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derivatives of (2.6.27) with respect to xl' x2 and set them to zero. 

The optimal unique solution will be given as 

and 

m w. 
l -' 11 -* i=l 0; ai x = ----1 m w. 
L -' . 1 (}. 1 = , 

m w. 
L -' 11 ",* ;=1 0; b; 

x =----2 m w. 
L 1 

i=1 0 i 

(2.6.28) 

(2.6.29) 

which are easily computed for given values of wi' ai' and 11i. The 

solution given by (2.6.28) and (2.6.29) is used as a starting solution 

in the iterative scheme discussed in Section 2.6.2. Notice that this 

solution is the same one given by (2.4.21) and (2.4.2'2) for the recti-

linear case when aa. = 0 b. = ai . 
. 1 1 

From the solution obtained in (2.6.21) and (2.6.22) an interesting 

result concerning the location of X relative to the existing facilities 

Pi may be derived. 

Lemma 2.6.1 t : The optimal location of the new facility X* lies within 

the convex hull of the means of the existing facilities Pi. 

Proof: The proof is straightfoNard by defining the parameter ei as 

t Katz and Cooper [52] arrived at the same result, but used a different 
approach. 



Hence, 

and 

".2 
wi M(l 2 __ '_) 
0'. 2" 2 , 20'. 
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, 
8. = ---------=--
, wi wi 1 ".2 

I 0.- M(2' 2, --'-) 
i=1 1 20'.2 , 

from {2.6.21} and (2.6.22) 

* 
m 

x - I e;l-la. 1 -
i =1 , 

* 
m 

x2 = I e'l-lb i =1 ' . , 

From the definition of ei' it is 

m 
1 > e. > 0 and I 8; = 

- 1 i =1 

(2.6.30) 

(2.6.31 ) 

clear that, 

1 . 

* * Therefore, there exist values for 8i such that xl and x2 are 

expressed as convex combinations of lJa . and l-lb.' respectively. The 
, *' * existence of the multipliers e; proves that xl £ {lJa .} and x2 £ {lJb.} 

, * ' where{l-l;} is the convex hull containing all lJi' Thus X lies in the 

convex hull of {lJa.,lJb.}' 
1 1 

The above lemma implies that whatever the value of the variance 

associated with Pi' the optimal solution always lies in the convex hull 

of the means of Pi' 
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2.6.4 Lower and Upper Bounds for f{X) 

In the iterative procedure developed in Section 2.6.2, the approximate 

solution obtained in Section 2.6.3 or the centriod solution of Section 

2.5 may be used as a starting point. In the deterministic case 

Pritsker and Ghare [78] showed how to bound the objective function 

value of the optimum Euclidean solution. In this section, similar 

bounds are developed using the rectilinear solution. 

I. A lower bound for f(X): Recalling that the objective function of 

the total expected cost for the recti1inear case is 

m 
z = I w,.[J Ixl-a. I f(a.)da. + J IX2-b,' I f(b,.)db,'] 

;=1 a. ' 1 1 b. 
1 1 

and applying Schwartz's Inequality for each separate term gives 

However, J f(a.)da. = 1 from the definition of the probability density , 1 
a' 

f 
. 1 unctlon. 

Substituting the definition of zi(xl ), Zi(x2) from (2.4.7), 

(2.6.32) 
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Multiplying both sides of (2.6.32) by wi > 0 and summing over all i, 

(2.6.33) 

Using Cauchy's Inequality [1, p. 11] and assuming that all Wi 
w. 

are normalized, i.e., Wi = Iw~ I where IWil is the norm of the vector 

W = (w" ... , wn), (2.6.33) is written as, 

1 1 
~ - () ~ - ) 2 2 ~ -)2 

.L wiz; Xl 2. (.L Wi E[(x1-a i ]) · ( L w. 
1=1 1==1 i==1 1 

m 
Since I w; = 1, after squaring both sides of (2.6.34), 

i =1 

m 2 m 2 (L w.z.(x1» < L w· E[(x,-a i )] i =1 1 1 - ; ==1 1 

Si mi 1 ar1y, 

m 2 m 2 ( L w.z.(x2) < L w. E[(x2-b.) ] 
i=l 1 1 - ;==1' 1 

m 

(2.6.34) 

(2.6.35) 

(2.6.36) 

let R(x) = L w;z;(x), and by combining both (2.6.35) and (2.6.36), 
i =1 

(2.6.37) 

Taking the square root of both sides in the inequality (2.6.37), and 

applying Jensents Inequality, 

1 m 1 
222 222 [R (x,)+R (x2)] ~ [.L Wi E[(x1-a;) +(x2-b i ) ] 

. 1 =1 
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(2.6.38) 

* Let X be the optimal solution to the rectilinear problem solved 

in Section 2.4, and let XO be the optimal solution of the Euclidean 

problem; hence, from (2.6.38), 

1 

[R2(x;) + R2(x;)]2 ~ f(Xo) (2.6.39) 

II. An upper bound on f(X): If XO is defined as above, 

f(X) ~ min f(X) = f(Xo) 

and 

(2.6.40) 

Combining both (2.6.39) and (2.6.40), the required lower and upper 

bounds are given as follows, 
1 

f(X*) ~ f(Xo) ~ [z2(x;) + z2(x;)]2 

The inequality given by (2.6.41) is helpful if the rectilinear 

(2.6.41) 

solution is available and the bounds are tight. Depending on the 

particular application, it may be sufficient to consider that the 

* rectilinear solution (X ) is close enough to the optimal Euclidean 

solution (Xo). 
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2.7 A Single Facility Location Problem: Norm Constraints 

As described in Section 2.2, some restriction may be imposed on 

the location of the new facility with respect to the location of each 

existing facility. For example, an upper bound might be placed on the 

expected distance traveled to each existing facility. In this section 

both rectilinear and Euclidean problems under norm constraints are 

presented. The analysis is restricted to the situation in which Pi is 

normally distributed. 

The first problem treated employs the rectilinear norm as the 

measure of distance. The resulting optimization problem is written as 

P2. 7 . 1 minimize f(X) 
X 

f(a.)f(b.)da.db. 
1 1 1 1 

subject to: E[lx1-ail+lx2-b;IJ ~ F;i for all i, i = 1, ••. , m. 

Employing the results obtained in (2.4.8) and (2.4.9), P2.7.l is given as 

P2.7.1 minimize f{X) 
X 

m 2 X·-ll·· 
= L L w.[{X·-ll· .)(2<1>( J lJ)_l) 

i=l j=l 1 J lJ 0ij 

x ·-11· . 
+ 20. .. <P (J 1 J ) ] 

lJ O· . lJ 

2 X·-ll·· X·-ll·· 
subject to: L [(X.-ll .. )(2<1>( J lJ)_l) + 20 .. ¢( J lJ) < F;. 

j=l J lJ 0ij lJ 0ij - 1 

for all i 
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where ~i is the upper bound on the individual distance between the new 

facility and existing facility i. 

The second constrained problem involving the Euclidean norm is used 

as a measure of the distance, and P2.2 ;s written as 

1 
m 2 2 "2 

P2.7.2 minimize f(X} = ,L wi J J [(Xl-a;) +(x2-bi ) ] 
X 1=1 b; ai 

f(a. )f(b. )da .db, 
1 1 1 1 

1 

subject to: 2 2 2" E[((x,-ai) +(x2-bi ) ) ] ~ ~i for a 11 i, ; = 1, ••• , m 

From P2.6, the valuesof the expected values are substituted in P2.7.2, 

resulting in 

P2.7.2 minimize f(X) 
X 

A.2 
subject to: Ii WiGi M(-1, " -~) ~ ~i for all i, i = 1, .•. , m 

20'. 
1 

where ai is the upper bound as defined above. 

As can be seen from previous sections, P2.7.l and P2.7.2 are convex 

programming problems. It has been shown that the objective functions in 

P2.7.l and P2.7.2 are strictly convex; the same is true for each 

constraint. Thus, the following properties are satisfied: 

1. The functions f(X), fi(X) are twice continuously 

di fferenti ab 1 e. 

2. The function f(X) is strictly convex. 

3. The set of constraints is a convex set. 



67 

Hence, any convex programming algorithm will converge globally to the 

optimal solution, where the Kuhn-Tucker necessary and sufficient 

conditions are satisfied. Therefore, SUMT [25J, the sequential 

unconstrained minimization technique, may be used to solve the above 

problems. 

2.8 Rectil inea.r-Distance Location Problems: Chance Constraints 

In this section, the chance constrained facility problem is studied. 

As discussed in Chapter 1, the chance constrained approach is more 

appropriate than, say, expected value constraints. The probability 

distribution used is the normal distribution; as an alternative, the 

exponential distribution, is treated in Appendix A. 

2.8.1 Normally Distributed Chance Constrained Location Problem 

The problem presented in Section 2.4.1 is formulated in this section 

as a chance constrained programming problem. The model is given by, 

P2. 8. 1 minimize f(X) 
X 

m 
= I w. J J <I xl-a. I + I x2-b. I ) 

i=l 1 b. a. 1 1 
1 1 

f ( a . ) f (b . ) da . db . 
1 1 1 1 

for all i 

where f(a i ), f(b i ) are defined as in P2.4.1. The independency between 

the random variables ai,bi still holds for all values of i, and Y; 

is the assigned service level. 

To solve problem P2.S.1, the chance constraints have to be changed 

to equivalent deterministic constraints. Consequently, the probability 
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density function of the rectilinear distance vi = Ixl-ai I + Ix2-bi I 
is required. This is obtained through the following theorem. 

Theorem 2.8.1: Given that a, b are both mutually independent, random 

variables with probability density function N(~a,a2) and N(~b,a2), 

respectively, then the probability density of v = Ixl-al + Ix2-bl is 

gi ven by, 

o < v < 00 (2.8.1) 

where 

and 

Proof: 

denote (x2-b), then, both A and B have normal distributions given as 

A - N(xl-~a,a2) and B - N(x2-~b,a2). For simplicity, let x = xl - ~a' 

y = x2 - ~b' To develop the probability density function of the 

absolute value, notice that 
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Pr(IAI < z) = Pr(-z < A < z) 

2 
1 z _1 (A-x) 

=.--:.- J e 2 a dA 
I21T a -z 

(2.8.2) 

Let A~X = W, then dA = a dw and (2.8.2) may be written as 

z-X 
1 a 

Pr( IAI < z) = - J 
I21T -z-x -

(J 

_ (z-x) (-z-x) -4>--4>-a a (2.8.3) 

Equation 2.8.3 gives the distribution function of IAI- To obtain the 

probability density function,(2.8.3) is differentiated to obtain 

2 2 _1 (z-x) _1 ( z+x) 
g(z) = 1 [e 2 (J + e 2 a ] 

I27f cr 
,o~z<oo (2.8.4) 

Therefore, both g, (IAI) and 92(1BI) have the form o'f (2.8.4). To 

obtain the probability density function of v = IAI + 181, the joint 

distribution of IAI and IBI must be obtained as, 

Define L, and L2 as 

l, = IAI + /BI 

L2 = IBI 

Hence, IAI = Ll - L2 and IBI = L2; the Jacobian of the transformation is 

given by J =,. The joint density function of Ll and L2 follows directly, 
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Using (2.8.5) the marginal density of L, = v is obtained, 

L, 
f(L,) = f g(L, ,L2) dL2 o 

L, -~ {(L1-L2)+x}2+{L2+y}2 
= ~ [f e 20 dL2 

2 'ITO 0 

Ll -~ {(Ll -L2)-x}2+{L2+y}2 
+ f e 20 dL 

o 2 

122 Ll --2 {( Ll -L2 )+x} +{L2-y} 
+ J e 20 dL

2 o 

The first integral in (2.8.7) is evaluated as follows, 
122 L, --2 {(L,-L2 )+x} +{L2+y} 

1 J e 20 dL 
2 'ITO 

2 0 2 

1 2 2 1 2 

(2.8.5) 

(2.8.6) 

(2.8.7) 

----2 {Ll +x +2xL,+Y2} L, -----2{2L2 -2(L,+x-y)L2} 
= -L2 e 20 J e 20 dL 

2 'ITO 0 2 

By completing the square of the power of the integrand, 
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, L,+x+y 2 
-- { } 

e 20
2 12 

2L2-L,-x+y /2 
Let w = so that dw = ~ dL 2 and (2.8.8) is written as 

120 

1 = 
21IT 0 

-L -x+y 
_ cp{ 1 )] 

/20 

After evaluating the remaining integrals in (2.8.7), the marginal 

density function of v given in (2.8.1) is obtained. 

(2.8.8) 

(2.8.9) 

To develop the distribution function of v, F(v), (2.8.1) is inte-

grated with respect to v, 

t:: 
Pr{v ~ t::) = F(~) = J g(v) dv 

o 
(2.8.10) 

Using the above results, the optimization problem, P2.8.1, may be 

written as 



P2. 8. 1 minimize f(X) 
xl ,x2 
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m 2 x.-~. 
= I I w.[(x.-~.)(2 (J J)-l) 

i=l j=l 1 J J 0'; 

x .-~. 
+ 20'. (J J)] 

1 0'. 
1 

subject to: F{~.) > y. 1 - , for a 11 ;, i = 1, ... , m 

where (~i) is as defoined in (2.8.10). Problem P2.8.l has a strictly 

convex objective function, but the set of constraints is not identified 

as a convex set, since the concavity of F{~i) over X £ E2 is not obvious. 

To solve P2.8.1, any nonlinear programming algorithm used in 

solving a convex programming problem, e.g., SUMT, may be employed. 

Since Kuhn-Tucker necessary conditions are satisfied, a local optimum 

will be achieved. The sufficient condition may be checked at the local 

* solution X to determine if the local optimum is a global optimum. 

2.9 Location on Line: A Chance Constrained Problem 

In the above sections, the location problem was formulated as a 

two-dimensional (planar) location. In some situations, the new facility 

is constrained to be located on a line. Additionally, a study of one

dimensional location problems provides insight concerning the more 

general planar location problem. In this section, the problem of 

locating a single new facility on a line is formulated subject to chance 

constraints. 

The chance constrained problem may be written as, 

m 
P2.9 minimize f(x) = I Wi f Ix-a·lf(a.)da. ,x £ E' 

x i=l a. 1 1 1 
1 
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subject to: Pr(!x-ai I 2. ~i) ~ Yi for all i, i = 1, ... , m. 

When the normal distribution is used as the continuous probability 

density function of the existing locations ai' then, from (2.4.8) and 

(2.4.9), the problem is expressed as 

P2.9.l minimize f(x,) 
xl 

for a l' i. 

From (2.8.3), the probability distribution of lx-a; I is developed. 

Hence, the chance constraints can be given as 

l;.-x ~.-x 
F(~.) = ~( __ l __ ) _ ~( __ 1 __ ) > y. 

1 0. 0· - 1 
1 1 

for a" i 

where x = x, - ~a is the mean of the distribution of (x,-a). 

Lemma 2.9.1: The function F(l;). is a concave function over all values 
1 of xl £: E • 

Proof: From the differentiability conditions, 

and 

(2.9.1) 



From Chebyshev's Inequality, 

2 
Pr (izi > ~) ~ E(z2) . 

~ 
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2 2 ~2 _ (02+~2) 
Hence, F(~) > ~ -E(z ) = and since F(~) ~ 0, then 

- ~2 

~2 ~ 02 + ~2 > ~2, since 02 > 0 and the following is obtained 

(2.9.2) 

(2.9.3) 

Equation 2.9.3 implies that (~-x) > 0, (~+x) > o. Observing this with 
d~ 0 - 0-

(2.9.1), then F2 ~ 0 and the sufficient condition for concavity is 
dx 

established. 1 

Applying Lemma 2.9.1 in problem P2.9.1, it is seen that the 

constraint set is a convex set. Therefore, using any convex programming 

algorithm will yield a global optimum solution, and both sufficient 

and necessary conditions of Kuhn-Tucker are satisfied. 

2.10 Euclidean Distance Location Problem: Chance Constraints 

In this section the effect of.adding chance constraints to the 

Euclidean problem of Section 2.6 is studied. As discussed above, the 

chance constraint represents a bound on the probability that the distance 

traveled is within a preassigned value. This added constraint gives 

the decision makers more flexibility in locating the new facility. The 

normal probability density function is used throughout the section to 

represent the distribution of the random locations. The mathematical 

formulation is given as, 



where 

P2.10 minimize f(X) 
X 
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f(ai)f(b;)daidbi , 
subject to: pr([(xl-a.)2+(x2-b.)2]~ < ~.) > y. for all i, , , -, - 1 

1 f{b;} = --
I2iT 0i 

e 

e 

i=l, ... ,m 

, -00 < a. < 00 
1 

, -00 < b. < 00 
1 

and Yi is the lower bound on the probability. 

In Theorem 2.6.1, the probability density function of R = 

[(x,-a)2+(x2-b)2]1/2 was obtained. In the following theorem, the 

cumulative distribution function of R ;s provided. 

Theorem 2.10.1: Given that the probability density function of R = 

[(x,-a)2+(x2-b)2]1/2 is given by (2.6.1), then the cumulative distri

bution of R is expressed as, 

where 

(2.10.1) 

In = the modified Bessel function of the first kind and 

order n 
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Proof: From (2.6.1), the probability density function ;s known; 

hence, the distribution function is given by, 

-l2 (z2+A2) r r 
F(r) = J g(z)dz = J .L e 2a I (~)dz 

o 0 a2 0 2 

r - A 1 Let w = a' A = a ' then dw = a dr, and (2.10.2) is written as, 

(2.10.2) 

(2.10.3) 

The integral in (2.10.3) is evaluated through integration by parts 

as follows, 

= u and 

From [1, p. 484] 

From (2.10.4), v = I I, (AW), and the integral is written as 

_1(w2+A 2) 
f we 2 Io(Aw)dw = f u dv = uv - f v du 

_l{W2+A2) 
= e 2 .~ I (AW) 

A 1 

2 
WI,. (AW )dw 

(2.10.4) 
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From (2.10.5), repeated integration by parts will yield, 

_1 [r2+A 2] 00 n 
F(r) = e 2 I (.!:.) In{Ar) 

n=l A 

, (2.10.5) 

(2.10.6) 

Substituting (2.10.6) in problem P2.l0, a deterministic equivalence 

for the chance constraint is obtained. Additionally, an asympotic 

expansion for the infinite series may be used. As an example see [1, 

p. 375J. However, from the property of the chance constraint a 

relatively simple expression can be derived for F(r). Knowing that for 

a random variable x~ x ~ 0, 

hence, 

Pr(x2 ~ ( 2 ) = Pr{-a ~ x < 0) + Pr(O ~ x < a) 

= Pr(x < ex) (2.10.7) 

Using (2.10.7), all chance constraints in P2.10 may be converted to 

the following form, 

222 Pr«x,-a) +(x2-b) ~ ~i ) ~ Yi for all i, i = 1, ... , m 
(2.10.8) 
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The probability density function of R2, given in Theorem 2.5.1, 

is identified in the literature [49] as the noncentral chi square 

distribution with two degrees of freedom. From (2.5.5), the non

centrality parameter, x2 is defined as x2 = A~. Letting denote ~ , 
a 

(2.10.8) can be written as, 

( 2 (- 2) - 2) - 2 - 2) Pr X2' A. <~. = F(~. , 2, A. > y. for all i 
1 -1 1 1-1 

(2.10.9) 

Patnaik [75] suggested a good approximation to the noncentral x2, 

which consists of replacing X22(A2) by a multiple of a central x2, CXv2, 

where c and v (degrees of freedom) are defined as follows, 

c = 2(1+x2) 
(2+I2) 

(2.10.10) 

Therefore, if the XZ2(A;2) distribution in (2.10.9) is replaced by its 

approximation 
-2 

( 2 - 2) - 2) (2 ~i) Pr X2' (A. <~. - Pr X <---1 -1 - v-c 

and the constraints of problem P2.10 are written as 

F 2 (~. 2/ c) > y. 
1 - 1 

for all i, i = 1, ... , m (2.10.11) 
Xv 

Another approximation which is relatively accurate is to approximate 

the noncentral x2 as a standard normal distribution. Johnson and Kotz 

[49] referred to the following approximation, 
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- 2 ( - 2) 2 2 ~. - 2+A. 
F«(i ' 2, Ai ) .::. <p( 1 " ) (2.10.12) 

2(1+I.2)2 
1 

Therefore, if (2.10.12) is used, then the constraints are written as 

- 2 - 2) ~. -(2+A' 
<p( , 11 ) ,:: Yi for all i, i = 1, .•• , m (2.10.13) 

2(1 +I. 2)2 
1 

Before solving P2.10 the properties of the constraints given by either 

(2.10.11) or (2.10.13) are studied in the next two theorems. 

