
of a discrete stochastic process 𝜉 =

(

𝜉1,… , 𝜉𝑇
)

, which has a finite
support 𝛯 =

{

𝜉1,… , 𝜉𝑆
}

such that |𝛯| = 𝑆 for some positive integer 𝑆.
A realization of a sequence of random parameters in stages 1,… , 𝑇 ,
𝜉𝜔 =

(

𝜉𝜔1 , 𝜉
𝜔
2 ,… , 𝜉𝜔𝑇

)

∈ 𝛯, is referred to as a scenario indexed by
𝜔 ∈ 𝛺 ∶= {1, 2,… , 𝑆}.

The uncertainty in the decision process and the gradual realiza-
tion of random parameters can be represented using a scenario tree
(illustrated in Fig. 1). Each layer of the scenario tree represents the
stage-𝑡 of the stochastic decision process, and each node of the scenario
tree represents a specific realization of the random parameter(s). The
unique path from the root node to a leaf (terminal) node corresponds to
a scenario. Thus the number of nodes at level 𝑇 is equal to the number
of scenarios 𝑆. Each scenario 𝜉𝜔 ∈ 𝛯 is associated with probability 𝑝𝜔,
which is computed as the product of the conditional probabilities of all
nodes that belong to the scenario path 𝜉𝜔, such that ∑𝜔∈𝛺 𝑝𝜔 = 1. The
realizations of a scenario 𝜉𝜔 up to stage 𝑡 are denoted by 𝜉𝜔[𝑡]. As depicted
in Fig. 1, two scenarios that share the same scenario realization up to
stage 𝑡 (e.g., 𝜉1[3] = 𝜉4[3] for scenarios 𝜉1 and 𝜉4) share the same decisions
up to that stage, which is defined as non-anticipativity constraints.

Denoting 𝑥𝜔𝑡 ∶= 𝑥𝑡
(

𝜉𝜔[𝑡]
)

as the decision variable for the scenario
realization 𝜉𝜔[𝑡] at stage 𝑡 = 1,… , 𝑇 , and setting 𝑓 (𝑥) = 𝑐𝑇 𝑥, the multi-
stage stochastic MIP given in (1) can be equivalently formulated as
a large-scale deterministic MIP, denoted as the extensive form of the
multi-stage stochastic MIP, as follows:

(𝑃 ) 𝑍 = min
∑

𝜔∈𝛺
𝑝𝜔

𝑇
∑

𝑡=1
𝑐𝜔𝑡 𝑥

𝜔
𝑡 (2a)

s.t. 𝐴1𝑥
𝜔
1 ≥ 𝑏1 ∀𝜔 ∈ 𝛺 (2b)

𝐴𝜔
𝑡 𝑥

𝜔
𝑡−1 +𝐻𝜔

𝑡 𝑥
𝜔
𝑡 ≥ 𝑏𝜔𝑡 ∀𝑡 ∈  ∖{1}, ∀𝜔 ∈ 𝛺 (2c)

𝑥𝜔𝑡 = 𝑥𝜔
′

𝑡 ∀𝑡 ∈  , ∀𝜔,𝜔′ ∈ 𝛺 𝑠.𝑡. 𝜉𝜔[𝑡] = 𝜉𝜔
′

[𝑡] (2d)

𝑥𝜔𝑡 ∈ R𝑛𝑡−𝑞𝑡
+ × Z𝑞𝑡

+ ∀𝑡 ∈  ∀𝜔 ∈ 𝛺, (2e)

where the random parameters become known with 𝜉𝜔𝑡 =
(

𝑐𝜔𝑡 , 𝑏
𝜔
𝑡 , 𝐴

𝜔
𝑡 ,𝐻

𝜔
𝑡
)

for each 𝑡 ∈  and 𝜔 ∈ 𝛺. Note that constraints (2d) represent
the nonanticipativity constraints, which ensure that, for any stage 𝑡,
decision vectors that correspond to two scenarios 𝜉𝜔 and 𝜉𝜔′ should
be equal if they are indistinguishable up to stage 𝑡 (i.e., 𝜉𝜔[𝑡] and 𝜉𝜔′

[𝑡] ).
Since the extensive formulation of the M-SMIP explicitly considers the
nonanticipativity constraints, it is called an explicit formulation.

Any multi-stage stochastic MIP defined over a scenario tree can
be modeled as in formulation (2). Most practical decision problems
involve a large set of scenarios to reflect the uncertainties that occur at
3

successive time stages. The number of scenarios 𝑆 grows exponentially
in the time horizon 𝑇 . Even for relatively small 𝑇 , the dimension
of the problem given in (2) can be so large that the whole problem
could be impractical to be directly solved by commercial solvers. In
the next sections, we discuss the scenario sub-problem that exploits the
special structure of explicit formulation given above in decomposing it
into scenario sub-problems for developing efficient solution algorithms
to solve M-SMIP problems. We then present bounds based on this
scenario sub-problem, and the scenario dominance concept based on
the dominance relation of any two scenarios and the associated cuts
for the general M-SMIPs.

2.2. Scenario sub-problem and bounds

In this section, we present a scenario sub-problem, which optimizes
a single scenario objective while assigning feasible solutions for all the
other variables in the original formulation. Using the solution of the
single-scenario sub-problems, we derive lower and upper bounds on
M-SMIP, which could be used to strengthen the original formulation’s
relaxations.

Definition 2.1 (Scenario-𝜔 Problem, Büyüktahtakın, 2022). The scenario-
𝜔 problem (𝑃𝜔) is formulated as follows:

(𝑃𝜔) 𝑍𝜔 =min 𝑝𝜔
𝑇
∑

𝑡=1
𝑐𝜔𝑡 𝑥

𝜔
𝑡

s.t. (2b), (2c), (2d), (2e).

(3)

In Propositions 1 and 2 below, we assume that 𝑓𝜔(𝑥𝜔) = 𝑝𝜔
∑𝑇

𝑡=1 𝑐
𝜔
𝑡 𝑥

𝜔
𝑡 is a non-negative function for each 𝜔 ∈ 𝛺. Since 𝑥𝜔 are

non-negative in the feasible region of M-SMIP (2), this assumption
(𝑓𝜔(𝑥𝜔) ≥ 0) implies that all 𝑐𝜔𝑡 are also assumed to be non-negative.

Proposition 1. 𝑃𝜔 is a relaxation of 𝑃 ; 𝑍 ≥ 𝑍𝜔.

Proof. The result follows from the fact that both 𝑃 and 𝑃𝜔 have the
same feasible region and ∑

𝜔∈𝛺 𝑝𝜔
∑𝑇

𝑡=1 𝑐
𝜔
𝑡 𝑥

𝜔
𝑡 ≥ 𝑝𝜔

∑𝑇
𝑡=1 𝑐

𝜔
𝑡 𝑥

𝜔
𝑡 for each

𝜔 ∈ 𝛺 and for each 𝑥 that is satisfied by (2b), (2c), (2d), and (2e). □

Remark 1. The scenario-𝜔 problem (𝑃𝜔) is an MIP, involving all the
variables and all the constraints of formulation (2), while its objective
function includes only one specific scenario 𝜔. Thus, the 𝑃𝜔 is different
than the conventional single scenario sub-problem 𝑃𝜔

𝑅 , which has been
widely studied in the literature (see, e.g., Madansky, 1960 and Ahmed,
2013). Since the objective function of 𝑃𝜔 is defined for only one
scenario 𝜔, 𝑃𝜔 is a relaxation of 𝑃 . Our computational results for
the lot-sizing and dynamic knapsack problems presented in Section 5
show that the solution time of 𝑃𝜔 is faster compared to the original
problem (2), 𝑃 . However, for some instances for which finding a
feasible solution is hard, solving the single scenario sub-problems could
take a long time. Thus for such instances, we suggest solving the relaxed
version of 𝑃𝜔, 𝑃𝜔

𝑅 , as shown in Proposition 2 below.

Definition 2.2 (Relaxed Scenario-𝜔 Problem). The relaxed scenario-
𝜔 problem (𝑃𝜔

𝑅 ) is obtained by removing the non-anticipativity con-
straints (2d) from the scenario-𝜔 problem (𝑃𝜔) and formulated as
follows:

(𝑃𝜔
𝑅 ) 𝑍𝜔

𝑅 = min 𝑝𝜔
𝑇
∑

𝑡=1
𝑐𝜔𝑡 𝑥

𝜔
𝑡 (4a)

s.t. 𝐴1𝑥
𝜔
1 ≥ 𝑏1, (4b)

𝐴𝜔
𝑡 𝑥

𝜔
𝑡−1 +𝐻𝜔

𝑡 𝑥
𝜔
𝑡 ≥ 𝑏𝜔𝑡 ∀𝑡 ∈  ∖{1}, (4c)

𝑥𝜔𝑡 ∈ R𝑛𝑡−𝑞𝑡
+ × Z𝑞𝑡

+ ∀𝑡 ∈  . (4d)

Proposition 2. 𝑃𝜔
𝑅 is a relaxation of 𝑃𝜔; 𝑍𝜔 ≥ 𝑍𝜔

𝑅 . Thus, we have
𝑍 ≥ 𝑍𝜔 by Proposition 1.
𝑅
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Fig. 1. A multi-stage scenario tree and non-anticipativity relations.
Proposition 3 (Lower Bound). The sum of optimal scenario-𝜔 problem
objective values over all 𝜔 ∈ 𝛺, ∑

𝜔∈𝛺 𝑍𝜔, provides a lower bound on
the optimal objective function value of the original problem 𝑃 (2) as in the
following inequality:

𝑍(𝑥∗) ≥
∑

𝜔∈𝛺
𝑍𝜔. (5)

Proof. The proof follows from

𝑍(𝑥∗) = 𝑍(𝑥1∗, 𝑥2∗,… , 𝑥𝑆∗) =
∑

𝜔∈𝛺
𝑍𝜔(𝑥𝜔∗) ≥

∑

𝜔∈𝛺
𝑍𝜔, (6)

where 𝑥∗ ∶= (𝑥1∗, 𝑥2∗,… , 𝑥𝑆∗) is an optimal solution of (2), and the last
inequality holds because of the optimality of 𝑍𝜔. □

Proposition 4 (Upper Bound). Let 𝑥̇𝜔 be the optimal solution for the
scenario-𝜔 problem 𝑃𝜔 and 𝑍(𝑥̇𝜔) be the objective value of the original
problem 𝑃 where 𝑥̇𝜔 is substituted in the original problem objective function
(1a). Then, the following inequality holds:

𝑍(𝑥∗) ≤ min
𝜔∈𝛺

𝑍(𝑥̇𝜔). (7)

2.3. Scenario dominance

Below, we describe the concept of scenario dominance, which gives
the partial order relations of two scenarios, 𝜉𝑘, 𝜉𝑙 ∈ 𝛯, as defined in M-
SMIP problem 𝑃 (2), by pairwise comparing the realization of scenario
𝜉𝑘 ∈ 𝛯 at time 𝑡 ∈  ,

(

𝜉𝑘2 , 𝜉
𝑘
3 ,… , 𝜉𝑘𝑇

)

with the realization of scenario
𝜉𝑙 ∈ 𝛯,

(

𝜉𝑙2, 𝜉
𝑙
3,… , 𝜉𝑙𝑇

)

, for each 𝑡 ∈  . Our goal is to derive new
bounds and cutting planes to improve the computational solvability of
M-SMIPs, using the implications from the partial ordering of scenarios.

Definition 2.3 (Scenario Dominance, Büyüktahtakın, 2022). Define a
scenario realization at time 𝑡 ∈  as 𝜉𝜔𝑡 ∶=

(

𝑐𝜔𝑡 , 𝑏
𝜔
𝑡 , 𝐴

𝜔
𝑡 ,𝐻

𝜔
𝑡
)

. Given
two scenarios 𝜉𝑘 and 𝜉𝑙, scenario 𝜉𝑘 dominates scenario 𝜉𝑙, denoted by
𝜉𝑙 ⪯ 𝜉𝑘, with respect to problem 𝑃 (2) if
(

𝑝𝑘 ≥ 𝑝𝑙
)

∧
(

𝑐𝑘𝑡 ≥ 𝑐𝑙𝑡
)

∧
(

𝑏𝑘𝑡 ≥ 𝑏𝑙𝑡
)

∧
(

𝐴𝑘
𝑡 ≤ 𝐴𝑙

𝑡
)

∧
(

𝐻𝑘
𝑡 ≤ 𝐻 𝑙

𝑡
)

∀𝑡 ∈  ,

where ∧ denotes conjunction or ‘and’ operator. In other words, scenario
domination is determined based on an element-wise comparison of the
realizations of 𝑐𝜔, 𝑏𝜔, 𝐴𝜔, and 𝐻𝜔 for 𝑘, 𝑙 ∈ 𝛺 at each period 𝑡 ∈  . If,
4

𝑡 𝑡 𝑡 𝑡
for example, 𝑐𝜔𝑡 ∶=
(

𝑐𝜔1,𝑡,… , 𝑐𝜔𝑛𝑡 ,𝑡
)

and 𝐴𝜔
𝑡 ∶=

(

𝐴𝜔
1,1,𝑡,… , 𝐴𝜔

𝑚𝑡 ,𝑛𝑡 ,𝑡

)

are only
random variables, then the scenario domination is determined based on
comparing the realizations of 𝑐𝜔𝑡 and 𝐴𝜔

𝑡 for 𝜔 = 𝑘, 𝑙, as follows:

𝑐𝑘𝑗,𝑡 ≥ 𝑐𝑙𝑗,𝑡 ∀𝑗 = 1,… , 𝑛𝑡, ∀𝑡 = 1,… , 𝑇 ,

𝐴𝑘
𝑖,𝑗,𝑡 ≤ 𝐴𝑙

𝑖,𝑗,𝑡 ∀𝑖 = 1,… , 𝑚𝑡, ∀𝑗 = 1,… , 𝑛𝑡, ∀𝑡 = 1,… , 𝑇 .

