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Abstract. Training data-driven turbulence models with high fidelity Reynolds stress can be
impractical and recently such models have been trained with velocity and pressure mea-
surements. For gradient-based optimization, such as training deep learning models, this re-
quires evaluating the sensitivities of the RANS equations. This paper explores the use of an
ensemble approximation of the sensitivities of the RANS equations in training data-driven
turbulence models with indirect observations. A deep neural network representing the tur-
bulence model is trained using the network’s gradients obtained by backpropagation and
the ensemble approximation of the RANS sensitivities. Different ensemble approximations
are explored and a method based on explicit projection onto the sample space is presented.
As validation, the gradient approximations from the different methods are compared to that
from the continuous adjoint equations. The ensemble approximation is then used to learn
different turbulence models from velocity observations. In all cases, the learned model pre-
dicts improved velocities. However, it was observed that once the sensitivity of the velocity
to the underlying model becomes small, the approximate nature of the ensemble gradient
hinders further optimization of the underlying model. The benefits and limitations of the
ensemble gradient approximation are discussed, in particular as compared to the adjoint
equations.
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1 Introduction

The Navier–Stokes equations fully describe the instantaneous velocity and pressure fields
in fluid flows. However the resolution required to capture the range of turbulence scales
makes solving the Navier-Stokes equations computationally inaccessible for flows with high
Reynolds number or complex geometries. Instead, the Reynolds-averaged Navier–Stokes equa-
tions (RANS) are widely used in practice thanks to the relatively inexpensive computation re-
quired for their solution. The RANS equations are a set of coupled partial differential equations
(PDE) that describe the mean velocity (u) and mean pressure (p) fields. However, the RANS
equations contain the unclosed Reynolds stress tensor τ which captures the effects of turbu-
lence on the mean flow and requires modeling. The incompressible steady RANS equations
are

u·∇u−ν∇2u+∇·τ+∇p−s=0,
∇·u=0,

(1.1)
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where s are the external body forces. Compactly, this can be written asM(u,p;τ)= 0 where
the Reynolds stress τ requires turbulence modeling.

Although widely used, RANS predictions are known to be inaccurate due to the lack of
an accurate general turbulence model. In particular, the widely used linear eddy viscosity
models (LEVM) are known to be inaccurate even in simple flows of practical interest, includ-
ing the inability to predict secondary flows in non-circular ducts [1]. Eddy viscosity models
are single-point closures that represent the Reynolds stress as a local function of the velocity
gradient. Non-linear eddy viscosity models (NLEVM) can capture more complex non-linear
relations between the velocity gradient and the Reynolds stress, but existing NLEVM have
not resulted in consistent improvement over LEVM. This has led to an interest in developing
data-driven turbulence models [2]. Particularly, data-driven NLEVM [3] have recently gained
much attention.

Data-driven NLEVM have been typically trained with full field Reynolds stress data from
high fidelity simulations. It has been recently recognized, however, that the use of high fidelity
Reynolds stress data for training can be impractical, which has led to the use of measurements
derived from the velocity and pressure fields as training data [4, 5]. This allows for the use of
more complex flows for which solutions of the Navier–Stokes equations are not feasible but
for which experimental data is available. Training the model using such data has the added
complexity of requiring solving the RANS equations at each training step and, for gradient-
based optimization, obtaining the gradient of the RANS equations. In this work we explore
the use of ensemble-based derivative approximations as an alternative to adjoint models for
gradient-based training of data-driven turbulence models from indirect observations.

1.1 Data-driven eddy viscosity models trained with indirect observations

The representation of the turbulence model and the training framework in this work are the
same as in [4] except for the use of the ensemble gradient in place of the adjoint. This frame-
work is summarized here.

The Reynolds stress can be separated into isotropic and anisotropic components as

τ=2kb−2k
1
3

I, (1.2)

where b is the normalized anisotropic (deviatoric) component of the Reynolds stress, k is the
turbulent kinetic energy, and I is the second rank identity tensor. An eddy viscosity turbulence
model is an invariant mapping from the mean flow velocity gradient to the Reynolds stress
tensor,∇u 7→τ. Any such mapping can be expressed using the integrity basis representation [6]
as

b=
10

∑
i=1

g(i)T(i),

g(i)= g(i)(θ1,. . .,θ5),

(1.3)

T(i) are the tensor functions in the integrity basis, g(i) are the scalar coefficient functions, and θj
are the scalar invariants of the input velocity gradient tensor. The full list of basis tensors and
input invariants are presented in [6] and the linear and quadratic terms used here are

