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the Ti Spectral Function

Clint A. Lanham

(ABSTRACT)

Future long baseline neutrino oscillation experiments like the Deep Underground Neutrino

Experiment (DUNE) rely on Liquid Argon Time Projection Chamber (LArTPC) detectors.

The reconstruction of neutrino flavors and energy through interactions with Argon is a critical

issue for assuring the DUNE success. The neutrino-Argon nuclear cross section is one of the

biggest sources of uncertainty in measuring possible Charge-Parity Violation (CPV) in the

neutrino (ν) sector and decoupling background like matter-effects. This thesis summarizes

the exclusive electron scattering measurement of the Jefferson Lab E12-14-012 experiment.

The E12-14-012 experiment goals are to explore the Ti(e,e′p) and Ar(e,e′p) reactions in a

wide range of kinematics in order to determine the spectral function of protons and neutrons

in Argon. The measurements made in E12-14-012 are the first of their kind in argon and are

a pivotal step in understanding the electron-Argon interaction and its relation to neutrino

scattering. Titanium was specifically chosen under an assumption that its protons can be a

proxy for argon neutron spectral functions. The analysis of the exclusive electron scattering

in titanium is described in detail in this thesis.
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(GENERAL AUDIENCE ABSTRACT)

While considerable progress has been made in understanding the power of the atom, nucleons

(protons and neutrons) trapped in medium-to-heavy nuclei have properties that we still need

to understand. The purpose of this thesis is to explore the nuclear investigation conducted

at Jefferson Lab (JLab) in Newport News, Virginia. Specifically, we follow the data analysis

of the JLab Hall A Experiment E12-14-012 which seeks to quantify the nuclear energy-

momentum distributions of nucleons in complex nuclei like titanium and argon. These

measurements, the first of their kind experimentally, are done to provide a reliable model for

lepton-nucleus interactions. Modeling lepton-nucleus interactions in argon is of paramount

importance, as argon is the primary target medium in future long baseline neutrino oscillation

experiments like DUNE. Neutrinos are notoriously difficult to measure; and therefore, when

they interact, we only measure the interaction products as they come out of the nucleus.

Sometimes the products of the primary interaction will not escape the nucleus and have to

be modelled to accurately estimate the incoming neutrino energy. The analysis on titanium

provided in this thesis is a bridge for argon interactions with leptons, where titanium is used

to determine argon neutron momentum and energy distributions.
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Chapter 1

Introduction

The purpose of this thesis is to analyze the data collected in 2017 by the Jefferson Lab

experiment E12-14-012. Jefferson Lab (JLab) is located in Newport News, Virginia. The

JLab E12-14-012 experiment seeks to measure Ar(e,e′p) and Ti(e,e′p) exclusive cross sections

and determine the spectral functions of protons and neutrons in the Argon nuclei.

This introductory chapter serves as an overview of the physical foundations and justification

for the experiment. Chapter 2 touches on the experimental setup at JLab. Chapter 3

explains the data fitting process, using previous Ar(e,e′p) data analysis as a foil. Chapter 4

focuses on the Ti(e,e′p) data analysis through the inclusion of a co-authored paper. Chapter

5 is the conclusion and covers the final remarks.

1.1 Motivation

This experiment at JLab is meant to investigate many aspects of nuclear theory. This thesis

will focus on the experiment’s probe into the properties of protons and neutrons bound in

argon (i.e., the position and width of the proton and neutron shells in argon). Argon nu-

clei are frequently used in particle detectors. Argon is a non-isotropic nuclei, and it is not

well understood. The original proposal for the experiment highlighted the utility in under-

standing neutrino and anti-neutrino interactions in argon [1]. Neutrino and anti-neutrino

interactions are identified by looking at the charged and neutral particles that are generated

1



2 CHAPTER 1. INTRODUCTION

when the neutrino or anti-neutrino interact on the detector target. The type of particles that

are emitted and their energy-momentum depends on nuclear effects and ultimately on the

nucleon-nucleon correlations inside nuclei. Understanding these properties would be essen-

tial for future neutrino studies like the Deep Underground Neutrino Experiment (DUNE),

which will use liquid argon time projection chamber (LArTPC) detectors [1, 2].

DUNE is a major international collaboration centered around Fermilab and Sanford Lab [3].

Fig. 1.1 shows an overview of the DUNE facility setup, from right to left, the neutrino beam

facility and the “near detector” (ND) complex, both hosted at Fermilab, and the “far de-

tector” (FD) lab that will be deep underground (4,850-m.w.e.) at the Sanford Underground

Research Facility (SURF). The Fermilab Long-Baseline Neutrino Facility accelerates a pro-

ton beam to 1 MW1. The neutrino and antineutrino will originate from the decay of pions

and kaons produced by the proton beam interaction with a graphite target. Within the neu-

trino production line, DUNE selects positive/negative pions using a set of magnetic horns.

The pions quickly decay into positive/negative muons and neutrinos/anti-neutrinos. At the

end of the production line, shielding absorbs any muons. Neutrinos are left to proceed 304 m

to the ND. Neutrinos and antineutrinos are produced with an energy spectrum between 1

and 8 GeV.

From the ND, the neutrinos travel 1,300-km through the Earth towards the FD that is

located at SURF.

Utilizing this neutrino beam, DUNE has several ambitious scientific goals that focus on

neutrino oscillation physics and tests of the standard model. The main DUNE focus is to

measure leptonic Charge-Parity (CP) violation in the neutrino (ν) sector [4]. CP violation

has already been searched and measured in the quark sector and found to be relatively

small. If CP violation is found in neutrinos, it would help explain why our Universe has

1 upgradable to 2.2 MW
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Figure 1.1: DUNE depiction. Beam travels right to left. Edited from [5].

a matter/anti-matter asymmetry. In the Standard Model, neutrinos are massless, but ex-

perimentally neutrinos have been measured to oscillate between 3 primary leptonic flavors

(electron (e), muon (µ), tau (τ)), implying that neutrinos have a non-zero mass and as such,

they are the first evidence of physics beyond the standard model.

If we can show that neutrino’s anti-matter counterparts, anti-neutrinos, oscillate differently

between the 3 neutrino flavors, then scientists can measure the CP-violating phase.

1.2 Neutrino Oscillation

Using the 2 flavor model, as a starting point to make the formulas easy, we can start to

define the oscillation probabilities that DUNE is interested in. We can assume oscillation in

a vacuum, as matter-effects only swap parameters in Eq. 1.1 for matter-modified versions.

So the probability that a neutrino oscillates from one flavor α to another flavor β is given

as:

P (να → νβ) = sin2 (2θ) sin2 (1.27∆m2 L[m]

E[GeV ]
) (1.1)
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Where θ is the mixing angle, a description of mass-to-flavor states. ∆m2 is the mass squared

difference between two neutrino states, where nonzero implies neutrinos have (different)

mass. L is the distance between near and far detector, and E is the energy of the neu-

trino. L/E is a parameter used in neutrino oscillation experiments to determine and select

a particular region (phase space) for oscillation probabilities2.

If we extend the model to three neutrino flavors, the general probability of a neutrino oscil-

lating from one flavor α to another β becomes:

P (να → νβ) = δβα−4
∑
k>j

Re[U∗
αkUβkUαjU

∗
βj] sin2 (∆m2

kj

L

4E
)

+2
∑
k>j

Im[U∗
αkUβkUαjU

∗
βj] sin (∆m2

kj

L

4E
)

(1.2)

Where δ is Kronecker delta. U is the PMNS consisting of 3 complex phases scattered amongst

3 rotation matrices and a Majorana phase matrix. U* is defined as the conjugate transpose of

U. The “13-sector” rotation matrix carries the CP Violation (CPV) phase which propagates

through derivations to form the Imaginary term in Eq. 1.2. To search for any CPV, we can

set the CPV phase to zero, therefore assuming/testing a no-CPV model. So the CPV phase

drops and by consequence the Imaginary term drops, leading to

P (να → νβ) = δβα−4
∑
k>j

Re[U∗
αkUβkUαjU

∗
βj] sin2 (∆m2

kj

L

4E
)

+0

(1.3)

2One exception to this is the solar neutrino experiments in which L/E is fixed.
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Eq. 1.3 is the governing equation for accelerator neutrino experiments where the probability

of oscillation is still intimately coupled with the ratio L/E. We measure the number of un-

oscillated events very close to the neutrino source and then the number of oscillated events

at the detector. In the case of DUNE, the un-oscillated events are measured at the ND and

the oscillated events are measured at the FD (so that L = 1,300 km) [6]. The ratio between

far and near detector events is the probability of neutrino oscillation.

It is important to note that there is a hidden signal in this vacuum oscillation picture, since

the oscillation at DUNE occurs in the Earth. Beyond the CPV-phase term, there is a matter-

effect addition to Eq. 1.2 and 1.3 which produces a CPV signal that is necessary to decouple.

It is sufficient to first choose a large distance that captures the L/E dependence in Eq. 1.3 but

not so large as to allow the matter-effect to dominate, and secondly to identify/reconstruct

the (anti-)neutrino flavor/energy [7].