Using the scenario dominance definition above, we define the dom-
inance sets as follows:

Definition 2.4 (Dominance Sets). The index set of scenarios, which are
dominated by scenario 𝜉𝑘 ∈ 𝛯 (𝛽+

𝜉𝑘
), the index set of scenarios, which

dominate scenario 𝜉𝑘 (𝛽−
𝜉𝑘
), and the index set of scenarios, which neither

dominate nor are dominated by 𝜉𝑘 (𝑁𝜉𝑘 ) are defined as follows:

𝛽+
𝜉𝑘

=
{

𝑙 ∈ 𝛺 ∶ 𝜉𝑙 ⪯ 𝜉𝑘
}

,

𝛽−
𝜉𝑘

=
{

𝑙 ∈ 𝛺, 𝑙 ≠ 𝑘 ∶ 𝜉𝑘 ⪯ 𝜉𝑙
}

,

𝑁𝜉𝑘 =
{

𝑙 ∈ 𝛺 ∶ 𝜉𝑘  𝜉𝑙 and 𝜉𝑙  𝜉𝑘
}

.

The definition of scenario dominance above is general as it is based
on the uncertainty of all the parameters of the problem: uncertainty
in the right-hand side 𝑏𝜔𝑡 , left-hand side (𝐴𝜔

𝑡 ,𝐻
𝜔
𝑡 ), and the objective

coefficients 𝑐𝜔𝑡 . We note that the comparison of scenarios for parameter
values (𝑏𝑡, 𝐴𝑡,𝐻𝑡, 𝑐𝑡) is only relevant if the considered parameter is un-
certain. One can derive a large number of dominance relations among
scenarios of a stochastic program using Definition 2.3 by considering
uncertainty only in the most important parameters of the problem.

In Fig. 2, we present an example realization of the 𝑐𝑡 parameter
in terms of 12 different scenario realizations. Here each black point 𝜔
represents a realization of 𝑐𝑡 in stages 1 and 2, [𝑐𝜔2 , 𝑐

𝜔
3 ]. The scenario 𝜉6

realization is [40, 44]. The index set of scenarios, which are dominated
by 𝜉6 is defined as 𝛽+

𝜉6
= {1, 2, 6}, while the index set of scenarios, which

dominate scenario 𝜉6 is given by 𝛽−
𝜉6

= {7, 8, 9, 10, 11, 12}. The index set
for all other scenarios that neither dominate nor are dominated by 𝜉6

is given by 𝑁𝜉6 = {3, 4, 5}.

Remark 2. The uncertain data in the above example follows a discrete

distribution, and there are only twelve different scenarios. Our scenario
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Fig. 2. Example of 12 scenario realizations of the 𝑐𝑡 variable in three stages and scenarios that dominate and are dominated by scenario 𝜉6. Each black point 𝜔 represents a
scenario realization 𝜉𝜔 ∶= [𝑐𝜔2 , 𝑐

𝜔
3 ] for 𝜔 = 1,… , 12.
dominance approach could also be applied to stochastic programs
with random variables that follow continuous distributions by ap-
proximating them to scenario-based stochastic programs with discrete
distributions through various sampling methods (Shapiro et al., 2009).

2.4. Scenario dominance cutting plane algorithm

In this section, we present two lemmas and the main theorem
regarding the scenario dominance cutting planes introduced by Büyük-
tahtakın (2022), focusing on the case for the general risk-neutral M-
SMIP problem. Lemma 1 below states that the portion of the optimal
objective function value for the original problem (1) that corresponds to
the scenario-𝜉𝑘 is bounded below by the optimal objective value of the
scenario-𝜉𝑘 problem, while Lemma 2 below defines the relations of the
optimal objective function values of the two scenario subproblems with
their dominance relation. Using those lemmas, we present the main
theorem on the scenario dominance cut that provides a lower bound
on the scenario-𝜉𝑘 portion of the original problem’s optimal objective
value. In the corollaries following the theorem, we first strengthen the
scenario dominance cut and then show its feasibility based on a relaxed
scenario sub-problem.

Definition 2.5. Let 𝑥̇𝜔 be the optimal solution for the scenario-𝜔
problem 𝑃𝜔 (3) and 𝑍𝜔(𝑥̇𝜔) be the corresponding optimal objective
value, i.e., 𝑍𝜔(𝑥̇𝜔) = 𝑝𝜔

∑

𝑡∈ 𝑐𝜔𝑡 𝑥̇
𝜔
𝑡 and 𝑍𝜔(𝑥̇𝜔) ≅ 𝑍𝜔.

Lemma 1. The portion of the optimal solution for the original problem (2)
that corresponds to scenario-𝜉𝑘, 𝑥𝑘∗, satisfies the following inequality:

𝑝𝑘
∑

𝑡∈
𝑐𝑡
𝑘𝑥𝑘𝑡 ≥ 𝑍𝑘(𝑥̇𝑘) ∀𝑘 ∈ 𝛺.

Lemma 2. Let 𝜉𝑘 be a scenario such that 𝑘 ∈ 𝛽−
𝜉𝑙

⊂ 𝛺 for a given
scenario 𝜉𝑙. Let 𝑥̇𝑘 and 𝑥̇𝑙 be the optimal solution to the problems 𝑃 𝑘 and
𝑃 𝑙, respectively. Then, the optimal objective value of the problem 𝑃 𝑙 and
the optimal objective value of the problem 𝑃 𝑘 have the following relation:

𝑍𝑘(𝑥̇𝑘) ≥ 𝑍𝑙(𝑥̇𝑙) ∀𝑘 ∈ 𝛽−
𝜉𝑙
. (8)

Theorem 1. Given the pairs of scenarios 𝜉𝑘 and 𝜉𝑙 with 𝜉𝑙 ⪯ 𝜉𝑘, the
portion of the optimal solution for the original problem (2) that corresponds
5

to scenario-𝜉𝑘, 𝑥𝑘∗, satisfies the following inequality:

𝑝𝑘
∑

𝑡∈
𝑐𝑡
𝑘𝑥𝑘𝑡 ≥ 𝑍𝑙(𝑥̇𝑙) ∀𝑘 ∈ 𝛽−

𝜉𝑙
. (9)

Proof. The first inequality below follows from Lemma 1, while the
second follows from Lemma 2.

𝑝𝑘
∑

𝑡∈
𝑐𝑡
𝑘𝑥𝑘∗𝑡 ≥ 𝑍𝑘(𝑥̇𝑘) ≥ 𝑍𝑙(𝑥̇𝑙). □ (10)

Remark 3. In problem 𝑃 (2), we define 𝑐 values as non-negative. How-
ever, the inequalities (8) and (9) hold even if 𝑐 values are unrestricted
in sign (positive, negative or zero) since 𝑥𝜔 ≥ 0 in problem 𝑃 . Suppose
that 𝑥𝜔 ≤ 0 in 𝑃 for all 𝜔 ∈ 𝛺. Then for any 𝑐 values (positive,
negative or zero), we would have 𝑍𝑘(𝑥̇𝑘) ≤ 𝑍𝑙(𝑥̇𝑙). When both 𝑐 and
𝑥 are unrestricted in sign, we may have either 𝑍𝑘(𝑥̇𝑘) ≥ 𝑍𝑙(𝑥̇𝑙) or
𝑍𝑘(𝑥̇𝑘) ≤ 𝑍𝑙(𝑥̇𝑙). Thus, in the latter two cases, the inequalities (8) and
(9) may not hold. However, this problem could be remedied by defining
additional 𝑦-variables such that 𝑦 = −𝑥 ≥ 0, converting the problem into
one with a maximum objective, and redefining the inequalities for this
maximization problem, as considered in Bushaj et al. (2022a).

In the below corollary of Theorem 1, we present a tighter version
of the scenario dominance cuts (9) for the M-SMIP:

Corollary 1.1. The inequality (9) can be strengthened as in the following
inequality:

𝑝𝑙
∑

𝑡∈
𝑐𝑡
𝑙𝑥𝑘𝑡 ≥ 𝑍𝑙(𝑥̇𝑙) = 𝑝𝑙

∑

𝑡∈
𝑐𝑡
𝑙𝑥̇𝑙𝑡 ∀𝑘 ∈ 𝛽−

𝜉𝑙
. (11)

Proof. Since the solution 𝑥𝑘𝑡
∗ is a part of a feasible solution to the full

problem 𝑃 , ∀ 𝑙 ∈ 𝛺 such that 𝜉𝑙 ⪯ 𝜉𝑘

𝑝𝑙
∑

𝑡∈
𝑐𝑡
𝑙𝑥𝑘𝑡

∗ ≥ 𝑝𝑙
∑

𝑡∈
𝑐𝑡
𝑙𝑥̇𝑙𝑡 .

But 𝑐𝑘𝑡 ≥ 𝑐𝑙𝑡 and 𝑝𝑘 ≥ 𝑝𝑙 ∀𝑡 ∈  implies that

𝑍̄(𝑥𝑘∗) = 𝑝𝑘
∑

𝑡∈
𝑐𝑡
𝑘𝑥𝑘𝑡

∗ ≥ 𝑝𝑙
∑

𝑡∈
𝑐𝑡
𝑙𝑥𝑘𝑡

∗. □

Remark 4. The inequalities (9) and their tighter version (11) do not
cut off the optimal solution as proven in Theorem 1 and Corollary 1.1,
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while they may cut off a feasible solution, i.e., they are not valid
inequalities for the feasible region of (2). These types of inequalities,
e.g., supervalid inequalities (Israeli and Wood, 2002) and Bender’s
optimality cuts (Benders, 2005), are useful because they help to reduce
the solution space while ensuring that the optimal solutions are not cut
off. Also, Theorem 1 considers the generalized uncertainty in Problem
(2), that is, the uncertainty in the objective function, right-hand side
vector, as well as left-hand side matrices simultaneously. Uncertainty
in one or a subset of those parameters is a specific case, and thus, the
same findings apply to it.

Corollary 1.2.

𝑝𝑙
∑

𝑡∈
𝑐𝑡
𝑙𝑥𝑘𝑡 ≥ 𝑍𝑙

𝑅(𝑥̇
𝑙)

roof. The proof follows from Theorem 1 and Corollary 1.1 and the
act that 𝑃 𝑙

𝑅 is a relaxation of 𝑃 𝑙 for 𝑙 ∈ 𝛺, i.e., 𝑍𝑙(𝑥̇𝑙) ≥ 𝑍𝑙
𝑅(𝑥̇

𝑙). □

In Algorithm 1 below, we provide a formal procedure for generating
the scenario dominance cuts (11).

Algorithm 1 Cutting plane algorithm for scenario dominance cuts (11)
Procedure: Define Scenario Dominance Sets
Define: 𝛺̄ ⊆ 𝛺; 𝛽−𝜉𝑙 = ∅ for 𝑙 ∈ 𝛺̄
for 𝑙 ∈ 𝛺̄ do

for 𝑡 ∈  do
for each 𝑘 ∈ 𝛺, do

if 𝑝𝑘 ≥ 𝑝𝑙 and 𝑐𝑘𝑡 ≥ 𝑐𝑙𝑡 and 𝑏𝑘𝑡 ≥ 𝑏𝑙𝑡 and 𝐴𝑘
𝑡 ≤ 𝐴𝑙

𝑡 and 𝐻𝑘
𝑡 ≤ 𝐻 𝑙

𝑡 then
append 𝑘 to 𝛽−𝜉𝑙

end if
end for

end for
end for
Procedure: Add Scenario Dominance Cut
Solve 𝑃 𝑙 and obtain 𝑥̇𝑙 and 𝑍 𝑙(𝑥̇𝑙) {𝑃 𝑙: sub-problem for scenario 𝜉𝑙; 𝑥̇𝑙:
optimal solution for scenario 𝜉𝑙; 𝑍 𝑙(𝑥̇𝑙): objective value of 𝑃 𝑙}
Define 𝑥𝑘 { 𝑥𝑘: decision variables corresponding to scenario 𝜉𝑙}
while 𝛽−𝜉𝑙 is not ∅, for each 𝑘 ∈ 𝛽−𝜉𝑙 do

select scenario index 𝑘
add cut: 𝑝𝑙 ∑𝑡∈ 𝑐𝑡 𝑙𝑥𝑘𝑡 ≥ 𝑍 𝑙(𝑥̇𝑙)

end while

We demonstrate the use of our cuts on the two most popular
ombinatorial optimization problems: the stochastic capacitated multi-
tem lot-sizing problem (S-MCLSP) and the stochastic dynamic multi-
imensional knapsack problem (S-MKP). The lot-sizing problem is a
ypical example of a dynamic MIP, and thus the stochastic version
f it is a perfect application of a general multi-stage stochastic MIP
rogram (Guan et al., 2009). On the other hand, the multi-dimensional
napsack problem, which involves multiple knapsack constraints, is
trongly NP-Hard (Kellerer et al., 2004) and is also a special case of
he general mixed-integer programs. Consequently, we consider the
tochastic multi-stage version of the multi-dimensional knapsack to
emonstrate the generality of our approach to tackling stochastic MIP
roblems. In the next two sections, we explore the implementation of
he scenario dominance cuts and derive strong scenario dominance cuts
o solve S-MCLSP and S-MKP problems, respectively.