T(1)=S, T(2)=SR−RS,

T(3)=S2− 1
3
{

S2} I, T(4)=R2− 1
3

{
R2} I,

(1.4)

and
θ1=

{
S2}, θ2=

{
R2}, (1.5)
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Figure 1: Schematic of the training framework adapted from [4]. For any value of the net-
work’s parameters, w, the gradient of the objective function, J, can be obtained by combining
the gradients from backpropagation of the neural network and the gradient of the PDEs (e.g.
RANS). The PDE gradients (highlighted in red/dark grey) are obtained here by using ensem-
ble approximations, which is in contrast to that in [4] where it is obtained by solving the RANS
adjoint equations.

where S and R are the non-dimensionalized symmetric and antisymmetric components of the
velocity gradient tensor. Equations (1.2)–(1.5) together with transport equations for the turbu-
lent kinetic energy k and at least one more turbulent scale—to obtain the turbulence time scale
for non-dimensionalizing the velocity gradient—constitute a complete eddy visocity model.
Data-driven eddy viscosity models retain the turbulent scales transport equations from a tra-
ditional model but learn the closure form, i.e. the functions g(i)(θ1,. . .,θ5), from data. Here, a
deep neural network is used to represent this mapping, θ 7→ g.

Training the neural network with indirect observations, i.e. with velocity and pressure
quantities rather than with Reynolds stress, requires derivative information for both the neural
network and the RANS equations. The overall training framework is summarized in Figure 1.
The gradient of the neural network outputs with respect to its trainable parameters are ob-
tained using backpropagation, an efficient reverse mode automatic differentiation algorithm
for deep neural networks. The cost function J compares the predicted and measured quanti-
ties and requires solving the RANS equations. The gradient of the cost function with respect
to the trainable parameters w is given by the chain rule as

∂J
∂w

=
∂J
∂τ

∂τ

∂w
. (1.6)

Here the sensitivity of cost function to the Reynolds stress ∂J/∂τ is obtained via an ensemble
approximation rather than by solving the adjoint equations as in [4].

1.2 Differentiation of physical models

Training data-driven models with indirect observations poses a challenge to computing the
gradient of the cost function as this now requires obtaining the sensitivities of the RANS equa-
tions. Three options are (i) using gradient-free optimization to avoid the gradient calculation,
(ii) solving the adjoint equations to obtain the exact gradient, or (iii) approximating the gradi-
ent from multiple evaluations of the RANS model.
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Gradient-free optimization Gradient-free optimization updates an ensemble of states based
on a heuristic other than gradient-descent, such as natural selection in genetic algorithms.
Zhao et al. [5] used gene expression programming to train a model in a gradient-free manner.
Although this can be an effective approach, using the gradient information is more efficient
and should be used if available [7]. In particular, the recent success of deep learning meth-
ods [8] is in large part do to the use of novel gradient-based optimization methods.

Adjoint equations Solving the adjoint equations is an efficient method for obtaining the ex-
act derivative information [9–11]. Both the continuous adjoint [4] and the discrete adjoint [12]
have been used to obtain the sensitivities of the RANS equations and train a deep neural net-
works using gradient-based optimization. The adjoint equations, however, can suffer from
known instabilities making it difficult to converge [13]. More importantly, the adjoint method
is intrusive requiring significant effort, e.g. to derive continuous adjoint equations for a new
problem or to implement the discrete adjoint on existing large codes via automatic differentia-
tion tools.

Numerical approximations In this work we explore the use of approximate derivatives us-
ing ensemble methods in place of the exact derivatives from the continuous or discrete adjoint.
Like the gradient-free approach this requires multiple evaluations of the RANS equations and
treats the model as a black box but like the adjoint methods it provides a gradient that can be
used in gradient-based optimization. Different types of numerical approximations of model
derivatives have been devised, including the finite difference [14], simplex gradient [15], simul-
taneous perturbation stochastic approximation (SPSA) [16], and ensemble-based optimization
(EnOpt) [17]. These methods differ on the number and selection of samples and how these are
used to estimate the gradient. Specifically, finite difference uses the same number of samples,
N, as dimensions, D, and perturbs one orthogonal direction at a time with a fixed perturbation.
The simplex gradient method uses a set of N=D+1 samples that are affinely independent and
estimates the gradient information based on the relationship between the samples and the cen-
troid. Simultaneous perturbation stochastic approximation uses N=2 samples by simultane-
ously perturbing all model parameters to estimate the gradient. Further, a modified SPSA [18]
or stochastic Gaussian search direction (SGSD) method draws multiple (N<D) samples from
a Gaussian distribution and uses the expectation of estimated gradient as the downhill direc-
tion. The ensemble gradient method used here also uses N<D random samples from a Gaus-
sian process and has the benefit of significantly reducing the number of model evaluations as
compared to finite difference or simplex gradient. The ensemble gradient is more robust and
efficient for finding the steepest direction than other approximate gradient methods and can
provide conditioned realizations based on random maximum likelihood [18]. The connections
between the ensemble-based optimization and other methods is discussed in [19], where it is
shown that the ensemble-based optimization is equivalent to a preconditioned simplex gra-
dient and to the second-order SPSA with Gaussian sampling. The ensemble-based gradient
is also employed implicitly in ensemble-based data assimilation techniques such as ensemble
Kalman filtering [20] and ensemble maximum randomized likelihood method [21]. Ensemble-
based data assimilation performs an implicit optimization, but it essentially uses an explicit
approximate stochastic gradient based on the ensemble realizations [19, 22].

