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MANTLE METASOMATISM BENEATH THE NOGRAD-GOMOR VOLCANIC FIELD,
NORTHERN HUNGARY/SOUTHERN SLOVAKIA, EASTERN EUROPE

by
Csaba Szabo
Cabhit Coruh, Chairman
Department of Geological Sciences
ABSTRACT

Extensive studies of upper mantle peridotite xenoliths have shown that much of the
upper mantle is chemically heterogeneous over a wide range of spatial and temporal scales.
Today, it is widely accepted that these heterogeneities are related to mantie metasomatic
alteration for which different composition fluids are responsible. Cr-diopside peridotite
xenoliths hosted in alkaline basalt from the N6grad-Gomor Volcanic Field, northern
Hungary/southern Slovakia, Eastern Europe are excellent materials to study mantle
metasomatic products and metasomatic fluids. Based on chemistry and texture, Cr-diopside
xenoliths can be divided into two groups: 1/ porphyroclastic and equigranular spinel
lherzolite - spinel websterite = amphibole, and 2/ secondary recrystallized dunite - spinel
lherzolite + minor amount of phlogopite. Textural and chemical evidence indicate that the
two volatile-bearing minerals (amphibole and phlogopite) cannot be products of the same
metasomatic process. There is a correlation between xenolith chemistry and textural types.
The least deformed xenoliths are the least depleted in basaltic major elements, and vice
verse. Furthermore, xenoliths which are the most depleted in basaltic components are
usually enriched in LREE as a result of cryptic metasomatism.

Both xenolith groups contain various types of fluid inclusions, including pure CO2 and
silicate melt inclusions composed of glass + CO7 * silicate, oxide, apatite and sulfide
daughter minerals. We believe that the majority of these fluid inclusions were trapped and
preserved from the mantle metasomatic agent(s). Based on chemistry of the multiphase
silicate melt inclusions, two types of silicate melts (andesitic and basaltic) are proposed as

potential metasomatic agents. The compositions of these melts were calculated based on the
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Chapter 1: INTRODUCTION

The following chapters consist of three related mineralogical, petrologic, and
geochemical studies of upper mantle spinel peridotite xenoliths from the Négrad-Gomor
Volcanic Field (NGVF), N-Hungary / S-Slovakia.

The distribution and detailed petrologic and geochemical characteristics of the Cr-
diopside xenoliths are discussed in Chapter 2. Although typical protogranular
(undeformed) xenoliths have not been found, calculated bulk rock compositions and most
mineral compositions vary distinctly with texture. Secondary recrystallized xenoliths,
characterized by minor high-F phlogopite, are most depleted in "basaltic” major elements
and enriched in incompatible minor elements. In contrast, protogranular to
porphyroclastic xenoliths containing pargasite are least depleted in "basaltic” major
elements and show unfractionated REE patterns. Beside obvious modal and cryptic
metasomatism, additional processes have been identified in NGVF xenoliths such as
mantle fracturing/veining {predated by formation of phlogopite), strong deformation and
subsequent recrystallization (postdated formation of phlogopite and predated formation of
amphibole). A possible candidate for the source of the metasomatizing agents beneath the
NGVF was probably a subducted-slab-derived volatile and alkali-rich intermediate melt.

A detailed fluid inclusion study of the mantle xenoliths is presented in Chapter 3.
Various types of fluid inclusions, including pure CO;, and silicate melt inclusions
composed of glass + CO5 = silicate, oxide, apatite and sulfide daughter minerals, occur in
the Cr-diopside xenoliths. These inclusions preserve the metasomatic fluid and record
the chemical and P-T conditions attending metasomatism.

Pure CO3 inclusions provide a minimum trapping pressure of 6.5 to 7.5 kbar (depth of
24-28 km) at 1,250°C. This depth approximates the crust/mantle boundary (MOHO)
beneath the NGVF. Below MOHO the ascent rate of the lavas was slow, but increased
considerably at shallower depths as a result of "boiling" of the melts to generate volatiles.