It is then possible to test CP symmetry conceptually by looking for an Asymmetry, defined

as:

ACP =
P (να → νβ)− P (ν̄α → ν̄β)

P (να → νβ) + P (ν̄α → ν̄β)
(1.4)

That is, after calculating the experimentally defined probability for a neutrino or anti-

neutrino to oscillate, if Eq. 1.4 takes a non-zero value, then there is evidence for an asymmetry

and therefore CPV. To find P (να → νβ) experimentally, it is necessary to take the ratio of

the event rates measured between near and far detectors. The number of events at the near

and far detectors are defined as
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Nα
ND(pr) =

∑
i

ϕα(Etrue) · σi
α(ptrue) · ϵα(ptrue) ·Ri(ptrue; pr)

Nα→β
FD (pr) =

∑
i

ϕα(Etrue) · Pαβ(Etrue) · σi
β(ptrue) · ϵβ(ptrue) ·Ri(ptrue; pr) (1.5)

where pr is defined as the reconstructed 4-vector energy-momentum (Er, p⃗r), ptrue is defined

as the true 4-vector energy-momentum which is inherent to the neutrino, Nα
ND(pr) is the

measured event rate for να at the ND, Nα→β
FD (pr) is the measured event rate for νβ at the

FD after an oscillation from να at the ND, ϕα is the flux of α neutrinos at the ND, σi
l is

the flavor l neutrino cross section for an interaction i, ϵl is the detector efficiency for flavor

l neutrinos, and Ri is the probability that ptrue is reconstructed as pr given an interaction i

and some encoded detector or nuclear effect on the final state has taken place [7]. Pαβ is the

probability that a neutrino with true energy will oscillate from α to β and is the component

we want to capture by taking the ratio of the near and far event rate in Eq. 1.5.

So two detectors, the ND and FD, with known distance are theoretically sufficient. The far

detector rates will be compared against the near detector rates to indicate the high-precision

neutrino flavor oscillation for possible CPV [4, 6]. However, these measurements require

fully understanding the incoming neutrinos and their energy, which is famously difficult to

measure directly. The neutrinos require reconstruction, and their reconstructed energy, along

with the event rates themselves, are reliant on the cross section and type of interaction that

takes place [7].

The neutrinos have to be reconstructed by looking at all the outgoing particles from the initial

neutrino interaction. So the DUNE’s goal of measuring the CPV phase with high precision

requires precise knowledge of neutrino interactions with a complex nuclei. As Argon nuclei
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are the main targets for neutrino interactions at DUNE, Argon has to be fully understood.

Therefore, a parameter-free model of the neutrino-nucleus interaction for the Argon inside

LArTPCs is required. To achieve this model, a deeper understanding of Argon’s protons and

neutrons is necessary for current and future neutrino oscillation experiments like DUNE.

How individual protons and neutrons behave in lepton-nucleus interactions is tied in part

to their energy-momentum distribution inside the nucleus. The method of knocking out the

individual nucleons allows researchers to gauge the level of energy required to remove said

nucleon and probe its inherent momentum. One model to describe such interaction is the

Spectral Function model which can determine the probability of extracting a single nucleon

with a certain energy and momentum from a given nuclei. If a nucleon is believed to have

a range of allowed momenta inside a nucleus with a shared Energy 3, then the Spectral

Function gives us some likelihood that the nucleon is removed and the remaining nucleus

has a new energy [8].

1.3 Electron-Nucleus Scattering

Traditional nucleon knockout is performed with an electron beam scattering experiment [9].

Electrons, at least our current understanding of them, have the benefit of being an elemen-

tary particle and favorably follow electroweak interactions through space-like photons. This

allows us to effectively strike (and therefore probe) deeper into the bound energy states of

the nucleus [10, 11]. Due to the fact that electrons are negatively charged, they are also

relatively easy to track, filter and detect. For comparison, using a proton beam to strike

the nucleus is more complex since the proton is a composite particle that follows strong

interactions. Restricted by the interference of this strong interaction, we would mainly be

3here we are assuming the system is in the ground state
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relegated to largely surface level probes of the nucleus, before competing effects would in-

troduce substantial noise and require significant separation [12]. It is this reason historically

that electron scattering is performed prior to proton scattering to sufficiently specify the

nuclear structure [13]. So utilizing an incident electron beam is easier and more practical in

kinematic modelling. Therefore, electrons were chosen for this experiment.

Argon is isospin asymmetric (the number of protons does not equal the number of neutrons),

and the energy-momentum levels (or shell states) accessible to one nucleon is not the same

/mirrored in the other Fig. 1.2. Probing protons is theoretically straightforward. Given the

proton’s charge, it is relatively easy to track, filter and detect alongside the electron after

knockout.

Neutrons, a neutral particle, are difficult to track and measure. They require indirect meth-

ods to measure through the release of other charged particles: typically described as ionizing

a target detector or causing a nuclear reaction and measuring the products of the fission

[14]. You effectively have to measure the neutron and its reactions. In fact, due to these dif-

ficulties, a major correction has to be done to account for the nucleons’ self-interactions [15].

A neutron can elastically rescatter off the nucleus. A rescatter known as charge-exchange

can also take place. In this rescatter process the neutron is not actually produced at the

elementary interaction vertex. That is to say a proton could have been knocked loose by

the electron beam, but the proton is still energetically favorable to interact with a neutron

in the remaining nucleons. This proton then effectively trades places (is exchanged) with

the neutron it knocks out. Detectors are already measuring the neutron indirectly, and now

have to account for the fact that the neutron may or may not be a rescatter byproduct.

Additionally, the detection efficiency for neutrons is much smaller than for protons4 when

the cross section for neutrons is already 10% that of protons [16]. So these restrictions made

4order 20%
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precise (e,e′n) experiments in medium-to-heavy nuclei uncommon until recently [17].

One workaround of the difficulties introduced by the neutron analysis is to use the assump-

tion of isospin symmetry of nuclear forces5. If we can probe protons easily, then we simply

need to find a nucleus whose protons can mimic the levels allowed for Argon’s neutrons.

In other words, use Titanium, a nucleus with the same number of protons as Argon has

neutrons Fig. 1.2. Working forward from isospin symmetry, we can use Titanium proton

knockout measurements as a proxy for Argon’s neutron measurements (and the ensuing

Spectral Function) [18].

Figure 1.2: Nuclear shell model of Argon and Titanium. Titanium’s proton shell states (p’s)
are portrayed as a mirrored reflection of Argon’s neutron shell states (n’s). This conceptual
analogy is the basis for measuring Ti(e,e′p) in place of Ar(e,e′n)

.

5isospin has an approximate symmetry, due to being broken by coulomb forces, different charges, and
mass differences [19]



10 CHAPTER 1. INTRODUCTION

1.4 Exclusive (e,e′p) reaction

The (e,e′p) scattering is an exclusive scattering as we can detect all the final particles and

determine their momentum and energy. Fig. 1.3

e+ A → e′ + p+ (A− 1)∗ (1.6)

in 4-vectors notation (with respect to natural units h̄ = c = 1), we can define:

• The incoming electron (e−) as having energy-momentum of (E, −→k ).

• The nucleus (A) which is assumed to be at rest in the lab frame so it is described by

(MA,0) where MA is the rest mass of the nucleus.

• The outgoing electron (e′) would have (E′,
−→
k′ ) which is measured directly.

• Through simple conservation of energy-momentum, the energy-momentum transferred

(via the electroweak messenger, the photon) to the nucleus (A) is (E,−→k )-(E’,
−→
k′ ) =

(ω,−→q ).

• The proton (p) that is knocked out would have some initial energy-momentum com-

ponent of the nucleus (recall, what we’re really curious about), and chiefly for the

experiment a final energy-momentum after knockout given as (Ep,
−→
kp) which is mea-

sured directly,

• Leaving the residual nucleus (A-1) to recoil inside some residual system we will define

with (EA−1,−→p A−1).

On the topic of measuring directly, it should be noted that it is the momenta that are typically

measured in these experiments. For this model, we will treat the energy components through
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Figure 1.3: Kinematic schematic of the (e,e′p) reaction. Replicated from [20].

assumptions. Starting with the relativistic dispersion relation, the proton’s energy is given

as Ep =
√

M2
p + k2

p where Mp is the proton’s rest mass. The electrons in the beam are within

the ultra-relativistic regime (k»M) and so their energies are simply approximated with their

rest mass neglected (i.e., E ≈ |k|).

As stated, we are interested in the proton energy-momentum distribution inside the nucleus,

but unfortunately it is difficult to measure. Thankfully, with our collision listed above, we

can piece together this distribution through a quantity known as missing energy-momentum.

The missing energy is defined as

Emiss = ω − Tp − TA−1 (1.7)

where Tp, TA−1 are the relativistic kinetic energies for the proton and the recoil system

respectively.6 The missing energy gives us a useful starting point. We can start by explicitly

6The equation above is more accurately described as missing mass Emiss = mp +mA−1 −mA (as is the
case with a lot of conventions that utilize natural units, mass is measured by energy). Other collaborations
also define the missing energy differently, preferring to drop the residual term [15]. Great care should be
taken in the future when comparing high-precision data.
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writing out the residual mass as mA−1 =
√
E2

A−1 + p2A−1. Using the conservation of energy:

E +MA = E ′ + Ep + EA−1

OR

EA−1 = ω +MA − Ep

(1.8)

so we can rewrite the missing energy 1.7 as :

Emiss = mp −MA +
√
(ω +MA − Ep)2 − p2A−1. (1.9)

However, Eq. 1.9 still depends on the momentum of the residual system. To replace the

momentum, the last step is including conservation of momentum:

pp − q = −pA−1 (1.10)

where the negative signs can be taken as purely convention, as Eq. 1.10 is defined to be the

missing momentum (i.e., the recoil momentum, or the momentum the proton had prior to

knockout).

So putting together Eq. 1.9 and Eq. 1.10 our missing energy-momentum is now a testable

expression that does not require any measurements of the residual/missing information.