1.3 Contribution of present work

In this work we demonstrate the use of the ensemble gradient approximation to train a data-
driven turbulence model represented by a deep neural network. Specifically, we combine the
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ensemble approximations of the RANS sensibilities with the gradients of the neural network
to obtain a fully differentiable training framework. While we use it for turbulence modeling
we point out that this differentiable deep neural netowrk plus PDEs framework could be used
for differentiable learning of any physical model (represented by the neural network) from
indirect observations, i.e. observations requiring the solutions of additional models (PDEs).
The ensemble gradient represents a non-intrusive method for obtaining gradients that can
treat the PDEs as a black box model. Additionally the ensemble gradient can be robust to
non-differentiable or noisy problems as long as there is a well behaved larger trend. This can
be important, for example, for the sensitivity of high fidelity turbulent flows whose chaotic
nature makes the adjoint method ineffective [23]. Here, we use both the EnOpt method [17]
and a method derived here which is based on explicit projection onto the samples. The new
method performs just as well but is based on a different heuristic.

The rest of the paper is organized as follows. Section 2 presents the different ensemble-
based methods, their interpretations, and specialization to the turbulence modeling problem.
Section 3 presents the results, including a comparison of the computed gradients between
different methods and the adjoint as well as two test cases of learning turbulence models from
velocity observations. Finally, Section 4 concludes the paper.

2 Ensemble Gradient

The ensemble gradient approximation is characterized by the use of N random samples, with
N less than the dimensions of the problem. The samples are chosen from a Gaussian process
with assumed covariance kernel. This section present different approaches for using ensemble
approximation for the gradient in the context of optimization. The direct implementation of
gradient descent with ensemble gradient is presented first and the reason why it fails is dis-
cussed. Next, the common approach of preconditioning the gradient descent with the state
covariance is presented. Lastly, the method used in this work, which is based on direct pro-
jection onto the subspace spanned by the samples, is presented. This section concludes with a
summary of the application of these different methods to the problem of training data-driven
NLEVM with indirect observations. Numerical comparison of these methods will be shown in
Section 3.1.

2.1 Direct ensemble gradient

The cost function to be minimized is the least squares discrepancy between the observations y
and predictions z, given as

J(x)=
1
2
‖z−y‖2

C−1
y

, (2.1)

z=H(x), (2.2)

where x is the state vector to be optimized, ‖·‖2
W indicates the L-2 norm weighted by the matrix

W, y is the vector of measurement data, and Cy is the measurement covariance matrix repre-
senting measurement uncertainties. For a given state x the model predictions z are the state
mapped to observation space by means of the non-linear observation operator H that maps
from state space to observation space. For gradient descent optimization the state is updated
as

xn+1=xn−αn∇J(xn), (2.3)
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where α controls the step size and can be a fixed scalar or determined by line search at each
step n. The gradient of the cost function in Equation 2.1 is

∇J(x)=(H′(x))>C−1
y (H(x)−y), (2.4)

where H′(x) is the sensitivity matrix of the vector H(x) with respect to the state x. The matrix
Cy and vector y are fixed while the vectorH(x) is obtained by solving the forward (e.g. RANS)
model. The sensitivity matrix H′(x) is estimated using an ensemble gradient approximation
as

H′(x)≈ [H(x(i))−H(x)][x(i)−x̄]+=∆z∆+
x , (2.5)

where for a quantity φ the matrix ∆φ = [φ(1)−φ̄,. . .,φ(N)−φ̄] consists of the mean-subtracted
samples, φ(i) indicates the ith sample, φ̄ is the ensemble mean, and the superscript + indicates
the pseudoinverse. However, the inverse problem described by Equation (2.1) is ill-posed in
that multiple states x can result in H(x)= y or at least H(x)≈ y up to high accuracy. This in-
herent ill-posedness can result in a cost function and sensitivity matrix with frequent, abrupt
changes for small changes in the state x. Even for well-posed problems the use of the pseudoin-
verse of the ensemble matrix can lead to noisy approximate gradients, as will be demonstrated
later. For this reason the direct ensemble gradient is not a suitable option for gradient descent
optimization or model learning as pursued in this work.