Theorem 2.10.2: The constraints given by (2.10.11) form a convex set. 

Proof: In the Xv2 distribution defined by (2.10.11), the degrees of 

freedom v are expressed as a function of Ii 2 , i.e., it is a function of 

xl' x2· Hence, for a given location (x"x2), v is defined. Let F-1(y) 

= TI; hence, any value of Xv2 
= TIl' where TIl ~ TI must correspond to a 

probability value greater than or equal to y. Therefore, an equivalence 

for the constraint, F(~) ~ y, will be, 

Using the relation (2.10.14), (2.10.11) is written as 

-2 
~. 

= TI. < -', - c for a 11 i 

Substituting the value of c given by (2.10.10) in (2.10.15) 

(2+"5:. 2) _ 2 
TI· < 1 2 ~. 

1 - 2(1+"5:.) 1 , 

(2.10.14) 

(2.10.15) 
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After simplification, 

- 2 ) 2 2(~. -1T. 
I. < 1 1 = e. 

1 - (21T.-~. 2) 1 
1 1 

(2.10.16) 

To check the sign of ei' recall that, 

2 + 2x-2 r2 
c= =1 +---=-=1 +E 

2 + -:;:2 2 + A2 

where 0 ~ E < 1, i.e., a fraction; hence, from (2.10.15), 

-2 
~. > C 1T. = n· + E 1T. 

1 1 1 1 
(2.10.17) 

Observing (2.10.17), ~i2 is bounded as follows, 

-2 21T. >~. > 1T. 1 1 - , (2.10.18) 

Using (2.10.18), the conclusion can be drawn that ei > O. 

Therefore, 

or 
2 2 (X,-lla;) + (X2-11bi) ~ ei for all i, i = 1, •.. , m (2.10.19) 

2-where e,' = 0, e .. 
1 1 

Equation 2.10.19 represents all interior and boundary points 

contained within a circle of radius (~o;). Therefore, (2.10.19) is 

a convex function over all X E E2. Hence, the set of all constraints is 
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a convex set. The following theorem will check the property of the 

constraints of (2.10.13). 

Theorem 2.10.3: The constraints given by (2.10.13) form a convex set. 

Proof: From the property of the standard normal distribution, the 

function ~(w) is both concave and convex over its domain. From the 

first and second derivatives, 

d~(w) = <t>(w) 
dw 

-w <t>(w) 

Since <t>(w) > 0 for all w, then the second derivative is nonpositive 

only if w ~ O. Therefore, the function ~(w) is concave over the domain, 

o < w < 00. From Markov's Inequality, 

F (w) .?:.. 1 - E ~x) = w -wE (x) (2. 10.20) 

2 
From Theorem 2.5.2, E[R2] = 02(2 + A2) = 02(2+A2). Using this 

o 
result with (2.10.20), 

-2 2(2-2) >"7\.2 l;. > 0· +A. 1\ 
, - 1 1 1 (2. 10.21 ) 

Using (2.10.21), the argument of ~ in (2.10.13) is nonnegative, 

implying that the function is concave over its argument. Since l;;2 ~ 0, 

(2.10.21) is a convex function over X € E2. Therefore, the set of 

constraints is a convex set. 
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2.10.1 Solution Procedure 

The result given by (2.10.13) may be formulated in the same fashion 

as (2.10.19). Let ~-l(Yi) = TIi' then assuming Yi ~ 0.50, it ;s true 

that TIi ~ O. Hence, (2.10.13) can be written as 

- 2 (- 2) r-::::'[ ~. - 2+A. > 2TI. Il+A~~ 
1 1 - 1 1 

or 

2 10 2 2 A· + (5. a. +A. 
, 1 1 1 

~.2 
where 0; = i- - 20'22 

TIi 

< o. 
- 1 

for a 11 i, i = 1, ..• , m 

(2.10.22) 

(2.10.23) 

As in problem P2.6, problem P2.l0 may be formulated in one of the 

following forms, 

m A.2 
P2.10.1 minimize f(X) = Ij L wiO'; M(-t, 1, -~) 

X ; =1 20'. 

subj ect to: 

where 

and 

2 A. < 6. 
1 - 1 

1 

for all i, i = 1, ... , m 

Alternately, P2.10 may be written 
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f(X) =;; m 1 
A.2 

P2.1 0.2 minimize ~ w.o· M(-2' 1 , -~) 
X i =1 1 1 20-1 

subject to: 2 Ic 2 2 < o. for all i , i = 1 , ••• , m A- + o· 0- tA-l 1 1 1 - 1 

where 

and 

From Theorems 2.10.2 and 2.10.3, problems P2.10.l and P2.10.2 are 

convex programming problems. In problem P2.10.l a cumulative Xv2 

distribution is required and interpolations are performed in estimating 

the parameter TIi' since v ;s calculated at each step from the feasible 

solution (xl ,x2). Note that problem P2.10.2 depends on the normal 

distribution (error function) which is well-tabulated for computer 

computations. Also, the nonlinear constraints are of a simple form. 

Therefore, the use of the second formulation (P2.l0.2) with the aid of 

an efficient convex programming algorithm is recommended. Note that a 

global optimal solution is guaranteed by satisfying both the necessary 

and sufficient conditions of optimality. 
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2.11 Discrete Distribution Formulations 

PreviouslYt Pi has been considered to be a continuously distributed 

random variable. Although such an assumption is valid for a number of 

location problems t in some cases the locations of existing and new 

facilities are restricted to having discrete values. For example t in 

emergency facility services (police, fire and ambulance), the distance 

between two locations might be measured by the number of blocks. 

Physicists studying Brownian motion face the problem of identifying the 

location of a physical particle which moves randomly along a grid 

depending on the number of molecular collisions happening. When the 

locations of the existing facilities can be modeled as a random walk, 

a discrete probability distribution ;s appropriate. As an example, if 

an existing facility can undergo a unit change in either the x or y 

coordinate direction each time interval, then the location of the 

particle after n steps is always random. In particular, the location of 

the facility can be modeled as a Markov chain. In this section t discrete 

distributions are employed in modeling the single facility location 

problem where distances are measured in rectilinear norm. 

2.11.1 Rectilinear-Distance Location Problem: Discrete Distributions 

The single facility location problem can be formulated as follows 

for the case of discrete probability mass functions and rectilinear 

distances. 

Pll . 1 minimize f(X) 
X 

m 
= L w.E[lx,-a. 1+lx2-b. I] ;=1 1 1 1 
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a· = 0, 1 , ... , na. 1 
1 

b. = 0, 1 , ... , nb. 1 
1 

where wi' ai' and bi are defined as in Section 2.2, p{a;), p(bi ) are the 

probability mass functions associated with ai' b;, and na ., nb. are the 
, 1 

maximum values attained by the random variables ai and bi , respectively. 

For a problem similar to the random walk problem, nao will be the number 
1 

of steps taken bya i . In the above formulation, a; and b; may have lower 

bounds other than zero; this will be the case when the rectangular 

distribution is employed over the ranges aa. ~ ai ~ Sa.' and abo ~ b; 
111 

< Sbo' The probability mass function should be selected according to 
1 

the nature of the location problem under study. 

Since the objective function of Pl1.' is a separable function in 

both x, and x2, 

min f(X) = min f{x,} + min f{x2) 
X x, x2 

where 
m 

f(x,) = L L w. I x,-a. I p (a. ) 
i =, , 1 1 a. 

1 

{2.11.1} 

and 
m 

f{x2) = L L w; Ix2-bi Ip(b;) 
i =1 b. 

1 

(2.11.2) 

Since (2.1'.1) and (2.11.2) have the same form, any procedure that 

applies to minimizing f(x,) will also apply to minimizing f(x2). 



86 

To minimize f(x1), (2.11.1) is written as 

(2.11.3) 

where aik = 

wiPa. (k). 

kth value of the random variable ai' ni = na ., and wik = 
1 

1 
Using the formulation in (2.11.3), f(x,) can be optimized as a 

linear programming problem by using the following transformation of 

variables, 

where 

and rok,s'k > O. 1 1-

The corresponding linear programming formulation is given by, 
n. m 1 

Pl1.1 (Primal) minimize Z = L L wOk(rok+sok) 
xl i=l k=O 1 1 1 

(2.11.4) 

sub j e c t to: xl - r i k + s i k = a i k ,i = 1, ..., m; k = 0, 1,..., n i 

r.k,s·k > 0 for all i, k 
1 1 -

Shanno and Weil [87] proved that the nonlinear constraints in Pl1.1 

may be dropped if the simplex algorithm is used to solve the problem. 

Using this fact, Pll.l is a regular linear programming problem with 

(m ni ) variables and (m ni ) constraints, where the simplex technique 
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is very efficient in solving it. However, Pl1.1 may be further simpli

fied by formulating the dual of Pll.l. 

n. m 1 
Pll.l (Dual) maximize Z = I I a'ku'k 

i =1 k=Q 1 1 

n. m 1 

subject to: I I Uik = 0 
;=1 k=O 

, i = 1, ... , m; k = 0, 1 so • • ,n i 

Notice that the bounded variable constraints may be handled efficiently 

using a bounded variable linear programming algorithm. Further solution 

efficiency can be obtained if Pll.l is converted to a network flow 

problem. See Cabot, et ala [3 J. 

2.11.2 A Median Solution Approach 

Francis [26] showed that the deterministic single facility location 

problem with rectilinear distances may be solved by applying median 

conditions. The median conditions state that f(x l ) is minimized if the 

facility ;s located at the point where there ;s no more than one half of 

the weight to the left of the new facility location and no more than one 

half the weight is to the right of the new facility. The same condition 

was derived by Francis and White [32J from the dual formulation of the 

deterministic problem. Following the same pattern as in [32], it is 

easily seen that the median conditions apply for the dual formulation, 

. 1'11.1. These conditions are given by, 

t m 1 N m 
l l wik ~ 2 l l wOk 

k=O i = 1 k =0 i = 1 ' 
(2.11.5) 
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t-l m 1 N m 
L L wik ~ 2 kL L wik k=O i=1 =0 ;=1 

(2.11.6) 

where N is defined as the maximum cardinality of the set {nil, i.e., 

N = m~x {nil. 
1 
Using (2.11.5) and (2.11 .6), the probabilistic problem defined by 

P11.1 is solved directly if the probability mass functions are known. 

Notice that the size of the problem increases with a high value of ni , 

but in most discrete problems, ni will be within a reasonable range. 

For Poisson distributions with large means, a normal approximation to 

the Poisson can be used and the results obtained in the previous sections 

can be applied. 

2.12 Numerical Examples 

In this section, numerical examples are solved to illustrate the 

effect of random variation on the location decision. The examples 

emphasize the unconstrained formulations since the optimal solution to 

the unconstrained problem may be a feasible solution to the constrained 

problem. As suggested above, if the optimal solution for the unconstrained 

problem does not satisfy the constrained problem, then the problem must 

be solved using any available convex programming algorithm, e.g., SUMT . 

. To demonstrate the effect of random variation on the solution 

obtained, a probabilistic problem is solved as a deterministic problem 

by considering that the random existing facilities are located at their 

corresponding means. In this way, the optimal solution may be compared 

with that obtained from the probabilistic models. 
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2.12.1 Rectilinear Distance Single Facility Location Example Problem 

It is desired to locate a tool crib in a maintenance shop. The 

supervisor wishes to locate the tool crib so that the total expected 

walking distance per day for the employees is minimized. It is assumed 

that the location of each employee is a random variable with a bivariate 

normal distribution. The location means, standard deviations and the 

number of trips made by each employee to the tool crib are given in 

Table 2.1. The tool crib is to be located such that the expected recti

linear distance walked per day is minimized. 

To solve the problem using the exact iterative procedure developed 

in Section 2.4, the algorithm has been programmed in Fortran IV (see 

Appendix B). The iterations are given as follows, 

(Xil)'X~l)) = (7.688324, 5.097736) 

(Xi 2) 'X~2)) = (7.694024, 5.104512) 

(Xi 3) 'X~3)) = (7.694025,5.104517) 

* * The optimal location is (xl ,x2) = (7.694025, 5.104517). Francis and 

White [32J in treating the expected values as deterministic values of 

the coordinates, obtained the 1I0ptimum" location (10,5). 

Comparing both solutions, an obvious difference is noticed even 

though the standard deviations used are not very large. Therefore, 

locating the tool crib by interpreting the expected values as deter

ministic locations can lead to a location significantly different from 

that which minimizes the expected total distance traveled. Notice that 
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TABLE 2.1. Input data for the tool crib example 
using rectilinear distance. 

xl-coordinates x2-coordinates Number of 
( lla . ' a a . ) (llb. ,ab.) trips/day (wi) 

1 1 1 1 

. (4,2) (4,3) 4 

(4,2) (10,4) 4 

(6,3) (5,2) 2 

(10,5) (5,2) 3 

(10,4) (9,3) 5 

(12,3) (3,1) 6 
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the minimum total expected distance is 138.9~ but the expected total 

distance from t~e point (10,5) ;s 143.1. Thus~ a 3% increase in the 

cost occurred by failing to explicitly account for the random variation. 

2.12.2 Euclidean Distance Single Facility Location Example Problem 

In the same context as the above problem, assume that the distance 

traveled is measured in the Euclidean norm. The location means~ 

standard deviations Oet a,. = a for all i), and weights are given as a. 
1 

in Table 2.2. 

To solve the Euclidean problenl~ the exact iterative procedure 

developed in Section 2.6 is programmed in Fortran IV (see Appendix B). 

The iterations are given as follows, 

(X~l)'X~l» = (4.373089, 3.219747) 

(xi2),x~2» = (4.266038, 2.954257) 

. . 
«5) (5» Xl ,x2 = (4.256475, 2.850864) 

* * The optimal location is (xl ,x2) = (4.256942,2.848327). 

When the expected values are considered as coordinates in a deter

ministic problem, Francis and White [32] obtained an optimal location 

* * of (xl ,x2) = (3.995,2.011). Consequently, the deterministic problem 

obtained by assuming that the existing facilities are located at their 
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TABLE 2.2. Input data for the tool crib example 
using Euclidean distance 

Xl-coordinates x2-coordinates Number of 
(lla .,cra .) ( llb. ' crb . ) trips/day (wi) 

1 1 1 1 

(0,4.4) (0,2) 1 

(0,4) (10,3) 1 

(5,2) (0,3) 1 

(12,4.3) (6,4) 1 
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expected values yields significantly different locations. The minimum 

total expected distance is 29.88; the expected total distance at the 

poi nt (3.995, 2. all) is 31. 01. Thus, a 4% increase in the cost occurred 

by failing to explicitly account for the random variation. 

In addition, suppose that it is desired that the distance traveled 

per trip by each employee not exceed five distance units with proba

bilityof .85. The feasibility of the optimal unconstrained solution 

when the chance constraints are imposed is checked first. Using the 

formulation given by (2.10.13), the chance constraints are written as, 

( 5)2 - 2 44 -(2+Al ) 
<f! (. 2 1/2 ) > • 85 

2( 1 +I, ) 

(_5_)2_ (2+I 2) 
<f!( 4.3 2 l/~ ) > .85 

2(1+I4 ) 

Since I;2 is defined by 

2 2 
(xl-~a.) +(x2-~b.) 

I. 2 = ___ ,_--:::-__ ,_ 
1 2 

Gi 
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the values of Ii 2 for the given solution (x,y) = (5.35,.539), are found 
-2 -2 -2 -2 .. to be Al = 1.56, A2 = 29.53, A3 = .03, and A4 = 3.82. Substltutlng 

the values of I;2 into the above constraints and obtaining the 

corresponding probabilities from the cumulative normal distribution 

tables gives 

4>(-0.71) = .24 t .85 

4>(-2.7) = .003 l .85 

<1>(2.09) = .98 > .85 

<I?(-1.01) = .1562 l .85 

where the third constraint is the only constraint which ;s not violated. 

Therefore, the unconstrained optimal solution is an infeasible solution 

to the constrained problem and the constrained problem must be solved 

using a nonlinear programming algorithm. 

Assuming that each employee ;s located at the corresponding 

expected value, if the same upper bound is imposed on the distance 

traveled per trip, the deterministic constraints will be, 

Ixl-Ol + Ix2-OI < 5 

Ixl-Ol + Ix2-10I < 5 

Ixl - 5 1 + Ix2-OI < 5 

Ix,-121 + Ix2-6 1 < 5 

* * Upon substituting the value of (xl ,x2) for the unconstrained 

problem, it is easily seen that the second constraint is the only 

constraint satisfied. 
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2.13 Summary 

In this chapter, probabilistic formulations of the single facility 

location problem have been presented. In all formulations the random 

variation was considered to be due to the location of the existing 

facilities. It was assumed that the coordinates of each location are 

independent random variables in two dimensional space; also, the locations 

of all existing facilities are mutually independent. Both constrained 

and unconstrained formulations were analyzed. 

Using the rectilinear norm as a measure of distance traveled, and 

the bivariate normal density function as a representation of the random 

variation associated with the location of an existing facility, the 

expected cost of item movements was minimized using Newton's iterative 

technique. Since the convergence of Newton's method is not efficient 

when the starting point is not contained in a close neighborhood of the 

optimum, an approximate solution procedure was developed to provide a 

good starting solution for the iterative scheme. Also t a single 

dimensional search was performed to determine optimal step size. It 

was shown that the optimal location is contained in the convex hull of 

the mean value of all locations. 

The gravity problem was investigated. The optimal solution was 

shown to have a unique value which depends only on the weights and 

the mean values of the random locations. 

Using results obtained in Section 2.5, the probabilistic Euclidean 

distance location problem was formulated and an iterative scheme was 

proposed for solving the problem. An approximate solution procedure was 
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obtained for developing a starting point for the iterative algorithm. 

In case the rectilinear solution is known, lower and upper bounds on 

the objective function were developed using the optimal rectilinear 

solution. 

In Section 2.7, the constrained problem was treated when norm 

type constraints are added to the original objective function. A 

Lagrange multipliers approach was recommended when there are few 

constraints; otherwise, a convex programming algorithm is needed. 

Chance constrained formulations have been presented for both recti

linear and Euclidean distances. In each case the distribution function 

of distance was obtained and was used to transform the chance constraints 

to deterministic equivalent constraints. When the rectilinear distance 

is used, it was recommended that the equivalent deterministic formulation 

be solved by applying any convex programming algorithm, e.g., SUMT. 

However, global convergence has not been guaranteed. 

For the case of Euclidean distances, the chance constraints were 

transformed to deterministic equivalent constraints in two ways. First, 

a chi-square distribution was used to approximate the actual probability 

distributtdn obtained for the distance traveled. Second, the distri

bution was approximated by the standard normal distribution. The latter 

approach appeared easier to handle. 

The solution procedure for each formulation of the unconstrained 

problem was programmed and a sample problem was solved. A comparison 

between probabilistic and deterministic formulations was performed. 

When the set of possible values for the random variables are 

countable, discrete distributions are employed. It was shown that 
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median conditions, similar to those obtained for the deterministic case, 

may be used to obtain the optimal solution; otherwise, a linear 

programming problem must be solved. 



Chapter 3 

MULTIFACILITY PROBABILISTIC LOCATION PROBLEMS 

3. , Introducti on 

In the previous chapter the single facility probabilistic location 

problem was treated. The analysis was concerned with locating a single 

new facility relative to a number of existing facilities. The locations 

of the existing facilities were treated as random variables. In this 

chapter, the analysis is extended to cover the problem of locating more 

than one facility with respect to multiple existing facilities. Before 

introducing the probabilistic multifacility problem, a presentation of 

the deterministic case will be helpful. 

The deterministic formulation of the multifac;lity (generalized 

Weber) problem is given by 03, 

03. 

where 

n m 
+ I I w··IX.-P·I£, 

j=l ;=1 J1 J 1 

Xj = location of new facility j, j = 1, ... , n 

Pi = location of existing facility i, i = 1, ... , m 

vjk = annual cost per unit distance between new facilities 

j and k, for all j, k. 

w .. = annual cost per unit distance between new facility j 
Jl 

and existing facility i, for all j, i. 

98 
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IXj-Pi 11 = distance between the points Xj and Pi measured 

in the 1 norm 

f(Xl,.,,~Xn) = total annual cost as a function of Xl' ... , Xn 

1 = type of norm used, 1 = 1 represents the rectilinear 

norm, and 1 = 2 represents the Euclidean norm. 

In D3, the objective is to determine the locations of the new 

facilities in order to minimize total annual cost. In the subsequent 

discussion, it is always assumed for each value of j that vjk is non-zero 

for at least one value of k. Additionally, it is assumed that all new 

facilities are chained to existing facilities [31J. 