Anything not observed in the incoming or outgoing particles can be interpreted as missing

due to an interaction with the nuclear states that ejected the proton.
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1.5 Spectral Functions

After measuring quantities and inferring missing portions, it is necessary to assess those

values with the help of statistical analysis.

What we want to capture from this scatter is the (e,e′p) cross section. The cross section allows

us to measure the spectral function of the nucleus, an intrinsic value given as P(−→p miss,Emiss).

This spectral function represents the probability of removing a nucleon (here a proton)

with Energy-momentum (E,−→p miss). More explicitly, this Spectral function represents the

probability that a nucleon with momentum −→p miss, and bound with energy E to an initial

shell state inside the target nucleus (A), is removed and left the residual nucleus (A-1) in

any final state with missing energy Emiss [15]. Therefore, when indirectly measuring some

missing quantity, only direct measurements are require to determine the initial state.

The preceding prescription pertains to ideal conditions. However, The proton does not always

escape its initial state undisturbed. We have been approximating the proton as a plane wave

in the Plane Wave Impulse Approximation (PWIA) treatment. Electron scattering that

facilitates a nucleon knockout comes close to PWIA, so there are only minor corrections to

make. These corrections account for the Final State Interactions (FSI) that describe the ways

in which the proton and residual nucleus can self-interact before measurement. Including

FSI “distorts” the PW, hence the name Distorted Wave Impulse Approximation (DWIA).

While still assuming that the electron is initially only interacting with one proton, DWIA

can get quite complicated. Thankfully, if we operate under parallel-kinematics7 , then we can

approximately “factorize” terms, leading to a factorized DWIA [21, 22, 23]. Furthermore, we

are working under the assumption that the beam-target interaction involves a single nucleon

and that any FSI can be described by a single potential in DWIA. Following this route, we

7all kinematics chosen in this experiment are within this regime
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have the factorized DWIA cross section as a six-fold differential [24] :

d6ω

dωdΩe′dTpdΩp

= KσepP
D(k⃗p, p⃗miss, Emiss) (1.11)

On the left hand side of Eq. 1.11, ω and Tp respectively correspond to the photon energy

transfer and proton kinetic energy described previously, as in Eq. 1.7. Ω′
e and Ωp respectively

represent the solid angle directions of the outgoing electron and proton.

On the right hand side of Eq. 1.11, K is the kinematic factor and it is equal to K = |p′|E.

σep is the differential cross section for an electron to scatter off a bound and moving proton

and PD is the distorted spectral function8.

And we can rewrite the six-differential cross-section of Eq. 1.11 as:

d6ω

dωdΩe′dTpdΩp

=
Y (Emiss, pmiss)

B · lt · ρ · BH · VB · Crad

(1.12)

Where the right hand side of Eq. 1.12 are physical parameters measured throughout the

experiment (Y, B, lt, ρ, BH) and simulated in SIMC (VB, Crad) [24, 46].

Setting 1.11 and 1.12 equivalent allows us to isolate the distorted spectral function. It is then

a matter of isolating the nucleon spectral function by removing the FSI distortion effects

from PD. Associated with the distorted spectral function is a reduced cross section. This

is found by dividing out Kσep from the measured cross section. This is compared against a

reduced cross section generated by Monte Carlo via a test Spectral Function [24]. The test

Spectral Function is a weighted decomposition of independent-shell contributions9 and the

correlated nucleon pairs10. This test spectral function construction allows the individual shell

8Note: no longer intrinsic to the nucleus, the SF now depends on the exiting nucleon.
9assumed to follow a Gaussian distribution for all proton orbitals

10assumed to be short-range proton-neutron pairs in a convolution integral of Gaussians
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contributions to be separated. Through separation, the shells can be compared to data in

order to ascertain if the remaining correlated contribution produced a precise representation

of the system’s FSI.



Chapter 2

Jefferson Lab Experimental Hall A

The JLab experiment E12-14-012 was approved by the Jefferson Lab PAC in 2014 and

data was taken in Spring 2017. In the past few years, a series of measurements have been

completed: the inclusive, (e, e′ ) [25, 26, 27], and exclusive (e, e′p) [24, 28] electron scattering

cross sections on several targets, including a natural gas argon target [24, 28].

As stated in Ch. 1’s description of the nucleon knockout, we are searching for the missing

energy-momentum that describes our target. This means that all other participants in the

knockout process must be precisely measured. The apparatuses that perform the scattering

measurements are housed in Hall A at JLab. Figure 2.1 shows a broad overview of the Hall

A setup at JLab.

We begin with our incident particle, an electron beam of 2.2 GeV and ≈ 22 µA that is

provided by the Jefferson Lab Continuous Electron Beam Accelerator Facility (CEBAF).

Electrons are injected onsite and accelerated up to the desired energy level before being ex-

tracted and sent to the beam switch-yard, where they are perturbed into the “ARC” towards

Hall A and into the ensuing experiment. The knockout proton (from the target) and scat-

tered electron are detected in coincidence by two specialized high-resolution spectrometers

(HRSs), respectively designated Right and Left.

16
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Figure 2.1: Floor Plan of Hall A. Not to scale. Experiment utilized standard equipment.
Polarimeters and eP method not utilized during experiment run. Replicated from [29].

2.1 Experimental Measurements of beam energy and

momentum

Starting from the electron’s extraction, we begin with the first precise measurement of the

beam energy-momentum. The so called ‘arc method’ is a means to determine what is being

sent upstream to the experiment. For a greater description of the method, see [20] . To sum-

marize the method: as electrons, with some momentum, pass through magnetic fields they

will be influenced into following a circular arc. So we can reverse engineer the momentum1,

as given in Eq. 2.1, so long as we measure the magnetic field, the path length, and the arc

section/angle that the electrons were deflected by.

p = |e|
∫ l

0
B⃗ · d⃗l
θ

(2.1)

1The Energy can be related to the momentum with the ultra-relativistic approximation.
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Figure 2.2: ARC Method. Replicated from [20]

The arc is outfitted, chiefly, with 8 dipoles (a.k.a. dispersive mode2) all of equivalent mag-

netic strength and parallel faces that bend the electron beam towards Hall A. See Fig. 2.2

for reference.

The use of a 9th dipole in series [30] allows us to determine the magnetic field and path length

combined in Eq. 2.1’s numerator (the so-called field-integral). Eq. 2.1’s denominator is the

deviation angle, the nominal value of which is 34.3◦ set by the experiment. |e| in Eq. 2.1 is

the absolute value of the fundamental electron charge3.

On the electron’s path through the ARC, the nominal angle can be further verified through

measurement using the so-called Superharps. The Superharps are sets of wires that are

moved across the beam path and create a signal that is picked up by PhotoMultiplier Tubes

(PMTs). It should be noted that the Superharp angle measurement is rather invasive;

therefore, Superharps are primarily a diagnostic tool. In actual experiment runs, BPMs

(discussed later) are the primary tool to measure position and direction of the beam.
2The arc comes equipped with quadrupoles, which when turned on is known as achromatic mode. The

quadrupoles are meant to precisely align the beam, and so higher order corrections could be made, however
dispersive mode is primarily used for energy measurement checks- not achromatic (which is only alignmen-
t/focus).

3often in place of e will be a k, which is a mathematical artifact given by electron charge and energy
relations through the derivation, as in Ref. [20]. Using natural units, k is approximately .299 GeV T−1m−1

and indicates Eq. 2.1 is referring to energy rather than strictly momentum.
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Continuing into Hall A, the electron beam would pass through the first of two polarimeters.

However, the polarity of the electron beam is not significant to the experiment’s results. So

neither polarimeter is in use during the experiment’s run.

2.2 Determination of the Beam Intensity

Next in line to the target is the Beam Current Monitor (BCM) [31, 32, 33] , which reads

an incoming current, and therefore intensity. The intensity measurement is not only needed

for the kinematic picture, but is also utilized in describing beam effects such as the “boiling

effect” in strongly affected systems like our Argon Target. The beam heats up the gas

target and can create different density pockets inside the target, affecting the number of

interactions [34] . The BCM system consists of several redundant monitors that measure the

beam’s charge every second4 while accumulating the total charge for the run. The primary

non-invasive monitors are calibrated by an absolute reference whose output drifts over time.

So an invasive calibration5 needs to take place on the order of every 1-2 months. However,

low current (<50 µA) runs such as in this experiment can require an invasive calibration

on the order of once or twice a month. With the calibrations in place, an accuracy of 0.5%

can be achieved for currents ∈ [1,180] µA, although it has been previously shown that 0.2%

accuracy is possible [31].

2.3 Diffusing beam on target - Raster

Further downstream in Fig. 2.1 is the raster system which spreads the beam over the target

to avoid melting the target due to concentrated beam current densities. Rastering also lowers
4which can be interpreted as the average current over the same timescale
5about 1/2 hr long
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Figure 2.3: eP method [35]. Diagnostic tool to measure energy, not directly utilized for
experiment.

the boiling effects on the target. The raster area on our target was 2× 2 mm2.

2.4 eP method

Another invasive measurement is the eP method, see Fig. 2.3, that relies on the exclusive

H(e,e′p) scatter/knockout. The eP method is a diagnostic tool not utilized in the experiment

run, but worth describing as it gives a meaningful benchmark for Hall A’s energy readings,

and it follows a similar scheme as the experiment’s knockout HRS measurement. The incident

beam scatters off a reliable target with a high hydrogen concentration (to reduce noise from

the beam scattering off heavier nuclei6). The eP detector system involves a symmetric7

design of two so-called arms- consisting of proton and electron capture devices. The nature

of the kinematic reaction sets the proton scattering angle, and a single Silicon-Strip Detector

(SSD) is set to capture this angle. Two accompanying scintillators provide time of flight and

6CH2 is one such target
7With respect to the beam, along the vertical plane
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Figure 2.4: Beam Position Monitor (BPM). Left: Beam view. Right: Side View. [36]

triggering for the scattered proton8. The electron angle is more dependent on the incoming

energy, therefore seven SSDs are positioned so that at least one can capture the intended

angle. A Čerenkov counter and scintillator pairing are used for the electron triggering9.