2.2 Preconditioning with state covariance

Pre-multiplying the gradient ∇J(x) by the state covariance Cx is a common method for pre-
conditioning of the gradient descent optimization, as

xn+1=xn−αnCx∇J(xn), (2.6)

referred to as EnOpt [17]. This correspond to steepest descent rather than gradient descent
on a discrete vector space with inner-product defined by the covariance Cx [24]. The use of
the state covariance as a preconditioner for the gradient descent is discussed in more detail in
Appendix B. The ensemble approximation of the state covariance is given as

Cx≈
1
N

∆x∆>x . (2.7)

The product of the state covariance and the forward model sensitivity, which arises when
substituting Equation (2.4) into Equation (2.6), can be approximated using the ensemble as

CxH′(x)≈
1
N

∆x∆>x (∆y∆+
x )
>

=
1
N

∆x∆>x (∆
>
x )

+∆>y

=
1
N

∆x∆>y

≈Cxz,

(2.8)

where Cxz is the cross-covariance between the state and model outputs. This formulation
avoids taking the pseudoinverse of an ensemble matrix, which in general can be ill-conditioned.
Empirical results show that while the ensemble gradient in Equation (2.5) is noisy, the ensem-
ble cross-covariance Cxy captures the correct qualitative correlations [25]. Finally, the update
scheme in Equation (2.6) becomes

xn+1=xn−αnCxzC
−1
y (H(xn)−y), (2.9)

6



where Cxz is approximated with the ensemble, based on Equation (2.8) as

Cxz≈
1
N

∆x∆>z . (2.10)

2.3 Projection to subspace

The method used here is based on explicit projection of the state onto the subspace spanned
by the samples in the ensemble, similar to the formulation in the ensemble-variational (EnVar)
data assimilation method [26]. The ill-posedness of the inverse problem in Equation (2.1) is
alleviated by means of dimensionality reduction and regularized projection. The state is ex-
pressed as x= x̄+∆xβ where ∆x is the matrix of mean subtracted samples and the vector β∈RN

is the new state with reduced dimensions. That is, a state x is expressed as the ensemble mean
plus a linear combination of mean-subtracted samples. The cost function in Equation (2.1) now
has gradient, with respect to the new state β, given as

∇β J(x(β))=∆>x (H′(x))>C−1
y (H(x(β))−y)

≈∆>x (∆z∆+
x )
>C−1

y (H(x(β))−y)
=∆>z C

−1
y (H(x(β))−y),

(2.11)

where the model discrepancies ∆z are obtained from the ensemble. While this gradient could
be used to optimize the new state β, for training the turbulence model the gradient of the cost
function with respect to the original state x is required. For this, we seek the gradient of the
new state β with respect to the original state x. For a state x, the new state β can be obtained by
projecting x−x̄ onto the mean-subtracted samples as

βi =

〈
x−x̄,∆(i)

x

〉
W〈

∆(i)
x ,∆(i)

x

〉
W

, (2.12)

or
β=(∆>x W∆x)

−1∆>x W(x−x̄), (2.13)

where W is the weight matrix in the definition of the vector inner product 〈·〉. E.g. if x is a
discretized field, W is the diagonal matrix containing cell volumes. The gradient is then

∇β(x)=(∆>x W∆x)
−1∆>x W. (2.14)

It is noted that the matrix ∆>x W∆x is not related to the state covariance Cx ≈ 1
N ∆x∆>x and is

often ill-conditioned as the samples are randomly drawn and not necessarily orthogonal. A
convenient approach to conditioning the problem is Tikhonov regularization which results in

β=(∆>x W∆x+λI)−1∆>x W(x−x̄) (2.15)

and consequently
∇β(x)=(∆>x W∆x+λI)−1∆>x W, (2.16)

where I is the identity matrix and λ is the Lagrange multiplier of the constraint which can
typically be very small. The details are presented in Appendix A.