Two types of silicate melts (andesitic and basaltic) are proposed as potential
metasomatic agents. The compositions of these melts were calculated based on the
compositions of glass and abundances of daughter minerals in multiphase silicate melit
inclusions. Both melt compositions are characterized by high concentration of alkalies,
COa», halogens (F, CI), high mg#, and probably elevated H>O contents. The andesitic melt



was probably derived from the same mantle source as the Mio-Pliocene subduction-
related magmas along the Carpathian belt. Our interpretation is consistent with other
geochemical data concerning the possible source of metasomatic fluids beneath the
NGVF. The basaltic melt in multiphase silicate melt inclusions probably has the same
source as the host alkaline basalt magmas.

Mineralogy, chemistry, and possible origin of four types of sulfide assemblages in
NGVF xenoliths are presented in Chapter 4. Primary sulfides occurring interstitial to and
enclosed in mantle silicates cannot be distinguished chemically from secondary sulfides
occurring connected either to healed fractures or to borders of mantle silicates. This is
consistent with the origin of secondary sulfides by remobilization of the primary sulfides.
One of the unexpected results is that differences in mineralogy and chemistry between
enclosed and interstitial sulfides were not observed. Therefore, sulfides are interpreted to
have formed from immiscible sulfide liquid trapped during (or after) partial melting of
the mantle. The least depleted protogranular to porphyroclastic xenoliths contain
abundant sulfides which are richer in Ni (+ Co) and Cu than those in more depleted
equigranular and secondary recrystallized xenoliths. This discrepancy reflects
heterogeneity in mantle sulfides which could have been caused either by partial melting

or mantle metasomatism.



Chapter 2: Mantle Petrology and Geochemistry Beneath
the Nograd-Gomor Volcanic Field
(Northern Hungary/Southern Slovakia)

ABSTRACT

Neogene to Quaternary alkali basalts within the N6gréd-Gomor Volcanic Field
(NGVF) contain abundant mafic and ultramafic xenoliths and megacrysts yielding insight
into the nature and evolution of the mantle beneath this region. The Cr-diopside suite of
ultramafic nodules has been classified by texture, mineralogy, and chemistry into two
groups. Group 1: Spinel lherzolite and spinel websterite, with protogranular to
porphyroclastic or equigranular textures and small amounts of pargasitic amphibole; and
Group 2: Dunite and spinel lherzolite, with 'secondary' recrystallized textures and minute
amounts of phlogopite. Cr-diopside-rich veinlets occur in Groups 1 and 2, forming
composite xenoliths.

Calculated bulk rock compositions and most mineral compositions vary distinctly
with texture. 'Secondary' recrystallized xenoliths (Group 2) are depleted in "basaltic"
major elements, which decrease gradually through equigranular-textured xenoliths
towards protogranular to porphyroclastic xenoliths. Nevertheless, within Group 1,
amphibole-bearing equigranular and protogranular to porphyroclastic xenoliths cannot be
distinguished by REE contents. Their unfractionated REE patterns and the formation of
amphibole can be attributed to modal metasomatism. However, anhydrous xenoliths from
Group 1, showing a negative correlation between "basaltic” major and rare earth
elements, are indicative of the effects of cryptic metasomatism. This might be controlled
by percolation of metasomatizing melts (Navon and Stolper, 1987; Bodinier et al., 1990)
or by small amount of metasomatizing agents near the vein conduit (Nielson et al., 1993).

Principal features of Group 2 xenoliths, such as 'secondary’ recrystallized textures,
clinopyroxenite veins, high F-rich phlogopite, and depletion in basaltic major elements,
reflect complex mantle events, including modal and cryptic metasomatism.

Although the lithospheric mantle beneath the NGVF has been considerably modified,
the nature of this upper mantle is consistent with existence of a subducted slab. This

subducted slab was the possible source of the metasomatic agents.