As indicated in Chapter 2, several research efforts have been 

directed toward a study of D3. For the rectilinear case, Cabot, et all 

[3 J, formulated D3 equivalently as a network flow problem; Wesolowsky 

and Love [103J proposed a linear programming solution. For the case of 

Euclidean distances, Love [67J employed a non-linear programming algorithm 

to seek the optimal solution, and Eyster, et ala [22] solved the problem 

using a hyperbolic approximation iterative technique (HAP). Francis 

and Cabot [31J obtained a dual formulation for the Euclidean problem. 

Wendell [lOOJ developed a geometric programming duality formulation with 

mixed type of norms. For a more complete review of previous research 

on P3, see Francis and White [32]. 

In this chapter, the treatment of the probabilistic variation of D3 

includes the possibility of Pi' vjk ' and Wj; being random variables. 

The reasons for considering Pi as a random variable parallel those 

given in Chapter 2. The weights can easily be random variables. For 
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example, if the weights represent the cost per unit distance, then 

for a long. planning horizon its randomness is natural. In another 

application, such as locating emergency units (centers), the weight, 

interpreted as time per unit distance, is random due to the 

traveling speed, road and weather conditions, and time of the day. In 

locating central facilities such as banks, shopping centers and post 

offices, the weight may be considered as the frequency of travel between 

two facilities or level of business which depends on the demand of 

customers or their availability; thus, it is most likely to be random. 

For transporting commodities between locations, the weights may denote 

the volume of goods, which can be considered to be random variables. 

The normal distribution is employed throughout the subsequent 

models, since Pi' wji ' and vjk correspond in most situations to the 

normal distribution; otherwise, the distribution could be approximated by 

the normal using some Central Limit Theorem. Two types of probabilistic 

problems are studied. In the first case it is assumed that, for a given 

realization of Pi' a realization of Wi occurs. Once the location of the 

existing facility (customer) i is known, all subsequent trips between new 

facility j and existing facility i will share the same distance IXj-P i It' 
and the weight attached to the trip will be wji . From a probability 

point of view, the cost of transportation incurred between new facility j 

and existing facility i is expressed as a multiplication of the random 

variables wji and !Xj-Pi I~. As discussed above the distance is treated 

as a random variable due to the randomness of Pi. In the second case 

considered, for each trip included in the weight wji ' the distance 

between new facility j and existing facility i can be different. 



101 

There are wji trips during the planning horizon under investigation and 

existing facility i changes its location during this planning horizon 

independent of the weight wji • For convenience, let Pih denote the 

location of existing facility i on trip h. Thus, on trip h the distance 

traveled is determined from the value of the random variable Pih " The 

"weight" or number of trips per unit time is considered to be independent 

of the location of each existing facility. Thus, the cost of trans

portation can be represented as a random sum of random variables. 

To motivate the two cases considered, suppose new warehouses are to 

be located across the country_ The sources of goods shipped to the 

warehouses and the destinations of goods shipped from the warehouses are 

not known a priori. However, after the warehouses become operational 

the locations of suppliers and customers will become known. The number 

of shipments per month from the suppliers to the warehouses and from the 

warehouses to customers is not known exactly, but can be expressed in the 

form of a probability distribution. Since all shipments from supplier i 

to warehouse j will be from the point Pi' once the value of Pi becomes 

known, the location problem can be formulated as the weighted sum of 

the products of the random variables Pi and wji . 

As an illustration of the second case considered, suppose a military 

hospital is to be located to provide medical treatment for personnel 

wounded in combat. Patients are brought from the combat area to the 

hospital in helicopters. There are m combat areas, the number of 

helicopter trips to and from combat area i is a random variable wi. 

The location of a wounded soldier in combat area i is a random variable 

denoted by Pi" Thus, each of the wi trips can be to a different 
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location in combat area i. In this case. the location problem is 

formulated as a random sum of random variables. 

In the subsequent sections, both problems are formulated and 

solution procedures are introduced. In analyzing the models, two types 

of norms are used: rectilinear and Euclidean. Both will be used to 

solve the unconstrained case. For the constrained case, only the 

Euclidean norm is employed since the rectilinear norm involves more 

tedious algebra and makes the model more cumbersome to solve, as discussed 

in Chapter 2. 

3.2 Probabilistic Formulations 

In this section, the two problems discussed above will be formulated 

mathematically. The first problem is identified as the case when the 

expected cost is the product of the random variables Pi and wji ; the 

second one is associated with the case when the expected cost is a 

random sum of random variables. In the sequel both unconstrained and 

constrained formulations are given. 

First, for the case of the product of the random variables, the 

expected total cost function is given by 

P3.l minimize E[f(Xl, ... ,Xn)] 
X. 
J 

n m 
+ 2 L w"\X'-P"t] 

j=l ;=1 Jl J 1 

n m 
+ I 2 E[w .. JElx.-P. /1J 

j=l 1=1 Jl J 1 
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For the case of a random sum of random variables the problem of 

minimizing expected total cost is written as 

w .. 
n m J.l 

+ L . L E [L I XJ. - P i h I R. ] 
j=l 1 =1 h=l 

A comparison of both P3.l and P3.2 discloses that the first 

summation is the same, but the second one is different. The expected 

value of the random sum of identically distributed random variables is 

given by 

N 
I x. = E[N] E[X] 

i =1 1 
(3.2.1) 

Thus, if the second summation in P3.2 may be written as 

then it is identical to the second summation in P3.1. Therefore, 

optimizing either one implies the optimization of the other. However, 

different solutions to P3.l and P3.2 are anticipated when the 

constrained problem is solved. 

In a number of applications it is not enough to minimize the total 

expected cost. Rather, some upper bound constraints may be imposed on 
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the individual expected cost elements. Specifically, it is quite common 

to encounter situations in which an aspiration. level ;s recommended in 

the form of a confidence interval on the random cost. Thus, a chance 

constraint might be included in the formulation of the location problem. 

A constrained version of P3.1 is 

n m 
+ I .I E[w .. ] E[IX.-P. I~] 

j=l 1=1 Jl J 1 

subject to: E[Vjk]IXj-Xkl~~~jk for all j, k = 1, ... , n 
(3.2.2) 

Pr(w .. I x. -p. In < ~ •. ) > Y" Jl J 1 IV - Jl - Jl j = 1, ... , n (3.2.3) 
i =1, •.• ,m 

where ~jk and ~ji are specified upper bounds on the cost of transportation 

between locations (j,k) and (j,i), respectively. and Yji represents the 

required service level, 0 < Yji < 1. The constraints (3.2.2) may also 

be replaced by chance constraints of the form 

Pr [v. k I X . - Xk I () < ~. k) > y. k fo r all j, k = 1, .•. , m (3.2.4) 
J J IV - J - J 

In the subsequent discussion, both types of constraints are treated. 

A constrained version of P3.2 is given by 

P3.2.1 minimize E[f(Xl,···,X )] = I E[v'k]lxJ,-Xkl~ 
x. n l<j<k<n J 
J - -
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subject to: E[VjkJIXj-Xkli ~ ~jk for all j, k = 1 , ... , n 

w •. 

Pr( t' IX.-P·hl~ < ~ .. ) > y .. , j = 1 , n (3.2.5) ... , 
h=l J 1 - Jl Jl i = 1 , m ... ) 

As in P3.l.l, chance constraints of the type shown in (3.2.4) may replace 

the expected value constraints (3.2~2) on the new facilities. 

3.3 Related Work 

The only probabilistic formulation of the generalized Weber problem 

(P3) appears to be the chance constrained formulation of Seppala [86J. 

In his model, vjk and wji are treated as random variables) but Pi is 

known deterministically and the Euclidean norm is used to measure 

distances. He employs the fractile criterion described in Chapter 1 

and applied by Sengupta and Portillo-Campbell [84J. Using the approach 

developed by Charnes, et al. [7 J to convert the chance constraint to 

its deterministic equivalent, Seppala obtained a non-linear objective 

function. To solve his model, the CHAPS algorithm developed by Seppala 

[85J is used to convert the non-linear objective function to a linear 

objective function augmented by some non-linear convex constraints. A 

linear approximation algorithm similar to MAP, introduced by Griffith 

and Stewart [38], is employed to solve the resulting formulation. 

In considering the cost per unit distance (wi) as a random variable, 

Hurter and Prawda [48] solved the Euclidean single facility location 

problem when the quantity of service demanded is a random variable. 

They formulated the problem as a chance-constrained programming problem, 

but the constraints were used to bound wi instead of bounding the cost 
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of transportation, which is a function of the distance. In the analysis 

by Hurter and Prawda [48J the locations of the existing facilities are 

assumed to be deterministic when the probabilistic problem is changed 

to a determi ni s ti cone, IJS i ng the approach of Cha rnes, et a 1. [7 J. 

Hurter and Prawda [48J showed that any existing algorithm to solve the 

deterministic single facility problem can be used for their chance

constrained problem. In [33], Frank studied the problem of optimum 

locations on graphs when the demand at the existing facilities (nodes) 

are considered random variables with a normal probability density 

function. He generalized the results obtained by Hakimi [41, 42J about 

the center and the median of the graph. In a later paper [34], Frank 

modified the problem to accommodate the case when the random variables 

are correlated. Even though both problems are limited to network 

location problems, the formulations are not simple and numerical 

solutions are required. 

From the above survey it appears t~at no previous research has been 

devoted to the study of the generalized Weber problem when Pi' vjk ' and 

Wj; are treated simultaneously as random variables. Through the current 

research effort, the general problem will be explored such that any 

special case may be obtained easily from the proposed solution methods. 

3.4 Rectilinear Distance Generalized Weber Problem: Unconstrained 

As discussed in Section 3.2, problems P3.1 and P3.2 are equivalent. 

Therefore, where P3.1 is used with a rectilinear norm as a measure for 

distances, the problem may be written as, 
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P3.4 minimize E[f(X, , ... ,Xn)] = oL E[Vjk]IXj-Xkl 
Xj l<J<k<n 

n m 
+ L L E[WJ

oi ] E[IXJo-Pi I] j=l i =1 

with the following assumptions: 

i . 2 0, for all j, k = 1 , vjk .... N(~jk,ajk ), where ~jk > ... , 

i i . - - 2 -
> 0, for a 11 j 1 , w .. .... N ( ~ •• ,a .. ), w he re ~ .. = . .. , n Jl Jl Jl Jl i = 1 , m; ... , 

iii. 2 for all i , i 1 , a· .... N(lJa . ,aa. ), = m; 
1 

... , 
1 1 

i v. b. 2 for all i , i = 1, "'" N (llb. ,ob. ), m; 
1 

... , 
1 1 

V, a·, b. 
1 1 

are considered independent for the same i ; 

vi. Pi = (ai,b i ) is an independent random variable for all i, 

where Pi corresponds to a bivariate normal distribution; 

vii. for a single value of j, all vjk are uncorrelated random 

variables for all k, k = 1, ... , n; 

viii. for a single value of j, all wji are uncorrelated random 

variables for all i, i = 1, •.. , m. 

n; 

From the above assumptions, the expected value of weights (vjk'Wji ) 

are all known. In Chapter 2, the expected distance from the location of 

the new facility, X, to any location Pi was developed. Using (2.4.8) 

and the above assumptions in P3.4, the following results, 



'08 

Xj2-~b. Xj2-~b. 

+ ( x j 2 - ~b . ) ( 2 <r! ( a 1 ) - 1) + 2 a b . cP ( a 1) ] 
1 b; 1 b; 

(3.4.1) 

where Xj = (xj1 'Xj2 ) for all j = 1, ... , n. 

But since the rectilinear distance between the new facilities can 

be decomposed to its coordinates, 

Using (3.4.1) and (3.4.2), the expected total cost function is expressed 

as 

where 

E[f(X" ... ,Xn)] = E[f,(x11 ,···,xn1 )] + E[f2(x12,·,·,xn2)] 
(3.4.3) 

+ 2a a. 
1 

(3.4.4) 
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and 

n m 
E[f2(x12"",xn2)] =.L l1jklXj2-Xk21 +.L L l1ji[(Xj2-l1b.) 

l<J<k<n J=l ;=1 1 

Xj2-l1b. Xj2- l1b. 
(2~( ')_1) + 2ab. ~( 0 ')J (3.4.5) 

obi 1 bi 

Since E[f(X" .•. ,Xn) is separable in the variables xj1 ' xj2 (from 

(3.4.3», then it follows that 

minimize E[f(X" ..• ,Xn)] = minimize E[fl(x" , .•. ,xnl)J 
Xj xj1 

+ minimize E[f2(x12"",xn2)J 
xj2 

(3.4.6) 

Hence, optimum xjl coordinates of the new facilities can be obtained 

independently of the optimum xj2 coordinates. Also, any procedure 

developed for minimizing E[fl ] will also apply to E[f2J on replacing 

x
J
' l by x

J
o2' l1ao by l1b., and ° by ab.. Before optimizing E[flJ, its 

, 1 ai 1 

properties are studied. 

Theorem 3.4.': The function E[flJ defined by (3.4.4) is a strictly 

convex function over xjl £ E1. 

m 
Proof: From Theorem 2.4.2, it has been proven that L l1

J
o; E[lx

J
"l-ai IJ 

i =1 
is a strictly convex function. Thus, summing this function over all 

values of j yields a strictly convex function. The first term in E[f,] 

is a summation of a multiple of the rectilinear norm. Since the recti

linear norm is convex (by the properties of the norm), the summation 
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over j yields another convex function. Therefore, E[fl ] is a strictly 

convex function, due to the fact that it is the summation of two convex 

functions and one of them is strictly convex. 

3.4.1 Solution Procedure 

Shanno and Weil [87] suggested a solution procedure by solving an 

optimization problem which is a function of absolute values. Employing 

the change of variables 

then 

Thus, the first term in E[f,] is written as 

o for a 11 j, k 
(3.4.7) 

(3.4.8) 

with the addition of the set of constraints defined by (3.4.7). 

Substituting (3.4.8) in (3.4.5) and letti~g xj1 = xj ' Xk1 = xk' the 

following modified problem is obtained. 

P3.4.1 
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subject to: Xj - xk - Pjk + qjk = 0 1 ~ j < k < n 

Pjk • qjk = 0 , 1 ~j < k < n 

Pjk' q'k > 0 J -
, 1 ~j < k < n 

In P3.4.l, let fj{x j ) denote the second term in the objective 
n 

function, where fj(x
J
.) is a nonlinear function over x

J
' and L f·(x·) is 

j=l J J 
a separable function in xj . Therefore, a separable programming approach 

is well-suited for solving this problem. From Theorem 2.4.4, it is known 

that the optimal value of Xj is contained in the convex hull of 11i. 

Therefore, an upper and lower bound on x j are obta i ned. If Xj < 0 for 

some j, we may change the coordinates by shifting the origin so that 

all values of Xj become nonnegative. Having an upper bound available on 

the value of Xj allows the use of the separable programming technique 

discussed in Hadley [39]. First, divide the interval of Xj into rj 

subintervals, then define the following variables, 
r. 

J 
x

J
' = L An'X () • 

.Q..=O NJ NJ 

where 
/ 

for all.Q.., j 

and for a gi ven J, no more than two adjacent A.Q..j are allowed to be 

positive. Using the change of variables, problem P3.4.l is transformed 

to, 

P3. 4. 1 



subject to: x. 
J 

- xk -
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Pjk + qjk = 0 

r. 
J 

I At' = 1 
i=O J 

Pjk' qjk~O 

An' > 0 x.,J -

, 1 < - j < k < n 

j = 1 , · .. , n 

1 < j < k < n 

1 .s.j < k < n 

j = 1 , · .. , n 
R, = 0, · .. , r. 

J 

where it is also required that no more than two adjacent AR,j be positive. 

Except for the last constraint and the nonlinear constraints Pjk·qjk = 0, 

the problem is a linear programming problem and the simplex method may 

be applied easily. Including the nonlinear constraints poses no 

substantial difficulty if IIrestricted basis entry" is employed in order 

to satisfy the constraints. However, the property of the objective 

function E[fl ] and the matrix of coefficients for the set of constraints 

allow us to ignore these constraints. 

Hadley [39] proved that if the original nonlinear objective 

function is a convex function and the set of constraints is a convex set, 

an optimal solution to the approximate problem is a global optimum to 

the original problem. Also, he proved that, if these conditions hold, 

the global optimum is obtained through the simplex method without 

restricting the entry of the variable Aij . Shanno and Weil [87J demon

strated that if Pjk is the basic feasible solution, qjk will not be, 

and vice versa. This is due to the fact that the column vectors 

corresponding to Pjk and Pjk (with the assumption that all Pjk > 0) 



113 

are linearly dependent; therefore, Pjk and qjk cannot both be included 

in a basic feasible solution. 

Using the above results, all restrictions on variables entering the 

basis are dropped and the problem will be 

subject to: x. - xk - Pjk + qjk = 0 
J 

r. 
J 

l A~' = 1 
=0 J 

Pjk' q'k > 0 J -

A~. > a J -

1 < -

j = 

1 < -

j = 
Q, = 

r. 
J 

l f~.A~. 
=0 J J 

j < k < n 

1 , · .. , n 

j < k < n 

1 , · .. , n 
0, · .. , r. 

J 

Thus, the rectilinear, unconstrained generalized Weber problem can be 
n 

solved as a linear programming problem with (5n+ L r
J
.) variables and 3n 

j=l 
constraints. Depending on the number of variables and constraints, it 

appears P3.4.1 can be solved easily using the simplex method. 

3.5 Squared Euclidean Distance Generalized Weber Problem: Unconstrained 

In this section, the squared Euclidean distance problem discussed 

in Chapter 2 is extended to the multifacility case. Since the study of 

the squared Euclidean distance, single facility problem yielded valuable 

information about the Euclidean problem, the multifacility variation of 

the gravity problem is considered. When the objective function involves a 

weighted sum of squared Euclidean distances t problem P3.l may be written 

as, 



114 

where assumptions (i-viii) in P3.4 are assumed to hold for P3.5; it is 

further assumed that 0 2 = 0b 2 = 0,.2 for all i. a. . 
1 1 

In Theorem 2.5.2, the expected distance with respect to a single 

facility is given by (2.5.10). Using the notations of Francis and White 

[32] for the weights vjk ' let 

A _ {Vjk ,k > j 
vjk -

vkj ,k ~ j 
(3.5.1 ) 

Substituting (2.5.10) and (3.5.1) in P3.5, 

n 
A 2 

+ L E [v j k] (x j 2 - xk2 ) k=l 

n m 2 + L }: E [w j ; ] (x j 1 - '~a . ) 
j=l ; =1 1 

n m 2 + L L E [w j ; ] (xj 2 -lJb . ) 
j=l i =1 1 

n m 2 +2}: L E[w.iJ o· 
j=l i =1 J 1 
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Observation of P3.5 discloses that the function ;s separable "in xj1 ' 

xj2 " Hence, the optimization procedure is employed twice; first over 

xjl and then over xj2 " For simplicity let Xj = xjl and lla; = 11;. To 

* obtain the optimal xj ' partial derivatives of the objective function with 

respect to each variable are computed and then set to zero. Computing 

the partial derivative of expected total cost with respect to Xj gives 

dE[f] n A m 
= 2 2 E[Vjk](Xj-xk) + 2 2 E[wji ](Xj -11i) (3.5.2) ax· J k=l i =1 

for all j , j = 1 , •.. , n 

Setting (3.5.2) equal to zero and rearranging yields, 

* n A m n A * m 
x.( 2 E[v'k] + L E[w,.]) - 2 E[VJ'k]xk =.2 E[w.']l1' (3.5.3) 
J k=l J i=l Jl k=l 1=1 Jl 1 

for all j, j = 1, ... , n 

Equation 3.5.3 represents a system of n linear equations in n variables 

to be solved to determine the optimum locations for the new facilities. 
n A m 

To write (3.5.3) in a closed form, let a~l = ( 2 E[VJ'kJ +.2 E[wJ,;]), 
A m J k=l 1 =1 

a' k = E[v· k], and b~ = 2 E[w'i]l1i' then (3.5.4) will represent the 
J J J i=l J 

* optimal value of xj1 for all j, 

for all j, j = 1, •.. , n (3.5.4) 

* Similarly, the optimal value of xj2 for all j, 

for all j, j = 1, .•. , n (3.5.5) 
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As Francis and White [32] indicated for the deterministic case t the 

matrix of coefficients is the same for (3.5.4) and (3.5.5). Therefore, 

its inverse is required only once. 

Notice that the function in P3.5 ;s a strictly convex function. 

Therefore, the necessary and sufficient conditions are satisfied by the 

solution to (3.5.4). From (3.5.3) the following is derived 

m A m (3.5.6) 
L E[v· k] + L E[w .. ] 

k=l J ;=1 Jl 

which indicates that the location of new facility j is the gravity 

location with respect to all other facilities, new and existing. The 

same result was obtained by Francis and White [32] on replacing the 

weights with their expected values. Consequently, the variance 0i 2 ~as 

no effect on the gravity sqlution when using an unconstrained expected 

value criterion. 