The desired gradient can be obtained by using the chain rule to combine Equation (2.11)
and Equation (2.16) as

∇J(x)=
(
(∆>x W∆x+λI)−1∆>x W

)>(
∆>z C

−1
y (H(x)−y)

)
, (2.17)
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where ∆z and ∆x are both obtained from the ensemble. The ensemble of mean-subtracted
states ∆x could be fixed throughout the optimization, and only the ensemble of model outputs
∆z be updated using the fixed ∆x but updated mean x̄= xn. Here, however, we follow the
common practice in EnVar [27] and resample the ensemble state at each iteration. Similarly,
we use the true mean x̄=xn andH(x)=H(x̄) rather than the ensemble mean for the ensemble
discrepancies and denote these true means by ∆̃x and ∆̃H, respectively. Finally the gradient is
given by

∇J(x)=
(
(∆̃>x W∆̃x+λI)−1∆̃>x W

)>(
∆̃>z C

−1
y (H(x)−y)

)
. (2.18)

2.4 Ensemble gradient for the RANS equations

For the present case of training a turbulence model from indirect observations, the cost func-
tion is given by Equation (2.1) with the state consisting of the discretized values of the Reynolds
stress x=τ at each cell, and the forward model H consisting of the composition of the RANS
equations, which map Reynolds stress to velocity and pressure τ 7→ (u,p), and an observation
operator that maps velocity and pressure fields to observations (e.g. sparse sampling, surface
integration). Regardless of which method is used, the ensemble gradient requires solving the
RANS equations for the neural network predicted Reynolds stress, i.e. obtainingH(τ), as well
as creating an ensemble of Reynolds stress fields ∆τ and solving the RANS equations for each
sample in the ensemble to obtain the ensemble of model predictions ∆z. The gradient used for
each of the three methods are summarized in Table 1. For the projection method, since the state
is a discretization of a field, the matrix W defining the inner product is the diagonal matrix DV
with cell volumes along the diagonal.

method ∂J/∂τ

direct (∆z∆+
τ )
>C−1

y (H(τ)−y)
preconditioned 1

N ∆τ∆>z C−1
y (H(τ)−y)

projection
(
(∆̃>τ DV∆̃τ+λI)−1∆̃>τ DV

)>(
∆̃>z C−1

y (H(τ)−y)
)

Table 1: Ensemble gradient approximations of the sensitivites of the cost function to the
Reynolds stress using the different methods. All quantities of the form ∆φ or ∆̃φ are ensemble
matrices.

Creating the ensemble of states requires perturbing the Reynolds stress tensor, which poses
the question of how to best perturb a tensor field. This has been done in previous works by
perturbing the turbulence kinetic energy (magnitude), eigenvalues (shape), and eigenvectors
(direction) of the Reynolds stress tensor [28]. The formulation of the Reynolds stress in Equa-
tion (1.2), however, provides a convenient way of creating the ensemble by perturbing the
predicted coefficients g(i). This is done by sampling the coefficients g(i) from a Gaussian pro-
cess and using Equations (1.2) and (1.3) to reconstruct the Reynolds stress. One challenge,
however, is that a covariance matrix must be specified for each coefficient function. Simply
using the same covariance for all functions is not adequate because of the large difference in
magnitude between them. The order of magnitude of the coefficients are not known a priori
and can change during the optimization process. To address this challenge, the samples are
created from Gaussian processes g(i),(j)∼GP(g(i),C(i)

g ), where each covariance kernel C(i)
g shares

the same correlation kernel but has a standard deviation field proportional to the norm of g(i).
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The correlation kernel K used is a square exponential, and the covariance kernel is given by

C
(i)
g =α2‖g(i)‖2

DV
K, (2.19)

K(xi,xj)=exp

(
−1

2
‖xi−xj‖2

l2

)
, (2.20)

where xi and xj are the spatial coordinates of cell i and j, l is the correlation length, and α is the
ratio of the standard deviation to the magnitude of g(i).

3 Results

The ensemble gradient is first validated by comparing the ensemble gradient, using different
methods, to the gradient obtained from the adjoint equations for a turbulent channel flow. The
ensemble gradient is then used in place of the adjoint for learning turbulence models from
synthetic full field velocities in two cases, similar to those in [4]. The use of synthetic data
provides a ground truth to which to compare the learned models. The first case is a turbulent
channel flow with a linear closure model. The second case is flow through a square duct with
a quadratic model. For both cases, a neural network with 10 hidden layers and 10 neurons per
hidden layer is used. A ReLU activation is used for the hidden layers and a linear activation for
the output layer. The training is done with the ADAM algorithm, a common gradient-based
training algorithm for deep neural networks.