INTRODUCTION

Insight into the nature and evolution of the mantle can be provided by petrologic and
geochemical studies of mantle xenoliths occurring in alkali basalts and kimberlites.
Neogene to Quaternary alkali basalts, and their pyroclastic deposits, are widely
distributed within the Carpathian-Pannonian Region (CPR) of Eastern Europe. They have
entrained many ultramafic and mafic nodules and a great variety of mafic and feldspar
megacrysts. Numerous, well-known localities from the Transdanubian Volcanic Region
(TVR, Embey-Isztin et al., 1989) are extremely rich in xenolithic material and have been
studied in detail previously (e.g., Kurat et al., 1980; Embey-Isztin et al., 1989; Szab6 and
Vaselli, 1989; Downes et at., 1992). Furthermore, Vaselli et al. (in press) have just
finished an extensive geochemical study of ultramafic xenoliths in alkali basalts of the
Persany Mts., Eastern Transylvania.

The present paper is the first general overview of the petrology and geochemistry of
representative ultramafic xenolith suites in alkali basalt and basanite flows, dated at 6.4 to
1.3 M.y. (Balogh et al., 1986). These are from the Noégrid-Gomor Volcanic Field
(NGVF) of the CPR, where some middle Miocene andesite laccoliths also occur (Fig.
2.1) associated with subduction-related Neogene calc-alkaiine volcanics (Szabé et al.,
1992). Thus, this study enhances the coverage in time and space of the mantle beneath the
CPR. We discuss mantle processes such as mantle veining and the formation of
F-rich phlogopite-bearing 'secondary’ recrystallized mantle xenoliths, which were not
described previously from the Plio-Pleistocene alkali basalts in the CPR.

Based only on petrography, xenoliths from the NGVF can be divided into three
groups: 1) a Cr-diopside suite (Wilshire and Shervais, 1975; Type I of Frey and Prinz,
1978), that is the focus of this paper; 2) a clinopyroxenite and gabbroic series, with
intense secondary hornblende formation; these xenoliths may be associated with the
generation of cumulates representing the Al-augite suite (Wilshire and Shervais, 1975;
Type II of Frey and Prinz, 1978); and 3) acidic and alkaline plutonic rocks, which are
considered to be crustal xenoliths.

We have collected more than 200 Cr-diopsidic ultramafic xenoliths from seven of the
most important localities (Maskoéfalva-Maskova [NMS], Filek-Fil'akovo - Kercsikteto
[NFL], Terbeléd-Terbel'ovce (NTB), Fiilek Kovacsi-Fil'avské Kovace (NTK), Medves-
plateau - Eresztvény [NME], Medves-plateau - Magyarbinya (NMM), and Béma -
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Fig. 2.1. Simplified map of the Ndégrad-Gomor Voléanic Field (NGVF) showing
distribution of the xenoliths, and the principal locals, using the text: NPY =
Patakalja-Podrecany; NMS = Maskéfalva-Maskova; NFL = Fiilek-Fil'akovo -
Kercsiktetd; NTB = Terbeléd-Terbel'ovce; NTK = Fiilek Koviacsi-Fil'avské Kovace;
NME = Medves-plateau - Eresztvény; NMM = Medves-plateau - Magyarbdnya;
NBN = Barna-Nagyko.



Nagyko [NBN] (Fig. 2.1). Of these, 22 of the least altered xenoliths were selected for
detailed studies and are reported here. Sample selection attempted to encompass the
widest geographic area as well as representation of all textural types, including hydrous
(amphibole- and phlogopite-bearing) and anhydrous peridotites. The samples were
studied in thin section, and electron microprobe analyses were performed on constituent
minerals. Trace elements including REE were determined for selected whole rocks by
INAA.

PETROGRAPHY OF THE CR-DIOPSIDE SUITE

Most nodules are slightly rounded or elongated and 2.5 to 5 cm in diameter; several
from Maské6falva-Maskova which up to 15 cm. Modal mineral compositions were
estimated by point counting (>1500 points) two thin sections for each of sample; the
averages are given in Table 2.1. Aggregates of fine-grained clinopyroxene, olivine,
spinel, plagioclase, and phlogopite occur in some xenoliths, and their approximate
abundances related to total modes are also given in Table 2.1.

Based on texture and chemistry, the xenoliths presented here have been classified
into two types: Group 1: spinel lherzolite and spinel websterite series; Group 2: dunite
and spinel lherzolite series. An overview of the principal petrographic features of both

groups is given below.