. Scenario dominance cuts for S-MCLSP

.1. Stochastic multi-stage lot-sizing problem

We consider a multi-stage stochastic integer programming formula-
ion of the multi-item capacitated lot-sizing problem (S-MCLSP). Guan
t al. (2009) have considered the single item version of the S-MCLSP.
he S-MCLSP involves 𝑇 time periods, where the stochastic demand
6

for each item 𝑖 ∈  = {1,… , 𝐼} during time period 𝑡 ∈  = {1,… , 𝑇 }
is given by 𝑑𝜔𝑖𝑡 under each scenario 𝜔 ∈ 𝛺. An S-MCLSP solution
must satisfy periodic demands for each item 𝑖 without any backlogging
ubject to capacity constraints at each period 𝑡, i.e., the total number
f items produced to be no more than 𝑐𝑡. Excess production of an item

𝑖 can be stored as inventory.
The costs associated with the S-MCLSP include per-unit item-𝑖 pro-

uction costs (𝑔𝑖𝑡), fixed setup costs (𝑓𝑖𝑡) if the production of item 𝑖
ccurs during period 𝑡, and per-unit inventory costs (ℎ𝑖𝑡), for each item
∈  and period 𝑡 ∈  . The objective of the S-MCLSP is to find

roduction levels for each period that satisfy all demands at a minimum
ost.

To formulate the S-MCLSP as a stochastic mixed-integer program
MIP), we define the following decision variables for item 𝑖 ∈ , period
∈  , and each scenario 𝜔 ∈ 𝛺. Let 𝑥𝜔𝑖𝑡 be the amount of item-𝑖

roduction in period 𝑡, and let 𝑧𝜔𝑖𝑡 be the item-𝑖 inventory level after
eriod 𝑡 under scenario 𝜔 ∈ 𝛺. Additionally, define binary variables
𝜔
𝑖𝑡 , which equal 1 if 𝑥𝜔𝑖𝑡 > 0. The S-MCLSP formulation (12) can be
resented as follows:

in
∑

𝜔∈𝛺
𝑝𝜔

∑

𝑡∈

∑

𝑖∈

(

𝑔𝑖𝑡𝑥
𝜔
𝑖𝑡 + 𝑓𝑖𝑡𝑦

𝜔
𝑖𝑡 + ℎ𝑖𝑡𝑧

𝜔
𝑖𝑡
)

(12a)

s.t. 𝑧𝜔𝑖,𝑡−1 + 𝑥𝜔𝑖𝑡 − 𝑑𝜔𝑖𝑡 = 𝑧𝜔𝑖𝑡 ∀𝑖 ∈ , ∀𝑡 ∈  , ∀𝜔 ∈ 𝛺 (12b)
∑

𝑖∈
𝑥𝜔𝑖𝑡 ≤ 𝑐𝑡 ∀𝑡 ∈  , ∀𝜔 ∈ 𝛺 (12c)

𝑥𝜔𝑖𝑡 ≤ min

{

𝑐𝑡,
𝑇
∑

𝑗=𝑡
𝑑𝜔𝑖𝑗

}

𝑦𝜔𝑖𝑡 ∀𝑖 ∈ , ∀𝑡 ∈  , ∀𝜔 ∈ 𝛺 (12d)

𝑥𝜔𝑖𝑡 = 𝑥𝜔
′

𝑖𝑡 ∀𝑖 ∈ , ∀𝑡 ∈  , ∀𝜔,𝜔′ ∈ 𝑊 𝑠.𝑡. 𝜉𝜔[𝑡] = 𝜉𝜔
′

[𝑡] (12e)

𝑧𝜔𝑖𝑡 = 𝑧𝜔
′

𝑖𝑡 ∀𝑖 ∈ , ∀𝑡 ∈  , ∀𝜔,𝜔′ ∈ 𝑊 𝑠.𝑡. 𝜉𝜔[𝑡] = 𝜉𝜔
′

[𝑡] (12f)

𝑦𝜔𝑖𝑡 = 𝑦𝜔
′

𝑖𝑡 ∀𝑖 ∈ , ∀𝑡 ∈  , ∀𝜔,𝜔′ ∈ 𝑊 𝑠.𝑡. 𝜉𝜔[𝑡] = 𝜉𝜔
′

[𝑡] (12g)

𝑥𝜔𝑖𝑡 , 𝑧
𝜔
𝑖𝑡 ≥ 0 ∀𝑖 ∈ , ∀𝑡 ∈  , ∀𝜔 ∈ 𝛺 (12h)

𝑦𝜔𝑖𝑡 ∈ {0, 1} ∀𝑖 ∈ , ∀𝑡 ∈  , ∀𝜔 ∈ 𝛺. (12i)

The objective function (12a) minimizes the expected sum of produc-
tion, setup, and inventory costs over all periods 𝑡 ∈  and items
𝑖 ∈ . Constraints (12b) define the inventory balance constraints
and the inventory remaining after each time period for each item.
Constraints (12c) enforce the periodic capacity over the production
of all items. Constraints (12d) represent the capacity constraints by
enforcing the binary setup variable 𝑦𝜔𝑖𝑡 to equal 1 whenever 𝑥𝜔𝑖𝑡 is
ositive, and the maximum production for each item in each period
an be, at most, the minimum of the capacity and the total remaining
emand for that item. Constraints (12e), (12f), and (12g) represent
he nonanticipativity constraints for production, inventory, and setup
ariables, respectively. Finally, constraints (12h) and (12i) represent
ower bounds on the production and inventory variables and binary
nteger restrictions, respectively. Without loss of generality, we assume
ero initial inventory.

.2. Bounds for S-MCLSP

In this sub-section, we adapt the lower (5) and upper bounds (7)
roposed for the general M-SMIPs to the S-MCLSP problem. Our goal
s to improve the solvability of the S-MCLSP by implementing those
ounds in a branch and bound solver.

roposition 5. Let 𝛺̄ ⊆ 𝛺 be a subset of scenarios. For a given 𝑠 ∈ 𝛺̄,
let (𝑥̇𝑠𝑖𝑡, 𝑦̇

𝑠
𝑖𝑡, 𝑧̇

𝑠
𝑖𝑡) and 𝑍𝑠(𝑥̇𝑠𝑖𝑡, 𝑦̇

𝑠
𝑖𝑡, 𝑧̇

𝑠
𝑖𝑡) be the optimal solution and the corre-

sponding objective function value of the scenario-𝜉𝑠 problem, respectively.
Let 𝑍(𝑥̇𝑠𝑖𝑡, 𝑦̇

𝑠
𝑖𝑡, 𝑧̇

𝑠
𝑖𝑡) be the objective function value of (12a) at the optimal

solution of the scenario-𝜉𝑠 problem, (𝑥̇𝑠𝑖𝑡, 𝑦̇
𝑠
𝑖𝑡, 𝑧̇

𝑠
𝑖𝑡). Then the optimal solution

to the S-MCLSP, (𝑥∗, 𝑦∗, 𝑧∗), satisfies
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∑

a
𝑗
d
b
𝑥
f
c

P
o
a
a
f

∑

a

(a) the following lower bound on the optimal objective function value of
the S-MCLSP problem (12):
∑

𝜔∈𝛺
𝑝𝜔

∑

𝑡∈

∑

𝑖∈

(

𝑔𝑖𝑡𝑥
𝜔
𝑖𝑡 + 𝑓𝑖𝑡𝑦

𝜔
𝑖𝑡 + ℎ𝑖𝑡𝑧

𝜔
𝑖𝑡
)

≥
∑

𝑠∈𝛺̄

𝑍𝑠(𝑥̇𝑠𝑖𝑡, 𝑦̇
𝑠
𝑖𝑡, 𝑧̇

𝑠
𝑖𝑡), (13)

(b) and the following upper bound on the optimal objective function
value of the S-MCLSP problem (12):
∑

𝜔∈𝛺
𝑝𝜔

∑

𝑡∈

∑

𝑖∈

(

𝑔𝑖𝑡𝑥
𝜔
𝑖𝑡 + 𝑓𝑖𝑡𝑦

𝜔
𝑖𝑡 + ℎ𝑖𝑡𝑧

𝜔
𝑖𝑡
)

≤ min
𝑠∈𝛺̄

𝑍(𝑥̇𝑠𝑖𝑡, 𝑦̇
𝑠
𝑖𝑡, 𝑧̇

𝑠
𝑖𝑡). (14)

Proof. The result follows immediately by applying inequality (5) in
Proposition 3 for a subset of scenarios 𝛺̄ ⊆ 𝛺 and inequality (7) in
Proposition 4, respectively, for the stochastic multi-stage multi-item
lot-sizing problem. □

3.3. Scenario-dominance cuts for S-MCLSP

Under this sub-section, we modify the scenario dominance cutting
planes (9) for the S-MCLSP to improve the solvability of such problems.
Below, we present the related theorem.

Theorem 2. Let 𝜉𝑙 be a scenario with 𝑙 ∈ 𝛺. For each 𝑡 ∈  and 𝑖 ∈ , let
(𝑥̇𝑙𝑖𝑡, 𝑦̇

𝑙
𝑖𝑡, 𝑧̇

𝑙
𝑖𝑡) represent a vector of optimal solutions to scenario-𝜉𝑙 problem

and define the optimal objective value corresponding to the scenario-𝜉𝑙
problem as:

𝑍𝑙(𝑥̇𝑙𝑖𝑡, 𝑦̇
𝑙
𝑖𝑡, 𝑧̇

𝑙
𝑖𝑡) = 𝑝𝑙

∑

𝑡∈

∑

𝑖∈

(

𝑔𝑖𝑡𝑥̇
𝑙
𝑖𝑡 + 𝑓𝑖𝑡𝑦̇

𝑙
𝑖𝑡 + ℎ𝑖𝑡𝑧̇

𝑙
𝑖𝑡
)

.

Then, the portion of the optimal solution to the S-MCLSP (12) corresponding
to scenario 𝜉𝑘 such that 𝜉𝑙 ⪯ 𝜉𝑘 and 𝑙 ≠ 𝑘, (𝑥𝑘𝑖𝑡

∗, 𝑦𝑘𝑖𝑡
∗, 𝑧𝑘𝑖𝑡

∗), satisfies the
following inequality:

𝑝𝑘
∑

𝑡∈

∑

𝑖∈

(

𝑔𝑖𝑡𝑥
𝑘
𝑖𝑡 + 𝑓𝑖𝑡𝑦

𝑘
𝑖𝑡 + ℎ𝑖𝑡𝑧

𝑘
𝑖𝑡
)

≥ 𝑍𝑙(𝑥̇𝑙𝑖𝑡, 𝑦̇
𝑙
𝑖𝑡, 𝑧̇

𝑙
𝑖𝑡) ∀𝑘 ∈ 𝛽−

𝜉𝑙
. (15)

Proof. The result follows immediately by applying the inequality (9)
in Theorem 1 for the stochastic multi-stage multi-item capacitated
lot-sizing problem. □

3.4. Strong scenario-dominance cuts for S-MCLSP

Here, as a main contribution of the paper, we present new scenario
dominance cuts for the S-MCLS, which are stronger and more aggres-
sive than the inequalities (9). Below we provide two propositions and
their proofs for the strong scenario dominance cuts and an example to
illustrate their application.

Proposition 6. Let 𝜉𝑙 be a scenario with 𝑙 ∈ 𝛺. Let 𝑦̇𝑙𝑖𝑡 represent a vector
of optimal 𝑦-variable solutions to the scenario-𝜉𝑙 problem (3). Then, for
a given 𝑡 ∈  and for each 𝜉𝑘, 𝑘 ∈ 𝛺, such that 𝜉𝑙 ⪯ 𝜉𝑘, there exists
a feasible solution to the S-MCLSP problem (12), 𝑦̂𝑘𝑖ℎ, that satisfies the
following inequality:
𝑡

∑

ℎ=1
𝑦𝑘𝑖ℎ ≥

𝑡
∑

ℎ=1
𝑦̇𝑙𝑖ℎ, ∀𝑖 ∈ , ∀𝑘 ∈ 𝛽−

𝜉𝑙
. (16)

Proof. We will prove this by contradiction. Assume that for some 𝑖 ∈ ,
there exists a period 𝑡 ∈  such that ∑𝑡

ℎ=1 𝑦̇
𝑙
𝑖ℎ >

∑𝑡
ℎ=1 𝑦̂

𝑘
𝑖ℎ is satisfied by

each feasible solution 𝑦̂𝑘ℎ𝑡 to the original S-MCLSP problem. Then there
exists at least one period 𝑗 ∈ {1,… , 𝑡} such that 𝑦̇𝑙𝑖𝑗 > 𝑦̂𝑘𝑖𝑗 . In that case,
𝑦̇𝑙𝑖𝑗 must take the value 1. Define 𝑇̃ =

{

𝑗 ∈ [1, 𝑡] ∶ 𝑦̇𝑙𝑖𝑗 > 𝑦̂𝑘𝑖𝑗
}

and order
the elements of 𝑇̃ in ascending sequence, i.e., 𝑇̃ =

{

𝑗1, 𝑗2,… , 𝑗𝑚
}

.
As capacity is sufficiently large to produce in period 𝑗𝑛, 𝑛 = 1,… , 𝑚,

under scenario 𝑙, i.e., 𝑦̇𝑙𝑖𝑗𝑛 = 1 and 𝑥𝑙𝑖𝑗𝑛 > 0, a new solution to the original
problem under scenario 𝑘 can be constructed iteratively for each 𝑗𝑛 ∈ 𝑇̃
7

as presented in Algorithm 2 given below. (
Algorithm 2 Finding a feasible solution (𝑦́, 𝑥́, 𝑧́) satisfying ∑𝑡
ℎ=1 𝑦̇