3.1 Validation

For validation, the fully developed turbulent channel flow is used. The RANS simulation
domain includes the bottom half of the channel, with a symmetry boundary condition at the
mid-channel, and a discretization of 50 cells of equal sizes. The Reynolds number, based on
bulk velocity ub and channel half height h, is 10,000, and the linear k–ω model is used for the
truth. The cost function is the full field discrepancy of the velocity ux, i.e.

J(τ)=‖ux(τ)−u∗x‖2
DV

, (3.1)

where u∗x is the true velocity field and DV contains the cell volumes in the diagonal. Two
validation studies are presented where the different ensemble gradients are compared to the
gradient from solving the adjoint equations.

First, the sensitivity of the cost function to the Reynolds stress ∂J/∂τ is compared between
the different methods at τ = 0, corresponding to laminar velocity. The ensemble sensitivi-
ties are approximated with 20 samples. The results are shown in Figure 2, where it can be
seen that the direct ensemble method gives a noisy estimate on the sensitivity. In contrast,
the ensemble method with either the projection method or the precondition method can pro-
vide smooth estimation of the sensitivity and give the same gradient direction as the adjoint
method. This suggests that either the projection or preconditioned ensemble methods can be
used for gradient-based training. It is noted that the exact values of the gradient are not ex-
pected to be the same, but as long as it has the right sign and has the correct zero any estimate
of the gradient can be used for training. One reason for the discrepancy is that the adjoint
equations give the gradient of the Laplacian function that includes the cost function and the
RANS constraints [29]. This is in addition to the other approximations in both the adjoint and
ensemble methods.

Before using the ensemble gradient to train the neural network, which has 1021 parameters,
it is validated using a simplified one parameter turbulence model. In this second validation
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‖
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‖
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Figure 2: Comparison of sensitivity ∂J
∂τxy

among adjoint method, direct ensemble method, pre-

condition method and projection method. The sensitivity is normalized by max
(

∂J
∂τxy

)
to keep

the maximum value as 1

test, the gradient of the cost function for the one parameter model is calculated for a range
of values of the parameter and compared between the different methods. The model consists
of g(1) =−Cµ treated as a constant and the true value is taken as Cµ = 0.09. The gradient
is evaluated for a range of values of Cµ using both the ensemble and adjoint methods. The
ensemble sensitivities are approximated with 50 samples. The results are shown in Figure 3,
and it can be seen that although they are noisy and have different magnitude the ensemble
gradients result in the same sign and same zero as from the adjoint in the search region near
the true value. The ensemble gradients can be seen to be noisy but still were sufficient for
correctly training the channel case (see Section 3.2). This observation further confirms that the
ensemble gradient can be used for training turbulence models.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

Cµ

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

||
∂
J

∂
C
µ
||

Figure 3: Comparison of the gradient of the cost function for the simplified one-parameter
turbulence model using different methods. The gradients are normalized based on their max-
imum value. The vertical dashed line indicate the synthetic truth Cµ =0.09.
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3.2 Learning a linear model

The full-field velocity in the channel case is used to learn the linear turbulence model. The
neural network has one input θ1 and one output g(1) with 1,021 parameters (trainable weights).
The true solution is simply g(1)=−0.09 which is constant and has no dependence on the input,
but this is not enforced and must be learned. The neural network is pre-trained to a constant
g(1) =−0.05 rather than to g(1) = 0.0 used in [4] since the later would result in samples with
g(1)>0 which are nonphysical and tend to result in diverging RANS simulations. The network
is then trained using the ADAM algorithm with default parameters. For the gradient, the
projection ensemble method presented in Section 2.3 is used with 20 samples. Figure 4 shows
the results of the training including the initial and final samples used to estimate the gradient.
The trained model not only results in the correct velocity but learns the true underlying model
for g(1).

0.0 0.5 1.0 1.5
ux/ub

0.0

0.5

1.0

1.5

2.0

y
/h

(a) Velocity

−0.15 −0.10 −0.05 0.00
g1

0.0

0.5

1.0

1.5

2.0

y
/h

(b) Function g(1)

Figure 4: Results of learning a linear model from velocity data of the channel flow. The samples
are used to estimate the gradient. The wall normal coordinate is indicated by y with y= h the
center of the channel and y=0 and 2h the bottom and upper walls, respectively.