Group 1: Spinel lherzolite and spinel websterite series

The Group 1 xenoliths display two main textural types, using the nomenclature
proposed by Mercier and Nicolas (1975). The majority have a fine-grained equigranular
texture (0.08 to 1.2 mm in diameter) with some porphyroclastic orthopyroxene (Fig.
2.2A, 2.2B, and 2.2I). Several of the xenoliths have a coarse-grained protogranular to
porphyroclastic texture (2-4 mm in diameter; Fig. 2.2D). The porphyroclastic minerals
are highly strained, and some orthopyroxenes bear exsolution lamellae of clinopyroxene
and vice versa.
This group is characterized by the presence of brown amphibole (generally < 5 vol%) in
four modes of occurrence: 1) as an anhedral, interstitial phase (Fig. 2.2D), 2) as stringer-

like elongations in association with spinel, rarely clinopyroxene (Fig. 2.2B), 3) as



Table 1. Modal proportions of the NGVF xenoliths and equilibrium temperatures
(Brey and Kohler, 1990), and oxygen fugacity (Ballhaus et al.,1990).

Rock type Ol Opx Cpx Sp Amp Phl Aggr. T (°C) Alog fo2

Protogranular to Porphyroclastic (Group 1)

NBN10 |hz 62 25 9 2 2 993 -1.47
NMS09 lhz 62 21 11 3 3 998 -1.47
NMS16 lhz 61 18 16 2 3 965 -1.67
NMS10 wbs 26 48 19 3 4 924 -1.62
Equigranular (Group 1)

NBN2S |hz 73 14 10 2 1 2 941 -1.73
NBN27* lhz 76 15 8 1 1013  -0.65
NBN30 Ihz 75 16 7 2 3 927 -0.70
NBN54 lhz 75 15 9 1 2 984 -1.07
NME13 1lhz 71 19 9 1 965 -0.84
NME18 lhz 65 20 8 3 4 3 992  -0.20
NMEI19 Ihz 75 13 11 1 tr 1 985 -0.77
NME23 1lhz 81 11 6 2 1 997 -0.53
NMMO2 Ihz 78 13 7 2 3 959 -0.80
NTB03 lhz 67 19 11 3 1 959 -1.83
NFL10 lhz 66 19 10 2 3 1 997 -0.34
NFL15 lhz 68 16 11 3 2 1 950 -0.67
NFL11~ amplhz 23 2 75 0.43
Secondary Recrystallized (Group 2)

NBNI15 Ihz 80 9 9 2 4 906 -0.11
NBN22  dunite 88 4 5 1 1 3 862 043
NBN23* dunite 91 4 3 1 1 1 935 -0.15
NBN31  dunite 96 4

NBN51  lhz 78 10 11 1 3 936 0.04
Clinopyroxenite vein

NBN27A -0.49

* Composite xenoliths crosscutting by Cr-diopside veinlets (only modal compositions of
host xenoliths are shown)

~ Oxygen fugacity was calculated assuming 1000°C and 15 Kb.

Abbreviations: lhz = lherzolite; wbs = websterite; amplhz = amphibole lherzolite;

Ol = olivine; Opx = orthopyroxene; Cpx = clinopyroxene; Sp = spinel; Amp = amphibole;
Phl = phlogopite; Aggr. = Aggregate



Fig. 2.2. Series of photomicrographs showing different textural types of peridotite
xenoliths from the NGVF. (In photos A, B, H, I scale bar equals 6 mm; in photos C,
E scale bar equals 3.5 mm; in photos D scale bar equals 2.5 mm; in photos F, G
scale bar equals Imm. Photo F was taken under cross-polarized light and photo G
was taken under plane-polarized light. Contact between host and vein has been
darkened for clarity.)

(A) Equigranular-textured lherzolite (NBN30) with melted zones (gray irregular
patches).

(B) Equigranular-textured lherzolite (NFL15); the roughly paralle]l alignment of the
spinel (black) - amphibole (gray) stringers define a lineation.

(C) 'Secondary' recrystallized dunite (NBN22) with phlogopites (elongated, dark
gray grains) and melted zones (rounded, light gray patches); the roughly parallel
alignment of the phlogopite define a lineation.