𝑙
𝑖ℎ ≤

𝑡
ℎ=1 𝑦́

𝑘
𝑖ℎ

Set the initial values of (𝑦́, 𝑥́, 𝑧́) to (𝑦̂, 𝑥̂, 𝑧̂) satisfying ∑𝑡
ℎ=1 𝑦̇

𝑙
𝑖ℎ >

∑𝑡
ℎ=1 𝑦̂

𝑘
𝑖ℎ for

each 𝑖 ∈ :

𝑦́𝑘𝑖𝑗 = 𝑦̂𝑘𝑖𝑗 , 𝑗 = 1,… , 𝑇 ,

𝑥́𝑘𝑖𝑗 = 𝑥̂𝑘𝑖𝑗 , 𝑗 = 1,… , 𝑇 ,

𝑧́𝑘𝑖𝑗 = 𝑧̂𝑘𝑖𝑗 , 𝑗 = 1,… , 𝑇 .

for 𝑛 = 1 to 𝑚 do

𝑦́𝑘𝑖𝑗𝑛 = 𝑦̇𝑙𝑖𝑗𝑛 ,

𝑥́𝑘𝑖𝑗𝑛 = 𝑥́𝑘𝑖𝑗𝑛 + 1,

𝑧́𝑘𝑖𝑡 = 𝑧́𝑘𝑖𝑡 + 1, 𝑡 = 𝑗𝑛,… , 𝑇 .

end for

for 𝑣 ∈ 𝛺 such that 𝜉𝑣[𝑡] = 𝜉𝑘[𝑡] for some 𝑡 ∈  do

𝑦́𝑣𝑖𝑗 = 𝑦́𝑘𝑖𝑗 , 𝑗 = 1,… , 𝑡,

𝑥́𝑣𝑖𝑗 = 𝑥́𝑘𝑖𝑗 , 𝑗 = 1,… , 𝑡,

𝑧́𝑣𝑖𝑗 = 𝑧́𝑘𝑖𝑗 , 𝑗 = 1,… , 𝑡,

𝑧́𝑣𝑖𝑗 = 𝑧́𝑣𝑖𝑗 + 𝑚, 𝑗 = 𝑡 + 1,… , 𝑇 .

end for

In the above algorithm, a new feasible solution (𝑦́, 𝑥́, 𝑠́) satisfying
∑𝑡

ℎ=1 𝑦̇
𝑙
𝑖ℎ ≤

∑𝑡
ℎ=1 𝑦

𝑘
𝑖ℎ is obtained by modifying an initial feasible solu-

tion (𝑦̂, 𝑥̂, 𝑠̂) that satisfies ∑𝑡
ℎ=1 𝑦̇

𝑙
𝑖ℎ >

∑𝑡
ℎ=1 𝑦̂

𝑘
𝑖ℎ. The initial solution is

iteratively updated for each 𝑗𝑛 ∈ 𝑇̃ , 𝑛 = 1,… , 𝑚 starting from 𝑗1 in
ascending order. In order to satisfy the non-anticipativity constraints
(12e)–(12g), the solutions corresponding to a scenario 𝑣 which shares
the same 𝑦−, 𝑥−, and 𝑧− variables with scenario 𝑘 up to time 𝑡 ∈  ,
i.e., 𝜉𝑣[𝑡] = 𝜉𝑘[𝑡], with 𝑧− variables for scenario 𝑣 at time 𝑗 = 𝑡 + 1,… , 𝑇
are also updated.

The new solution is non-negative and also satisfies the inventory
balance constraints (12b) as the inventory at time 𝑗𝑛 ∈ 𝑇̃ is increased
s much as the production at time 𝑗𝑛 ∈ 𝑇̃ . Additional production at time
𝑛 is carried over as inventory in future periods without being used for
emand. This solution also meets the capacity limits (12c) and (12d)
ecause a setup value of 𝑦̇𝑙𝑖𝑗𝑛 = 1, and thus, the production amount of
𝑙
𝑖𝑗𝑛

> 0 is feasible under the scenario 𝑙 problem, and thus is also feasible
or the scenario 𝑘 problem. Thus, we obtain a new solution deriving a
ontradiction to our initial assumption. □

roposition 7. Let 𝜉𝑘 be a scenario with 𝑘 ∈ 𝛺 and 𝑥̇𝑘𝑖𝑡 represent a vector
f 𝑥-variable optimal solutions to the scenario-𝜉𝑘 problem (3). Then, for
given 𝑡 ∈  and for each 𝜉𝑙, 𝑙 ∈ 𝛺 such that 𝜉𝑙 ⪯ 𝜉𝑘, there exists
feasible solution to the S-MCLSP problem (12), 𝑥̂𝑙𝑖𝑡, that satisfies the

ollowing inequality:

𝑡

𝑗=1
𝑥𝑙𝑖𝑡 ≤

𝑡
∑

𝑗=1
𝑥̇𝑘𝑖𝑡, ∀𝑡 ∈  , 𝑖 ∈ , ∀𝑙 ∈ 𝛽+

𝜉𝑘
. (17)

Proof. This is a proof by construction. Without loss of generality,
assume that the original problem (12) is feasible, and let (𝑦̂, 𝑥̂, 𝑧̂) be

feasible solution to this problem. Because 𝑑𝑘𝑡 ≥ 𝑑𝑙𝑡 for each 𝑡 ∈  ,
𝑦̂, 𝑥̂, 𝑧̂) can be modified to construct another feasible solution to the



Computers and Operations Research 153 (2023) 106149İ.E. Büyüktahtakın

T
p

original problem iteratively such that ∑𝑡
ℎ=1 𝑥̂

𝑙
𝑖ℎ =

∑𝑡
ℎ=1 𝑥̇

𝑘
𝑖ℎ as presented

in Algorithm 3 given below.

Algorithm 3 Modifying a feasible solution (𝑦̂, 𝑥̂, 𝑧̂) to satisfy ∑𝑡
ℎ=1 𝑥̂

𝑙
𝑖ℎ =

∑𝑡
ℎ=1 𝑥̇

𝑘
𝑖ℎ

for 𝑡 = 1 to 𝑇 do

𝑦̂𝑙𝑖𝑡 = 𝑦̇𝑘𝑖𝑡,

𝑥̂𝑙𝑖𝑡 = 𝑥̇𝑘𝑖𝑡,

𝑧̂𝑙𝑖𝑡 = 𝑧̇𝑘𝑖𝑡 + (
𝑡

∑

𝑗=1
𝑑𝑘
𝑖𝑗 −

𝑡
∑

𝑗=1
𝑑𝑙
𝑖𝑗 ).

end for

for 𝑣 ∈ 𝛺 such that 𝜉𝑣[𝑡] = 𝜉𝑙[𝑡] for some 𝑡 ∈  do

𝑦̂𝑣𝑖𝑗 = 𝑦̂𝑙𝑖𝑗 , 𝑗 = 1,… , 𝑡,

𝑥̂𝑣𝑖𝑗 = 𝑥̂𝑙𝑖𝑗 , 𝑗 = 1,… , 𝑡,

𝑧̂𝑣𝑖𝑗 = 𝑧̂𝑙𝑖𝑗 , 𝑗 = 1,… , 𝑡,

𝑧̂𝑣𝑖𝑗 = 𝑥̂𝑣𝑖𝑗 − 𝑑𝑖𝑗
𝑣 + 𝑧̂𝑣𝑖,𝑗−1 𝑗 = 𝑡 + 1,… , 𝑇 .

end for

In the above algorithm, a new feasible solution satisfying ∑𝑡
ℎ=1 𝑥̂

𝑙
𝑖ℎ =

∑𝑡
ℎ=1 𝑥̇

𝑘
𝑖ℎ is obtained by modifying an initial feasible solution to the

original problem, (𝑦̂, 𝑥̂, 𝑠̂). The initial solution is iteratively updated for
each scenario 𝑙, such that 𝜉𝑙 ⪯ 𝜉𝑘 for each 𝑡 ∈  . In order to satisfy the
non-anticipativity constraints (12e)–(12g), the solutions corresponding
to scenario 𝑣 ∈ 𝛺, which share the same 𝑦−, 𝑥−, and 𝑧− variables
with scenario 𝑙 up to time 𝑡 ∈  , and 𝑧− variables after time 𝑡 are
also updated. Note that 𝑣 ∈ 𝛺 such that 𝜉𝑣 ⪯ 𝜉𝑙 up to stage 𝑡 ∈  is
also dominated by scenario 𝑘 up to stage 𝑡 ∈  , due to the transitivity
property of scenario dominance.

The new solution is non-negative and also satisfies the inventory
balance constraints (12b) because the difference in total demands of
scenario 𝑘 and 𝑙 is added to the inventory of scenario 𝑙 at time 𝑡 ∈  .

his solution also meets the capacity limits (12c) and (12d) because the
roduction amount of 𝑥̇𝑘𝑖𝑡 ≥ 0 is feasible under scenario 𝑘, and thus is

also feasible for scenario 𝑙. □

Remark 5. The inequalities (16) and (17) generally lead to opti-
mal solutions, while in some cases, those inequalities might cut off
the optimal and even a feasible solution. By adding such aggressive
cuts as user cuts, our goal is to considerably speed up the solution
time without causing infeasibility. Our computational experiments have
shown that the best solution obtained by adding (16) and (17) only
deviates 0.05% on average from the optimal solution for the MCLSP
instances, while the solution time has been significantly reduced (see
Section 5.3). Therefore, strong scenario dominance cuts need to be
carefully handled for implementation. In Section 5, we investigate the
tradeoff between the quality of the best solution obtained by applying
those inequalities versus the computational speed-up obtained with
them. We, specifically, present the objective value gap defined by the
percentage deviation between the best objective value found by CPLEX
for the original problem and the best objective value obtained by (16)
and (17) cuts to analyze the impact of adding aggressive inequalities
that may cut off the optimal solution.

Example 1. Consider an S-MCLSP instance in which 𝑇 = 4 and 𝐼 = 2.
This instance has 𝑆 = 8 scenarios, and 𝛺 = {1, 2, 3, 4, 5, 6, 7, 8}. We
assume that the parameter values at 𝑡 = 1 are known and are set as
zero in this example. The data pertaining the instance for 𝑖 = 1, 2 and
8

𝑡 = 2, 3, 4 is: 𝑐𝑡 = (21, 24, 24), 𝑔1𝑡 = (27, 27, 34), 𝑔2𝑡 = (41, 38, 42), 𝑓1𝑡 =
(1070, 1096, 991), 𝑓2𝑡 = (928, 940, 1041), ℎ1𝑡 = (1, 1, 1), ℎ2𝑡 = (1, 1, 1)
and the uncertain demand parameter 𝑑1𝑖𝑡 = [(5, 3, 5), (1, 3, 1)], 𝑑2𝑖𝑡 =
[(5, 3, 6), (1, 3, 9)], 𝑞3𝑖𝑡 = [(5, 6, 5), (1, 10, 1)], 𝑑4𝑖𝑡 = [(5, 6, 6), (1, 10, 9)], 𝑑5𝑖𝑡 =
[(8, 3, 5), (6, 3, 1)], 𝑑6𝑖𝑡 = [(8, 3, 6), (6, 3, 9)], 𝑑7𝑖𝑡 = [(8, 6, 5), (6, 10, 1)],
𝑑8𝑖𝑡 = [(8, 6, 6), (6, 10, 9)].

Now, let 𝛺̄ = {1, 2, 4, 6, 8}. Then 𝑍1 = 321.5, 𝑍2 = 606.5, 𝑍4 =
484.25, 𝑍6 = 642.875, and 𝑍8 = 819.25. Then the lower-bound
inequality (13) is:
∑

𝜔∈𝛺
𝑝𝜔

∑

𝑡∈

∑

𝑖∈

(

𝑔𝑖𝑡𝑥
𝜔
𝑖𝑡 + 𝑓𝑖𝑡𝑦

𝜔
𝑖𝑡 + ℎ𝑖𝑡𝑧

𝜔
𝑖𝑡
)

≥ 2874.4 (18)

and for 𝛺̄, the upper-bound inequality (14) is:
∑

𝜔∈𝛺
𝑝𝜔

∑

𝑡∈

∑

𝑖∈

(

𝑔𝑖𝑡𝑥
𝜔
𝑖𝑡 + 𝑓𝑖𝑡𝑦

𝜔
𝑖𝑡 + ℎ𝑖𝑡𝑧

𝜔
𝑖𝑡
)

≤ 6433. (19)

Consider scenario 𝜉5. The set of scenarios that are dominated by
scenario 𝜉5 is defined as 𝛽+

𝜉5
= {1, 5}, and the set of scenarios that

dominate scenario 𝜉5 is defined as 𝛽−
𝜉5

= {6, 7, 8}. Solving the scenario-𝜉5

problem, we have 𝑍5 = 484.25. Thus, for each 𝑘 ∈ 𝛽−
𝜉5

, the inequality
(15) can be written as:

𝑝𝑘
∑

𝑡∈

∑

𝑖∈

(

𝑔𝑖𝑡𝑥
𝑘
𝑖𝑡 + 𝑓𝑖𝑡𝑦

𝑘
𝑖𝑡 + ℎ𝑖𝑡𝑧

𝑘
𝑖𝑡
)

≥ 484.25.