With the electron and proton scatter angles measured, the beam energy can be determined,

see [30].

2.5 Beam Position Monitor (BPM)

As stated earlier, the BPMs provide relative measurements of position. There are two

identical BPMs upstream of the target [33], and one is portrayed in Fig. 2.4. A BPM consists

of four wires, bent to act as antennas parallel to the beam, measuring the beam’s current

through an induced current. The strength of the induced current in the wire is proportional

to the distance from the beam. So a beam position can be determined by constructing an

axial system with the information collected from the four wires. It should be noted here

that if any directional comparisons are to be made, Hall A utilizes four separate coordinate

systems portrayed in Fig. 2.5.

8The SSD and two scintillators will be symmetrically mirrored
9again, the Čerenkov counter and scintillator will be symmetrically mirrored
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Figure 2.5: Coordinate Systems (c.s.) at JLab. Side View. All c.s. have traditional z-axis
downstream. Both Accelerator and Hall A c.s. have the y-axis pointing upward towards
the vertical. The transport c.s. are antiquated terms referring to the now HRSs c.s. and
have their x-axis point downward along gravity. The Accelerator c.s. is left-handed and the
remaining three c.s. are right-handed. Replicated from [37].

2.6 Hall A Target system

Having covered all the equipment prior to the target, we now have precise measurements on

the incoming electron described in our kinematic prescription10. The quantified beam is now

incident on the target, or rather the whole target system (a.k.a. target ladder) designed for

this experiment. The target system is a series of targets, like rungs on a ladder, that can be

moved into the beamline as needed. See Fig. 2.6 for a sample image of a target configuration.

First and foremost are the titanium and argon targets. The isolated titanium target consists

of a foil with (mass) thickness of 0.73 g/cm2 and substitutes argon in determining neutron

knockout.

10Recall, energy of the beam was the first important factor to determine from our model.
With the beam position also known in a non-invasive manner, the knockout vertex can be defined further

down stream.
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Figure 2.6: Photograph sample of Hall A Target Ladder. From top to bottom: Target
Cooling system attached to the Al cell filled with Ar, a plate with the Al Dummy Blocks
attached underneath, the 9 C Optical Targets, and off-screen are the Ti and C foil targets.
Replicated from [34].

The argon target is a closed gas cell made of aluminum. The argon target is maintained

around 291 K, 3.45 MPa and 58.2 kg/m3, however as described earlier a boiling effect occurs

due to the beam depositing heat which has to be accounted for [34]. The aluminum cell is

a 25 cm long11 tube with an inner diameter of 12.7 mm and wall thickness of 0.4-0.5 mm.

The entrance/exit windows are capped with aluminum of thickness 0.25 mm.

Due to the aluminum housing being a source of background, electrons can in fact interact

in the aluminum of the target. For this reason, a dummy target is added to the system

to determine the number of interactions happening in the aluminum. This dummy target

consists of only two blocks of aluminum, separated by 25 cm and each with thickness of

0.889 g/cm2. This dummy target is then used to determine the background caused by the

argon’s aluminum housing, and as an added bonus can also be used to calculate the Al(e,e′)

cross section.

11along the beam
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An isolated carbon foil target with thickness 0.35 g/cm2 is also installed in the target ladder

system. Carbon data is readily available, so this carbon target is used to measure the

inclusive C(e,e′) cross section and verify the analysis procedure against existing data.

Finally, an “optical target” consisting of 9 carbon foils with thickness of 0.35 g/cm2 are

positioned at z = ±{0, 2, 5, 7.5, 10} cm. The optical target’s purpose is to align and

calibrate the spectrometer optics.

2.7 High Resolution Spectrometers - HRS

Upon reaching the target, the beam can pass completely through and proceed to the “Beam

Dump”. In the standard configuration, the Beam Dump is simply a series of aluminum

absorbers enclosed in concrete and cooled by a circulating water heat sink.

However, the primary collision of interest may take place and so the outgoing protons and

electrons are then detected by the HRSs. The Hall A HRSs can be rotated12 into position

for the expected outgoing angles. As the scattered electrons and knocked-out protons exit

the beamline, they proceed to their respective HRS.

Each HRS has a magnet configuration to bend charged particles toward their detectors. The

magnets consist of three quadrupole (Q) magnets and one dipole (D) magnet in the QQDQ

configuration shown in Fig. 2.7. The magnets produce a 45◦ bending angle while improving

resolution by focusing the particles [38] . See Table 2.1 for a list of HRS features.

Both HRSs are equipped with vertical drift chambers (VDCs) [39] to track the particles

through path reconstruction [33]. The position resolution in the focal plane is ≈ 100 µm and

the angular resolution is ≈ 0.5 mrad. Following the VDCs, in each HRS, are two scintillators

12pivoted about the target as the center
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Figure 2.7: HRS QQDQ and VDC orientation schematic. Dashed line is approximate beam-
line, entering from left and bending upward towards the 1st VDC Plane [33].

read by PMTs. The scintillator pairs allow for time of flight and particle speed measurements

while providing the detector with a trigger for reading. Between the scintillators is a gas

Cherenkov detector with accompanying mirrors and PMTs, whose design differed13 between

the HRS-L and HRS-R [33]. The Cherenkov detector is used as an electron detector and pion

rejector. The threshold for a pion to produce Cherenkov light is above the expected value of

a pion produced in this experiment. Whereas the threshold for an electron to produce light

is well within the experiment’s parameters. So a lack of light is a useful indicator that a pion

event has taken place and should be rejected. At the end of each HRS are two layers of lead

glass blocks [33]. The layers are designed as a pair to be a calorimeter and shower detector.

The calorimeter measures electron and proton energies through accompanying PMTs that

measure produced light. Pions are less likely to interact with the lead blocks; therefore, the

lead blocks, in conjunction with the Cherenkov detector, act as a pion rejector. Like the

Cherenkov detector, the calorimeters in each HRS are designed differently. This difference

amounts to a greater path length and resolution in HRS-R over HRS-L.

13primarily in path length
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Table 2.1: Hall A HRSs [33].

Configuration QQDnQ Vertical bend
Bending angle 45◦
Optical length 23.4 m
Momentum range 0.3 - 4.0 GeV/c
Momentum acceptance −4.5% < δp/p < +4.5%
Momentum resolution 2×10−4

Angular acceptance (Horizontal) ±30 mrad
Angular acceptance (Vertical) ±60 mrad
Angular resolution (Horizontal) 0.5 mrad
Angular resolution (Vertical) 1.0 mrad
Solid angle at δp/p = 0, y0 = 0 6 msr
Transverse length acceptance ±5 cm
Transverse position resolution 1 mm
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(e,e’p) on Ar - Data analysis overview

We have performed exclusive analysis for E12-14-021 Ti data. The titanium analysis has

been published in Physical Review D [40], and it is presented in Ch. 4 as it appears in the

publication. The exclusive analysis for E12-14-021 argon data was performed by L. Jiang,

et al. [24] and will be reviewed in this chapter separately. The two analyses follow the same

methodology [24, 28]; therefore, the argon data is used to present the framework that will

be utilized in the titanium analysis.

As described in Ch. 1, a test spectral function needs to be constructed to be able to generate

simulated data to compute efficiency and backgrounds.

The (e, e′p) events in our experimental setup were simulated using the JLab SIMC [46] pack-

age. Such simulation included detailed simulation of the target cell, radiation corrections,

and Coulomb effects1. SIMC needs a spectral function as an input to effectively weigh the

simulated events and generate distributions of the missing energy and momentum.

The test spectral function is the sum of two components, the mean-field (MF) and the

correlated (Corr.) parts: [24]:

P (pmiss, Emiss) = PMF (pmiss, Emiss) + Pcorr(pmiss, Emiss) (3.1)

1SIMC does not include FSI corrections other than nuclear transparency. Further details on including FSI
can be found in [28]. For now, we should expect expect the Monte Carlo simulations typically to overestimate
the data. A typical effect of FSI is a reduction of the cross-section.

27
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Figure 3.1: Simulated missing momentum distribution of the various proton shell in ar-
gon [24].

The MF component is a sum over the expected occupied states (α) in the independent-

particle shell model [24]:

PMF (pmiss, Emiss) =
∑
α

Sα|ϕα(pmiss)|2fα(Emiss), (3.2)

where Sα are the spectroscopic factors of each proton state α, ϕα(pmiss) is the momentum-

space wave function (unity normalized) of the state α, and fα(Emiss) represents the distri-

bution of missing energy, assumed to have the following Gaussian distribution:

fα(Emiss) =
1√
2πσα

e
−
(

Emiss−Eα√
2σα

)2
, (3.3)

Eα is the peak value and σα expresses the width of the Gaussian distribution. Table 4.1

summarizes the values for the missing energy distribution of the shell-model state α peaked

at Eα with a width of σα.

The correlated spectral function is approximated as a convolution integral involving a proton-
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Table 3.1: Details of the test spectral function parameters for protons in argon.