3.3 Learning a quadratic model

The second test case consists of using the full velocity field in a flow in a square duct to learn a
quadratic turbulence model. The non-linear model is the Shih quadratic k–ε [30] given by

g(1)(θ1,θ2)=
−2/3

1.25+
√

2θ1+0.9
√−2θ2

,

g(2)(θ1,θ2)=
7.5

1000+(
√

2θ1)3
,

g(3)(θ1,θ2)=
1.5

1000+(
√

2θ1)3
,

g(4)(θ1,θ2)=
−9.5

1000+(
√

2θ1)3
.

(3.2)

However, for the square duct case only g(1) and the combination g(2)−0.5g(3)+0.5g(4) affect the
velocity, and θ1≈−θ2. Therefor a neural network with one input and two outputs is used. The
neural network is pre-trained to the linear model, g(1)=−0.09 and g(2)=0. The training is first
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Figure 5: Velocity results of learning a NLEVM from full field velocity measurements in flow
through a square duct. The axial (ux) and in-plane (uy) velocities are shown. The uz component
is the reflection of uy along the diagonal through the center channel and is therefor not shown.

done with a small learning rate of 10−5 for initial stability of the optimization scheme, and later
increased to the default value of 0.001. The gradient is obtained with the projection ensemble
gradient using 20 samples. Figure 5 shows the velocity prediction of the trained model. The
trained model predicts the in-plane velocity, which the linear models fail to predict.

The trained model did not learn the underlying Shih quadratic model. This is because only
a small modification of the coefficients is needed to achieve improved velocity predictions.
Consequently, the sensitivity of the velocity to the underlying model becomes very small. It
was noted in [4] that learning the correct velocity with the adjoint gradient required only a few
tens of training steps, while getting a better agreement in the underlying model took one to
two orders of magnitude more steps. Unlike the adjoint, the ensemble gradient here represents
only an approximation of the gradient, which is not accurate enough to continue training once
the sensitivity of velocity to the underlying model becomes small.

4 Conclusion

In this paper an ensemble approximation of the gradient was used to obtain the sensitivities of
the RANS equations during training of a data-driven turbulence model with indirect observa-
tions. Through the use of a simple one parameter validation case it was shown that although
the different ensemble approximations and the adjoint produce different gradients, they share
the same zero-gradient location, sign, and qualitative behavior. This case consisted of learning
the scalar Cµ coefficient in a linear turbulence model from observations of synthetic velocity
in a turbulent channel flow. The same channel flow velocity was used to successfully train a
deep neural network to learn a linear model. A second test case consisted of using synthetic
velocity observations from flow in square duct using a non-linear model. The learned model
was able to predict the velocities, including the in-plane secondary velocity, but did not learn
the correct underlying turbulence model. This is due to the gradient approximation not being
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accurate enough to continue training once the sensitivity of velocity becomes small. This is not
expected to be an issue, however, when training more realistic models with a wide range of
flows rather than with a single flow where the peculiarities of a single flow would have less
weight.

The present methodology can be used for any case where a neural network (or other differ-
ential machine learning models that provides its own gradients) is trained using quantities that
require propagating the output of the network through another forward model. The use of the
ensemble gradient requires multiple evaluations of the forward model (e.g. RANS equations)
at each step, but allows for it to be treated as a black box model. On the other hand deriving
and implementing the continuous or discrete adjoint can require significant overhead. It is
also noted that the ensemble gradient does not require the cost function to be locally differen-
tiable as long there are clear global trends. For these reasons, in some cases the approximate
ensemble gradient might be preferable to the exact gradient from the adjoint method.
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A Regularized projection

The projection of the state x onto the space spanned by the sample discrepancies, described in
Section 2.3, is equivalent to minimization of the following objective function on β:

Jb =
1
2
‖∆xβ−(x−x̄)‖2

W . (A.1)

We regularize the problem with Tikhonov regularization as

argmin
β

Jb(β)=
1
2
‖∆xβ−(x−x̄)‖2

W+λ
1
2
‖β‖2, (A.2)

where λ is the regularization strength parameter and can be chosen as small as possible while
still providing the desired regularization. The derivative of the objective function with respect
to β can be formulated as

∇β Jb =∆>x W(∆xβ−(x−x̄))+λβ. (A.3)

By setting the derivative equals to zero and solving for β, we have

β=(∆>x W∆x+λI)−1∆>x W(x−x̄). (A.4)

The effectiveness of the regularization is demonstrated by looking at the condition number
of the matrix to be inverted. The condition number of ∆>x W∆x with and without regularization
is presented in Fig. 6 for the channel case in Section 3.2. The condition number if shown for
ensembles with different number of samples and a regularization parameter of λ = 10−8 is
used. It can be seen that without regularization the matrix ∆>x W∆x has very large condition
number and is ill-conditioned even with only 2 samples. With regularization, the matrix can
be well conditioned with small condition numbers.
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Figure 6: Condition number of the matrix ∆>x W∆x for the channel case in Section 3.2 with and
without regularization. The condition number is shown for ensembles with different number
of samples.