The optimal objective function value of S-MCLSP (12) for this
instance is 4969.75, and the linear programming relaxation value
is 4134.65. By adding inequalities (13), (14), and (15) for 𝛺̄ =
{1, 2, 4, 6, 8}, the optimal relaxation solution is cut off, and the relax-
ation objective of (12) increases to 4587.81, thus the initial optimality
gap is closed by 54.26%.

For 𝑘 = 6 ∈ 𝛽−
𝜉5

, the inequalities corresponding to (16) for 𝑡 = 4 and
𝑖 = 1 can be written as:

𝑦612 + 𝑦613 + 𝑦614 ≥ 2.

For 𝑙 = 1 ∈ 𝛽+
𝜉5

, the inequalities corresponding to (17) for 𝑡 = 4 and
𝑖 = 1 can be written as:

𝑥112 + 𝑥113 + 𝑥114 ≤ 16.

4. Scenario dominance cuts for S-MKP

4.1. The multi-stage stochastic knapsack problem

The first benchmark set corresponds to a class of stochastic multi-
stage multi-dimensional mixed 0–1 knapsack problems (S-MKP). The
deterministic and single-dimensional version of the problem has been
studied by Marchand and Wolsey (1999). Mixed 0–1 knapsack formu-
lation is important because many integer programs have been shown
to be equivalent to it or include it in the form of capacity constraints.
Thus, solution procedures for knapsack models can be adopted to solve
general integer programs.

To formulate the S-MKP as a stochastic mixed-integer program
(MIP), we define the following deterministic and stochastic parameters.
Let 𝑞𝜔𝑡 be the cost coefficient associated with variable 𝑦𝜔𝑡 in period
𝑡 under scenario 𝜔 ∈ 𝛺. Also, let 𝑐𝑖𝑡 represent the cost coefficient
associated with variable 𝑥𝜔𝑖𝑡 for item 𝑖 in period 𝑡, 𝑑𝑡 be the cost
coefficient associated with variable 𝑧𝜔𝑡 in period 𝑡, 𝑎𝑖𝑡 be the value
of item 𝑖 in period 𝑡, 𝑟𝑡, and 𝑤𝑡 be the coefficients corresponding to
the continuous variable 𝑦𝜔𝑡 in period 𝑡, respectively associated with the
budget constraints related to value and size of the knapsack, 𝑏𝑡 be the
minimum total value of all selected items in period 𝑡, 𝑣𝑖𝑡 be the size of
item 𝑖 in period 𝑡, and ℎ𝑡 be the minimum total size of all selected items
in period 𝑡.

We also define the following decision variables for period 𝑡 ∈  and
each scenario 𝜔 ∈ 𝛺. Let 𝑥𝜔𝑖𝑡 be a binary variable to select an item 𝑖 in
period 𝑡 and under scenario 𝜔 ∈ 𝛺, and let 𝑧𝜔𝑡 be a continuous variable
in period 𝑡 under scenario 𝜔 ∈ 𝛺. Additionally, define binary variables
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𝑦𝜔𝑡 , which are related to the binary 𝑥𝜔𝑖𝑡 variables. The 𝑧𝜔𝑡 and 𝑦𝜔𝑡 are
defined to represent compensation values in the budget constraints.
We assume all coefficients are non-negative w.l.o.g. Here, 𝑞𝜔𝑡 is the
only (1-dimensional) random parameter here. The S-MKP (20) can be
formulated as follows.

min
∑

𝜔∈𝛺
𝑝𝜔

∑

𝑡∈

(

∑

𝑖∈
𝑐𝑖𝑡𝑥

𝜔
𝑖𝑡 + 𝑑𝑡𝑧

𝜔
𝑡 + 𝑞𝜔𝑡 𝑦

𝜔
𝑡

)

(20a)

s.t.
𝑡

∑

𝑗=1

∑

𝑖∈
𝑎𝑖𝑗𝑥

𝜔
𝑖𝑗 + 𝑟𝑡𝑧

𝜔
𝑡 ≥ 𝑏𝑡 ∀𝑡 ∈  , ∀𝜔 ∈ 𝛺 (20b)

∑

𝑖∈
𝑣𝑖𝑡𝑥

𝜔
𝑖𝑡 +𝑤𝑡𝑦

𝜔
𝑡 ≥ ℎ𝑡 ∀𝑡 ∈  , ∀𝜔 ∈ 𝛺 (20c)

𝑥𝜔𝑖𝑡 = 𝑥𝜔
′

𝑖𝑡 ∀ 𝑖 ∈ , ∀𝑡 ∈  ,∀𝜔,𝜔′ ∈ 𝛺 𝑠.𝑡. 𝜉𝜔[𝑡] = 𝜉𝜔
′

[𝑡] (20d)

𝑧𝜔𝑡 = 𝑧𝜔
′

𝑡 ∀𝑡 ∈  ,∀𝜔,𝜔′ ∈ 𝛺 𝑠.𝑡. 𝜉𝜔[𝑡] = 𝜉𝜔
′

[𝑡] (20e)

𝑦𝜔𝑡 = 𝑦𝜔
′

𝑡 ∀𝑡 ∈  ,∀𝜔,𝜔′ ∈ 𝛺 𝑠.𝑡. 𝜉𝜔[𝑡] = 𝜉𝜔
′

[𝑡] (20f)

𝑧𝜔𝑡 ≥ 0 ∀𝑡 ∈  ,∀𝜔 ∈ 𝛺 (20g)

𝑥𝜔𝑖𝑡 , 𝑦
𝜔
𝑡 ∈ {0, 1} ∀𝑖 ∈ ,∀𝑡 ∈  , ∀𝜔 ∈ 𝛺. (20h)

The objective function (20a) minimizes the expected sum of knapsack
costs over all items 𝑖 ∈ , periods 𝑡 ∈  , and scenarios 𝜔 ∈ 𝛺.
Constraints (20b) and (20c) define knapsack-related budget constraints,
where constraints (20b) and (20c) ensure that the sum of the value
and size of selected items, respectively, should be larger than a given
constant. Constraints (20d), (20e), and (20f) represent the nonantici-
pativity constraints for the 𝑥, 𝑧, and 𝑦 variables, respectively. Finally,
constraints (20g) and (20h) represent lower bounds on the 𝑧 variables
and binary integer restrictions on 𝑥 and 𝑦 variables, respectively.

4.2. Bounds for S-MKP

Here, we apply the M-SMIP lower (5) and upper bounds (7) to the
case of S-MKP to strengthen the polyhedral representation of the S-MKP
problems.

Proposition 8. Let 𝛺̄ ⊆ 𝛺 be a subset of scenarios. For a given 𝑠 ∈ 𝛺̄, let
(𝑥̇𝑠, 𝑧̇𝑠, 𝑦̇𝑠) and 𝑍𝑠(𝑥̇𝑠, 𝑧̇𝑠, 𝑦̇𝑠) be the optimal solution and the optimal objec-
tive function value of the scenario-𝜉𝑠 problem, respectively. Let 𝑍(𝑥̇𝑠, 𝑧̇𝑠, 𝑦̇𝑠)
be the objective function value of (20a) at the optimal solution of the
scenario-𝜉𝑠 problem, (𝑥̇𝑠, 𝑧̇𝑠, 𝑦̇𝑠). Then the optimal solution to the S-MKP,
(𝑥∗, 𝑧∗, 𝑦∗), satisfies

(a) the following lower bound on the optimal objective function value of
the S-MKP problem (20):

∑

𝜔∈𝛺
𝑝𝜔

∑

𝑡∈

(

∑

𝑖∈
𝑐𝑖𝑡𝑥

𝜔
𝑖𝑡 + 𝑑𝑡𝑧

𝜔
𝑡 + 𝑞𝜔𝑡 𝑦

𝜔
𝑡

)

≥
∑

𝑠∈𝛺̄

𝑍𝑠(𝑥̇𝑠, 𝑧̇𝑠, 𝑦̇𝑠), (21)

(b) and the following upper bound on the optimal objective function
value to the S-MKP problem (20):

∑

𝜔∈𝛺
𝑝𝜔

∑

𝑡∈

(

∑

𝑖∈
𝑐𝑖𝑡𝑥

𝜔
𝑖𝑡 + 𝑑𝑡𝑧

𝜔
𝑡 + 𝑞𝜔𝑡 𝑦

𝜔
𝑡

)

≤ min
𝑠∈𝛺̄

𝑍(𝑥̇𝑠, 𝑧̇𝑠, 𝑦̇𝑠). (22)

Proof. The result follows immediately by applying inequality (5) in
Proposition 3 for a subset of scenarios 𝛺̄ ⊆ 𝛺 and inequality (7)
in Proposition 4, respectively, for the stochastic multi-stage knapsack
problem. □

4.3. Scenario-dominance cuts for S-MKP

Under this sub-section, we adapt the dominance cutting planes (9)
to the case of S-MKP to provide faster and better solutions to this
9

problem. We present the related theorem below.
Theorem 3. Let 𝜉𝑙 be a scenario with 𝑙 ∈ 𝛺. For each 𝑡 ∈  and 𝑖 ∈ , let
(𝑥̇𝑙𝑖 , 𝑧̇

𝑙 , 𝑦̇𝑙) represent a vector of optimal solutions to scenario-𝜉𝑙 problem and
define the optimal objective value corresponding to the scenario-𝜉𝑙 problem
as:

𝑍𝑙(𝑥̇𝑙𝑖 , 𝑧̇
𝑙 , 𝑦̇𝑙) = 𝑝𝑙

∑

𝑡∈

(

∑

𝑖∈
𝑐𝑖𝑡𝑥̇

𝑙
𝑖𝑡 + 𝑑𝑡𝑧̇

𝑙
𝑡 + 𝑞𝑙𝑡 𝑦̇

𝑙
𝑡

)

. (23)

Then, the portion of the optimal solution to the S-MKP Problem (20)
corresponding to scenario 𝜉𝑘 such that 𝜉𝑙 ⪯ 𝜉𝑘 and 𝑙 ≠ 𝑘, (𝑥𝑘𝑖𝑡

∗, 𝑦𝑘𝑡
∗, 𝑧𝑘𝑡

∗), is
satisfied by the following inequality:

𝑝𝑘
∑

𝑡∈

(

∑

𝑖∈
𝑐𝑖𝑡𝑥

𝑘
𝑖𝑡 + 𝑑𝑡𝑧

𝑘
𝑡 + 𝑞𝑘𝑡 𝑦

𝑘
𝑡

)

≥ 𝑍𝑙(𝑥̇𝑙𝑖 , 𝑧̇
𝑙 , 𝑦̇𝑙) ∀𝑘 ∈ 𝛽−

𝜉𝑙
.

Proof. The result follows immediately by applying the inequality (9) in
Theorem 1 for the stochastic multi-stage knapsack problem. □

Corollary 3.1. The inequality (24) can be strengthened as in the following
inequality:

𝑝𝑘
∑

𝑡∈

(

∑

𝑖∈
𝑐𝑖𝑡𝑥

𝑘
𝑖𝑡 + 𝑑𝑡𝑧

𝑘
𝑡 + 𝑞𝑙𝑡𝑦

𝑘
𝑡

)

≥ 𝑍𝑙( ̇𝑥𝑖𝑡
𝑙 , 𝑧̇𝑡

𝑙 , 𝑦̇𝑡
𝑙) ∀𝑘 ∈ 𝛽−

𝜉𝑙
. (24)

Proof. The result follows by applying the inequality (11) in Corol-
lary 1.1 for the S-MKP. □

4.4. Strong scenario-dominance cuts for S-MKP

In this sub-section, we present new strong scenario dominance cuts
for the S-MKP. We provide the following two propositions and their
proofs for those strong and aggressive dominance cuts, as well as an
example implementation of them.

Proposition 9. Given (𝑥̇𝑙𝑖𝑡, 𝑧̇
𝑙
𝑡 , 𝑦̇

𝑙
𝑡), the optimal objective value corresponding

to the scenario-𝜉𝑙 problem for stage 𝑡 ∈  as:

𝑍𝑙
𝑡 (𝑥̇

𝑙
𝑖𝑡, 𝑧̇

𝑙
𝑡 , 𝑦̇

𝑙
𝑡) = 𝑝𝑙

(

∑

𝑖∈
𝑐𝑖𝑡𝑥̇

𝑙
𝑖𝑡 + 𝑑𝑡𝑧̇

𝑙
𝑡 + 𝑞𝑙𝑡 𝑦̇

𝑙
𝑡

)

.