3.6 Euclidean Distance Generalized Weber Problem: Unconstrained 

In this section t the Euclidean distance problem of Chapter 2 ;s 

extended to the multifac;l~ty case, and a comparison is made with the 

determi ni s ti c sol uti on developed by Eys ter, et a 1. [22]. Problem P3. 1 

may be formulated as, 

P3.6 m;n"imize E[f{Xl , ..• ,Xn)] 
X. 

J 
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1 
n m 2 2 2 

+ 2 2 E[w .. ]E[(x.,-a.) +(x·2-b.) ] 
j=l i=l Jl J 1 J 1 

All of the assumptions of P3.5 are applied to the study of P3.6. 

In Theorem 2.6.2, the expected Euclidean distance is obtained and 

employed in P2.6. Substituting the expected Euclidean distance in P3.6 

yields 

where M is the confluent hypergeometric function defined by (2.6.6) and 
2 A • • is de fi ned as, Jl 

Before solving 1'3.6, the following property of the objective function 

is established. 

Theorem 3.6.1: The objective function defined in P3.6 is a strictly 

convex function over Xj £ E2. 

Proof: Theorem 2.6.4 demonstrates that the expected Euclidean distance 

for Xj is a strictly convex function. Thus, its summation over j is a 

strictly convex function. The first summation in 1'3.6 represents a 

positive combination of Euclidean norms. Since the Euclidean norm is 
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convex, then the combination is a convex function. Hence. the function 

in P3.6 is strictly convex, since it is a summation of a strictly convex 

function and a convex function. 

3.6.1 Solution Procedure 

Theorem 3.6.1 provides sufficient conditions for P3.6 to have a 

unique solution. Also, from the differentiability conditions at the 

optimum, the necessary conditions are obtained. The partial derivatives 

of E[f(X, , ... ,Xn)] in P3.6 are computed with respect to all Xj and set 

equal to zero; thus, 

and 

where 

2 
1 

A .. 
M ( 2 _--.J..L) 

2" 2 20. 
1 

J llj k ' k > j 

lllkj , k < j 

j=l, .•• ,n (3.6.1) 

j = 1, ... , n (3.6.2) 
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and 

for all j, k (3.6.3) 

Unfortunately, if any two new facilities j and k have the same location 

at any time, then Djk = 0 and the partial derivatives in (3.6.1) and 

(3.6.2) are undefined. Kuhn [60J introduced a modified gradient method 

to overcome this difficulty. Also, Eyster, et al. [22] developed a 

hyperbolic approximation procedure (HAP) to eliminate this situation. 

To adopt their approach, introduce a positive constant £ under the 

square root in Djk ; consequently, the partial derivatives always exist. 
A 

Let Ajk denote the modified Djk' i.e., 

(3.6.4) 

Substituting (3.6.4) in both (3.6.1) and (3.6.2) and setting the 

derivatives to zero, the following iterative expressions result, 

and 

X
(h+l) 
jl 

A.?(h) 
- Jl 2 ) 

O' i 
A.?(h) 

J 1 ) 
- 2 

20'. 
1 

(3.6.5) 



(h+ 1 ) xj2 
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A~~h) 
~ji ~ M(2', 2, Jl ) 
o. b. - 2 2 

1 1 cr. , 
A~~h) 

llJ i M(l 2 _ J 1 ) 
o. 2" 2 , 20. 

1 

(3.6.6) 

Both (3.6.5) and (3.6.6) form an iterative scheme to obtain the 

optimal solution vector. Eyster, et ale [22] observed that the larger 

the value of ~ the faster the convergence to the optimum value to the 

approximating function. However, large values of ~ can produce an 

approximating function which has a significantly different optimum 

solution than the original problem. Hence, a successive reduction in 

the value of ~ is employed after each iteration. 

3.7 Euclidean Distance Generalized Weber Problem: Constrained 

In the previous sections, the generalized Weber problem was treated 

for the case of rectilinear and Euclidean distances, but without any 

additional constraints. In this section the formulations involving the 

products of random variables and the random sum of random variables are 

treated separately. 

3.7.1 Constrained Generalized Weber Problem: Case I 

The first case discussed here is the one involving products of 

random variables. From P3.l.l the problem ;s written for the Euclidean 

distance as 



where 

P3.7.1 minimize 
X. 
J 
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subject to: D'k < ~'k J - J 

Pr (w .. R .• < ~ .• ) > Y.' 
Jl Jl - Jl - Jl 

1 

Djk = [(xjl-xk1 )2+(xj2-xk2 )2]2, Rj; 

ll' • (J • 
Jl 1 

for all jt k 

j = 1, ••• , n 
i = 1, ... , m 

(3.7.1) 

(3.7.2) 

1 
2 2 "2 = [(x·l-a.) +(x· 2-b.) ] J 1 J, 

~jk' ~ji' and Yji are as defined in Section 3.1. Observing the 

constraints (3.7.1) discloses that they are deterministic and form a 

convex set. So, the only probabilistic element in P3.7.l comes from the 

chance-constraints (3.7.2). To find their deterministic equivalent, the 

following result is employed. 

Result 3.7.': Let the random variable w correspond to a normal distri

bution with mean llw and variance 0w
2, and let the random variable R2 

correspond to a probability density function given by (2.5.5). Assuming 

that wand R2 are independent, then the probability density function of 

the new random variable y = w2R2 is given approximately by 

K ( v ,-v 2)/ 2 ( z ) 
g(z) = -------v,+v2 --:,..- -2 v v 

2 2 r{+)r( 22) 

o < y < 00 



where 

and 
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R2 = (x,-a)2 + (X2-b)2 t as in Theorem 2.5.1 

~(y) = the modified Bessel function of the second kind 

and order n 

v1' v2 are two known constants. 

Proof: Springer and Thompson [90J employed the Mellin transform to 

obtain the probability density function of products of independent random 

variables. The Mellin transform is defined as 

00 

M(f(x)ls) = E[xs-'] = f xS-'f(x)dx 
a 

o < x < 00 (3.7.3) 

where it is defined on the complex variable s; the inversion of this 

transform M- l is obtained by 

c+;oo 
M- 1 = f(x) = 2!i f. x-sM(f(x)ls)ds 

C-l OO 

(3.7.4) 

Epstein [20] proved that the Mellin transform of the density 

function of the product of two independent random variables is the 

product of the Mellin transforms of the density functions of the 

individual variables, i.e., the Mellin transform of z = xy is 

(3.7.5) 

where g(.), f,(o), and f2(') are the corresponding probability density 

functions, respectively. 

From (2.5.5), the probability density function of R2 is 
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-~ (W+A2) 
f (R2=w) = -'- e 20' I (AIW) 0 < w < 00 

1 22 02' -a a 

Therefore, the Mellin transform of w, M(f, (w)ls), is derived using 

(3.7.3) as 

A2 w 

, e-20'2 ooJ ws-1 e-20'2 I (AM) dw M(f,(w)ls) = -2 2 
20' 0 0 a 

(3.7.6) 

Expansion of 10(0) in its series yields 

A2 w :xrw 2k 

e
- 20'2 oof ws- 1 - 202 ~ (202) dw 

M(f1 (w)ls) = ~2 e L 
20' 0 k=O (r(k+1»2 

A2 (~)2k w 
--2 00 --2 2k 

= -'- e 20' I 12 a 7 ws -1 e 20' (rw) dw 
20'2 k=O (r(k+l»2 0 ~ a (3.7.7) 

2 A2 w 1 
Let X- = - , - = z, then dz = -2 dw, 

20'2 20'2 20' 

2 s-l e-I2 ~ (I)2k oof zS-l e-z zk dz (3.7.8) M(f, (z)ls) = (20' ) L --
k=O (r(k+l»)2 0 

but, from [1, p. 255], 

Thus 

00 

J zk+s-l e-z dz = r(s+k) 
o 

(3.7.9) 
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Unfortunately, (3.7.9) is not in a closed form and more difficulties 

are anticipated in dealing with it in further algebraic manipulation. 

However, in Chapter 2 an approximation developed by Patnaik [75] was 

used to approximate the non-central chi square distribution. From 

Johnson and Katz [49] it may be seen that R2 is distributed as a non

central X22(A2) with two degrees of freedom and non-centrality parameter 

A2; also, w2 is a non-central X12(~2) with one degree of freedom and 

non-centrality parameter ~2. Hence, assuming Patnaik's approximation is 

used, two different Xv 2 distributions with degrees of freedom vl and v2' 

respectively, are obtained. 

Webb [97] obtained the Mellin transform of Xv2 which is given as, 

M(f(X~ Is) 
1 

vl r(T+ s-1) 
= s2-1 

v 
r(-t) 

Substituting (3.7.10) in (3.7.5) for both distributions, 

M(g(y)ls) = M(f(x~ )IS).M(f(x~ )Is) 
1 2 

(3.7.10) 

(3.7.11) 

In order to find the density function of y, g(y), the inverse 

Mellin transform of (3.7.11) must be obtained by using (3.7.4), and 

C+;oo () V v 
M-1 = g(y) = v 1 v 2!. f. y-S22 s-l r(~ +s-l)r( i +s-l)ds 

r(-2' )r( 22) 1 C-loo 
(3.7.12) 
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Equation 3.7.12 can be expressed alternately in order that the 

inverse will be recognized easily from the tables of inverse Mellin 
v1 v2 1 

transform. In (3.7.12), let s' = 2s +:2 + :2 - 2, then ds = 2 ds' 

and (3.7.12) is written as 

g(y) 

v1 v2 v, v2 1-(- + -) - + - -1 
= 2 2 2 y4 4 

V v 
r(+)r(f) 

(3.7.13) 

In Erdelyi, et all [21] extensive tables for the Mellin transform 

and its inverse are pvovided. From [21, p. 331], 

(3.7.14) 

, 
where Kv(ax) is the modified Bessel function of the second kind and 

order v. Observing the similarity between (3.7.13) and (3.7.14), it is 

concluded that 
v1 v2 -+ --1 

y 4 4 
g(y) = -~------v1 v2 -+ -1 v v 

2 2 r(+)r( l> 
(3.7.15) 

1 

To simplify (3.7.15), let y2 = z, then 2zdz = dy, 
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(3.7.16) 

which has the same form as in the theorem, hence the proof is complete. 

If the cumulative distribution of g(z) is required, some assumptions 

are to be made first to obtain a closed form for the integral of 

(3.7.16). It is first assumed that all weights (wi) are such that 
m 

o < w. < 1; it is done easily by dividing each weight by I w," Thus, 
- , - i=1 

the weights can then be defined as the fraction of the total weight. 

Patnaik [75] provided the following approximation toa non-central x· 2 

with degrees of freedom v and non-centrality parameter A2, 

where 

I 2(A2) = c 2 X v Xf 

v + 2A c = --v + A 
A2 

f = v + v + 2A 

(3.7.17) 

Therefore, when the distribution of wi
2, which is X12(~;2) distributed, 

is approximated by a central Xf2, the degrees of freedom, f, is 

4 
f = 1 + ---'~---=-

1 + 2li2 (3.7.18) 

From the assumption that the random variable wi takes values below one, 

then the second term in (2.7.18) is always a fraction and some 
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interpolation is needed to obtain the probability. Given two chi square 

distributions, each with degrees of freedoms nl , n2, respectively. If 

nl > n2, then 

(3.7.19) 

It may be seen that using "1 instead of n2 will underestimate the 

probability. Hence, there is no overestimation in the probability if we 

assume that f defined in (3.7.18) equals two, since the difference in 

this range is small for the x2 distribution. 

Deterministic formulations for the constraints in (3.7.2) must be 

found. As proved in Chapter 2, 

222 Pr(w .. R .. < ~ .. ) = Pr(w .. R .. < 1; •• ) 
Jl Jl - Jl Jl Jl - Jl 

2 2 2 2 2 2, Pr{w. o R.o < 1; •• ) '" Pr(w .. R .. < 1; •• cl c2) 
Jl Jl - Jl - Jl Jl - Jl 

where c, and c2 are defined as in (3.7.17). 

(3.7.20) 

In Theorem 3.7.1, the probability density function of the random 

variable w .. 2R .. 2 is developed. 
J 1 Jl' 

(3.7.16) gives 

Vl 
z2 

g(z) =---vl -,-1 v 
2 2 r(-t> 

Using the assumption that f 2 = 2, 
w.o 
Jl 

(3.7.21) 
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The cumulative distribution is obtained by integrating (3.7.21) 

over z,thus, 

F(z) = Pr(w .. 2R .. 2 < a .. ) = 1 
Jl Jl - Jl v, 

where a·· = ~ .. 21 cl c2. 
J 1 J 1 

. 2-1 
2 

From [", p. 255 1. the integral in (3.7.22) is evaluated 

as, 

Substituting (3.7.23) in (3.7.22) yields, 

Therefore, the constraints (3.7.2) are written as, 

1 - y .. 
Jl 

v, 
0. 2K (a .. ) 
ji vl / 2 Jl 

> -=----..;;,.:.----vl - -1 v 
22 r(f) 

for all j = 1, 
i = 1, 

••• , n 
.... , m 

(3.7.22) 

(3.7.23) 

(3.7.24) 

(3.7.25) 

Note that 0. •• is a function of c1' and from (3.7.17) it is clear that it 
Jl 

is a function of Xj ; in the same manner vl is a function of Xj . Since 

K (.) is well tabulated and available for computer calculations, an v 

iterative method to solve the non-linear programming problem is 

recommended. Problem P3.7.1 may be stated in the deterministic form as, 



P3.7.1 

129 

t; n m 
minimize Z = I ~jkDjk + (~ Jo __ I

l 
lo-_I l ~ .. o. 

X j 1 ~j < k < n J 1 1 

2 

M{-~. 1 /'ji 2l 
20. 

1 

subject to: ~jkDjk ~ ~jk for all j, k 

v1 
"2 K (a .. ) 

aji v1/ 2 Jl 

~ -1 v 
2 2 r(-t) 

< 1 - y .. 
Jl 

for all j, i 

For a constant vi' it is easily shown that the last set of constraints 

forms a convex set (from the definition of K(·)) and certainly the first 

set of constraints forms a convex set; thus, the joint constraint set 

is convex. In Theorem 3.6.1, it has been proven that the objective 

function is strictly convex; thus, if a local optimum is achieved, it 

is also a global optimum. Any nonlinear programming algorithm (e.g., 

SUMT) may be employed to obtain the solution to P3.7.l. In the case 

that vl is not considered as a constraint, i.e., vl is a function of Xj , 

the convexity condition of the constraints may not hold. However, a 

local optimum solution is still available and it may turn out to be a 

global optimum solution. 

It is easier to work with the constraints when v, is constant since 

~ (.) will have the same order during all iterations. However, this 
1/2 

may be accomplished without loss of generality, if the known (~a"~b.) 
1 1 

are rescaled so that any coordinate takes a value between zero and one. 

This will imply that Aji is bounded as 0 ~ Aji ~ 1, from (3.7.17), 

v1 : 2 and the constraints (3.7.25)are written as follows, 
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a; .. Kl (a;. .) < 1 - y.. 
Jl Jl - Jl 

for all i, j 

which will simplify the computations dramatically. Note the optimum 

solution has to be adjusted to its former scale so that the total cost 

obtained is in the correct units. 

In problem P3.7.1, the constraints formed by imposing an upper 

bound on the expected cost are replaced by the chance constraints 

described in (3.2.4). Given that vjk - N(~jk'Ojk2); hence, 

For simplicity, let l1jklXj-Xkl2 = Mjk' 0jk2[IXj-XkI2]2 = Sjk2. From 

(3.7.26), the constraints (3.2.4) may be written as, 

As discussed in Chapter 2, (3.7.27) is the same as, 

(3.7.28) 

where ~-l(Yji) is the inverse of the standard cumulative normal distri

bution. 

On comparing both (3.7.1) and (3.7.28) the effect on the constraints 

is noted when they are treated as chance constraints instead of expected 

value constraints. Replacing (3.7.l) by (3.7.28) does not change the 

solution procedure employed to solve P3.7.1. 
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3.7.2 Constrained Generalized Weber Problem: Case II 

The second problem proposed in Section 3.1 involved a random sum of 

random variables. For the Euclidean norm, P3.2.l is given as, 

P3.7.2 minimize 
X. 
J 

w, . 

Pr ( ~ 1 
(R . , ) (h) < ~ .• ) > y .. 

L Jl - Jl - Jl h=l 

n m 
I I ll· ·a. 

j=l ;=1 Jl 1 

for all j, k 

j=l, ... ,n 
i=1, ... ,m 

where DJ'k' R .. , ~'k' ~ .. , and y .. are as defined in Section 3.7.1; and Jl J Jl Jl 
M, A .. are as defined in Chapter 2. Jl 

Before solving P3.7.2 the chance constraints are converted to 

equivalent deterministic constraints. In Chapter 2, the probability 

density function of Rjk is developed and is given by (2.5.5); also, it 
- 2 is known that w

J
'" - N(ll··,a .. ). Feller [23] discussed how to use Jl Jl 

transform methods (characteristic function and Laplace transform) to 
w·· 

study the random variable, Y
J
.,. = il (R .. )(h). Once its transform is 

h=l Jl 
obtained, the inverse transform provides the desired probability density 

function. Unfortunately, this procedure is very tedious for the given 

distributions and it involves very cumbersome mathematics. 

Based on the Central Limit Theorem for the sum of a random number 

of independent random variables, it may be concluded that the proba-

bility density function of Yji will be approximately normally 
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distributed under very general conditions. For a detailed discussion 

of the conditions required, see Blum, et ale [108] and Renyi [109,110]. 

As shown by Hadley and Whitin [40], the mean and variance of the 

random sum of random variables is given by, 

M .. = ~ .. E[R .. ] 
Jl Jl Jl for a 11 j, i (3.7.29) 

2 - 2 2 2 2 S .. = ~ .. (E[R .. ]-E [R .. ]) + cr .. E [R .. ] 
Jl Jl Jl Jl Jl Jl 

2 2 - 2 = ~ .. E[R .. ] + (cr .. -~ .. ) E [Roo] Jl Jl Jl Jl Jl for a 11 j s i 

(3.7.30) 

In Theorem 2.5.2, the expected value of the squared distance is given 

by (2.5.l0). Also, Theorem 2.6.2 provides the expected value of the 

distance, expressed in (2.6.2). Substituting both equations in (3.7.29) 

and (3.7.30), the mean and variance are written as, 

.[;; 1 A .. 2 
M .. = 11·· V *2 cr. M ( --2' 1, -~2 ) ) Jl Jl 1 2 cr. 

1 

, for a 11 j, i (3. 7 . 31 ) 

2 
2 - ( 2 2) 2 - I fIT (' 1 A. . 2 

S. . = ~ .. 2cr. +A.. + (a .. -11- - ) V'~2 a· M --2' 1, -~2» J1 Jl 1 Jl Jl Jl 1 2a. 
1 

, for a 11 j, i (3.7.32) 

The chance constraints are now written in normalized form ass 

Y .• - M.. ~ .• - M .. 
Pr ( J' J 1 < J 1 J 1) > .• 

S.. - S.. - YJ1 Jl Jl 
for all j, i (3.7.33) 

As discussed above, (3.7.33) is similar to, 
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1; .. > M •• + S •• <P-'(y .. ) 
J1 - J1 J1 J1 

j = 1, 
; = 1, 

••• , n 
... , m 

The deterministic variation of P3.7.2 is given by 

subject to: 11'kD'k < s'k J J - J 
1 

M •• + S,,<p-'(y .. ) < 1;., j 
J1 J1 J1 - J1 i 

m 
.L 
1 =1 

~j 

= 1 , 
= 1 , 

< 

11, ·cr, 
J1 1 

k < n 

... , n 

... , m 

(3.7.34) 

From the results of Chapter 2, it can be concluded that both Mji 

and Sji are convex functions. Therefore, the constraints in (3.7.34) 

are also convex functions; the set of constraints in P3.7.2 is a convex 

set; and the objective function is strictly convex. Hence, a unique 

opt-imum sol uti on is guaranteed if any convergent convex programni ng 

algorithm is used, e.g., SUMT. 