α Nα Sα Eα (MeV) σα (MeV)
1d3/2 2 1.6 12.53 2
2s1/2 2 1.6 12.93 2
1d5/2 6 4.8 18.23 4
1p1/2 2 1.6 28.0 6
1p3/2 4 3.2 33.0 6
1s1/2 2 1.6 52.0 10
corr. — 3.6 20.60 —

neutron (pn) pair:

Pcorr(pmiss, Emiss) =

∫
d3pA−2 δ (Emiss − Ecorr − TA−1)n

pn
cm

(∣∣∣pA−2|
∣∣∣)npn

rel

(∣∣∣pmiss +
pA−2

2

∣∣∣)
(3.4)

where ncm and nrel refer to the momentum distributions with respect to center of mass and

relative motion, Ecorr is set to the pn knockout threshold, and TA−1 is the energy of the

relative motion of the (A-2)+(correlated nucleon) system [24]. Pcorr accounts for 20% of the

total test spectral function strength. See Table 3.1 for the specific parameters.

Fig. 3.1 is the momentum distribution after including the correlation component computed

using the wave functions from Ref. [41]. The test spectral function used in our simulation

are presented in Fig. 3.2 as function of both the missing momentum and the missing energy.

The six-fold differential cross section in the MC can be determined from Eq. 1.11 and we

used as σep the CC1 parametrization from de Forest [42, 43].

We use a electron beam of energy 2.2 GeV, with two different beam currents: 15 µA for the

Ar target and 25 µA for the Ti target. We make use of both Hall A HRSs to detect the

electrons and protons in final state in time coincidence. The HRSs used configurations are

detailed in Table 3.2.

In addition to the gas Ar target and the solid Ti foil, the experiment used a set of other
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Figure 3.2: Strength of the test spectral function including (a) and excluding (b) the factor
of 4πp2m [24].

targets as detailed in Ch. 2.

We used data from all kinematics settings as in Table 3.2 where E ′
e is the final state electron

energy, θe is the electron scattering angle, and p′, Tp′ , and θp are respectively the momentum,

energy (kinetic), and angle of the scattered proton. pm and Em are the missing momentum

and energy as defined in Ch. 2, while q and Q2 are the momentum transfer and the squared

of the four-momentum transfer. To be noted that our experiment took data exclusively with

the vector q and P parallel to each other.

We used the VDC tracking information to measure the interaction vertex position, momen-

tum and direction of the outgoing electron and proton. We made use of an optical matrix

which was determined using data from the 9 carbon foils, to translate quantities between the

focal plane and the target system [25, 26, 27, 28]. We have included systematic uncertainties
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Table 3.2: Kinematics settings used to collect the data analyzed here.[24]

E ′
e θe Q2 |P | Tp′ θp′ |q| pm Em

(GeV) (deg) (GeV2/c2) (MeV/c) (MeV) (deg) (MeV/c) (MeV/c) (MeV)
kin1 1.777 21.5 0.549 915 372 −50.0 865 50 73
kin2 1.716 20.0 0.460 1030 455 −44.0 846 184 50
kin3 1.799 17.5 0.370 915 372 −47.0 741 174 50
kin4 1.799 15.5 0.291 915 372 −44.5 685 230 50
kin5 1.716 15.5 0.277 1030 455 −39.0 730 300 50

coming from both the optics and the magnetic field simulation for both the HRSs in our

exclusive analysis.

The HRSs scintillator planes were used for triggering together with the gas Čerenkov (GC)

detector, the pion rejector (PR), the pre-shower and the shower detector (PS) which were

used to further refine the event selection [28]. Our event selection required events coming

from the central region of the Ar target (±10 cm) in order to reduce background due to

electron interactions in the Al of the gas cell. This kind of background was found to be

negligible using our data and was also confirmed to be negligible by the tritium experiment

at Jefferson Lab [34].

The various HRS detector efficiencies were studied in details and can be found in Ref. [25,

26, 27, 28] and also in Table 3.3 for both the Ar and Ti targets. The overall experimental

efficiency was between 39.6% and 48.9% across all of our kinematics [28] and we used our

MC to compute acceptances and efficiencies corrections [44]. Furthermore, we applied a

correction for nuclear transparency [44, 45] and final state interactions (FSI) [28].

We extracted from the data the six-fold differential cross section as function of both pm and

Em using Eq. 1.12.

The reduced cross section, as in Eq. 1.11, was derived dividing out the kinematic factor K
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Table 3.3: Summary of the efficiency analysis for the argon data.

Ar target Ti target
a. Live time 98.0% 98.9%
b. Tracking 98.3% 98.3%
c. Trigger 92.3% 96.9%
d. Čerenkov cut 99.9% 96.6%
e. Calorimeter cut 97.8% 98.1%
f. β cut 95.6% 95.3%
g. Coincidence time cut 54.8% 55.5%

Table 3.4: Ar systematical uncertainties in %. For kin4 and kin5 the systematic is result of
the sum (in quadrature) of systematic on both the signal and the background.

kin1 kin2 kin3 kin4 kin5
1. Total statistical uncertainty 0.53 0.57 0.64 0.54 1.65
2. Total systematic uncertainty 3.14 3.24 3.32 10.23 9.01

a. Beam x&y offset 0.63 0.85 0.69 0.91 1.68
b. Beam energy 0.10 0.10 0.10 0.10 0.10
c. Beam charge 0.30 0.30 0.30 0.30 0.30
d. HRS x&y offset 0.83 1.17 0.78 1.44 1.71
e. Optics (q1, q2, q3) 0.94 0.77 0.55 0.90 1.72
f. Acceptance cut (θ, ϕ, z) 1.16 1.33 1.75 2.19 7.72
g. Target thickness/density/length 0.20 0.20 0.20 0.20 0.20
h. Calorimeter & Čerenkov cut 0.02 0.02 0.02 0.02 0.02
i. Radiative and Coulomb corr. 1.00 1.00 1.00 1.00 1.00
j. β cut 0.47 0.55 0.39 7.74 5.87
k. Boiling effect 0.70 0.70 0.70 0.70 0.70
l. Cross section model 1.00 1.00 1.00 1.00 1.00
m. Trigger and coincidence time cut 0.92 0.52 0.98 5.55 2.58
n. FSI 2.00 2.00 2.00 2.00 2.00

and the electron-proton off-shell cross section σep [42, 43].

We measure the background events using events selected in anti-coincidence between the two

HRSs [28].

Our total systematic uncertainty is evaluated assuming that all uncertainties are un-correlated. [24].

The uncertainties of the acceptance cuts were obtained varying individual cuts according

to their corresponding resolution. The uncertainties on the target position were obtained
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varying the target position in the MC. We also studies the effect of the optics on our event

selection, using various sets of the optical matrix obtained varying the dipole and quadrupole

magnetic fields of the HRS magnets. [24, 28].

We set our Em ranges as 0-30 MeV, 30-54 MeV, and 54-90 MeV. We integrated the missing

energy distribution for each of the ranges and performed the fit on the corresponding missing

momentum distribution to improve our sensitivity.

We performed a χ2 minimization using the missing energy and missing momentum distri-

butions as function of the spectroscopic factors, mean value and width of each of the 48Ti

orbitals.

We used 100 bins (1 MeV) for the missing energy and 40 bins for the missing momentum

with different range in momentum depending upon the kinematics. The reduced MC cross

section [44] and the ratio of the data to simulation yield was determined using:

d2σred
cc1

dΩdE ′ =
( d2σred

cc1

dΩdE ′

)
MC

× Y (E ′, θ)

YMC(E ′, θ)
. (3.5)

Y (E ′, θ) is the yield for a given bin in missing energy or missing momenta. The reduced

MC cross section is a parametrization obtained using existing data [46] and includes the

following:

1. the σcc1 cross section of de Forest [42],

2. the spectral function factorization,

3. the radiative corrections according to the model of Mo and Tsai [47],

4. the Coulomb corrections as in Ref. [48],

5. the FSI corrections
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Eq. 3.5 utilizes the ratio of the experimentally-detected and theoretically-simulated electron

yield defined as:

Y = L · σobs ·∆E ·∆Ω · A

YMC = L · σMC ·∆E ·∆Ω · AMC , (3.6)

where Y is one way to express the yield that was observed experimentally and YMC is a Monte

Carlo dependent yield base on simulation. In both cases, L is an integrated luminosity,

∆E represents the above mentioned energy bin, and ∆Ω represents the angle-proxy for

momentum bin. σMC is shorthand for the Monte Carlo dependent cross section and σobs is

the cross section that can be derived directly from data. A and AMC are respectively the

data and MC acceptances, or probabilities that a particle generated in the target can pass

through the spectrometer and be measured in the HRSs. A core assumption of the ratio

method is that One underline assumption of the method used here, called ratio method, is

that the MC reproduces quite accurately the data. A consequence of the ratio method is

that it is heavily reliant on simulation and can potentially bias the analysis. However, it has

been shown that the ratio method produces a cross section that is in good agreement with

a less simulation-reliant method [26], namely the acceptance correction method. Where the

acceptance is computed for the data and we do not rely so heavily on the MC simulation.

The next step will be to compare our data against the SF model used as input in the

SIMC simulation. As previously stated in Ch. 1, Eq. 1.11 can be factorized in term of

the elementary cross-section and the spectral function itself. And the spectral function can

further be parameterized following the prescription outlined in Ch. 3.