B State covariance as a preconditioner

The preconditioned gradient descent in Equation (2.6) represents a steepest descent on a dis-
crete state space with inner product defined by the state covariance matrix. That is, the direc-
tion of steepest descent depends on the choice of norm in the state space [24]. The norm defines
an infinitesimal circle and the steepest descent direction is towards the point in the circle that
takes the minimum value of the objective function. In general for L2 norms the steepest direc-
tion is only aligned with the gradient direction when the matrix defining the inner product is
the identity matrix. Otherwise, for an inner product < a,b>P= a>Pb the steepest direction is
simply P times the gradient direction, as in Equation (2.6). The use of the steepest direction can
be seen as preconditioner or a regularization that results in smoother gradient approximation.

Alternatively, the use of the state covariance as a preconditioner can be derived from the
quasi-Newton method, with some rough approximation, and a regularized cost function. The
regularized cost function is

J̃(xn)=
1
2
‖H(xn)−y‖2

C−1
y
+

1
2
‖xn−xn−1‖2

C−1
x

. (B.1)

It has also been shown that, for the same regularized cost function, the continuous-time limit
of the ensemble Kalman inversion behaves as the preconditioned gradient descent in Equa-
tion (2.6). These two cases are summarized next.

B.1 From quasi-Newton method

A typical way to derive a linear preconditioner for a gradient descent problem is using an
approximation of the operator appearing in the quasi-newton algorithm. Often, even a crude
approximation works well [24]. The state covariance as the preconditioner can be obtained
in this manner with some approximations [31]. Using the regularized cost function in Equa-
tion (B.1), the gradient and Hessian are

∇ J̃(xn)=(H′(xn))
>C−1

y (H(xn)−y)+C−1
xn
(xn−xn−1), (B.2)

∇2 J̃(xn)=C−1
x +(H′(xn))

>C−1
y H′(xn)+(H′′(xn))

>C−1
y (H(xn)−y), (B.3)
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where here ∇2 is the outer product (∇⊗∇) indicating the Hessian. For the quasi-Newton
method the second derivative termH′′ is dropped, resulting in

∇2 J̃(xn)≈C−1
x +(H′(xn))

>C−1
y H′(xn), (B.4)

and the update scheme is
xn+1=xn+αn

(
∇2 J̃(xn)

)−1∇ J̃(xn). (B.5)

A crude approximation is obtained by treating the term G(x)=‖H(x)−y‖2
C−1
y

without consid-
eration to its form. The Hessian then becomes

∇2 J̃(xn)=C−1
x +G′′,

≈C−1
x .

(B.6)

The update scheme becomes

xn+1=xn+αn(xn−xn−1)+αnCx(H′(xn))
>C−1

y (H(xn)−y), (B.7)

which becomes the original update scheme preconditioned by the state covariance (Equa-
tion (2.6)), when ignoring the previous step term (xn−xn−1).

B.2 From ensemble Kalman inversion

The ensemble Kalman inversion (EKI) [32] is a method for general problem inversion based on
iterative application of the ensemble Kalman filter (EnKF). It has recently been used for model
learning [22, 33, 34] and adapted to be able to enforce arbitrary constraints [35–37]. In the EKI
the state is augmented to include the observations H(x) and the problem is reformulated as
an artificial dynamics problem where all non-linearities are moved to the dynamic model. The
problem can be formulated as a linear EnKF problem on the augmented state, but can also be
re-expressed in terms of the non-linear operators and the original state [38]. The EKI solves
the regularized inverse problem in Equation (B.1) implicitly. The gradient-free update for each
sample is given as

x
(i)
n+1=x

(i)
n +Cxnzn (Czn +Cy)

−1(H(xn)−y),

=x
(i)
n +

1
N

∆xn ∆>zn

(
1
N

∆zn ∆>zn
+Cy

)−1

(H(xn)−y),
(B.8)

where j indicates the sample index and the superscript n indicates the iteration step. In the
continuous time limit ( 1

N −→0) the evolution of a sample in the EKI is [39]

dx(i)

dt
=−CxzC

−1
y (H(x)−y). (B.9)

That is, the continuous time limit of the EKI has an update direction consistent with precondi-
tioning the original gradient with the state covariance (Equation (2.6)).
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