3.7.3 Constrained Generalized Weber Problem: Approximate Solution 

In Section 3.7.1, a solution procedure is developed for Case I, 

when the cost of transportation is given by the product of the two random 

variables, wji and Rji . The method obtained is an exact one; however, 

we may apply a Chebyshev type inequality to obtain an approximate 

solution for Case I. Feller [24] introduced a similar inequality for 

the case of non-negative random variables (which is the case under 

consideration). This inequality is given by 



where 

2 
Pr(x > t) ~ 20' 2 

0' + t 
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E(x) = 0 and V(x) = 0 2, t ~ 0 

To bound the probability, the following may be applied, 

2 2 2 P r (w .. R ". < ~ •. ) = Pr (w ., Rj . < ~.. ) Jl Jl - Jl Jl 1 - Jl 

(3.7.35) 

{3.7.36} 

Since wji - N(~j;'O'j;2), then from Johnson and Katz [49] Wj;2 has a 

non-central X1 2 with one degree of freedom and non centrality 

parameter ~ji2. Thus, the random variable Yj ; has a finite mean and 

variance as shown below, 

[ ] _ 22_ 2 2 
E Y',' - E[w ... R .. ] - E[w .. ]·E[R., ] J Jl Jl Jl Jl 

Johnson and ~tz [49] showed that E[wj ;2], E[Wj;4] are given as 

2 2 2 E[w,. ] = 0'" + ~ .. Jl Jl Jl (3.7.37) 

4 4 2 - 2 4 E [w .. ] = 30'.. + 60'.. ~ .. + ~ .. Jl Jl Jl Jl Jl (3.7.38) 

and in Chapter 2 the expected squared distance is given by (2.5.10). 

Combining (3.7.37) and (2.5.10) yields 

2 - 2 2 2 E [Y .. ] = (cr., +~.. ) (20'. + A .. ) Jl Jl Jl 1 Jl 

V(Y .. ) 
Jl 

222 222 2 = E[ (w, . R.. ) ] - E [w.. ] E [R.. ] 
Jl Jl Jl Jl 

4 4 2- 22 2 22 = E[w., ] E[R .. J - (0,. +~ .. ) (20. +A .• ) 
Jl Jl J' Jl 1 Jl 

(3.7.39) 

(3.7.40) 
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To evaluate E[Rj ;4J, the second moment for the random variable Rji 2 

is computed; this is done as follows, 

co 

E[R4J = J y2g(R2=y) dy 
a 

(3.7.41) 

-2 A2 1 Let A = - , ~ = W , then dw = -2 dy and (3.7 .41) may be wri tten as, 
202 20

2 
20 

r(k+3) 

(3.7.42) 

Using the Kummer transformation, given ~n [1, p. 507 ], 

and expanding the confluent hypergeometric function, the following is 

derived 

(3.7.43) 

Substituting (3.7.38) and (3.7.43) in (3.7.40), the following is 

obtained, 

4 2- 2 4 4 2 2 4 V (Y • -) = (30.. +60.. ].1.. +11-')( 80. +80, A.· +2A.· ) Jl Jl Jl Jl Jl 1 1 Jl Jl 

2 - 2 2 2 ·2 2 - (0 _. +11·· ) ( 20. + A.. ) ( 3 ~ 7 • 44 ) 
Jl Jl 1 Jl 
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which, after rearranging and combining the common terms yields, 

( _ 422 4 V Y 0 0) - K •• (4cr. +4cr 0 A 0 0 + A 0 0 ) Jl Jl 1 1 Jl Jl 

where 
4 2- 2 4 K 0 0 = (5a 0 0 + 1 Ocr . 0 ll.· +ll. 0 ) Jl Jl Jl Jl Jl 

Returning to the relation obtained in (3.7.36) and applying 

Markov's Inequality, 

2 2 ~ 0 • - E[Y. 0] 
Pr (Y.. < ~. 0 ) > J 1 J 1 

Jl Jl - 2 
~ .. Jl 

Since F(.) ~ 0, then 

2 
~o. > E[Y .. ] Jl - Jl 

or, after adding a slack variable Sji' it becomes 

2 
~ .. - So. = E[V .. ] Jl Jl Jl 

From (3.7.36) it may be seen that 

2 2 Pr(Y o' < ~.. ) = Pr(Y. 0 - E[V .• ] < ~.. - E[Y .. ]) Jl - Jl Jl Jl - Jl Jl 

(3.7.45) 

(3.7.46) 

(3.7.47) 

Substituting the value of Yji for the right hand side of the inequality 

and using the inequality of (3.7.35) yields, after simplification, 

2 S .. 
Pr(Y .. - E[Y .. ] < S .. ) > Jl 2 

Jl Jl - Jl - V(Y •. ) + S •. 
Jl Jl 

. (3.7.48) 
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Thus, the chance constraints of (3.7.2) may be written as 

2 5 .. Jl 2 > y .. 
V(V .. ) + 5.. Jl 

Jl Jl 

Equi va 1 ently, 

for all j, i 

2 Yji 
S . " > V (V .. ) 1 = V( Y • • ) Jl - Jl - Yji J' 

(3.7.49) 

The above demonstrates, for a fixed value of the left hand side, that 

{3.7.49} is not a concave function in Sj;' Therefore, the logarithm of 

both sides of (3.7.49) is taken, 

2 10g(S .. ) > log V(V ',") (3.7.50) 
Jl - J 

where (3.7.50) is now a concave function over SjiO The same is true for 

X. since V(V.,.) is a function of X .. 
J J J 

Problem P3.7.1 may be written as 

1'3.7.1 . .. Z \' 0 f;rr mlnlmlze = L ~J'k 'k + t~2 
X. l<j<k<n J 
J --

2 
1 A •• 

M( --2· , 1, -~2) 
20, 

1 

subject to: 

n m 
L L ~. ·0, 

j=l i=1 Jl' 

for all j, 
k = 1, ••• , m 

1 log V(V ji } ~ log(Sji) ~ = 1, ... , n 
, =1, ... ,m 

4 2 2 4 Yji 
K .. (40. +40· A.· +".. ) 1 = V(V

J
.,.) j = 1, •• 0' n 

Jl 1 1 Jl Jl -YJ",' i =1, ... ,m 

5,. > 0 
Jl 

j = 1, ... , n 
i=l, ... ,m 
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From the above discussions, P3.7.1 has a strictly convex objective 

function and is defined over a convex set. Consequently, a unique 

optimum solution will be obtained if a convex programming algorithm is 

used to solve the problem. Certainly this model is much simpler than the 

exact one developed in Section 3.7.1. 

3.8 Numerical Examples 

In this section, numerical examples are solved to aid in under-

standing the solution procedures; they are also intended to demonstrate 

the effect of the probabilistic component on the location models. 

Examples are solved for both rectilinear and Euclidean location problems. 

3.8.1 Rectilinear Distance Multifacility Location Example Problem 

Suppose there are three existing facilities and their locations 

are considered as random variables corresponding to a bivariate normal 

distribution. The mean and standard deviation for the xl-coordinates are 

al = (3,2), a2 = (8,5), and a3 = (15,4); for the x2-coordinates, b, = 

(4,2), b2 = (7,5), and b3 = (2,4). Two new facilities are to be located 

with respect to the existing facilities. The expected value of the 

interaction between the two new facilities is ~12 = 3 and the expected 

values of the interaction between the new and existing facilities are 

given as 

6 

5 ~J 
The new facilities are to be located such that the total expected 

rectilinear distance is minimized. 
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TDsolve the multifacility location problem when distances are 

measured in the rectilinear norm, the separable programming procedure 

described in Section 3.4 is used. The optimization procedure is per

formed separately for the Xl and x2 coordinates. To optimize f,(X, ,X2), 

from Theorem 2.4.3 observe that both x" and x2l must be less than 16. 

Dividing the interval of the variable Xj into eight subintervals yields 

nine A~j variables. The values of the functions, f j , at the appropriate 

mesh points, i.e., f~j' are evaluated (see Appendix B for the corresponding 

computer program). The resulting linear programming problem is solved 

using the MPS/360. The same procedure is repeated to optimize f 2(Xl ,X2). 

The optimal locations for the new facilities are, 

* Xl = (6,6) 

and 

* X2 = (6,5). 

Francis and White [32], in treating the expected values as deterministic 

* values of the coord;nate~ obtained the optimum locations, Xl = (8,7) 
*. 

and X2 = (8,7). Consequently, the deterministic problem obtained by 

assuming that the existing facilities are located at their expected 

values yields significantly different locations. The minimum total 

expected distance is 136.9; the expected total distance when the 

* * locations Xl = X2 = (8,7) are used is 161.043. Thus, a 17% increase in 

the cost occurred by failing to account explicitly for the random 

variation. 
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3.8.2 Euclidean Distance Multifacility Location Example Problem 

In the above example let 0," = ° for all i and assume that the a. 
1 

distance traveled is measured in the Euclidean norm. To solve this 

example, the iterative procedure given by (3.6.5) and (3.6.6) is 

programmed in Fortran IV (see Appendix B). The iterations are given as 

follows, 

X~l) = (4.999795, 4.925308), x~l) = (4.306354, 4.744833) 

xi 2) = (4.852744, 5.083404), x~2) = (4.723700, 4.958285) 

Xi 13 ) = (4.964707, 5.118733), X~13) = (4.964679, 5.118752) 

The optimal locations for the new facilities are, 

* Xl = (4.964707, 5.118733) 

* X2 = (4.964679, 5.118572) 

When the expected values are considered as coordinates in a deter-

ministic problem, Francis and White [32] obtained the optimal locations 

* * Xl = (8,7) and X2 = (8,7). The comparison between both solutions 

implies that there is a great difference in locations, and using the 

expected values as a basis of locations will yield a solution different 

from the one which minimizes the expected total distance traveled. 

The minimum total expected distance is 84.4; the expected total distance 

at the points Xl = X2 = (8,7), is 88.76. 

Suppose it is desired to limit the total distance traveled between 

existing facility i and a new facility j within a maximum distance of 
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12 units, i.e., ~ji = 12 for all i, j, with a probability of 0.85. 

Assuming that the case under study is the one involving products of 

random variables discussed in Section 3.7.1: The feasibility of the 

optimal unconstrained solution obtained above when the chance constraints 

are imposed is checked first. From P3.7.l, the chance constraints are 

written as, 

* * Since Xl = X2, then the only difference between the set of constraints 

for each j is in the weights, wj ;. The arguments of the Bessel function 

are evaluated at j = 1 as follows, 

= 5. 1 

From [1, p. 417 ], the values of k,(aj;) is obtained, and the 

constraints are written as, 
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27 x 10-6 < .15 

0.2 {.15 

.0184 < • 15 

where the second constraint is violated. Therefore, the unconstrained 

solution is not a feasible solution to the constrained problem. 

When the unconstrained problem involves a random sum of random 

variables, then formulation given in Section 3.7.2 yields the following 

constraints, 

M .. + S .. ~-1(.85) < 12 
Jl Jl -

for all i, j 

where Mji and Sji are as defined in (3.7.31) and (3.7.32). The values 

of Mji are computed for the second new facility, j = 2. Hence, M21 = 

2 13.175, M22 = 29.2 and M23 = 4.755. From (3.7.32), Sj; is calculated as 

follows, 

S~l = 4(8+5.096) + (4-4) x 10.85 = 52.384, S21 = 7.23 

5~2 = 5(50+12.776) + (4-5) x 34.10 = 279.78 ,522 = 16.73 

5~3 = 1(32+110.53) + (4-1) x 22.01 = 210.36 ,S23 = 14.5 

Substituting the values of Mji and Sji into (3.7.34), then 

13.175 + 7.23 $-'(.85) ~ 12 

29.2 + 16.73 $-1(.85) ~ 12 

4.755 + 14.5 ~-1(.85) ~ 12 
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where ~-1(.85) = 1.04. Therefore, all three constraints are violated; 

the optimal unconstrained solution is not feasible for the constrained 

problem. 

3.9 Summary 

In this chapter, extensions to the single facility location problems 

described in Chapter 2 were presented. Both the level of interaction 

between facilities and the random variation in the location of the 

existing facilities were considered to be random variables. These 

assumptions generalized the problem to handle both kinds of random inputs 

to the location problem. Minimization of the total expected distance 

was the optimization criterion used throughout the chapter. 

The unconstrained multifacility location problem was treated when 

the cost of item movement was linearly proportional to either the recti

linear or Euclidean distance, as well as the case when cost is a linear 

function of the squared distance. 

For the rectilinear problem, the probabilistic model was transformed 

to its deterministic equivalent and shown to be a convex programming 

problem. Separable programming was used to solve the convex problem. 

When the Euclidean distance is used a solution procedure similar to the 

one developed in the preceding chapter was employed. 

The constrained multifacility location problems were different from 

those obtained for the single facility, since the weights were 

considered to be random variables. Two cases were studied. In the 

first case, the cost of travel is considered to be given by the sum of 

the products of the weight and distance; in the second case, a sum of 
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random sums of the distance traveled was considered. The normal dis

tribution was employed as the probability density function for both 

random variables considered. 

Chance constraints are transformed into the deterministic 

equivalents by developing the distribution function of the cost of 

travel. In both cases described above, the transformed problem was 

formulated as a convex programming problem. Thus, an iterative convex 

programming algorithm was recommended as a solution procedure. When 

the cost of travel is given by the product of the weight and distance, 

the deterministic equivalent problem was obtained using a limit theorem 

similar to Chebyshev's Inequality; a convex programming algorithm, 

e.g., SUMT, was recommended for solving the converted problem. 

For the unconstrained problem, each solution procedure was 

programmed and a sample problem was solved. The solutions of both 

probabilistic and deterministic formulations were compared to measure 

the impact of the probabilistic formulations. 



Chapter 4 

EMERGENCY SERVICE FACILITIES LOCATION PROBLEMS 

4.1 Introduction 

The problem of locating emergency service facilities in an urban 

environment is the subject of this chapter. Typical illustrations of 

emergency service facilities are police stations, fire stations, 

ambulance stations, health outreach clinics, hospitals, police patrol 

cars, and civil defense stations. The study of location problems in 

the public sector is relatively new, but the subject has attracted 

considerable attention in the past five years. 

Public and private sector formulations of location problems usually 

employ different types of objective functions. As indicated by ReVelle, 

et al. [81] the objective in the private sector is typically the mini

mization of cost; whereas in the public sector the objective is stated 

as the maximization of benefits. As surrogate measures of benefits 

distance traveled and response times are often used in the public sector. 

In the case of emergency services, the objective is often stated as the 

minimization of losses to the public. Consequently, in the case of 

police facilities protection against theft, assault, and accidents are 

to be provided. Fire departments are to be located in order to minimize 

losses resulting from fire, such as property loss, loss of lives, and 

psychological damages. In the case of ambulance services, accident 

victims are to be transported to the appropriate health facilities for 

treatment. 

145 
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In studying the effect of random variation on the location of 

emergency service facilities it is assumed that the location of the 

incident (existing facility) is a random variable. Both continuous 

space and discrete space formulations are developed and solution proce

dures are described. 

In order to motivate the study of emergency service facilities 

location problems the following deterministic formulations of location 

problems are considered. 

04.1 
n 

minimize \ c x 
L.. J' J' j=l 

n 
subject to: L 

j=l 
a .. x, > 1 
lJ J 

for all i 

x. = (0,1) for all j 
J 

04.2 minimize max (min t ij ) 
i jEe(X) 

subject to: 
n 
I 

j=l 
x. < k 
J 

x. = (0,1) 
J 

m 
04.3 minimize I min t .. 

;=1 jEe{X) lJ 

subject to: 
n 
I 

j=l 
x. < k 
J -

x. = (0,1) 
J 

for all j 

for all j 
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m = number of customers 

n = number of sites 

k number of facilities available 

r 1, if a facility located at site j covers customer 
a .. = ~ lJ l 0, otherwi se 

r 1, i f a fa c i 1 i ty is to be located at site j 
~ x· = 

J 
1 0, otherwi se 
I... 

c· 
J 

= cost of locating a facility at site j 

t .. = 
lJ 

time required to provide service to customer; from 

site j 

e (x) = {j: x j = 1, j = 1, ... , n}. 

i 

The formulations given above are discrete space formulations; 04.1 is 

referred to as the set covering problem, D4.2 is variously referred to 

as the p-center problem and the minimax network location problem, D4.3 is 

referred to as either the p-median problem, a central facilities location 

problem, the generalized partial cover problem, or a network location 

problem. For a review and comparison of the above formulations, see 

White and Case [106]. 

A continuous space formulation of an emergency facilities location 

problem ;s given by D4.4. 

n m 
D4.4 Minimize ~ ~ ziJow; IXJo-Pi In 

j=l ;=1 N 
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n 
subject to: I 

j=l 
z .. = 1 
lJ 

for all i 

where 

z .. = (0,1) 
lJ 

for all i, j 

m = number of customers 

n = number of new facilities to be located 

wi = number of demands for service generated per unit time 

by customer i 

Xj = (x1j ,X2j ), coordinate location of new facility j 

p. 
1 

z .. 
lJ 

= (ai,b i ), coordinate location of customer i 

= J 1. if customer i is to be served by facility j 

la' otherwi se. 

D4.4 is referred to in the location literature as the location-allocation 

problem. 

4.2 Literature Survey 

The survey of the literature treating the emergency service facilities 

location ,problem begins with a brief review of the general literature, 

followed by a detailed consideration of the research which relates 

directly to the present effort. Due to the widespread interest in the 

problem, the literature cited in this section does not provide an 

exhaustive listing of literature; however, it is felt that the cited 

research ;s representative of that which has been performed. 
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4.2.1 Overview of Previous Research 

The problem of locating emergency service facilities is covered in 

the literature under three classifications: 

a) Design of response areas (fixed locations) 

b) Location (fixed response areas) 

c) Relocation. 

In de~igning response areas, also called districting, it is assumed 

that the location of the service units are known and it is required to 

partition a region into districts such that some service level 

(minimum response time, workload imbalance) is achieved. The location 

problem differs from the districting problem, since it is assumed that 

the region has been previously partitioned into districts (beats) and 

the locations of the new facilities are to be determined. The relocation 

problem occurs when a unit responds to a call and leaves its station 

empty; hence, a decision must be made to relocate available units to 

provide protection for the area until the original unit returns from its 

assignment. 

The work done on the districting problem has been concentrated at 

N.V.C.-Rand Institute in the study of the N.V.C. fire department. 

Carter, et ale [4J have shown that districting to achieve equal travel 

time dividing lines does not yield minimum response time and choosing a 

unit other than the closest one may reduce the average travel time. 

However, their research was limited to only two locations. Larson and 

Stevenson [65J continued the work of Carter, et ale [4J and generalized 

it to handle the multifacility location problem. In a related work, 
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Kenney [53] developed an algorithm for zoning, given the location of 

the N facilities. 

For the location problem Hogg [46] considered the problem of 

obtaining the best combination of N station sites from a set of M alter

native sites, so as to minimize the total number of fire engine journey 

times for a given number of fire stations. This problem is equivalent 

to the p-median problem covered in the literature. Toregas, et al. [94] 

formulated the problem of locating emergency facilities as a set covering 

problem, where the objective ;s to minimize the number of emergency units 

used; they also studied emergency service applicatioffiof the p-median 

problem, where the number of units is fixed. Larson and Stevenson [65] 

studied the problem of locating one new facility relative to a single 

existing facility; they assumed the existing facility was fixed in 

location and the location of the new facility was a random variable. 

The new facility was to be located such that the average travel time 

was minimized. They concluded that the location of the new facility is 

insensitive to the precise location of the existing facility. Plane and 

Hendrick [77] formulated the problem of locating fire companies as a set 

covering problem and used the solut;oh obtained as an input to a 

configuration information model in order to obtain a solution which 

satisfied other criteria. 

Recently, the relocation (repositioning) problem has received 

attention in the literature. Swersey .[91] developed an integer 

programming model to determine which fire houses should be empty and 

which should be assigned relocated vehicles. The objective function 

which he used was to minimize the average travel time to incidepts taking 
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into account the average time that busy units would remain busy. Kolesar 

and Walker [57] suggested the use of a coverage criterion instead of 

average travel time. They developed a heuristic algorithm to determine 

which vacant houses to fill ~ then which available units to relocate to 

the vacant houses. For a review paper~ see Chaiken and Larson [5]. 

In most of the above research, the demand points are known and the 

only random element involved is the demand for service~ which is assumed 

to follow a Poisson distribution. Much of the underlying analysis of 

different formulations depends on queuing theory. In the subsequent 

sections the assumption that the location of existing facilities (demand 

points) is not known deterministically is imposed. Initially, it is 

assumed that a discrete solution space exists and the problem is formu

lated as a chance constrained covering problem, which is treated like the 

regular set covering problem after converting the chance constraints to 

equivalent deterministic constraints. A numerical example is introduced 

to aid in understanding the solution procedure. Subsequently~ a con

tinuous space formulation ;s considered and the problem is formulated as 

a location-allocation problem. A numerical example is provided to 

illustrate the solution procedures recommended. 