We can now take our reduced-observed cross section and compare it against the SF prediction

using a χ2 minimization procedure. For this purpose we use a ROOT [49] based fitting
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Table 3.5: Results of the χ2 minimization using the missing momentum distributions,
including and excluding the correlated spectral function. N here indicate the occupational
number.

w/ corr. w/o corr.
α Nα Sα

1d3/2 2 0.78± 0.05 0.78± 0.09
2s1/2 2 2.07± 0.07 2.10± 0.10
1d5/2 6 2.27± 0.04 2.27± 0.08
1p1/2 2 2.72± 1.23 2.72± 0.34
1p3/2 4 3.36± 0.04 3.53± 0.06
1s1/2 2 2.54± 0.04 2.65± 0.02
corr. 0 0.48± 0.01 excluded∑
α Sα 14.48± 1.24 14.05± 0.38

d.o.f. 1,132 1,133
χ2/d.o.f. 1.9 3.2

program called MINUIT [50].

The χ2 function is defined as:

χ2 =
∑
i

χ2
i =

∑
i

(
σred, obs
i −

∑
α Sαf

pred
α (i)

σσred, obs
i

)2

, (3.7)

where the index i labels the missing momentum bin, α is the orbital index, fpred
α (i) is the

parametrized prediction evaluated at bin i in the missing momentum spectra for orbital α,

Sα is the spectroscopic factor, σσare the uncertainties.

The missing momentum distribution, as in the case of the Ar, does not show dependence on

the mean energies and widths of the orbitals.

Table 3.5 provides a summary of the fit of the missing momentum distributions including

the degrees of freedom and the value of the χ2. The fit was repeated excluding the correlated

part of the SF to avoid possible bias.
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Table 3.6: χ2 minimization external constraints coming from Ref. [51, 52, 53, 54].

Parameter Value (MeV) Uncertainty (MeV)
E(1d3/2) 12.529 0.002
E(2s1/2) 12.925 0.002
E(1d5/2) 18.229 0.015

E(1p3/2)− E(1p1/2) 4.1 1.5

Table 3.7: Results of the χ2 minimization using the missing energy distributions using
different set of priors, with and without the correlated part of the SF.

all priors w/o pm w/o corr.
α Nα Sα

1d3/2 2 0.89± 0.11 1.42± 0.20 0.95± 0.11
2s1/2 2 1.72± 0.15 1.22± 0.12 1.80± 0.16
1d5/2 6 3.52± 0.26 3.83± 0.30 3.89± 0.30
1p1/2 2 1.53± 0.21 2.01± 0.22 1.83± 0.21
1p3/2 4 3.07± 0.05 2.23± 0.12 3.12± 0.05
1s1/2 2 2.51± 0.05 2.05± 0.23 2.52± 0.05
corr. 0 3.77± 0.28 3.85± 0.25 excluded∑
α Sα 17.02± 0.48 16.61± 0.57 14.12± 0.42

d.o.f 206 231 232
χ2/d.o.f. 1.9 1.4 2.0

We then repeat the fit minimizing the χ2 function using the missing energy spectra,

χ2 =
∑
i

χ2
i +

∑
n

(
τ fit
n − τ cn
σfit
n

)2

. (3.8)

where τ fit
n is a particular fit parameters and the τ c

n is the external constraint and the σfit
n is

the error on the fit parameters.

We include additional constraints (summarized in Table 3.6) in the form of penalty terms

to the χ2 function using data from Ref. [51, 52, 53, 54].

The spin-orbit splitting has been computed using the phenomenological prescription of
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Table 3.8: Results of the minimization of the χ2 over the missing energy distributions. Also
here we included or exclude the correlated part of the Sf from the fit.

Eα (MeV) σα (MeV)
α w/ priors w/o priors w/ priors w/o priors

1d3/2 12.53± 0.02 10.90± 0.12 1.9± 0.4 1.6± 0.4
2s1/2 12.92± 0.02 12.57± 0.38 3.8± 0.8 3.0± 1.8
1d5/2 18.23± 0.02 17.77± 0.80 9.2± 0.9 9.6± 1.3
1p1/2 28.8 ± 0.7 28.7 ± 0.7 12.1± 1.0 12.0± 3.6
1p3/2 33.0 ± 0.3 33.0 ± 0.3 9.3± 0.5 9.3± 0.5
1s1/2 53.4 ± 1.1 53.4 ± 1.0 28.3± 2.2 28.1± 2.3
corr. 24.1 ± 2.7 24.1 ± 1.7 — —

Ref. [53, 54], We had 20 parameters total in the χ2 minimization using the missing en-

ergy spectra. We used spectroscopic factor, the position of the maximum, and the width of

the distribution for each of the orbitals and the strength and the threshold energy for the

correlate part of the SF. The detailed results are shown in Table 3.7.

10 30 50 70

(MeV)mE

0

10

20

30

40

50

(1
/M

eV
)

 )
m

 S
(E

Figure 3.3: Example of the missing energy distributions for argon with pm range between
140 and 210 MeV/c. The blue band is the fit results with the complete uncertainties [24].
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Figure 3.4: Momentum distribution integrated over missing energy between 0 and 30 MeV.
Data is presented for all experimental kinematics [24].

As in our previous publications [24] we have evaluated the effects of different priors used

in the fit including orbital modeling and parametrization and we found that the results are

compatible within uncertainties.

Fig. 3.3 shows that the test spectral function model, rescaled using the parameters obtained

from the fit, listed in Table 4.5, is capable of reproducing our data satisfactorily.

Figure 3.4 reports the missing momentum distribution obtained after integrating the data

and the model over the missing energy range 30–54 MeV. It is apparent that the collected data

cover the relevant kinematic range with just a few exceptions, most notably at vanishing pm.

The experimental coverage is not complete due to experimental conditions and beam-time

limitations. In particular, data for kinematics 4 is statistically limited.

Fig. 3.4 shows a good agreement—within uncertainties—of the reduced cross sections using

data from kinematics 2 and 3. As observed in Ref. [24], this agreement supports, in Ti as in

Ar, the validity of the factorisation scheme used in computing the DWIA corrections.



Chapter 4

Determination of the titanium

spectral function from (e, e′p) data

The work described in this chapter was contributed by: L. Jiang, et al. (The Jefferson Lab

Hall A Collaboration). It has been published on Physical Review D as:

L. Jiang, et al. (The Jefferson Lab Hall A Collaboration), ”Determination of the titanium

spectral function from (e, e′p) data“ [40].

I have contributed part of the data analysis work in this paper under Professor Mariani’s

supervision. I worked mainly on the χ2 minimization procedure and parametrization of

the Spectral Functions in the fit. I have compared different fit results and evaluated how

different priors and constraints affected the final results, including the dependence of the

results from the correlated part of the Spectral Function.

Introduction: The recent measurement of the 40
18Ar(e, e′p) cross section—performed by the

E12-14-012 collaboration in Jefferson Lab Hall A—has enabled the first determination of

the spectral function describing the joint energy-momentum distribution of protons in the

target nucleus [24].

The JLab experiment, while also providing valuable new information on single-nucleon dy-

namics in complex nuclei, was primarily meant to obtain the input needed to improve the

interpretation of data collected by neutrino experiments using liquid argon detectors, thus

39
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reducing the systematic uncertainty of neutrino energy reconstruction.

In principle, the extension of the analysis based on nuclear spectral functions to both neutrino

and antineutrino interactions would require the availability of the neutron energy-momentum

distribution in argon, whose experimental study using electron beams involves challenging

issues.

The analysis of the data collected by a pioneering 4He(e, e′n) experiment, carried out at

NIKHEF in the 1990s [55], has clearly demonstrated that—in contrast to the case of the

(e, e′p) reaction—neutron knockout involves additional difficulties, associated with both the

detection of the outgoing neutron and a reliable identification of the reaction mechanism. A

comparison between the results of theoretical calculations and the measured cross section,

corresponding to momentum transfer q = 250 MeV/c and missing momentum in the range

25 < pmiss < 70 MeV/c, shows that in this kinematic regime charge-exchange processes—in

which the detected neutron is not produced at the elementary interaction vertex—provide

the dominant contribution, and must be carefully taken into account.

An alternative, admittedly rather crude, procedure to obtain information on the neutron

distribution in argon is based on the observation that the neutron spectrum of 40
18Ar is mir-

rored by the proton spectrum of the nucleus of titanium, having charge Z = 22. Based on

this property, which reflects the isospin symmetry of nuclear forces, it has been argued that

the proton spectral function obtained from Ti(e, e′p) data provides a viable proxy for the

neutron spectral function of argon [25]. The validity of this hypothesis is supported by the

results of Ref. [18], whose authors have employed the proton and neutron spectral functions

of argon obtained from a state-of-the-art theoretical model to carry out an accurate calcu-

lation of the double-differential 40
18Ar(νµ, µ−) cross section. The results obtained replacing

the neutron spectral function of argon with the proton spectral function of titanium turn

out to be in remarkably good agreement; in fact, they are nearly indistinguishable from one
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another.

In the following, we report the results of the analysis of the Ti(e, e′p) data collected in

Jefferson Lab Hall A by the E12-14-012 collaboration, and discuss the representation of the

reduced cross sections in terms of a model proton spectral function.

Experimental setup: Experiment E12-14-012 was approved by the Jefferson Lab PAC in

2014 and data was taken in the Spring 2017. In the past few years a series of measurements

have been completed: the inclusive, (e, e′) [25, 26, 27], and exclusive (e, e′p) [24, 28] electron

scattering cross sections on several targets, including a natural gas argon target [24, 28].

An electron beam of 2.2 GeV and ≈ 22 µA was provided by the Jefferson Lab Continu-

ous Electron Beam Accelerator Facility (CEBAF). The scattered protons and electrons were

detected in coincidence in two nearly identical high-resolution spectrometers (HRSs) both

consisting of a dipole and three quadrupole magnets. The electron and proton spectrometers

are both equipped with vertical drift chambers (VDCs) [39], scintillator planes (two) for tim-

ing measurements and triggering, and a double-layered lead-glass calorimeter. In addition,

the electron arm is equipped with a gas Čerenkov counter for particle identification and

pion rejectors, while the proton arm is equipped with pre-shower and shower detectors [33].