(D) Protogranular to porphyroclastic-textured websterite (NMS10); spinels and
amphiboles (black grains) are randomly distributed throughout the xenolith.

(E) 'Secondary' recrystallized wehrlite with a Cr-diopside rich vein (NBN23); the
roughly parallel alignment of the phlogopite (elongated black grains) suggests a
lineation for the host xenolith; the vein orientation and the host foliation is near the
same.

(F) Phlogopites in 'secondary' recrystallized dunite (NBN22); olivines are
characterized by well-developed triple junctions.

G) Phlogopite in 'secondary' recrystallized wehrlite (NBN23); emplacement of
phlogopites are near parallel; the small spinels in olivine and well-developed triple
junctions are typical of the 'secondary' recrystallized texture.

(H) Amphibole-rich peridotite (NFL11); the primary minerals (frequently olivine, in
light area) are predominantly replaced by amphibole.

(I) Equigranular-textured lherzolite with a Cr-diopside rich vein (NBN27):

depletion in clinopyroxene (light gray grains) is notable adjacent to vein.
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inclusions within orthopyroxene porphyroclasts; and 4) as relatively thick amphibole
selvages and replacement of the original peridotitic rock-forming minerals (Fig. 2.2H). In
this case, amphibole content reaches 70% to form amphibole peridotites (NFL11; Table
2.1).

Group 2: Dunite and spinel lherzolite series

The Group 2 xenoliths consist mainly of olivine, with subordinate amounts of
clinopyroxene and orthopyroxene (Table 2.1). Textures indicate 'secondary’
recrystallization (e.g., spherical spinel within the silicate minerals; Fig. 2C, 2E). Olivine
is 1.0 to 2.4 mm in diameter, whereas clinopyroxene and orthopyroxene range from 0.2 to
1.0 mm in diameter. Minor phlogopite (~1 vol%) is characteristic of these xenoliths (Fig.
2F, 2G). These micas show a roughly parallel alignment among the recrystallized primary
minerals (mainly olivines; Fig. 2.2C, 2.2E), but do not form a well-defined foliation since
the modal abundance of phlogopite is low.

Clinopyroxenite Veinlets

Thin Cr-diopside-rich (clinopyroxenite) veinlets occur in both nodule groups (e.g.,
lherzolite NBN27 and dunite NBN23), forming composite xenoliths (Fig. 2.2E, 2.21).
They consist mostly of clinopyroxene with a few grains of olivine and spinel. The
thickness of these clinopyroxene-rich layers ranges from 4 min to [2 mm. The vein in
lherzolite NBN27 is planar with sharp contacts, whereas that in dunite NBN23 has
irregular contacts. The veinlet is separated from the host peridotite by a more coarse-

grained, olivine-rich zone (Fig. 2.2I).

SAMPLES AND ANALYTICAL TECHNIQUES

Mineral compositions were determined with a Cameca SX-50 electron microprobe at
the Department of Geological Sciences, University of Tennessee, Knoxville. Operating
conditions were an accelerating voltage of 15 kV and a filament current of 100 HA; beam
current was 30 nA for pyroxene, olivine. and spine] and 20 nA for amphibole, phlogopite,
and feldspar. The beam size was 5 um for pyroxene, olivine, and spinel and 3 pum for
amphibole, phlogopite, and feldspar. Counting times were 20 sec. for all elements.

Standard ZAF corrections were applied.
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Due to the fine grain size of the xenolith minerals and/or small size of xenoliths, it
was not feasible to perform mineral-separations necessary for major- and trace-element
analyses. Instead, the trace elements were determined only for bulk rocks. These analyses
were performed by INA at the Radiation Center of Oregon State University. The details
of this method are given in Hughes et al. (1988). The uncertainties are 2% for Sc, Cr, Ni,
and Co; 2-5% for La, Sm, and Eu; 5-15% for Ce and Au; 10-20% for Nd and Hf; 10-25%
for Yb, Lu, and Th; 15-30% for Cs, Rb, Ba, and Ta; 20-30% for Tb.