Then, there exists a feasible solution to the S-MKP Problem (20) correspond-
ing to scenario 𝜉𝑘 such that 𝜉𝑙 ⪯ 𝜉𝑘 and 𝑙 ≠ 𝑘, (𝑥̂𝑘𝑖𝑡, 𝑦̂

𝑘
𝑡 , 𝑧̂

𝑘
𝑡 ), that satisfies the

following inequality for each 𝑡 ∈  :

𝑝𝑘
(

∑

𝑖∈
𝑐𝑖𝑡𝑥

𝑘
𝑖𝑡 + 𝑑𝑡𝑧

𝑘
𝑡 + 𝑞𝑘𝑡 𝑦

𝑘
𝑡

)

≥ 𝑍𝑙
𝑡 (𝑥̇

𝑙
𝑖𝑡, 𝑧̇

𝑙
𝑡 , 𝑦̇

𝑙
𝑡) ∀𝑘 ∈ 𝛽−

𝜉𝑙
. (25)

Proof. There exists a feasible solution to the S-MKP Problem (20) that is
satisfied by inequalities (25), because those inequalities provide a lower
bound on the 𝑥-, 𝑧-, and 𝑦-variables, which are not bounded above. □

Proposition 10. Let 𝜉𝑘 be a scenario with 𝑘 ∈ 𝛺. For each 𝑡 ∈  and
𝑖 ∈ , let 𝑦̇𝑘𝑡 represent a vector of optimal 𝑦-variable solutions to scenario-𝜉𝑘
problem. Then, there exists a feasible solution to the S-MKP Problem (20)
corresponding to scenario 𝜉𝑙 such that 𝜉𝑙 ⪯ 𝜉𝑘 and 𝑙 ≠ 𝑘, 𝑦̂𝑙𝑡, that satisfies
the following inequality for each 𝑡 ∈  :
𝑡

∑

𝑗=1
𝑞𝑙𝑗𝑦

𝑙
𝑡 ≥

𝑡
∑

𝑗=1
𝑞𝑘𝑗 𝑦̇

𝑘
𝑗 ∀𝑙 ∈ 𝛽+

𝜉𝑘
. (26)

Proposition 11. Let 𝜉𝑘 be a scenario with 𝑘 ∈ 𝛺. For each 𝑡 ∈  and
𝑖 ∈ , let 𝑧̇𝑘𝑡 represent a vector of optimal 𝑧-variable solutions to scenario-𝜉𝑘
problem. Then, there exists a feasible solution to the S-MKP Problem (20)
corresponding to scenario 𝜉𝑙 such that 𝜉𝑙 ⪯ 𝜉𝑘 and 𝑙 ≠ 𝑘, 𝑧̂𝑙𝑡, that satisfies
the following inequality for each 𝑡 ∈  :
𝑡

∑

𝑧𝑙𝑡 ≥
𝑡

∑

𝑧̇𝑘𝑗 ∀𝑙 ∈ 𝛽+
𝜉𝑘
. (27)
𝑗=1 𝑗=1
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Remark 6. The proof idea for both Propositions 10 and 11 is the same
as that of Proposition 9 because the inequalities (26) and (27) provide
a lower bound on the 𝑦- and 𝑧-variables, respectively, and there are no
upper bounds on those variables.

Remark 7. Similar to the strong scenario dominance cuts defined for
the S-MCLSP instances, the inequalities (25), (26), and (27) generally
lead to optimal solutions, while they may cut off the optimal solution.
In the latter case, our computational experiments have shown that the
best solution obtained by adding (25), (26), and (27) only deviates
0.17% on average from the optimal solution for the S-MKP instances,
while the solution time has been significantly reduced (see Section 5.3).
Those cuts are also shown to improve the optimality gap of CPLEX
by 0.13% for S-MKP instances with up to 81 random variables (see
Section 5.5).

Example 2. Consider an S-MKP instance in which 𝑇 = 4 and 𝐼 = 2. This
instance has 𝑆 = 8 scenarios; 𝛺 = {1, 2, 3, 4, 5, 6, 7, 8}. The data pertain-
ing the instance for 𝑡 = 2, 3, 4 is: 𝑐1𝑡 = (16, 98, 19), 𝑐2𝑡 = (78, 92, 99), 𝑑𝑡 =
(80, 86, 85), 𝑎1𝑡 = (8, 19, 43), 𝑎2𝑡 = (41, 37, 99), 𝑣1𝑡 = (49, 90, 66), 𝑣2𝑡 =
(74, 15, 7), 𝑟𝑡 = (45, 78, 73), 𝑤𝑡 = (28, 59, 97), 𝑏𝑡 = (70.5, 137.3, 240.0), ℎ𝑡 =
(113.3, 123.0, 127.5), and the uncertain parameter 𝑞1𝑡 = (14, 45, 38),
𝑞2𝑡 = (14, 45, 68), 𝑞3𝑡 = (14, 79, 38), 𝑞4𝑡 = (14, 79, 68), 𝑞5𝑡 = (61, 45, 38), 𝑞6𝑡 =
(61, 45, 68), 𝑞7𝑡 = (61, 79, 38), 𝑞8𝑡 = (61, 79, 68).

Letting 𝛺̄ = {1, 2, 3, 4}, we have 𝑍1 = 67.8, 𝑍2 = 71.6, 𝑍3 = 72.1,
and 𝑍4 = 75.8. Then the lowerbound inequality (21) is:

∑

𝜔∈𝛺
𝑝𝜔

∑

𝑡∈

(

∑

𝑖∈
𝑐𝑖𝑡𝑥

𝜔
𝑖𝑡 + 𝑑𝑡𝑧

𝜔
𝑡 + 𝑞𝜔𝑡 𝑦

𝜔
𝑡

)

≥ 287.2. (28)

and for 𝛺̄, the upperbound inequality (22) is:

∑

𝜔∈𝛺
𝑝𝜔

∑

𝑡∈

(

∑

𝑖∈
𝑐𝑖𝑡𝑥

𝜔
𝑖𝑡 + 𝑑𝑡𝑧

𝜔
𝑡 + 𝑞𝜔𝑡 𝑦

𝜔
𝑡

)

≤ 592.9. (29)

For 𝛺̄ = {1, 2, 3, 4, 5, 6, 7, 8}, the lower bound of the inequality (28) can
be improved to 574.5, while the upper bound in the inequality (29)
does not change.

Consider scenario 𝜉3. The set of scenarios that are dominated by
scenario 𝜉3 is defined as 𝛽+

𝜉3
= {1, 3}, and the set of scenarios that

dominate scenario 𝜉3 is defined as 𝛽−
𝜉3

= {4, 7, 8}. We have 𝑍3 = 72.06 by
solving the scenario-𝜉3 problem. Thus, for each 𝑘 ∈ 𝛽−

𝜉3
, the inequality

(24) can be written as:

𝑝𝑘
∑

𝑡∈

(

∑

𝑖∈
𝑐𝑖𝑡𝑥

𝑘
𝑖𝑡 + 𝑑𝑡𝑧

𝑘
𝑡 + 𝑞𝑙𝑡𝑦

𝑘
𝑡

)

≥ 72.06.

The optimal objective function value of S-MKP (20) for this instance
is 574.51, and the linear programming relaxation value is 517.35. The
inequalities (21), (22), and (24) for 𝛺̄ = {1, 2, 3, 4} cut off the optimal
relaxation solution, and the relaxation objective of (20) increases to
563.37, thus the initial optimality gap is closed by 80.5%.

Define 𝑍𝜔
𝑡 as the objective function value for scenario-𝜉𝜔 problem at

stage 𝑡. Solving the scenario-𝜉3 problem, we have 𝑍3
2 = 16.5, 𝑍3

3 = 31.7,
and 𝑍3

4 = 23.9. For 𝑘 = 4 ∈ 𝛽−
𝜉3

, the inequalities corresponding to (25)
for 𝑡 = 3 can be written as:

12.25𝑥413 + 11.5𝑥423 + 9.875𝑧43 + 10.75𝑦43 ≥ 31.7.

On the other hand, the set of scenarios that are dominated by 𝜉3 is
defined as 𝛽+

𝜉3
= {1, 3}, i.e., 𝜉1 ⪯ 𝜉3 and 𝜉3 ⪯ 𝜉3. For 𝑘 = 1 ∈ 𝛽+

𝜉3
and

𝑡 = 3, the inequalities corresponding to (26) and (27) can be written
respectively as:

14𝑦12 + 45𝑦13 ≥ 83, (30)

1 1
10

𝑧2 + 𝑧3 ≥ 1.775. (31) a
5. Computational experiments

In this section, we present results from our computational exper-
iments showing the effectiveness of cuts and bounds based on the
scenario dominance concept in solving multi-stage stochastic MIP in-
stances. In particular, we solve a variety of S-MCLSP and S-MKP in-
stances with different problem characteristics with the following ap-
proaches:

• cpx: CPLEX performance on solving the model by its default
settings.

• sdc+bc: Lower (5) and upper bound (7) inequalities and sdc
inequalities (11) generated for 𝛺̄ ⊆ 𝛺. See Algorithm 1 for the
procedure to add inequalities (11).

• ssdc: Inequalities (16) and (17) for the S-MCLSP problem and in-
equalities (25)–(27) for the S-MKP problem. To add ssdc, the Add
Scenario Dominance Cut procedure in Algorithm 1 is modified
by the respective inequalities.

• (l,S): The (𝓁, 𝑆) inequalities proposed by Barany et al. (1984).
For all 𝑖 = 1,… ,𝑀 , 𝓁 = 1,… , 𝑇 , and 𝜔 = 1,… , 𝑆 the (𝓁, 𝑆)
inequalities are defined for the S-MCLSP formulation as:
∑

𝑡∈𝑆
𝑥𝜔𝑖𝑡 +

∑

𝑡∈𝑆̄

𝑑𝜔,𝓁𝑖𝑡 𝑦𝜔𝑖𝑡 ≥ 𝑑𝜔,𝓁𝑖1 , (32)

where 𝑆 ⊆ {1,… ,𝓁}, 𝑆̄ ⊆ {1,… ,𝓁} ⧵ 𝑆 and 𝑑𝜔,𝓁𝑖𝑡 =
∑𝓁

𝑘=𝑡 𝑑
𝜔
𝑖𝑘. The

(𝓁, 𝑆) inequalities are valid for the feasible region of the S-MCLSP
formulation.

The implementation specifications of all inequalities stated above
and the details of the separation for adding the (𝓁, 𝑆) inequalities are
described in Section 5.1.2 Implementation Specifications.

5.1. Test problems and implementation details

5.1.1. Instance generation and test problems
For both lot-sizing and knapsack problem classes, various instances

are randomly generated using different seeds from a uniform distribu-
tion. The parameter 𝑇 defines the number of stages in the stochastic
scenario tree with two branches emanating from each node, resulting
in a scenario tree with a size of 2𝑇−1 scenarios in all of the instances.
Stochastic Lot-Sizing Instances. Test instances are generated similar
to the scheme employed in Büyüktahtakın and Liu (2016), Büyüktah-
takın et al. (2018b), and Yilmaz and Büyüktahtakın (2022). Various
combinations of the number of stages 𝑇 ∈ {5, 6, 7, 8}, and the number
of items 𝐼 ∈ {2, 3, 4, 5, 8, 9, 10, 60, 70, 80} are considered.

The uncertain demand parameter 𝑑𝜔𝑖𝑡 has two levels (e.g., two
branches in each scenario-tree node, Fig. 1): low (L) and high (H),
where 𝑑𝜔𝑖𝑡 ∈ 𝑈 [0, 𝑑] for the low level and 𝑑𝜔𝑖𝑡 ∈ 𝑈

[

𝑑 + 1, 2𝑑
]

for the
high level for each item 𝑖 ∈ , and the average demand, 𝑑, is set
to 5. The capacity parameter in each period 𝑡 is generated by 𝑐𝑡 ∈
𝑈
[

0.9𝛿(𝑑 + 1), 1.1𝛿(𝑑 + 1)
]

, where 𝛿 = 2𝐼 . The inventory holding cost ℎ𝑖𝑡
is fixed at 1 for each period. The base setup-to-holding cost was set as
𝑓𝑖𝑡 ∈ 𝑈

[

0.9𝜃ℎ̄, 1.1𝜃ℎ̄
]

, where 𝜃 = 1000 and the average inventory hold-
ing cost, ℎ̄, is 1. Unit production costs 𝑔𝑖𝑡 are randomly generated from
integer uniform distribution 𝑔𝑖𝑡 ∈ 𝑈 [20, 50]. We generated ten random
instances for various (𝑇 , 𝐼) combinations with uniformly generated cost
and capacity parameters, resulting in a total number of 120 S-MCLSP
instances.
Stochastic Knapsack Instances. Test instances for S-MKP are gen-
erated in a similar fashion to the multi-stage stochastic knapsack in-
stances of Büyüktahtakın (2022, 2023). The parameters 𝑐𝑖𝑡, 𝑑𝑡, 𝑎𝑖𝑗 , 𝑟𝑡, 𝑏𝑡,
𝑤𝑡, and ℎ𝑡 are independent and identically distributed (i.i.d.) sampled
from the uniform distribution over {1,… , 100},e.g., 𝑈 [1, 𝑅], where 𝑅 =
100, and 𝑣𝑖𝑡 ∈ 𝑈 [1, 𝑅]. The uncertain parameter 𝑞𝜔𝑡 for the 2-branch
problem has two levels: low (L) and high (H), where 𝑞𝜔𝑡 ∈ 𝑈 [1, 𝑅∕2] for

𝜔
low level and 𝑞𝑡 ∈ 𝑈 [𝑅∕2 + 1, 𝑅] for a high level.
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Table 1
Optimality gap due to (𝓁, 𝑆) and sdc+bc for S-MCLSP instances over 𝑇 = 5–8.

cpx (𝓁, 𝑆) sdc+bc

(T, I) InitGap (%) Cut GapImp (%) Cut RootGap (%) GapImp (%)

(5, 60) 15.8 919 12.5 4943 13.3 16.0
(5, 70) 16.4 1124 12.4 5753 13.7 15.9
(5, 80) 15.9 1144 12.9 6563 13.4 15.8
(6, 8) 18.1 368 12.8 2189 16.7 7.6
(6, 9) 17.6 389 12.9 2432 16.3 7.2
(6, 10) 18.7 509 12.7 2675 17.2 7.7
(7, 3) 17.9 382 11.6 2918 17.1 4.2
(7, 4) 19.9 481 12.7 3647 19.1 4.1
(7, 5) 19.5 654 11.8 4376 18.8 3.7
(8, 2) 20.8 656 11.7 6563 19.7 5.2
(8, 3) 21.8 1015 12.0 8750 20.9 3.8
(8, 4) 20.1 1176 11.6 10937 19.6 2.4

Overall 18.5 735 12.3 5146 17.2 7.8

Additionally, we define 𝑏𝑡 = 3
4

(

∑𝑡
𝑗=1

∑

𝑖∈ 𝑎𝑖𝑗 + 𝑟𝑡
)

and ℎ𝑡 =
3
4

(
∑

𝑖∈ 𝑣𝑖𝑡 +𝑤𝑡
)

. The term 𝐼 is set at 50. By employing this scheme, we
generate ten random feasible instances for each stage 𝑇 ∈
{5, 6, 7, 8, 9, 10}, resulting in a total number of 60 S-MKP instances.