The experimental kinematics used during data taking on the natural titanium target were

identical for kinematic 2-4 to those used for the Ar target [24] and in the case of kinematic

1 the missing energy was set to 50 MeV.

We determine the six-fold differential cross section as a function of pm and Em following the

same method as described in Ref. [24]. The reduced cross section was obtained as a function

of pm and Em, from the double differential cross section using the elementary electron-proton

off-shell cross section σep of de Forest [42, 43]. The simulated momentum distributions are

presented in Fig. 4.1. The missing energy of the shell-model states is assumed to follow the
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Figure 4.1: Missing momentum distribution of protons in titanium in the test spectral func-
tion, presented with the geometric factor of 4πp2m.

Gaussian distribution as in Ref. [24], with the peak positions determined as described in

detail elsewhere [28].

The JLab SIMC spectrometer package [46] was used to simulate (e, e′p) events including an

approximate spectral function for Ti, geometric details of the target, radiative corrections,

and Coulomb effects.

The correlated spectral function is estimated within the approach of Ref. [56], as a convolu-

tion integral involving the momentum distributions of the relative and center-of-mass motion

of a correlated proton-neutron pair [24]. By construction, the correlated part accounts for

20% of the total strength of the test spectral function, see Table 4.1. Compared with the

correlated spectral function of argon, the one for titanium differs due to different mass num-

ber A, and the employed value of the pn knockout threshold. These differences translate

into a higher absolute number of correlated pn pairs in titanium than in argon, and slightly

different energy of the residual system. On the other hand, the parameters of the relative

motion of the pn pairs and their center-of-mass motion are assumed not to differ between

argon and titanium.
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Table 4.1: Parametrization of the test spectral function of protons in titanium. The missing
energy distribution of a shell-model state α peaked at Eα has width σα, and is normalized
to the spectroscopic factor Sα. For comparison, we also show the occupation number in
the independent particle shell-model Nα. For the correlated part, we provide the total
normalization and the threshold for two-nucleon knockout Ethr.

α Nα Sα Eα (MeV) σα (MeV)
1f7/2 2 1.6 11.45 2
1d3/2 4 3.2 12.21 2
2s1/2 2 1.6 12.84 2
1d5/2 6 4.8 15.46 4
1p1/2 2 1.6 35.0 6
1p3/2 4 3.2 40.0 6
1s1/2 2 1.6 62.0 10
corr. — 4.4 22.09 —

Figure 4.2 displays the test spectral function as a function of missing momentum and missing

energy.

We observe an energy resolution for the Ti states comparable to the one of the Ar target, this

is due mainly to the FSI corrections in our MC simulation that contribute to a broadening

of the states.

Data Analysis: The total systematic uncertainty in this analysis is the sum in quadrature

of the individual uncertainties as listed in Table 4.2. We followed the same procedure as

described in Ref. [24]: kinematic and acceptance cuts are considered uncorrelated bin to bin

and they do not depend on the theoretical input model. All the kinematic and acceptance

cuts were varied according to the variable’s resolution. The simulation did not contain a

correction for final state interaction (FSI) effects other than the transparency corrections.

We repeated the analysis of systematic uncertainties varying all MC input parameters, and

the effect on the analysis was found to be negligible. To determine the uncertainties related

to the target position, we varied the simulation’s inputs within uncertainties, and we used a
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Figure 4.2: Test spectral function shown (a) with and (b) without the geometric factor of
4πp2m. Note that multiplicative factors are used for clearer presentation of some regions.

Table 4.2: Contributions to systematic uncertainties for titanium averaged over all the Em

and pm bins for each kinematics. All numbers are in %. For kin4, the results correspond to
the systematic uncertainties of the signal and the background added in quadrature.

kin1 kin2 kin3 kin4
1. Total statistical uncertainty 0.78 0.60 0.82 1.24
2. Total systematic uncertainty 4.63 4.92 4.70 6.04

a. Beam x&y and HRS offset 0.75 1.71 1.19 1.47
b. Optics (q1, q2, q3) 0.48 0.77 0.55 0.90
c. Acceptance cut (θ, ϕ, z) 1.36 1.46 1.32 1.57
d. Target thickness/density/length 0.20 0.20 0.20 0.20
e. Calorimeter & Čerenkov & β cuts 0.29 0.58 0.42 2.83
f. Radiative and Coulomb corr. 1.00 1.00 1.00 1.00
g. Cross section model and FSI 4.12 2.23 2.23 2.23
h. Trigger and coincidence time cut 0.78 0.33 0.58 2.32
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different optical transport matrix obtained using independent variation of each of the three

quadrupole magnetic fields. For each of this variation we computed the effect with respect

to a run where no variations were used and the differences were summed in quadrature. The

total systematic uncertainty is then computed using the same assumptions and recipe as

described in Ref. [24, 28].

We set our Em ranges, 0 to 30 MeV, 30 to 54 MeV, and 54 to 90 MeV. We then integrated the

missing energy distribution for each of the ranges and performed the fit on the corresponding

missing momentum distribution to improve our sensitivity.

We fit the experimental missing energy and missing momentum distributions to extract

spectroscopic factors, mean value and width of each of the 48Ti orbitals.

For each bin in the spectra of missing energy (100 × 1 MeV) and missing momentum (40

bins with different range in momentum depending upon the kinematics), we computed the

reduced MC cross section [44] and the ratio of the data to simulation yield, and we combined

them as the following:
d2σred

cc1

dΩdE ′ =
( d2σred

cc1

dΩdE ′

)
MC

× Y (E ′, θ)

YMC(E ′, θ)
, (4.1)

where the Y (E ′, θ) is the yield for a given bin and the reduced MC cross section is a fit to

the existing data [46]. The reduced cross section includes (i) the σcc1 cross section of de For-

est [42], (ii) the predictions of the spectral function model, (iii) radiative corrections [47],

(iv) Coulomb corrections [48], and (v) FSI corrections, described within the distorted-wave

impulse approximation (DWIA) scheme.

The fit performs a χ2 minimization using the MINUIT [50] package available in ROOT [49].

The χ2 function is defined as:



46 CHAPTER 4. DETERMINATION OF THE TITANIUM SPECTRAL FUNCTION FROM (e, e′p) DATA

χ2 =
∑
i

χ2
i =

∑
i

(
σred, obs
i −

∑
α Sαf

pred
α (i)

σσred, obs
i

)2

, (4.2)

where the index i labels the missing momentum bin, α is the orbital index, fpred
α (i) is the

parametrized prediction evaluated at bin i in the missing momentum spectra for orbital α,

Sα is the spectroscopic factor. The missing momentum distribution, as in the case of the

Ar [24] does not show dependence on the mean energies and widths of the orbitals.

Table 4.3 provides a summary of the fit of the missing momentum distributions including

the degrees of freedom and the value of the χ2. The fit was repeated excluding the correlated

part of the SF to avoid possible bias.

The spectroscopic factors reported in Tables 4.3 and 4.5 are normalized to 80% × 22 for

the total strength of the orbitals and to 20% × 22 for the correlated part and they include

corrections due to phase space coverage.

We then repeat the fit minimizing the χ2 function using the missing energy spectra,

χ2 =
∑
i

χ2
i +

∑
n

(
τ fit
n − τ cn
σfit
n

)2

. (4.3)

We include additional constraints (summarized in Tab. 4.4) in the form of penalty terms to

the χ2 function using data from Ref. [51, 52, 53, 54].

The spin-orbit splitting has been computed using the phenomenological prescription of

Ref. [53, 54], E(n, l, l − 1/2) − E(n, l, l + 1/2) = 2l+1
2n

kA−C , with angular momentum l,

main quantum number n, and mass number A. The empirically determined constants

k = 23.27 MeV and C = 0.583 [53] are included in the fit as penalty function to the

χ2. The uncertainty value has been calculated comparing the prediction of the phenomeno-

logical prescription to the available experimental data from NIKHEF-K [57, 58, 59]. The fit
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Table 4.3: Comparison of the results of the χ2 minimization using the missing momentum
distributions, determined with and without the use of the correlated spectral function. For
every state α, we determined the spectroscopic factor Sα, and its occupation number in
an independent-particle shell model, Nα. We include the total spectroscopic strength, the
number of degrees of freedom (d.o.f.), and the χ2 per d.o.f.

w/ corr. w/o corr.
α Nα Sα

1f7/2 2 0.83± 1.17 0.78± 1.35
1d3/2 4 1.17± 0.22 1.34± 0.10
2s1/2 2 2.02± 0.08 2.18± 0.08
1d5/2 6 2.34± 1.34 2.34± 3.72
1p1/2 2 2.46± 0.27 2.71± 1.19
1p3/2 4 5.46± 1.69 5.46± 0.05
1s1/2 2 2.17± 0.09 2.51± 0.08
corr. 0 5.15± 0.41 excluded∑
α Sα 21.60± 2.51 17.32± 4.20

d.o.f. 675 676
χ2/d.o.f. 0.49 0.57

on the missing energy spectra contains 23 parameters: 3 parameters for each orbital (the

spectroscopic factor, the position of the maximum, and the width of the distribution) and 2

parameters for the correlated SF (the strength and the threshold energy).

We present our results in Table 4.5. We repeated the fit excluding the results coming from

the pm minimization and without the correlated SF part. All the results are compatible

within errors, which indicates no large bias in the determination of the spectroscopic factors

using a different set of constraints.