4.2.2 Related Research 

In most of the references cited in Section 4.2.1, the travel time 

is known deterministically. In contexts other than location problems, 

some authors assumed that the response time is probabilistic. Larson 

~3] developed several models for the police patrol allocation problem; 

he assumed that the location of existing facility (incident) Pi is known 
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but the location of the new facility (police patrol unit) is randomly 

distributed. In this case all t.· are independent random variables for 
lJ 

a given i; this is opposite to the definition of t ij in problems formu

mulated below. Kolesar and Blum [56J made the same assumption introduced 

by Larson [63] about t;j and developed a square root formula for the 

response time. 

Swoveland, et al. [92] studied the problem of ambulance location 

where the probabilistic aspect is introduced by finding the probability 

of calls arising at district i and serviced by the qth closest ambulance; 

all probabilities were developed from a simulation model, then a branch

and-bound algorithm was developed to obtain the optimal assignment of 

units to districts. The optimization criterion used by Swoveland, et al. 

is the minimization of the total average travel time. 

Volz [96J presented a method for the optimum location of ambulance 

stations such that the average response time is minimized. In his model 

the stochastic variation of the response time is due primarily to the 

route selection and the varying speed of the responding ambulance unit, 

but all locations of incidents are known in advance. He solved the 

nonlinear model using a steepest descent algorithm. 

Recently, Larson [64] generalized an existing method for allocating 

units to accommodate the location problem. He developed a model which 

;s basically a multi-server queuing model (MIMIN); it was generalized to 

include both fixed (fire and ambulance) and mobile locations. The 

availability of units and workload are considered. Except for the work 

of Larson [64] and Carter, et al. [4], a restriction has been imposed 



153 

on the interdistrict interactions. Larson [64] allowed a unit to answer 

a call from other districts. 

Chapman and White [6] introduced a chance constrained formulation, 

where the t ij are considered as continuously distributed random 

variables with a given distribution. They assumed that the randomness 

is due to changing of traffic patterns, road and weather conditions. 

The problem was transformed to a (0,1) programming problem for solution. 

In this research effort, a chance constrained formulation similar 

to the one in [6] is employed. However, the random variables are 

defined differently. Here it is assumed that t ij is a random variable 

due to the randomness of the location of the demand points. This 

assumption forces the dependency property on the random variables and 

results in the development of a different formulation. Compared to the 

work of Larson [64], a covering criterion is chosen, in addition to the 

criterion of minimizing response time. Larson's model is more general 

than those presented herein; his work appeared during the latter stages 

of this research. In some location problems, the centroid of the regions 

is used as the location of the existing facility; such an assumption is 

not reasonable when the population intensity is high. Therefore, it 

has been assumed that demand occurs uniformly over the response region. 

4.3 Discrete Space Formulations 

In this section, probabilistic variations of the deterministic 

formulations given in Section 4.1 are presented. As discussed above, 

the probabilistic component arises due to the assumption that the 

location of an incident is a random variable occurring uniformly over 
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a given region. The randomness of the location implies that the 

distance traveled from the location of the emergency unit to the location 

of the incident is random. Assuming that the driving speed is constant 

over the area considered, then the response time to the incident is 

treated as a random variable. A discrete set of possible' locations for 

the emergency units is assumed to be given by the decision makers. 

4.3.1 Probabilistic Formulations 

As described in Chapter 1, different criteria can be used in 

conjunction with probabilistic formulations. For an extensive listing 

see E1maghraby [15]. In this section, two criteria are considered; the 

first is a chance constrained formulation, and the second is an expected 

value formulation. 

A probabilistic variation of D4.1 is defined as the probabilistic 

set coveri ng problem and .; s gi ven by, 

where 

P4.3.1 minimize f(xl, ... ,xn) 
x. 

J 

n 
= LX. 

j=l J 

subject to: Pr(t .. < t.) > y. 
lJ - 1 - 1 

for some je:e(x), i = 1, ... , n 

t .. = 
lJ 

t. = 1 

x. = (0,1) 
J 

for all j 

response time from an emergency facility at site j 

to an incident in region i 

the upper bound on the response time from location 

to an incident in region i 

j 
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Yi = the required service (aspiration) level, 0 ~ Yi < 1 

e(x) = the set of sites where a facility has been 

1 oca ted, i. e., e (x) = {j I Xj = l} 

where Xj is defined as in D4.1. 

In P4.3.1, the chance constraints replace the deterministic 

constraints in the comparable deterministic model. The aspiration level 

Yi indicates the tolerance measure for admitting constraint violations; 

to ensure that the quality of service is almost equal over the m regions, 

the same value of Yi may be used for each region. Additionally, by 

using chance constraints the sensitivity of the location decision to the 

value of Yi can be tested. In fact, some researchers [94J have found 

that administrators are quite interested in the results of such parametric 

analyses. The cost of installing a facility at site j is considered 

equal for all sites (cj = 1). Savas [82] showed that about 85% of the 

cost of ambulance services is labor. Therefore, in minimizing the number 

of service locations, it is assumed that labor cost is homogeneous over 

all regions. The rectilinear norm is used as a distance measure in P4.1 

and the subsequent problems. 

A probabilistic formulation of D4.2 is presented as, 

P4.3.2 min Z = max ( mi n E [ ti j J ) 
i je:e(x) 

n 
subject to: L 

j=l 
x. 
J 

< k 

x. =.(0,1) for all j 
J 



156 

where k, Xj and 8(X) are defined as in D4.2; E[tij ] is the expected 

response time from location j to incident i. In P4.3.2, the minimax 

criterion is used, hence the location is based on the maximum expected 

response time to an incident in region i from location j. Notice that 

the minimax formulation is a complement of P4.3.1, where instead of 

imposing probability bounds on the response time, the maximum response 

time is minimized. Also, instead of minimizing the number of facilities 

to be located, an upper bound on the number of facilities to be located 

is given. P4.3.2 will be referred to as the probabilistic p-center 

pr'ob 1 em. 

A probabilistic variation of 04.3 is given by, 

1 m 
P4.3.3 minimize Z = - L min E[t .. J w· 

w i=l jE8(X) lJ 1 

n 
~ubject to: L x. < k 

j=l J 

x. = 
J 

(0,1) for' all j 

where w. is the expected incident rate in area i for a given time period, 
1 m 

and w is the total expected incident rate, i.e., W = L wi. 
i=l 

P4.3.3 is referred to as the probabilistic central facility location 

problem, where the objective is to locate at most k facilities such that 

the overall expected response time is minimized. P4.3.3 differs from 

P4.3.2 in the sense that the average response time over the region is 

minimized instead of minimizing the extreme value of response time. 
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4.3.2 Solution Procedure 

The region under study (city, county, etc.) is partitioned into m 

rectangular subregions. In partitioning the region, the following 

assumptions are made: 

a) The location of an incident is uniformly distributed over the 

subregion, i.e., if an incident occurs it has an equal chance 

of occuring anywhere within the region. 

b) If there are some natural barriers (railroads, rivers, etc.) 

within the region, it may be subdivided further to eliminate 

the necessity of crossing the barriers. 

c) The m subregions are disjoint areas, hence no overlapping is 

allowed. 

Through the partitioning of a region into rectangular subregions the 

uniformity assumptions can be satisfied. As illustrated it is possible 

to apply the zoning procedure to subregions such as chemical plants, 

hospitals, public guildings, small retail· shops, and residential areas. 

Notice that the partitioning of the region into m rectangles with any 

size provides more flexibility in satisfying the above assumptions. 

Previous work by Volz [96] required the partitioning of a county into 

square areas of equal size. 

After partitioning the region, the next step is to select alter

native sites for possible locations of the new facilities. This decision 

is made by the decision makers according to geographical, sociological, 

and political factors. Naturally if there are already some facilities in 

operation, their locations may be considered among the possible sites to 
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avoid extra fixed cost. Figure 4.1 provides an illustration of the 

configurations of subregions and sites allowed. 

Since the random variable t ij is defined as the travel time between 

a fixed location X = (xl ,x2) and a random location Pi = (ai,bi ), where i 

denotes the subregion along which the random variable is defined, the 

probability density function of t;j' f(t;j)' ;s needed before 

attempting to solve problem P4.1. 

Theorem 4.1: Given that a random variable- P is distributed uniformly 

over a rectangle of size M x N, where its coordinates are distributed as 

o < a < N 
f(a) feb) = 

, otherwi se 

1 
M 

o 

o < b< M 
(4.3.1) 

, otherwi se 

Assuming that the driving speed along the direction of the coordinates 

xl' x2 is the same and equals v, then the probability density function 

of t, the travel time between P and any fixed location X within the 

rectangle, is given by 

o < t < 00 

where u(t-k) is the unit step function, defined as, 

u(t-k} = {
o -,t<k 

1 ,t > k; 

I M-b a =-4 v 
• a+b I _ M+a-b a5 = --v-- , a6 - v 

at = N-a+b and a l = M+N-a-b , respectively. 
7 v' 8 v 

(4.3.2) 

., 
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0 0 
Q 

0 
, , 

0 0 0 0 
0 

0 

0 0 
0 

0 
0 

0 0 

0 

0 0 0 

o denotes possible sites for location 

Figure 4.1. Divisiori of a r~gion into m rectangular subregions. 
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Proof: let dl and d2 denote (xl-a) and (x2-b), respectively. let dl 
and d2 denote Ixl-a/ and Ix2-bl, respectively. If the probability 

density function of dl, f(d l ), is developed, then f(d2) may be obtained 

by substituting the x2 coordinates instead of xl coordinates. Since f(a) 

is uniformly distributed, then f(d,' is uniformly distributed and its 

probability density function is given by 

, -a < d < N-a 

(4.3.3) 
, otherwi se 

From (4.3.3), the probability density function of the absolute value, 

f(d1), is obtained easily under two different cases: 

and 

where 

If a .:: ~, then 

r 2 ! o < dl < a , N 
f (([,) = f ( I xl -a \) = < 1 a < dl < N-a I 

I N ! 

(4.3.4) 

N If a > 2' then 

r 2 , 0 < d1 < N-a 
- ( N 

f(d,) = f(lxl-bl) =~ , 
, N-a < ([, < a. I N 

i 

(4.3.5) 

(.> 

let t l , t2 denote the travel time along the x, and x2 coordinates, 

d2 t =-2 v 
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Therefore, the distribution of t, under the two cases is derived directly 

from (4.3.4) and (4.3.5): 

and 

If a ~ ~, then 

f( t,) = { : 

N 
If a > 2' then 

f ~ 
f( t,) = < 

11 
! N 
! ... 

It' , a, < 1 < a3 

Similarly, the probability density function of t2 is obtained: 

and 

M 
If b ~ 2' then 

r 2 1 
1 M 

f(t2) = < 
~ 1 

M 
l 

M 
If b > 2' then 

r 
" 2 
lfif" 
J = .... 
: 1 
J M 
,~ 

o < t2 < az 
Itt a2 < 2 < a 4 

(4.3.6) 

(4.3.7) 

{4.3.8} 

(4.3.9) 

Since the total time t = tl + t 2, the probability density function 

is obtained from the convolution of f(tl ) and f(t2), 
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(4.3.10) 

In performing the integration indicated by (4.3.10), a total of forty 

combinations are obtained; however, this may be reduced to twenty 

combinations if a' is replaced by b' in every distribution. 

The Laplace transform of (4.3.10) is given by 

(4.3.11 ) 

To facilitate the use of the Laplace transform, when f(t,) and f(t2) are 

as given in Figures 4.2(a) and (b)"the unit step function is used. From 

(4.3.6) and (4.3.8), f(t,) and f(t2) may be expressed as, 

(4.3.12) 

and 

(4.3.13) 

N M 
whe re a ~ 2" ' b ~ 2" • 

Applying the Lap'ace transform to (4.3.12), 

-a's -a's 
L{f(t }} = ~ [2 - e 1 - e 3] 1 11S 

(4.3.13) 

-a's -a1s 
L{f(t2)} = is- [2 - e 2 - e 4] (4.3.14) 

Substituting both (4.3.13) and (4.3.14) in (4.3.11), 
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Figure 4.2(a). Probability density function of t l . 

2 
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1 
M 

at 
2 a l 

4 

Figure 4.2(b). Probability density function of t 2. 
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Taking the inverse transform of (4.3.15), 

(4.3.16) 

If (4.3.l6) is written in a short form, then 

4 8 
f(t) = M'N [4t - 2 L (t-a~)u(t-aQ) + L (t-a~)u(t-a;)] 

~=1 ~=5 

which is the desired result. 

Letting 5i denote the set of points belonging to region i, the 

probabilitydens;ty function developed in Theorem 4.1 is valid i~ 

Xj€Si; thus, it yields f(t;j) for all XjES i " If it is assumed that 

there are no interdistrict interactions, then all calls generated from 

a subregion are served by facilities stationed in the subregion; if no 

facilities are available then calls are queued until a facility becomes 

available. From the literature, most authors impose this restriction; 

in certain cases the restriction is imposed to decrease interaction 

between political districts. However, the general case is studied here. 

Consequently, it is possible to define a subregion which has no 
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potential sites for a new facility. Henceforth it is assumed that inter

district interactions are possible. 

To evaluate the probability density function for the distance from 

a site which lies outside rectangular region i, say Xj, notice that 

the shortest distance traveled from Xj until the service unit reaches the 

border of region i is known deterministically. Let Xj denote the point 

on the border of region i closest to the point Xj; thus, the total 

distance between Xj and Pi is given as, 

Ix~-P·I = IX~-x·1 + Ix.-P·I J 1, J J J 1 
(4.3.17) 

Accordingly, the travel time is, 

Ix~-x·1 Ix·-p·1 
t .. = J J + J 1 

1 JI V V 

= t .•. + t .. 
J J lJ 

(4.3.18) 

Since tj'j is known deterministically, then the probability density 

function of the random variable tijl is obtained directly from f(tij ) by 

observing the relation in (4.3.18). From (4.3.2), f(t ij ) is written as, 

4 8 
f (t .. ) = M'N [4 t.. - 2 L (t .. -a ~ ) u (t .. -a ~) + L (t .. -a ~ ) u (t .. -a ~ ) ] 

1 J 1 J R,= 1 1 J N 1 J N R,= 5 1 J N 1 J N 

(4.3.19) 

Since t ij = (tij .-tj I j)' from (4.3.18), the p'robabi 1 ity density 

function of tij" f(tij,), ;s obtained by substituting the value of t ij 

in (4.3.19). 

Notice that the distance traveled outside the subregion;, i.e., 

IXj-Xjl'is easily evaluated from the geometry of the region once their 
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~~~-~-~-~-~-~-~,~---------------------·------~--~r-------

(a.,B.) I 
1 1 I 

I 

I 
I 

Xj4 ~--- - - __ I 

It 
I 
f 
I 
I 

I 
I , 
~ 

N 

(X~8,B.+M) 
J 1 

(a,b) 

Figure 4.3. Service units located outside 
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locations are known. Let the coordinates of the origin of subregion i 

be (ai~Bi); hence, the coordinates of the extreme points for Si are 

(ai ,Si)' (ai+N'Si)' (ai+N,Bi+M)' and (ai ,Si+M)' From Figure 4.3, there 

are eight different cases for the potential location for Xj. Let Xjk 

denote the location in each case, k = 1, •.• ,8; then using (4.3.17) 

the location Xj which gives the minimum IXjk-Xjl is indicated in the 

figure for each case. 

The probability density function for every fixed location may be 

derived using the above results. Before solving P4.3.1, the cumulative 

distribution function for t ij is developed. 

Theorem 4.2: If random variable t has a probability density function 

given by (4.3.2), then the corresponding cumulative distribution function 

is given by 

4 8 
F(t) = 1 [2t2 - L (t-a I )2u(t-a ' ) + 1 L (t-a I )2u(t-a I)] 

RN ~=1 ~ ~ 2 ~=5 ~ ~ 

where u(·) and a~ are as defined in Theorem 4.1. 

Proof: The distribution function of t is given as 

t 
F(t) = f f(Y) dy 

o 
(4.3.20) 

Before evaluating the integral in (4.3.20), it is necessary to evaluate 

an integral of the form 

t 
f (z-a)u(y-a)dy 
o 
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Let z = y - a, then dz = dy and the integral is written as 

t t-a 
J (y-a)u(y-a)dy = J u(z)z dz (4.3.21 ) 
o -a 

The integral on the right hand side of (4.3.21) is evaluated through 
z2 

integration by parts. Let u = u(z) and dv = zdz, then v = 2: . 

The derivative of the unit step function ;s the Dirac Delta function 

[107,p. 342], defined as 

(4.3.22) 

Therefore, du = o(z)dz, and (4.3.21) is written as, 

t-a I t-a t-a 
f u(z)zdz = ~ z2u(z) - 1 f z2o(z)dz 

-a -a-a 

1 2 2 ltJ 2 = -2 [(t-a) u(t-a) - a u(-a)] - - (y-a) o(y-a)dy 
2 0 

From (4.3.22), o(y-a) = 0; also, u(-a) ~ 0 for negative values. There-

fore, 

t t 4 t 8 
F(t) = M'N [f 4y dy - 2 f L (y-ai)u(y-a~)dy + J L (y-ai)u(y-ai)dy] 

o 0 i=l a i=5 

Substituting the result of (4.3.23), then the desired result is obtained, 

4 8 
F(t) = --' [2t2 - L (t-a l )2u(t-a ' ) + 1 I (t-al)u(t-a')] (4.3.24) 

MN 1=1 t 1 2 1=5 t t 
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From Theorem 4.2, the distribution function of t ij , where XjESi 

is obtained from (4.3.24). For any location outside the rectangular 

regi on i, XjiSi, the di stri buti on is der; ved as follows. S; nce 

F (t;) = Pr (t; j ~ t;), then from (4.3. 18), ti j = ti j I -tj I j' and the 

distribution function of tij' is given by 

Pr(t .. + t· l · < t.)= Pr(t .. < t.-t.t.) = F(t.-t.,.) 
lJ J J, lJ - 1 J J 1 J J 

(4.3.25) 

From (4.3.24) and (4.3.25) the distribution function of t;jl is 

obtained. The last result to be established is the expected response 

ti~e to travel from any location, either Xj or Xj' to a random location 

within the subregion i. 

Theorem 4.3: Given that a random variable P is distributed uniformly on 

a rectangular region of dimension M x N, where its coordinates are 

distributed as 

f(a) 
,O<a <N r 1 , 0 < b < M ~ M f(b) = 
, otherwi se l 0 , otherwise 

Assuming that the driving speed along the direction of the coordinates 

xl' x2 equals v, then the expected value of the travel time between P 

and fixed location X within the rectangular region, E[t], is given by 

(4.3.26) 
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Proof: The expected value of the travel time is given as 

E[t] = ~ J J Ixl-al + Ix2-b\ f(a)f(b) da db 
b a 

Substituting the corresponding values of f{a) and f(b), then 

which is the desired result. 

Corollary 4.1: The minimum expected response time to subregion i occurs 

when the service facility is stationed at the center of the subregion, 

i . e., Xj = (~ , ~). 

Proof: From (4.5.26), compute the partial derivatives with respect to 

xl and x2 and set them to zero. Thus, 

2x 
aE[t] = 1 [-1 + ---N'J = 0 ax, v 

and 
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From the second -partial derivatives the expected response time is strictly 

convex. Thus the optimum solution is 

* N 
xl = "2 ' 

The expected response time from a location Xjtsi, where the 

coordinates of the lower left hand corner are (0,0), is easily obtained 

from (4.3.26). From Figure 4.3 the eight cases are developed and 

summarized as follows: 

(4.3.27) 
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Given (4.3.26) and (4.3.27), the expected response time from any location 

Xj to any subregion i is calculated. 

All the tools required to solve problems P4.3.l, P4.3.2, and P4.3.3 

are available. To solve P4.3.l, define the variable aij as follows 

, if Pr (t.. < t.) > y. 
lJ - 1 - 1 

, if Pr ( t.. < t.) < y. 
lJ - 1 1 

where Yi is the minimum allowable probability that any incident occuring 

in subregion i is covered by some service unit stationed at location j. 

Assuming that at least one unit at site j is available, a positive value 

of aij indicates that the unit in site j covers an incident occur;ng in 

subregion i. The chance constraints in P4.3.1 imply that any incident 

in i must be covered for some jeS(x). Therefore the problem may be 

formulated as follows, 

P4. 3. 1 minimize 
x· J 

n 
subject to: L 

j=l 

n 
L x, 

j=l J 

a. ·x. > 1 lJ J -
for all i 

Xj = (0,1) for all j 

where P4.3.l is identified now as the set covering problem studied 

extensively in the literature, e.g., Garfinkel and Nemhauser [35], 

Bellmore and Ratliff [2], Lawler [66], and Khumawala [54]. The solution 

to P4.3.1 may often be obtained by reduction techniques,where the rows 

and columns are deleted until the optimal solution is obtained. The use 

of reduction techniques is demonstrated subsequently with a numerical 

example. 