.1.2. Implementation specifications
We append the cuts defined above as user cuts to the S-MCLSP

nd S-MKP formulations and then solve the resulting model using
PLEX 12.7.1 with its default settings. We evaluate the effectiveness
f the proposed cuts in terms of the reduction in solution time, the
ntegrality gap, as well as the number of nodes solved in the branch
nd bound tree relative to cpx. The best feasible solution found within

50 s is incorporated into the optimizer before running the model with
proposed cuts to benefit from useful CPLEX cuts. As we focus on large-
scale S-MIP problems, we set 𝑝𝜔 = 1∕𝑆 as the probability of each
scenario 𝜔 for both knapsack and lot-sizing instances generated.

Due to a large number of scenario dominance relations and re-
sulting cuts, we perform some initial experiments to determine the
subset of scenarios (see 𝛺̄ in Algorithm 1) to be solved and used for
ut generation purposes. Per our preliminary computations, only five
cenarios, 𝛺̄ = {1, 𝑆∕4, 𝑆∕2, 3𝑆∕4, 𝑆}, where 𝑆 is the total number
f scenarios, are used for cut generation for solving the S-MCLSP
nstances, while only the first 10% of the total scenarios are used for
ut generation for solving the S-MKP. We note that more scenarios
nd scenario-dominance relations could also be used, but this comes
ith the computational cost of solving more scenario sub-problems to
efine a large set of dominance cuts. Our preliminary results show that
he selected number of scenarios was sufficient to generate plenty of
cenario dominance relations and cuts, and using them, we observe
ignificant improvement in solution times. Thus, we consistently use
he same number of scenarios in all of the computations.
umber of Scenario Dominance Relations. The stochastic lot-sizing

nstances have uncertainty in the right-hand side parameter 𝑑𝜔𝑖𝑡 , which
s 𝐼 ×𝑇 dimensional. Here, uncertain demand parameters are randomly
enerated over time; however, demand realizations of all items in a
eriod 𝑡 follow an all-low (𝑑𝜔𝑖𝑡 ∈ 𝑈 [0, 𝑑]) or all-high distribution (𝑑𝜔𝑖𝑡 ∈
[

𝑑 + 1, 2𝑑
]

). For such instances with 𝑇 = 5 and 16 scenarios, there
re 146 dominance relations. For the stochastic lot-sizing instances with
= 8 and 128 scenarios, there are 4246 dominance relations on average.
For the stochastic knapsack instances, uncertainty is observed in

he objective function parameter 𝑞𝜔𝑡 , which is a 𝑇 dimensional random
ector for a given 𝜔 ∈ 𝛺. Here, the values of all random vari-
bles are randomly generated using the uniform distribution described
bove. For 𝑇 = 5, we have 24 = 16 scenarios, and there are 146
ominance relations. For 𝑇 = 10 instances with 512 scenarios, there
re 38,854 dominance relations on average. We would like to note
hat independent from the studied instances, each scenario dominates
11

nly itself in the worst case, resulting in 512 dominance relations and
uts. In the deterministic version of the knapsack problem with zero
andom variables, we have 262,144 dominance relations, while for the
tochastic knapsack instances with 81 random variables, we have only
12 dominance relations. Obtaining the scenario dominance relations
ith the sets only takes a few seconds for our instances. Those relations
re put as input data for solving the problem.
eparation Heuristic for ssdc. In order to improve the quality of
he solution obtained by ssdc for solving S-MCLSP, we employed a
eparation procedure for the cuts (16) and (17). Given an optimal
olution

(

𝑦̈𝑖𝑡, 𝑥̈𝑖𝑡, 𝑠̈𝑖𝑡
)

to the LP relaxation of the formulation (12), if
𝑡
ℎ=1 𝑦̈

𝑘
𝑖ℎ ≥

∑𝑡
ℎ=1 𝑦

𝑙
𝑖ℎ for each 𝑡 ∈  , where 𝑦𝑙𝑖ℎ is the optimal solution

or the scenario-𝜉𝑙 problem, then we add the inequality (16). Similarly,
e add the inequality (17), if 𝑥̈𝑙𝑖𝑡 ≤ 𝑥𝑘𝑖𝑡 for each 𝑡 ∈  , where 𝑥𝑘𝑖ℎ is the
ptimal solution for the scenario-𝜉𝑘 problem. Here, different than the
tandard separation procedures (see, e.g., Atamtürk and Muñoz, 2004),
e do not remove the LP relaxation solution but we investigate the

nequality that potentially does not cutoff the optimal solution.
Computational experiments were conducted using the New Jersey

nstitute of Technology Kong Cluster. All computations and testing
ere performed on an 8-core Intel workstation with a 3.6 GHz CPU
nd 64 GB memory running Scientific Linux 6.4., using CPLEX 12.7.1.
or all test instances, a time limit of 7200 CPU seconds was imposed.
e used all eight threads for S-MCLSP instances. Due to the memory

roblems of the big size of S-MKP instances, we set the computations
or S-MKP to a single thread only.

We describe our test instance generation scheme for both multi-
tem lot-sizing and stochastic multi-dimensional knapsack problems in
ection 5.1.1. The detailed results of our computational experiments
re presented in Sections 5.2–5.5.

.2. Result specifications

We define the following columns to present computational results
n tables:

• T: Number of stages (periods).
• Sce: Number of scenarios.
• I: Number of items.
• Exp: Solution approach.
• Cut: Number of inequalities added to CPLEX as user inequalities.
• Ctime: CPU seconds required to generate the cuts, including the

solution time of all scenario sub-problems.
• Time: Total CPU seconds required to solve the problem, including

inequality generation time.
• Tfac: Time factor improvement by cuts over cpx (Tfac= Time1/

Time2), where Time1 is the Time by cpx and Time2 is the Time
by ssdc.

• Node: Number of nodes explored in the branch and bound tree
in 10,000 s.

• Obj: Best objective value.
• Gap1: Final optimality gap.
• Gap2: Percentage deviation between the best objective value

found by cpx (Obj1) and the best objective value obtained by ssdc
(Obj2) [Gap2 = 100 × (Obj2/Obj1-1].

• InitGap: Percentage integrality gap of the formulation before in-
equalities are added (InitGap = 100 × (bestobj — relaxlb)/bestobj)
where relaxlb and bestobj are objective function values of the
initial LP relaxation and the best feasible solution by cpx, respec-
tively.

• RootGap: Percentage integrality gap of the formulation after
inequalities are added (RootGap = 100 × (bestobj — rootlb)/
bestobj), where rootlb is the objective function value of the initial
LP relaxation after cuts are added.

• GapImp: Percentage improvement in the integrality gap at the

root node (GapImp = 100 × (1-relaxlb/rootlb).
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Table 2
Experiments for S-MCLSP instances over 5–8 stages.
(T, I) Exp Cut Ctime Time Tfac Node Obj Gap1 Gap2

(in 10,000s) (%) (%)

(5, 60) cpx 0 0 422 44 180254 0.000
ssdc 4943 59 77 6 4 180257 0.002

(5, 70) cpx 0 0 1273 129 210531 0.000
ssdc 5753 61 70 18 3 210540 0.004

(5, 80) cpx 0 0 2144 176 239824 0.000
ssdc 6563 69 81 27 2 239835 0.005

Ave cpx 0 0 1280 116 210203 0.000
ssdc 5753 63 76 17 3 210211 0.004

(6, 8) cpx 0 0 3212 497 27580 0.001
ssdc 2189 44 47 68 6 27587 0.024

(6, 9) cpx 0 0 2930 461 30897 0.001
ssdc 2432 45 50 58 7 30901 0.000

(6, 10) cpx 0 0 3244 478 35836 0.001
ssdc 2675 48 51 63 7 35848 0.000

Ave cpx 0 0 3129 478 31438 0.001
ssdc 2432 46 50 63 7 31445 0.008

(7, 3) cpx 0 0 1419 163 13588 0.001
ssdc 2918 39 42 34 7 13589 0.011

(7, 4) cpx 0 0 3088 262 15849 0.002
ssdc 3647 43 49 63 6 15853 0.028

(7, 5) cpx 0 0 7209 714 19992 0.008
ssdc 4376 52 89 81 10 20009 0.086

Ave cpx 0 0 3905 380 16476 0.004
ssdc 3647 45 60 65 8 16484 0.042

(8, 2) cpx 0 0 454 53 8842 0.000
ssdc 6563 39 45 10 6 8842 0.002

(8, 3) cpx 0 0 5823 421 13296 0.009
ssdc 8750 53 483 12 52 13314 0.136

(8, 4) cpx 0 0 7214 488 17460 0.013
ssdc 10937 53 2374 3 137 17515 0.318

Ave cpx 0 0 4497 321 13199 0.007
ssdc 8750 49 967 5 65 13224 0.152

Overall cpx 0 0 3203 324 67829 0.003
Ave ssdc 5146 50 288 37 21 67841 0.051
t

Table 3
Optimality gap results due to sdc+bc cuts for S-MKP instances over 5–10 stages.

cpx sdc + bc

(T, Sce) InitGap (%) Cut RootGap (%) GapImp (%)

(5, 16) 0.76 17 0.55 27.8
(6, 32) 0.70 63 0.40 43.7
(7, 64) 0.71 188 0.34 52.7
(8, 128) 0.62 566 0.20 67.7
(9, 256) 0.75 1769 0.34 55.2
(10, 512) 0.72 61542 0.24 66.6

Ave 0.71 10691 0.34 52.3

Tables 1 and 3 only include columns InitGap, Cut, RootGap, and
apImp, while Tables 2 and 4 include all columns defined above except

nitGap, RootGap, and GapImp. Table 5 includes a subset of those
olumns with two additional columns, RV and ScenDom, as defined in
ection 5.5.

.3. Results for stochastic lot-sizing instances

In Table 1, the optimality gap improvement using the sdc+bc cuts is
resented and compared with that of (𝓁, 𝑆). The percent gap improve-

ment due to sdc+bc cuts is inversely proportional to stage 𝑇 . When
all 120 instances are averaged, sdc+bc cuts reduce the optimality gap
from 18.5% to 17.2%, providing an average gap improvement benefit
of 7.8%. On the other hand, (𝓁, 𝑆) provides an average optimality gap
improvement of 12.3%.

Based on the computational results, we conclude that the main
12

benefit of sdc, bc and (𝓁, 𝑆) is to close the initial gap defined by the
linear programming relaxation rather than speeding up the solution
time. Thus, in the next computational experiment, we omit sdc, bc and
(𝓁, 𝑆) and focus on only the ssdc cuts to obtain computational speed-up
in solving the augmented problem.

We present results regarding the efficiency of ssdc cuts on S-MCLSP
instances with a variety of combinations of stages and items, as shown
in Table 2. Those instances represent hard-to-solve S-MCLSP formula-
tions with the number of variables ranging from 3456 to 15,360 and
the number of constraints ranging from 3648 and 16,640. The difficulty
of these instances increases with the time stage 𝑇 and the number of
items 𝐼 .