As in our previous publications [24] we have evaluated the effects of different priors used

in the fit including orbital modeling and parametrization and we found that the results are

compatible within uncertainties.

Fig. 4.3 shows that the test spectral function model, rescaled using the parameters obtained

from the fit, listed in Table 4.5, is capable of reproducing our data satisfactorily.
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Table 4.4: External constraints on the fits to the missing-energy spectra computed using
data from past measurements [51, 52, 53, 54]. For the clarity of presentation, we denote Eα

as E(α).

Parameter Value (MeV) Uncertainty (MeV)
E(1f7/2) 11.32 0.10
E(1d3/2) 12.30 0.24
E(2s1/2) 12.77 0.25
E(1d5/2) 15.86 0.20

E(1d5/2)− E(1d3/2) 3.57 0.31
E(1p3/2)− E(1p1/2) 6.36 0.75
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Figure 4.3: Missing energy distributions obtained for natural titanium for 130 < pm <
260 MeV/c. The red band indicates the final fit results including the full error uncertainties.

Figure 4.4 reports the missing momentum distribution obtained after integrating the data

and the model over the missing energy range 10–30 MeV.

It is apparent that the collected data cover the relevant kinematic range with just a few

exceptions, most notably at vanishing pm. The experimental coverage is not complete due

to experimental conditions and beam-time limitations. In particular, data for kinematics 4

is statistically limited.
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Table 4.5: Results of the χ2 minimization using the missing energy distributions for different
cases. We repeated the fit with different priors, and not including the correlated part of the
SF. For every state α, we extract spectroscopic factor Sα, occupational number Nα assuming
independent particle model and total spectroscopic strength. We reported at the end also
the number of degrees of freedom (d.o.f.), and the χ2 per d.o.f.

all priors w/o pm w/o corr.
α Nα Sα

1f7/2 2 1.53± 0.25 1.55± 0.28 1.24± 0.22
1d3/2 4 2.79± 0.37 3.15± 0.54 3.21± 0.37
2s1/2 2 2.00± 0.11 1.78± 0.46 2.03± 0.11
1d5/2 6 2.25± 0.16 2.34± 0.19 3.57± 0.29
1p1/2 2 2.00± 0.20 1.80± 0.27 2.09± 0.19
1p3/2 4 2.90± 0.20 2.92± 0.20 4.07± 0.15
1s1/2 2 2.14± 0.10 2.56± 0.30 2.14± 0.11
corr. 0 4.71± 0.31 4.21± 0.46 excluded∑
α Sα 20.32± 0.65 20.30± 1.03 18.33± 0.59

d.o.f 121 153 125
χ2/d.o.f. 0.95 0.71 1.23

Table 4.6: Measured peak positions Eα, widths σα, and the parameter Ecorr of the corre-
lated spectral function obtained from the fit of the missing energy distributions. Results
are obtained including and excluding the results from the previous fit performed using the
missing momentum.

Eα (MeV) σα (MeV)
α w/ priors w/o priors w/ priors w/o priors

1f7/2 11.32± 0.10 11.31± 0.10 8.00± 5.57 8.00± 6.50
1d3/2 12.30± 0.24 12.33± 0.24 7.00± 0.61 7.00± 3.84
2s1/2 12.77± 0.25 12.76± 0.25 7.00± 3.76 7.00± 3.84
1d5/2 15.86± 0.20 15.91± 0.22 2.17± 0.27 2.23± 0.29
1p1/2 33.33± 0.60 33.15± 0.65 3.17± 0.45 3.03± 0.48
1p3/2 39.69± 0.62 39.43± 0.68 5.52± 0.70 5.59± 0.70
1s1/2 53.84± 1.86 52.00± 3.13 11.63± 1.90 13.63± 2.59
corr. 25.20± 0.02 25.00± 0.29 — —
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Figure 4.4: Partial momentum distribution obtained by integrating the test spectral function
over the missing energy range of 10–30 MeV presented with the geometric factor of 4πp2m.
Different data regions represent data from different kinematics.

Fig. 4.4 shows a good agreement—within uncertainties—of the reduced cross sections using

data from kinematics 2 and 3. As observed in Ref. [24], this agreement supports, in Ti as in

Ar, the validity of the factorisation scheme used in computing the DWIA corrections.

Summary and conclusions: The Ti(e, e′p) data collected by experiment E12-14-012 at Jef-

ferson Lab have been analysed to extract the proton spectral function in Ti. The spectral

function, an innate property of the nucleus, provides the energy and momentum distribution

of protons bound in the titanium ground state. Our spectral function derivation depends

only from the model used to compute FSI corrections. The FSI uncertainties have been

evaluated in the same way as in Ref. [24, 28] and have been included in our measurements.

The results of our study of titanium provide important new and much needed information,

and it will play a critical to further develop theoretical models capable of describing neutrino-

nucleus interactions in liquid argon detectors like DUNE.

The results of the pioneering work of Barbieri et al. [18] that uses one of our previous
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results [25, 26, 27] demonstrate the importance of the availability of electron scattering data

in Ar and Ti. The work in Ref. [18] showed that a replacement of the neutron SF of argon

with the proton SF of 48
22Ti in the calculation of the 40

18Ar(νµ, µ−) cross section at beam energy

Eν = 1 GeV has a few-percent effect. It has to be kept in mind, however, that the inclusive

cross section, which only involves integrals of the SFs, is rather insensitive to the details of

the missing energy distributions. Therefore, the findings of Barbieri et al., while being very

encouraging, cannot be taken as clear-cut evidence of the validity of the assumption that the

proton SF of natural titanium can be used as a proxy for the neutron SF of Ar, as suggested

by isospin symmetry. More work will be necessary to put this hypothesis on a firm basis.

Here we only note that our estimate of the top four energy levels of neutrons in 40
18Ar suggests

that they agree to 0.6–2.2 MeV with those of protons in 48
22Ti listed in Tab. 4.1.

The reduced differential cross sections has been fitted using a model spectral function. The

effects of FSI, which are known to be significant in (e, e′p) reactions, have been included

using the same factorization scheme which underlines our analysis and, as for the case of

Ar [24], seems to be reliable.

The comparison between data and MC simulation results has been shown in a broad range

of missing energies, extending from the proton-knockout threshold to Em ∼ 80 MeV. The

overall agreement supports the validity of the theoretical basis of our analysis.

We have determined the position and width of the peaks corresponding to shell model states,

and estimated the corresponding spectroscopic strengths.

A more accurate determination of the titanium spectral function will require a more ad-

vanced theoretical model of the energy and momentum distributions, as well as a refined

implementation of the DWIA.

The extraction of the spectral function reported in this article—providing a satisfactory de-
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scription of the proton energy and momentum distribution—should be seen as the achieve-

ment of the goals of the JLab experiment E12-14-012, and a step toward a more accurate

description of (anti)neutrino interactions in argon.

The understanding of the proton and neutron spectral functions for argon will greatly im-

prove the accuracy of neutrino and antineutrino energy reconstruction in measurements of

neutrino oscillations, such as those in the short-baseline program of Fermilab and in the

long-baseline studies in the Deep Underground Neutrino Experiment.

As a final remark it should be pointed out that, up to FSI corrections, the factorisation

ansatz—whose validity is clearly demonstrated by the observation of y-scaling [60]—provides

the basis for the extraction of the spectral function from (e, e′p) data. The spectral function

can be employed to describe initial state physics in any processes in which the beam particle

couples to a single nucleon, including quasi elastic scattering, resonance production and

deep inelastic scattering [61]. In correlated systems, these processes lead to the appearance

of both 1p1h and 2p2h final states. On the other hand, the description of 2p2h final states

originating from coupling to the two-nucleon meson-exchange currents requires an extension

of the factorisation scheme, and the use of two-nucleon spectral functions, as discussed in

Ref. [62].



Chapter 5

Concluding Remarks

The purpose of this thesis was to analyze the data collected in 2017 by the JLab Experiment

E12-14-012. The published paper [40], reported in Ch. 4 highlights years of work done by the

Hall A Collaboration leading to the fulfillment of E12-014-12’s goal: produce the first data

set of its kind - a description of the proton and neutron energy-momentum distributions in

Argon [1].

The experiment was motivated by the needs of precision modeling of neutrino-nucleus in-

teractions as explained in Ch. 1, where furthermore we explain why this investigation of

nuclear theory is critical in particular to ensure the success of the DUNE [4] experiment.

The (e,e′p) reactions were used to determine the spectral function of proton and neutron in

argon. In Ch. 2 the layout of JLab’s Hall A and the experimental detectors and conditions

were detailed to describe the journey that the electrons and protons took. How such data

comes together by requiring a vast array of measurements built on the backs of decades

of trusted scientific principles. Ch. 3 introduces the underlying process that is required to

perform the analysis by looking at the measurements of Ar(e,e′p). Namely it is necessary

to understand the theory in order to model/build an adequate simulation and to extract

meaningful data. These two necessary items come together in statistical χ2 analysis to in-

form us if our understanding of nuclear theory has merit. As with any model or assertion

though, this is not to say that anything is proven. It is simply a step towards refining our

understanding of Ti and Ar through rigorous testing. Future studies are now needed, as the

53
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data passes onto the next wave of scientists, who will continue working, refining and testing

models. For example, future nuclear theorists can look back on E12-14-012 as a necessary

step to probing the assumptions that led to uniting Ti and Ar data and if the scheme can be

extended into more complicated final states. Future neutrino experimentalists can take these

precise measurements as an appropriate refinement in the understanding of a major target

medium and further test the models discussed here with increasing scrutiny and required

precision when reconstructing a notoriously difficult particle.
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