173 

To solve P4.3.2, the expected value of response time from each site 

j to each subregion j is calculated from (4.3.26) and (4.3.27). There

fore, the problem is transformed to problem 04.2, where it has been 

studied by Hakimi [41]. Singer [89], and Christofides and Viola [8]. 

According to the computational experience obtained by Christofides and 

Viola, their iterative algorithm is more efficient than other existing 

ones. Therefore, it is recommended for solving P4.3.2. 

Since the expect~d response times are available, P4.3.3 is solved 

using the same procedure designed to solve 04.3. Several algorithms 

are available for solving the central facilities location problem; among 

them are the ones studied by ReVelle and Swain [80], Curry and Skeith [13], 

and Shannon and Ignizio [88]. If the problem is formulated as a network 

location problem, also referred to as the p-median problem, the algorithms 

developed by Hakim; [41,42], Maranzana [70J, Wendell and Hurter [101J, 

Teitz and Bart [93J, and Singer [89J may be used to solve the problem. 

4.4 Continuous Space Formulations 

Although the majority of the research dealing with emergency service 

facilities location problems has concentrated on discrete space 

formulations, a number of continuous space formulations -have been 

suggested. Specifically, the minimax location problem studied by Dearing 

and Francis [14] and Elzinga and Hearn [18, 19J, among others, has 

been suggested as an appropriate formulation for the emergency service 

facilities location problem. 

The class of location problems which can be considered as continuous 

space counterparts of the discrete space formulations considered 
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previously is referred to as location-allocation problems. As originally 

formulated by Cooper [9] the location-allocation problem involves the 

determination of the number and locations of new facilities s as well as 

the allocation of customers to the new facilities. The allocation 

aspect of the location-allocation problem is especially appealing in 

modeling emergency service location problems; districts or regions are 

normally assigned to emergency facilities to denote primary responsibility 

for providing service to the districts. 

4.4.1 Probabilistic Formulations 

Probabilistic 'formulations of emergency service location problems 

can be provided in continuous space by modifying the location-allocation 

problem. For purposes of this research it will be assumed that the 

number of new facilities is a parameter, rather than a decision variable. 

The probabilistic formulations to be treated are stated mathematically 

as follows: 

n m 
P4.4.1 minimize I L z .. f.(X.) 

j=l i=l lJ 1 J 

subject to: z .. 
lJ = 1 

m 
L W.z •. < W. 

i=l 1 lJ - J 

for all i 

for all j 

Zij = (0,1) for all i, j 
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P4.4.2 min"imi ze [max z .. g.{X.)] . . 1 J 1 J 
1 ,J 

n 
subj ect to: I z .. = 1 for a 11 i 

j=l lJ 

m 
I A.z .. < C. for all j 

i =1 1 lJ - J 

z .. = (0,1) for all i , jl lJ 

n = number of new facilities to be located 

m = number of regions 

wi = expected number of demands for service per unit time 

for region i 

Ai = area of region i 

Wj = upper bound on the expected number of demands for 

service per unit time to be assigned to facility j 

Cj = upper bound on the allowable area to be assigned to 

facility j 

z .. = 
lJ 

r 1, if region i is assinged to facility j 
l 
1 0, otherwi se 
I, 

Xj = (x1j ,X2j ), coordinate location of facility j 

Si = set of coordinate points belonging to region i 

Pi = (ai,b;), an element of the set Si 

fi(X j ) = expected distance traveled per unit time between 

region i and Xj 

gi (Xj ) = maxi mum di stance from Xj to any Pi E5; . 
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In P4.4.1 the n emergency service facilities are to be located in 

such a way that the total expected distance traveled is minimized. 

Exactly one facility is assigned to a given region. In P4.4.2 the n 

facilities are to be assigned so that the maximum distance between the 

location of a facility and any point in its region of responsibility is 

minimized. In both P4.4.l and P4.4.2, more than one region can be 

assigned to a facility as long as the total demand for service and the 

total area served by the facility do not exceed the quantities Wj and Cj , 

respectively. 

The minimax formulation, P4.4.2, is designed to model the preferences 

of a very conservative decision maker. The effects of the worst possible 

situation are to be minimized. Consequently, the term in the objective 

function gi(Xj ) represents the extreme value of the random variation in 

distance traveled to region i from the point Xjo Since each point in 

region i is visited with equal probability, the extreme value for the 

random variable is represented by the distance from Xj to the most 

distant point in region i. Thus, the probabilistic aspects of the 

formulation P4.4.2 are quite subtle. 

4.4.2 Solution Procedure 

In order to solve P4.4.l and P4.4.2 both the allocation problem and 

the location problem must be solved. Unfortunately, there does not 

exist an efficient exact method for solving the location-allocation 

problem, since the two sub-problems are not separable. Given the 

allocations, the location problem is easily solved. Likewise, given the 

locations, the associated allocation problem can be solved. Previous 
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research on the location-allocation problem has concentrated on the 

development of heuristics [9], [10], [11] and branch-and-bound methods 

[17], [55J, [58J, [59J. In most cases, the continuous space assumption 

was replaced by a discrete space assumption in which sites for new 

facilities coincided with the locations of existing facilities. 

In this research effort, the existing facilities are represented 

by rectangular areas, rather than points. Thus, the location problem 

involves the location of points relative to a number of rectangular 

areas. Previous research on the point/area location problem includes 

that of Francis [27J, [28], [29], Love [68], and Wesolowsky and Love [104], 

among others. Love [68J employed SUMT in determining the location of a 

single new facility relative to several rectangular regions in order to 

minimize the expected Euclidean distance traveled; Wesolowsky and Love 

[104] studied a multi facility version of the problem using rectilinear 

distances. 

In solving P4.4.l the following procedure is suggested: 

1) Determine the set of feasible allocations using total 

2) 

3) 

4) 

enumeration. 

For a given allocation, let Yj = {i: 

and R. = US" 
J . Y 1 1£ . 

J 

z.· = 1, ; = 1, ... , m} lJ 

Determine the location X
J
' such that L f.(X.) is minimized. 

. y 1 J 
1 £ • 

J 
Compute the value of the objective function in P4.4.l for each 

allocation and determine the optimum allocation. 
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Depending on the size of the problem it might not be feasible to 

enumerate all possible allocations. Consequently, heuristics might be 

employed to reduce the number of combinations considered. As an 

illustration, only allocations producing Rj'S which are connected sets 

would be considered. The capacity constraint to achieve balanced 

assignments between facilities will also filter out a number of possible 

allocations. 

In solving P4.4.2 a similar procedure is recommended. 

1) Determine the set of feasible allocations using total 

enumeration. 

2) For a given allocation, Let Yj = {i: z.· = 1, i = 1 , ... , m} 
lJ 

3) Determine the location Xj such that ~ax 9i(Xi ) is 
It:Y. 

minimized. J 

4) Determine the value of the objective function in P4 for each 

allocation and determine the optimum allocation. 

Since the present research effort is concerned with location 

problems, no effort has been made to develop an efficient procedure for 

treating the allocation aspects of the problem. However, it is felt that 

the branch-and-bound procedure employed by Kuenne and Soland [59] in 

solving the deterministic location-allocation problem can be modified 

to accommodate the probabilistic location-allocation problems P4.4.1 

and P4.4.2. 
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4.5 Numerical Examples 

In this section, numerical examples are solved to show the impact 

of random variation on the location decision. First, an example is 

solved based on a discrete location space; problem formulation P4.3.l 

is used and the same example problem is solved when the randomness is 

eliminated by considering that the location of customers is always at 

the centroid of the region. The same upper bound on the travel time is 

used with the chance constraints. 

When the location problem is formulated in continuous space, an 

example is given for the location-allocation problems presented in P4.4.l 

and P4.4.2. When the minimum total expected time is the optimization 

criterion, the deterministic counterpart is solved and the difference 

between the solutions. is discussed. 

4.5.1 Discrete Space Example Problem 

It is desired to locate ambulance stations over an area consisting 

of five districts. The geometry of the districts and the potential sites 

available for locating the stations are shown in Figure 4.4. It is 

assumed that incidents are distributed uniformly over the district; 

distances between the centroids of the districts and the eight potential 

sites are given in Table 4.1. It is desired that an amb4lance station be 

located within a given distance of an incident occuring in district i. 

The maximum distance traveled and the service level required for each 

district are shown in Table 4.1. The minimum number of stations are to be 

determined such that the travel distance requirements are met. 
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Figure 4.4. Partitioned districts and potential sites 
for locating ambulance stations. 



District i 

1 

2 

3 

4 

5 

TABLE 4.1. Maximum travel distance requirements, distances between 
sites and incident locations, and service levels. 

Maximum Service Sites 
distance (d i ) 1 eve1 (Yi) 1 2 3 4 5 

2.5 .85 2 0 4 3 5.5 

2.5 .85 4.5 2.5 2.5 .5 3 

3 .85 7.5 5.5 5.5 2.5 4 

1.5 .85 6 4 0 3 1 .5 

4 .85 9 7 3 4 1 .5 

6 7 8 

5 7 10 

2.5 4.5 7.5 

1 .5 1 .5 5.5 

4 7- 6 --' 
co 
--' 

2 5 3 
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Assuming the average driving speed is constant, the distance traveled 

will be proportional to the response time. Therefore, distances are used 

throughout the example to simplify computations. The example is solved 

using the solution procedure recommended for problem P4.3.l. First, 

the covering probabilities are cornputed for all regions and sites using 

(4.3.24) and (4.3.25) with at replacing ai; let Fj(d i ) denote the proba

bability that an ambulance located at site j "covers" region i. The 

result is shown in Table 4.2. Problem P4.3.l is formulated as P4.3.l by 

transforming the probability matrix to a cover matrix by testing the 

feasibility of the chance constraints. The resulting cover matrix is 

given as follows: 

o 1 0 0 0 0 0 0 

000 1 000 0 

00000 1 1 0 

001 0 0 0 0 0 

o 000 1 100 

(4.5.1 ) 

Using (4.5.1), the set cover problem is solved using the reduction 

technique (the solution is trivial in this case) and the optimal solution 

is given as: X2 = 1, X3 = 1, X4 = 1, and X6 = 1. Therefore, only four 

out of eight sites are chosen. For the decision makers, the optimal 

solution guarantees a cover with a probability of 0.85. 

Suppose now that the probabilistic formulation given by P4.3.l is 

ignored and the problem is solved deterministically. This is done by 

considering that the locations of incidents coincide with the centroid 
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TABLE 4.2 Probability matrix of covering region i 
from site j, Fj(di ). 

Site j 

Region i 1 2 3 4 5 6 7 

.53 .94 .14 .03 0 0 0 

2 .02 .30 .35 .95 .29 . 13 .02 

3 0 0 0 .58 .19 .92 .92 

4 0 0 .88 .03 .25 0 0 

5 0 0 .72 .50 .98 .88 .19 

8 

0 

0 

0 

0 

.78 
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of each region. After eliminating the random component, the problem i~ 

solved using the maximum allowable travel distance and the distance 

matrix shown in Table 4.1. The cover matrix is given by: 

o 0 000 0 

o 1 1 0 

00010 

o 0 

o 

00101 000 

L 0 0 1 1 1 01. 

(4.5.2) 

The set cover problem is solved using (4.5.2); several optimal 

solutions may be obtained, eig., X2 = 1, X3 = 1, and X4 = 1 or Xl = 1, 

X3 = 1, and X4 = 1. Thus, any optimal solution will involve only three 

sites; however, noticing the covering probability matrix, any optimal 

solution has a small chance of covering certain regions. For example, if 

the solution is given by X2 = 1, X3 = 1, and X4 = 1, the five regions 

will be covered with probabilities .93, .95, .58, .87, and .72, 

respectively. Thus region 3 has relatively little chance of being covered. 

The probabilistic formulation may require a higher number of assigned" 

sites in order to assure that all sites will be covered at least 85% of 

the time. 

4.5.2 Continuous Space Example Problem 

In order to illustrate the recommended procedures for solving P4.4.1 

and P4.4.2, an example problem is presented. Consider the five regions 

depicted in Figure 4.5(a). Two facilities are to provide service to 
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Figure 4.5. Feasible allocations and the corresponding optimal locations. 
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the regions. Management wishes to allocate regions in such a way that 

a contiguous area is served by a facility. With five regions and two 

facilities, the Stirling number of the second kind [9] indicates 15 

allocation combinations are possible. 

The expected number of demands per unit time and the area for each 

region are given in Table 4.3. In solving P4.4.l it is desired that a 

reasonable balance in the workload for the facilities be maintained. 

Consequently, it is required that the expected demand for service per 

unit time not exceed 15. For P4.4.2 the workload is expressed in terms of 

the area served; thus, it is specified that the service area for a 

facility not exceed 20. As indicated in Table 4.4 there are 2 feasible 

allocations to be considered for P4.4.1 and 3 feasible allocations to be 

considered for P4.4.2. 

Using the solution procedure developed by Wesolowsky and Love [104] 

the locations of the two facilities are determined for each allocation 

combination. The expected distance traveled per unit time is given by 

n w. 
L L f I I I Xl . -a ·1 + I X2 . - b. I da i db i 

j=l iEY. i S. J 1 J 1 
J 1 

(4.5.3) 

Since (4.5.3) is separable in x1j and x2j the expected distance traveled 

per unit time in the xl direction is expressed as 

n w. 
I L f II IXl .-a. I da.db. 

j=l iEY. i S. J 1 1 1 
J 1 

(4.5.4) 

Using a solution procedure similar to that employed for the single 

facility, rectilinear location problem, (4.5.4) is minimized by taking 
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TABLE 4.3. The expected number of demands per unit 
time and the area for each region. 

Expected number of demands 
w· 1 

Area of region 

8 8 

4 6 

6 6 

4 4 

5 9 

i 



TABLE 4.4. Allocation tombinations for the continuous ~pace example problem. 

Allocation Feasible 
combination Yl Y2 P4. 4. 1 P4.4.2 Comment 

1 {l} {2,3,4,5} No No Workload imbalance for P4.4.l and P4.4.2 
2 {2} {1,3,4,5} No No Workload imbalance for P4.4.l and P4.4.2 

3 {3} {1,2,4,5} No No Workload imbalance for P4.4.1 and P4.4.2 

4 {4} {1,2,3,5} No No Workload imbalance for P4.4.l and P4.4.2 

5 {5} {1,2,3,4} No No Workload imbalance for P4.4.l and P4.4.2 

6 {1,2} {3,4,5} Yes Yes 

7 {1,3} {2,4,5} No No Disjoint service area ..... 
co 

8 {1,4} {2,3,5} Yes No Workload imbalance for P4.4.2 co 

9 {l ,5} {2,3,4} No No Disjoint service area 
10 {2,3} {1,4,5} No No Workload imbalance for P4.4.1 and P4.4.2 
11 {2,4} {1,3,5} No No Disjoint service area 
12 {2,5} {1,3,4} No No Disjoint service area 
13 {3,4} {1,2,5} No No Disjoint service area 

14 {3,5} {1,2,4} No Yes Workload. imbalance for P4.4.1 
15 {4,5} {1,2,3} No Yes Workload imbalance for P4.4.l 
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the partial derivatives, ordering the coordinates of the regions, and 

accumulating weights (derivatives) until a median condition is 

satisfied. Applying the solution procedure the two new facilities should 

be located as shown in Figures 4.5(b) and (c) for the 2 feasible 

allocations. The total expected distances for the allocations are 61.08 

and 59.39, respectively. Consequently, the optimal allocation is {1,4}, 

* * * * {2,3,5} and the optimal locations are (xll ,x2l ) = (2.5,4) and (x12 ,x22 ) 

= (6.4,4.625), respectively. 

To illustrate the impact of random variation on the location 

decision, P4.4.l and P4.4.2 are solved as deterministic problems. The 

deterministic formulation is obtained when the location of customers is 

given by the centroid of the region and the weight wi is attached to the 

corresponding centroid location. P4.4.l is solved as a regular minisum 

rectilinear problem, discussed extensively in Francis and White [32J. 

For the two feasible allocations shown in Figures 4.5(b) and (c) the 

"optimum ll locations yield total distances of 40.5 and 42.5, respectively. 

Consequently, the optimal allocation is {1,2}, {3,4,5} and the optimum 

* * * * deterministic locations are (xll ,X2,) = (2,5) and (x12 ,x22 ) = (6.5,3). 

Comparing both the probabilistic and the deterministic results it 

is obvious that the optimal allocation and locations are different. 

The expected distance traveled from the points (2,5) and (6.5,3) totc:.ls 

62.68; thus, failing to account explicitly for random variations yields 

a 6% increase in expected distance traveled. 

A minimax location for a single facility relative to a number of 

regions is obtained by determining the center of the smallest diamond 

which contains all points in the allocated regions. Using the minimax 
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solution procedure for a single facility described in [30], the two new 

facilities should be located as shown in Figures 4.5(b), (d), and (e) 

for the 3 feasible allocations. The maximum distances for the 

allocations are 5, 4.5, and 5.5, respectively. Consequently, the 

optimum allocation is {3,5}, {1,2,4} and the optimum locations are 

* * * * (xll ,x21 ) = (6.5,4) and (x12 ,x22 ) = (3,4,5), respectively. 

If the centroids of each rectangular region are used to represent 

deterministic locations of five existing facilities, the optimum allo

cation obtained by solving the deterministic, minimax location-allocation 

problem is {3,5}, {1,2,4}. Thus, the same allocation is obtained using 

probabilistic and deterministic approaches. The "deterministic" 

location obtained for {3,5} is the line segment connecting the points 

(3.25,4.25) and (4.0,5.0); whereas, the "probabilistic" location is the 

point (3.0,4.5). For the set of regions {1,2,4}, the Udeterministic" 

location is the line segment connecting the points (6.5,2.5) and 

(7.0,5.5); whereas, the IIprobabilistic" location is the point (6.5,4.0). 

Locating at the "deterministic" solution yields a maximum of 2 distance 

units to the centroid of a region and a maximum of 5 distance units to 

any point in the assigned regions. 

4.6 Summary 

In this chapter, the problem of locating emergency service 

facilities in an urban environment was studied. The location of each 

incident was considered' to be a random variable occuring uniformly over 

a given region. The location problem was considered in both discrete 

space and continuous space. 
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In discrete space, the location of possible sites for the emergency 

facilities was assumed to be given by the decision makers. Chance 

constraints were introduced to bound the probability that the response 

time is within a specified limit. After developing the distribution 

function for response time a deterministic formulation was obtained and 

recognized to be a set cover problem. Probabilistic variations of the 

p-median and p-center problems were also presented. 

In continuous space, the problem investigated is similar to the 

location-allocation (L-A) problem. Random variation was introduced by 

considering that customers (incidents) are uniformly distributed over a 

given region; whereas, in the deterministic (L-A) formulations the 

locations are taken as the centroids of the regions. 

Complete enumeration was used to evaluate all feasible allocations; 

then the locations were determined optimally using a median type 

approach. The optimization criterion employed was the minimization of 

the total distance traveled. 

A minimax criterion was considered for the probabilistic problem 

in order to ensure that the extreme values of the random variables are 

satisfied. ,Noticing that the extreme values lie on the boundary of the 

region, a procedure similar to that used for the deterministic counter

part was applied. Solved examples are provided to emphasize the impact 

of the probabilistic formulations on the location decision. 



Chapter 5 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Introduction 

In this chapter, a summary of the research performed on the 

probabilistic formulations of location problems is presented. Remarks 

are provided and conclusions are drawn based on the theoretical and 

computational results obtained in the preceding chapters. 

Recommendations for future research efforts are given to assist in 

identifying research topics and in extending the current research 

effort. 

5.2 Summary 

In this research effort three location problems were studied, 

the single facility location problem, the multifacility location problem, 

and the emergency service location problem. The primary objective of 

this research effort was to investigate the effect of random variation 

on the location decision. 

The first two problems treated are defined as the generalized Weber 

problem, where the concern is to locate one or more new facilities in 

the plane relative to several existing facilities such that the total 

expected cost of item movement is minimized. The cost was considered to 

be a linear function of e{ther the expected rectilinear or Euclidean 

distance, and ;s a quadratic function of the expected Euclidean distance 

(gravity problem). 
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Random variation was introduced in the problems by considering 

that the locations of the existing facilities was not known deter

ministically; also, the item movement between two locations was 

considered to be a random variable. 

In Chapter 2, the single facility location problem was studied. 

Random variation was assumed to exist in the location of the existing 

facilities; the weights attached to the movement were assumed to be 

known deterministically. Different formulations were derived for the 

unconstrained problem; for each formulation, possible applications were 

discussed, related literature was surveyed, theoretical properties were 

developed, and a solution procedure was provided. Each algorithm was 

programmed and optimal solutions were obtained for several problems. 