The ssdc cuts drastically reduce the solution time in all problems, as
presented in Table 2. For instance, the solution time of 3129 CPU sec.
for 𝑇 = 6 instances is reduced to only 50 CPU sec., including the cut
generation time of 46 CPU sec. The average time-factor improvement
for 𝑇 = 6 and 𝑇 = 7 instances is 63 and 65, while it is 17 and 3
for 𝑇 = 5 and 𝑇 = 8 instances, respectively. Here, we also tested
he (𝓁, 𝑆) inequalities proposed by Barany et al. (1984). Since (𝓁, 𝑆)

inequalities did not provide any solution time improvement over cpx,
we did not present specific results regarding the (𝓁, 𝑆) inequalities in
Table 2. However, the ssdc cuts provide a computational improvement
of a factor of at least 37 over the (𝓁, 𝑆) inequalities of Barany et al.
(1984), which have long been known as the state-of-the-art for solving
the multi-item lot-sizing problems. As shown in the overall averages
in Table 2, ssdc cuts improve results by a factor of 37, averaging Tfac
over all 120 instances, while the resulting deviation from the best cpx
solution is 0.051%. On average, ssdc cuts reduce the number of nodes
in the branch and bound tree by 94% percent while improving solution

times by 91% percent.
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Table 4
Experiments for S-MKP instances over 5–10 stages and 𝐼 = 50.
(T, Sce) Exp Cut Ctime Time Tfac Node Obj Gap1 Gap2

(in 10,000s) (%) (%)

(5, 16) cpx 0 0 2418 215.1 5101 0.000
ssdc 85 18 19 127 2.0 5101 0.000

(6, 32) cpx 0 0 5776 350.7 6594 0.068
ssdc 418 43 49 118 4.9 6594 0.004

(7, 64) cpx 0 0 5846 183.1 7439 0.059
ssdc 1484 50 75 78 3.2 7440 0.015

(8, 128) cpx 0 0 5766 78.6 8960 0.064
ssdc 5144 60 77 75 0.9 8961 0.021

(9, 256) cpx 0 0 6651 55.5 10228 0.132
ssdc 18129 128 153 44 0.2 10243 0.147

(10, 512) cpx 0 0 7246 23.9 11325 0.116
ssdc 61542 427 589 12 0.2 11344 0.172

Ave cpx 0 0 5617 151 8274 0.073
ssdc 14467 121 160 76 2 8281 0.060
5.4. Results for stochastic knapsack instances

In Table 3, we analyze the optimality gap improvement using the
sdc+bc cuts. As the number of stages increases, the percent gap im-
provement due to sdc+bc cuts shows an increasing trend. In the overall
averages in Table 3, sdc+bc cuts reduce the optimality gap from 0.71%
to 0.34%, providing an average gap improvement benefit of 52.3%.
While sdc+bc provides a large optimality gap improvement, they do
not speed up the solution time. Thus, in the next set of computational
experiments, we omit sdc and bc and focus on only the ssdc cuts.
Table 4 summarizes results for S-MKP instances with stages from 𝑇 = 5
o 𝑇 = 10 where 𝐼 = 50. The instances in Table 4 are hard, large-
cale dynamic knapsack instances with the number of variables ranging
rom 3328 to 239,616 and the number of constraints changing from
624 to 222,208. As expected, the difficulty of instances increases as
he total time stage 𝑇 increases. Similar to the results with S-MCLSP
xperiments, for all instances, we observe that the ssdc improves the
olution time drastically. Similarly, we observe a significant reduction
n the number of nodes explored in the branch and bound tree with the
ddition of the ssdc cuts.

For instances with stage 𝑇 = 5, ssdc provides the same objective
alue with cpx by reducing the cpx solution time from 2418 to 19 CPU

seconds. For instances with stage 𝑇 = 6, the cpx solution time is reduced
by a factor of 118 using ssdc, while the ssdc objective value deviates
from cpx best objective value by only 0.004%. In particular, for stage
𝑇 = 6 instances, ssdc cuts reduce the solution time from 5776 CPU sec.
to 49 CPU sec., including the cut generation time of 43 CPU sec. The
number of cuts generated and thus the time for cut generation increases
with stage because the number of scenario-𝜔 problems to be solved for
cut derivation increases with stage.

As shown in the overall averages in Table 4 ssdc cuts improve
results by a factor of 76, averaging Tfac over all 60 instances, while
the resulting gap from the best cpx solution is only 0.06%, similar
to the solution time and gap performance of ssdc with the S-MCLSP
instances. On average, the cpx solution time is 5617 CPU sec., while
the time consumed to generate the ssdc cuts is 121 CPU sec., and the
ssdc solution time is 39 CPU sec., adding up to a total solution time of
160 CPU sec.

5.5. Results with more random variables

In this section, we explore the effectiveness of ssdc as we increase
the number of random variables by more than three per stage. To per-
form those experiments, we have generated additional S-MKP instances
where we re-defined the parameter 𝑐𝑖𝑡 as an uncertain parameter 𝑐𝜔𝑖𝑡 ,
while assuming all other parameters deterministic. The random pa-

𝜔

13

rameters 𝑐𝑖𝑡 are generated as stage-wise independent but are jointly
Table 5
Results for S-MKP instances with a varying number of random variables RV, 𝑇 = 10,
𝐼 = 10, and 512 scenarios.

Exp RV ScenDom Cut Ctime Ttime Tfac Gap1(%) Gap2(%)

cpx 0 262,144 739 0.01
ssdc 129,024 182 205 4 0.00
cpx 9 19,683 7,221 0.09
ssdc 249,170 225 286 25 1.24
cpx 18 3,889 5,210 0.07
ssdc 256,612 220 249 21 −1.54
cpx 27 1,563 5,170 0.09
ssdc 257,226 222 260 20 0.06
cpx 36 742 5,903 0.12
ssdc 257,692 226 258 23 −0.62
cpx 45 710 5,151 0.08
ssdc 257,648 221 254 20 −0.75
cpx 54 538 5,874 0.17
ssdc 257,771 222 260 23 −0.65
cpx 63 563 5,880 0.16
ssdc 257,785 220 259 23 0.40
cpx 72 627 5,780 0.13
ssdc 257,720 228 261 22 0.15
cpx 81 512 6,045 0.10
ssdc 257,796 226 287 21 0.43

Average 41 29,097 5,297 0.10
243,844 219 258 20 −0.13

distributed over 𝑖 for each 𝑡 ∈  . A scenario 𝜉𝑘 dominates a scenario
𝜉𝑙 with respect to the problem (20) if

(

𝑝𝑘 ≥ 𝑝𝑙
)

and
(

𝑐𝑘𝑖𝑡 ≥ 𝑐𝑙𝑖𝑡
)

hold for
each 𝑖 ∈  and 𝑗 = 2,… , 𝑇 .

Table 5 presents the performance of ssdc with respect to cpx for
a varying number of random variables in the scenario tree for S-MKP
instances with 𝑇 = 10, 𝐼 = 10, and 512 scenarios. Each row of
Table 5 presents results for an average of ten instances. In Table 5, RV
shows the total number of random variables generated, and ScenDom
presents the total number of scenario-dominance relations over all
time periods for each RV. For example, the instances with RV= 0
are deterministic, while the instances with RV= 81 represent the case
where nine items (𝐼 = 9) are randomly generated in each stage, and
thus has a total of 𝐼(𝑇 − 1) = 81 random variables.

The results in Table 5 show that ssdc decreases the average solution
times of cpx for instances with up to 81 random variables by an overall
average factor of 20. Specifically, the average solution time of one
and a half hours is reduced to less than five minutes by ssdc while
also improving the average objective function value found by cpx.
As expected, the increasing number of random variables reduces the
number of scenario-dominance relations. For example, for the deter-
ministic version of the problem (RV= 0), we have 262,144 dominance

relations, while for the stochastic instances with RV= 27, we have only
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1563 dominance relations. The results imply that the increase in the
number of random variables does not impact the performance of ssdc

ith respect to cpx for the considered instances because the algorithm
till generates plenty of cutting planes due to an ample number of
ominance relations. However, for extremely-hard instances for which
feasible solution cannot be found in a reasonable solution time by

px, the performance of ssdc is also expected to worsen. In these
xperiments, the number of cuts generated is large for each case since
e use both dominating and dominated sets for cut generation. For
xample, for the instances with RV= 81, we have the minimum number
f scenario dominance relations equal to 512, and 257,796 ssdc cuts
re generated. The MIP gap tends to increase as the number of random
ariables increases because the instances with larger RV are harder.
he average percent deviation by ssdc over cpx (Gap2) is negative,

mplying that ssdc improves the objective function found by cpx in
wo hours by 0.13% in five minutes.

. Concluding remarks

In this study, we have explored the scenario dominance concept
o effectively solve the general multi-stage stochastic mixed-integer
rograms with a focus on the lot-sizing and knapsack problems. The
cenario dominance method derives implications based on a pairwise
omparison and partial ordering of scenarios. Specifically, inferences
btained by the solution of scenario sub-problems and the partial
rdering of scenarios are used to drive new cutting planes and bounds
o improve the computational solvability of multi-stage stochastic pro-
rams. We generate specific cuts and bounds for the stochastic dy-
amic knapsack and stochastic capacitated lot-sizing problems based
n the scenario dominance approach. Our extensive computational
xperiments demonstrate that the proposed methodology with strong
ominance cuts provides a significant improvement in solving large-
cale, multi-stage stochastic optimization problems with integer and
ontinuous variables.

The results highlight that the specific implementation of the pro-
osed bounds and dominance cuts depends on the user’s preferences.
f the user prefers the quality of the solution over the solution time,
mplementing the lower and upper bounds with the scenario dominance
uts (sdc) is more preferred to using strong dominance cuts (ssdc).
n the other hand, if the user or decision maker prefers a quick

olution with the cost of a little deviation from the optimal solution,
he implementation of the strong dominance cuts is suggested as they
re more aggressive than the former ones in terms of chopping off
he feasible solutions and finding a faster solution. For example, in an
nergy production setting, where a production planning problem needs
o be solved a few times a day (Xavier et al., 2021; Cerisola et al.,
009), the decision maker may want to implement strong dominance
uts over the bounds or dominance cuts. In another setting where the
ptimal solution is critical to finding a long-term solution, e.g., health-
are infrastructure decision-making (Büyüktahtakın et al., 2018a; Yin
t al., 2023a; Bushaj et al., 2022b), the use of bounds and cuts may
e preferable to improve the relaxation of the formulations. In sum,
ounds and sdc are more helpful in improving the lower and upper
ounds in a branch and bound solver rather than reducing time, while
trong dominance cuts (ssdc) are suggested to be used whenever a fast
nd close-to-optimal solution is more desirable over the optimal one.

To improve the quality of the ssdc, we employ simple preprocessing
euristics, such as running CPLEX for 50 s to benefit from CPLEX
uts and the best solution found in that time limit, before running the
odel with the associated dominance cuts. Since ssdc may cutoff the

ptimal solution, we also perform a heuristic separation to find out cuts
hat would potentially preserve the optimal solution. Further research
n preprocessing algorithms and heuristics is needed to improve the
olution quality of those aggressive cuts.

Besides improving solution quality, this study opens up other excit-
14

ng avenues for further research. For example, the proposed methods l
pply to various scenario tree configurations, and thus investigating
he performance of the scenario dominance cuts for different scenario
tructures is a possible future research direction. The proposed scenario
ominance approach requires an element-by-element comparison of the
ntries of stochastic vectors and matrices in the M-SMIP problems to
btain a partial ordering of scenarios. Our computational experiments
ave shown that one can derive a large number of dominance relations
nd scenario dominance cuts by considering uncertainty only in the
ost important parameters of the problem. Thus, we focused on S-
KP instances with 9 random variables (for 𝑇 = 10 instances) and

-MCLSP instances with a maximum of 320 random variables (for 𝑇 = 5
nd 𝐼 = 80 instances). We have also investigated the limitation of the
roposed approach for the S-MKP instances by increasing the number
f random variables from 9 to 81.

Our approach is general in the sense that even if the scenarios
re quite distinct, the random variable outcomes in each scenario are
lways comparable based on the definition of a scenario in stochastic
rogramming. However, if the random variables are entirely indepen-
ent, where quite different distributions are used to generate each of
hem, the scenario outcomes are also dissimilar. In that case, one can
xpect fewer dominance relations compared to the case where scenarios
re generated using similar distributions. For example, in a multi-
tem production planning schema, one can expect that the marginal
istributions of the demand for each item follow a similar shape.
owever, it is also possible that the marginal distribution of every item
as a unique shape (Kaut, 2011). However, this setting will explode
he number of scenarios in the scenario tree since each item requires

specific branch for each outcome. A future direction of this work
ould investigate the number and effectiveness of scenario dominance
uts, where the scenarios are generated using distinct distributions of
he random variables with larger scenario trees than considered in this
aper.

In our computations, we have restricted the number of scenario
ub-problems, and used only a small subset of the scenarios for a cut
eneration. Further experimental analysis is needed to study the impact
f various scenario selection schemes on the quality of the bounds and
uts obtained based on the scenario dominance concept. Thus, one
mportant avenue for further research is to provide criteria for deciding
ow many and which scenarios should be chosen for solving scenario
ub-problems.

In this paper, we have focused on the type of stochastic multi-
imensional knapsack and stochastic multi-item lot-sizing instances,
hich have computationally challenging deterministic formulations
hen the uncertain parameters are set to their expected values. Future

esearch could investigate M-SMIP instances, which have relatively
asy deterministic counterparts but a larger number of scenarios and
tages than considered in this work, and thus remain challenging.
n such cases, a parallel distributed implementation for solving the
ndividual scenario problems could reduce the cut generation time and
hus improve the overall solution performance.

The proposed scenario dominance method could also be used within
time- or scenario-decomposition framework proposed for multi-stage

tochastic mixed-integer programs. For example, a classical scenario
ecomposition algorithm could be adjusted by using the new scenario
ub-problem as defined here and enhanced by using the scenario-
ominance bounds and cuts developed in this paper. Furthermore, since
either linearity nor convexity is not assumed, our approach has the
otential to be adapted to solve stochastic programming problems with
on-linear and non-convex characteristics. Future research might, for
xample, explore the proposed method for the case of non-linearity in
ulti-stage stochastic programs with discrete variables. Future studies

ould also explore the dominance and strong dominance cuts for M-
MIPs, including various risk measures in addition to the expectation
n the objective function. For example, suppose Excess Probability
EP), which measures the probability of exceeding a prescribed target

evel (Schultz and Tiedemann, 2003), is chosen as a risk measure. In
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that case, the additional EP-related term in the objective function must
be incorporated into the scenario dominance cuts (e.g., inequalities (11)
and (25)). However, the strong dominance cuts that include only a
specific type of variable (e.g., inequalities (26) and (27)) can be used
with slight modifications in a mean-EP M-SMIP. The applications for
which our approach could be beneficial also vary widely, ranging from
multi-stage stochastic capacity allocation to stochastic network design.
Hence, the derivation of scenario dominance cuts for each specific
S-MIP problem remains an important future direction.
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