MINERAL GEOCHEMISTRY

Olivine

Olivines display limited variations in chemistry within a given thin section. The
porphyroclastic olivines have the same compositions as those in neoblasts or inclusions
within orthopyroxene porphyroclasts. The range in mg#s appears to be independent of the
xenolith textural type (Table 2.2). Olivines from protogranular to porphyroclastic
xenoliths show a narrow range of compositions with mg#s of 90, except websterite
(NMS10), which possesses the lowest averaged mg# (86). In equigranular-textured
xenoliths, olivines have mg#s 88 to 90. Olivines in Group 2 xenoliths fall between mg#s
of 89 and 91. Olivines in Cr-diopside-rich veinlet of sample NBN27 have a lower mg#
(88) than those of the host xenolith (90), whereas in the other composite xenolith, the
mg# (90) for olivines in Cr-diopside-rich veinlet cannot be distinguished from those of
the host xenolith.

Orthopyroxene

Orthopyroxenes, including porphyroclasts, neoblasts, and inclusions in olivine
porphyroclasts, show only minor differences in compositions (Tablte 2.3) within a given
sample. The compositional range for all samples is En:84.9-90.1; Fs:8.4-13.6; Wo:1.1-
2.2. The orthopyroxenes from Fiilek-Fil'akovo - Kercsiktetd (NFL nodules) and samples
NMEI18 and NMS10 are the richest in Fe. The mg#s tend to correlate well with those of
olivines, but the orthopyroxenes have a narrower range (88-91). Al,O; versus SiO,

indicates an obvious correlation with textural types (Fig. 2.3).
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Al203 (wt%)

31 O
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Fig. 2.3. SiO; vs. Al,O; for orthopyroxenes in Cr-diopside series from the NGVF. PrPo =
protogranular to porphyroclastic, Equi = equigranular, Recry = secondary

recrystallized.
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Clinopyroxene

Cr-diopsides (either as essential constituents of the xenoliths or the veinlets) display
only minor differences in composition within a sample, except for two equigranular
lherzolites (NFL10, NFL15). In some medium-grained, and strained clinopyroxenes,
increases in Cr,O5 and TiO, are accompanied by decreases in CaO and Na,O, whereas
Al,O4 varies much less (Table 2.4).

The mg#s, as well as Al versus Na (Fig. 2.4), of the clinopyroxenes correlate well
with textural type. Clinopyroxenes in Group 2 nodules and in veinlets show the highest
mg#s (91-93) and the lowest Al- and Na-contents. Clinopyroxenes in most equigranular
xenoliths have higher mg#s and lower Na- and Al-contents than those of the
protogranular to porphyroclastic type (Fig. 2.4 and Table 2.4). Furthermore, Ti-poor and
Ti-rich groups of clinopyroxenes can be distinguished. Ti-poor clinopyroxenes (0.05-0.35
wt% Ti0O,) are characteristic of amphibole-free samples, whereas clinopyroxenes which
are slightly more Ti-rich (0.28-0.62 wt% TiO,) occur in amphibole-bearing xenoliths
(Table 2.4). '

Spinel

Spinels show only limited variations in composition within a given xenolith (both as
interstitial grains or as inclusions in silicate phases). However, there are significant
differences in chemical composition of spinels from different textural types (Table 2.5).

In Fig. 2.5, the spinel compositional variations can be seen as a function of cr#
against mg# showing a trend (line #1, where r? = 0.74, excluding data from the vein and
amphibole peridotite) of the average analyses of the NGVF spinels. Similar trends based
upon textural types of xenoliths also can be recognized for spinels in distinct peridotite
xenolith suites from the Massif Central, France [line #2 (Downes, 1987) and line #3
(Brown et al., 1980)]. Spinels from the amphibole-rich xenolith (NFL11) lie close to
those from the 'secondary’ recrystallized group.

Amphibole

Amphibole is present in both protogranular to porphyroclastic and equigranular
xenoliths (Group 1), but absent in those of Group 2. Amphiboles can be divided into two
types. Type I amphiboles are chemically unzoned and pargasitic in composition (after the
classification of Leake, 1978; Table 2.6). The proportion of the pargasite end-member is
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Fig. 2.4. Al vs. Na for clinopyroxenes in Cr-diopside series from the NGVF. For an

explanation of abbreviations see Fig. 2.3.
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