A comparison between the probabilistic and deterministic solutions was 

provided. 

In the constrained case, norm type constraints and chance constraints 

were employed. The deterministic equivalent of each probabilistic 

formulation was obtained and the properties of the problem were studied 

before suggesting a solution procedure. 

In Chapter 3, the multifacility location problem was studied. It 

was assumed that both weights and existing locations were random 

variables. Two formulations of total expected cost of movement were 

given, the first type involved the product of the random variables, weight 

and distance; the second type involved the random sum of each individual 

distance traveled. Solution procedures were provided for the unconstrained 

problem. Each was programmed and tested for a sample example, and previous 

research was surveyed. For the constrained problem, the deterministic 
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equivalent was obtained for each formulation. Its properties were 

studied, and a solution procedure was suggested. 

In Chapter 4, the emergency service facilities location problem 

was introduced. A literature survey was provided only for the work 

dealing directly with the location problem. Random variation was assumed 

to be present due to the assumption that the location of an incident is 

a random variable occuring uniformly over a given region. The problem 

of locating new facilities in both discrete space and continuous space 

were considered. For the discrete case, the properties of the proba

bilistic formulation were discussed and the deterministic equivalent 

were solved as integer programming problems. For the continuous case, 

the probabilistic formulations were solved as a location-allocation 

problem. An example was solved for each case to show the impact of 

considering the probabilistic aspects of the location problem. 

5.3 Conclusions 

A number of conclusions can be drawn from the research effort. 

Throughout the detailed consideration of specific location problems in 

Chapters 2, 3, and 4 conclusions were drawn concerning applicable 

probabilistic formulations of the location problems, theoretical 

properties of the models obtained, and appropriate solution procedures. 

It was found that random variation can produce results significantly 

different from those obtained using deterministic formulations. Conse

quently, it appears appropriate for the analyst to consider random 

variation when studying location problems. Additionally, it was found 

that the consideration of random variation did not produce formulations 
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too complex to solve. In many cases, solution procedures similar to 

those employed for the deterministic location problem were recommended. 

The usual tradeoffs of ease of solution, clarity of cause-effect 

relationships, and degree of realism found in modeling real world 

problems indicates a consideration of random variation increases the 

degree of realism for the model without significant sacrifices in ease 

of solution and clarity of cause-effect relationships. 

The joint consideration in Chapter 3 of random variation in the 

locations of the existing facilities and the level of interaction 

between new and existing facilities is unique to the present research 

effort. Yet, there exist real world location problems in which both 

forms of random variation occur. Further, a number of real world 

situations can be modeled as the random sum of random variables, as 

well as the product of random variables. 

In Chapter 4, the primary contributions of the research were the 

development of the probability distribution for response time and the 

development of probabilistic formulations for the location-allocation 

problem based on both minimum and minimax objectives. 

5.4 Recommendations for Future Research 

A number of areas for further study were encountered during the 

research and are given below: 

1) Perform sensitivity analyses for each model obtained, 

2) Study the effect of different types of probability. distri

butions on the location decision, 
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3) Determine if the set of solutions to P2.8.l is convex, 

4) Model the location problem as a decision under uncertainty, 

5) Develop a branch-bound procedure for solving the location

allocation problems treated in Chapter 4, 

6) Combine the location decision with the queuing aspects of 

the emergency service facilities location problem, 

7) Apply multi-criteria objective function optimization approaches 

to the location problem, 

8) Extend the consideration of random variation to other location 

problems, e.g., quadratic assignment problems, 

9) Model the layout problem as a decision under risk, 

10) Formulate the location problem as a dynamic, probabilistic 

decision problem, 

11) Apply Bayesian approaches in studying the relocation problem, 

12) Extend the consideration of discretely distributed random 

variables to other location problems. 
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APPENDIX A 

The effect of non-symmetric probability density functions on the 

location decision is studied in this appendix. Since the exponential 

distribution is a relatively simple non-symmetric distribution to work 

with, it is used throughout the analysis. 

A.l Rectilinear-Distance Location Problem with Bivariate Exponential 

Distributions 

When the bivariate exponential is used in Problem P2.4, the model 

is given by 

where 

m 
PA.l Minimize f(X) = L wi 

X ;=1 

-a·a. 
f(a;) 1 1 = a'j e 

-B·b. 
f(b;) = B.e ' 1 

1 

l. !. (Ixl-a i 1+ lx2-bi I) f(Pi)daidP i 
1 1 

a < a· < 00, > 0, i = 1 , .•. ,m a· - 1 1 

a < b. < 00, B· > 0, ; = 1 , ••• ,m 
- 1 1 

-(Ct.a·+B·b.) 
1 1 1 1 f(P;) = a·B·e 1 1 

, a < a· 
- 1 

< 00, a < b. 
- 1 

< 00, 

; = 1 , •.. ,m 

To solve PA.l we can use the result of (2.4.2) to evaluate z(x), 

where ai = a, Ct; = a, and xl = x. Hence, 

where E[aJ 

00 

z(x) = 2x F(x) - x - ~ + J.a f(a)da 
x 

= 1 , since the distribution is exponential; also, 
a 
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00 

F(x) = f a e-aw dw = 1 _ e-ax 
o 

To evaluate the integral, 

00 00 -aa 00 -ax 
f a f(a)da = f aa e-aada = -~ (aa+l) f = ~ (ax+l) 
x x a x a 

Substituting {A.l.l} and the value of F(x) into z(x), gives 

z(x) = x + £ e-ax _ 1 
a ex. 

From (A.l.2), the total cost function is written as, 

(A.'.l) 

(A.l.2) 

* Before solving (A.l.3) for the optimal X it must be established that 

f(X) is a convex function. This is proved in Theorem 2.4;1, based on 

the property that the probability density function is greater than or 

equal to zero. That f(X) is strictly convex is established by the 

following theorem. 

Theorem A.l.l: The function f(X) given in PA.l is a strictly convex 

function of X £ E2. 

Proof: In order to prove that f(X) is strictly convex, it is sufficient 

to establish that at least one function under the summation is a strictly 

convex function. To study the function z(x) defined by (A.l.2), recall 
d2z the result of Theorem 2.4.2, where ---2 = 2f(x) ~ o. 
dx 



208 

For the exponential distribution, f(x) > 0 for all x such that 

o < x < 00; thus, the second derivative is positive, implying that z(x) 
1 is strictly a convex function over all ~l' x2 E E. Consequently, 

f(X) is a strictly convex function and the Hessian of f{X) is positive 

definite. 

Property A.l.l: The inverse of the Hessian of f{X) in (A.l .3) is positive 

definite. 

Proof: Obtaining the first and second derivatives of z(x) in (A.l.2), 

af(x) m -(X.X 
= L w. (1-2e 1 1) 

aX l i =1 1 

and 

af(X) m -S·x2 = L w.(l-2e 1 ) 
aX2 i =1 1 

Hence, the second derivatives are 

and 

Therefore, the Hessian and its inverse are constructed as follows, 

[; ;2] 
1 

~J H(X) = and [H(X)]-l = Al 

0 



209 

Since Al , A2 are positive over all xl' x2' then [H(X)]-l is positive 

definite. 

To optimize the function f(X) given in (A.l.3), the same iterative 

method (Newton) employed in Chapter 2 is used. The iteration formula 

is the same as in (2.4.14), except that S(k) is obtained from 

m -Cti xl l ~ w.(1-2e ) . '1 1 1= 
m -Cti X

' I 2 L w·Ct.e 
i =1 1 1 

I S(k) = [H(Xk)]-l Vf(Xk) = f (A.l.4) 
m -s.x2 

1 
1: w.{1-2e 1 ) 

I 

. 1 1 1= 
m -S;x2 

2 L w·S·e 
i =1 1 1 

J 

As proven in the next section, an approximate solution is given as, 

r m 
L w. 

i =1 1 

m 
2 I w.Ct· 

;=1 1 1 

.... * 
(A.l.5) X = 

, m 
1: w. 

l i=l 1 
& 

I m 
i 2 L w·S· 

L i =1 1 1 

Therefore, it will be used as a starting feasible solution for the 

iterative procedure, hoping that the solution converges faster to 
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its optimal. Using (2.4.14), (A.1.4), and (A.l.5) the optimal solution 

is obtained through the above iterative scheme. 

A.2 Rectilinear Distance Location Problem with a Bivariate Exponential 

Distribution: Approximate Solution 

Fo 11 owi n9 the same approach as inSect ion 2.4.2, the neces sa ry and 

sufficient conditions for the optimal of f(X) defined in (A.l.3) are 

and 

af(X) 
ax, 

* m -a·x 
= L w.(1-2e 1 1) = 0 

i=l 1 

which are translated as 

m 
* L w. m -a.x, i =, 1 

.L w.e 1 = 
1 =1 1 2 

and m 
* L w. m -B.x2 i=' 1 

I w.e 1 = 
i =1 1 2 

(A.2.1) 

(A.2.2) 

Expanding the exponential function in its series, retaining the 

first linear term only, and substituting in (A.2.1) 

* * x, and x2 are obtained as 

m 
L w. 

i =1 1 = --=--2 
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m 
I: w. 

"'* i=1 1 

Xl = (A.2.3) m 
2 I: w.o.. 

i =1 1 1 

and 

m 
.1: w. 

"'* 1 =1 1 
x2 = m (A.2.4) 

2 I: w·8· 
i =1 1 1 

The simplicity of this solution makes it a good starting solution for 

the iterative procedure recommended in Section A.l. 

A.3 Exponentially Distributed Planer Location Problem: Chance Constraints 

The single facility location problem will be treated when there are 

chance constraints on the location of the new facility relative to the 

location of the existing facilities. The chance constrained single 

facility location problem with exponential distribution is expressed as 

PA.3 minimize f(X) 
X 

where 

-8·b. = 8.e 1 1 
1 

, 0 < a. < 00 
1 

, 0 < b. < 00 
1 

for all i 
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To solve problem' PA.2 the chance constraints are replaced by their 

deterministic equivalents. As in the approach of Section 2.8, the 

probability density function of the rectilinear distance vi = !x1-ai I + 

!x2-bi ! is developed as follows. 

Theorem A.3.l: Given that the independent random variables a, bare 

distribution exponentially, where f(a) = ae-aa , f(b) = Be- Bb • The 

probability density function of the rectilinear distance v = Ixl-aj + 

Ix2-bl is given by, 

B -axl -Bx2 2a 2 e [4asinh(av) -4Bsinh{Bv)] 
a -B 

-ax, 
2aS2 e [4asinh(av-Bx2) - 2Bcosh(av-ax2} 

a -S 
-S(v+x2) 

- 2asinh{av-ax2) + 2Be ] 

g{v) = 

-ax,-Bx 
2e . 2 

(A.3.1) 

where xl ~ x2 and a ~ B. 
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Proof: Given that f{a) = ae-aa , feb) = se- Sb , define A, B as follows 

A = (xl-a) , B = (x2-b) . 

Hence, the probability density functions are given as 

a(A+xl ) 
f(A) = ae , 

To obtain the probability density function of the absolute values 

IAI and IBI, the procedure is developed for IAI, and 181 will be obtained 

by replacing its parameter with the parameter of IAI. Two cases may 

occur: 

Case I: 0 < z ~ xl 

Pr(IAI ~ z) 
z -a(A+x l ) 

= F(z) = J ae dA 
-z 

(A.3.2) 

Case II: z > xl 

Pr( I A I 2. z) 
z -a(A+x l ) 

= J ae dA 
-xl 

= 1 - e 
-a.(xl+z) 

(A.3.3) 

From (A.3.2) and (A.3.3), the probability density function is 

obtained by differentiating both equations with respect to z to get, 



r -ax 
ae 1 

f(IAI) = t· 
-ax 

ae 1 

Similarly, 

f(]BI) = 

214 

, 0 < I A I 2. xl 
(A.3.4) 

, xl < IAI < 00 

, 0 < I B I 2. x2 
(A.3.5) 

, x2 < lsi < 00 

The joint probability density function is obtained from (A.3.4) and 

(A.3.5), 

f(IAI, IBI) = f(IA])·f(IBI) (A.3.6) 

To obtain the marginal density function g(v), the following transformation 

is performed. Let 

and 

Hence IAI = L, - L2, IBI = L2 and the Jacobian of the transformation, 

I~I = 1. The joint density function of L" L2, g(L1,L2), is given by 
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-ax,-Bx2 aL,-aL2+BL2 -aL,+aL2+BL2 aL,-aL2-BL2 aBe [e +e +e 
-aL,+aL2-BL2 + e ] , 0 < L2 ~ x2 

L2 < L, < x,+L2 

,0 < L2 < x2 

L2+x, < L, < 00 

-ax,-Bx2 aL,-aL2-BL2 -aL,+aL2-BL2 aBe [e +e ] 
, x2 < L2 

L2 .:::. L, < x,+L2 

(A.3.7) 

The marginal density function of the rectilinear distance v = L, is 

derived by integrating (A.3.7) with respect to L2, i.e., 

L, 
gL (v) = J 9(L1,L2) dL2 , 0 

(A.3.B) 

The evaluation of the integral in (A.3.B) is not a simple one, but the 

idea is to integrate over the four areas depicted in Figure A.l under 

,the assumption that xl ~ x2" 

Integrating over area I, 

L, 
,. J g(Ll ,L2) dL2 ,0 < L, '< x2 o 
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IV 

II 

x +x ----------- -----------------------1 2 

I 

Figure A.1. Integrating the joint density function, g(L1,L2). 
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x, 
2. f g(L, ,L2)dL2 ,x2 ~ L, < x, 

o 
x2 

3. J g(L"L2)dL2 ,x, ~ L, < x,+x2 
L,-x, 

Integrating over area II, 

L,-x, 
,. f g(L, ,L2)dL2 ' xl < Ll < xl +x2 a 

x2 
2. f g(Ll ,L2)dL2 ,xl +x2 ~ L, < 00 

o 

Integrating over area III, 

Ll 
1. f g(L"L2)dL2 ,x2 <L,<x,+x2 x2 

L, 
2. J g(L"L2)dL2 ,x,+x2 ~ L, < 00 

Ll-x, 

Integrating over area IV, 

L,-x, 
J g(Ll ,L2)dL2 ,x,+x2 < L, < 00 

x2 

Combining all probabilities within the same interval results in the 

probability density function of g(v) given by (A.3.l). 

The distribution function F(~) = Pr(v ~~) is obtained by inte

grating (A.3.1) with respect to v. Hence, 
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-ax,- Bx 
= ~aB2 e 2[cosh(a.;)-cosh(S';)] 

a -S 

-aX -Sx 
F2{s) = F,(x2) + ~aS2 e lEe 2(2cosh(a.;)-e-Bs ) 

a -(3 

- cosh(a(';-x2» - ! sinh(a(';-y»] , x2 ~ s < xl 

2aB - (3x2 -ax,. 
F3(s) = F2(x,) + 2 2 [e cosh(B(s-x,» -e cosh(a(.;-x2» 

a -S 

F(.;) = 
-~ . -~, 

+ ~ e 2sinh (S(s-x,» - ~ esinh(a(.;-x2» 

as, 

-ax -Sx 
+ e 1 2(e-as_e-(3S)] 

[
_(a.-B) e-a(xl-x2+';) 

F4(~) = F3(x1+x2) + a~~s2 a 

( -(3) -B(x2-x,+.;) -ax,-8x2 -.; -8'; 
_aBe +2e (ea-e)] 

, x,+x2 ~ .; < 00 l 
F(';) is written as a function of Xl and x2. Hence, PA.3 is written 

m -a.x, -B-X2 +0 

[ 2(
e 1 e 1 ) (a; ~i)] 

PA.3 minimize f(X) = /. Wi x,+x2+ ~ + ~ - a.S-
x, ,x2 i =, 1 1 1 1 

subject to: F(';-) > y. 
1 - 1 

for all i, i = 1, •.. , m 

where Yi is the service level, a ~ Yi ~ 1. 
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The probability distribution F(~i) can be determined if the values 

of ~i' xl' and x2 are known. To solve PA.3 anyone of the existing 

iterative methods for nonlinear programming may be employed. The objec

tive function is a strictly convex function, but the constraints set is 

not a convex set which leads to the fact that a global optimum is not 

guaranteed. Unfortunately, the functions F(~i) are not concave for all i. 

However, under certain conditions the sufficient condition for a global 

optimum may be obtained. 

Lemma 2.8.1: If the local optimal solution obtained is such that 

* * xl +x2 ~ ~i for all i, then the local optimum is a global optimum. 

* * Proof: If x,+x2 ~ ~i for all i, then 

where k is a constant with a non-negative value. Let u > 6, hence 

e-a~ < e-8~ and e-a~, e-S~ are of positive values. Thus, 

-a(x,-x2) -S(x2-x,) -u,xl -6X2 
F(~i) = K - K,e - K2e - K3e 

(A.3.10) 

Each exponential function is convex over xl' x2. Hence, the 

negative combination forms a concave function. Therefore, F(~i) is a 

concave function over xl' x2 if the above conditions are satisfied. From 

the Kuhn-Tucker sufficient condition, this implies that the local optimum 

is global. 
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A.4 Exponentially Distributed Line Location Problem 

If the exponential distribution is used for the probability density 

function of the existing locations ai ~ the prob,lem may be formulated as~ 

-Ct.. xl 
m 2e 1 -1 

PA.4 minimize f(x,) = 2 w.(x l+ ) 
Xl i=l 1 (Xi 

subject to: Pr(lx,-ail ~ ~i) ~ Yi for all i = l~ •.. , m 

In (A.3.2) and (A.3.3)~ the probability distribution of Ixl-al is 

developed and is given by, 

-axl 2e sinh«(l~) 

F{~) = (A.4.l) 

By observing the behavior of F(~) in (A.4.1) with respect to Xl £ El, 

the function is convex in the interval 0 ~ ~ < Xl and is a concave 

function in the interval Xl ~~. Hence, there is an inflection point 

at ~ = Xl. 

From (A.4.l), the deterministic equivalence of PA.4 is 

PA.4 minimize f(x,) 
Xl 

for all i, i = 1, •.• , m 
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The problem PA.4 is solved optimally using an iterative convex 

programming algorithm, e.g., SUMT, but the Kuhn-Tucker necessary 

condition guarantees a local optimum only. The local optimum is a global 

one if the following condition is satisfied. 

* * Lemma A.4.l: Given a local optimum solution x , if xl < ~. for all i, 
- 1 

then the local optimum is a global. 

* Proof: The proof is direct since, when xl ~ ~i for all i, problem PA.4 

becomes a well behaved convex programming problem where the global 

optimum is certain. 
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c 
C RECTILINEAR-DISTANCE SINGLE FACILITY LOCATICN PROBLEM 
C WITH A BIVARIATE NORMAL DENSITY FUNCTION 
C 

100 

1 
101 

2 
200 

301 

202 
C 
C 
C 

IMPLICIT REAl*8(A-H,O-Z) 
DIMENSION UA(S),UB(S),SIGA{5),SIG8(S},W(Sl,Xl(20),X2(20) 
REAO(5,lOO)M,ITMAX 
FORMAT(5X,2151 
DO 1 1=1, M 
READ (5 f 101) UA ( I) f UB ( I) ,S I GA ( I) ,51GB ( I) t H (I ) 
FORMAT (5X,5FIO.S) 
DO 2 I=1,M 
WRITE(6,2 )1,UA(I),U8(I),SIGA(I),SIGB(I),W(I} 
FORMAT(2X,'I=',I2,3X,·UA=',FIO.5,3X,'UB=',FIO.5,3X,'SIGA=',F10.5, 
13X,·SIGB=',FIO.5,3Xt'~='tFIO.5/) 

WRITE(6,301) 
FORNATC'l') 
WRITE(6,202) 
FORMAT(lOX,'ITER',lOX,'Xl',15X,'DXl',15X,'X2',15X,'OX2 II) 

CALCULATION OF THE INITIAL SOLUTION 

SUMIN=O.OO 
SUMID=O.OO 
SUM2N=O.DO 
SUM2D=O.DO 
00 7 l=l,M 
Al=W(I)/SIGA(I) 
A2=W(I)/SIGB(I} 
SUMIN=SUMIN+~l*UA(I) 

SUMIO:SUMID+Al 
SU~2~=SUM2N+A2*UB(I) 

N 
N 
W 



7 SUM20=5UM2D+A2 
Xl(l)=SUMlN/SUMlD 
X2(1)=SUM2N/SUM2D 
SQP2=1.253314100 
DO 8 IT=l,ITMAX 
ITl=IT+1 
S U [viI N= 0 • 0:) 
SUMID=O.OO 
SUM2N=O.DO 
SUM20=O.OO 
DO 9 I=l,M 
Al=CXl(IT)-UA(l»/SIGA(I) 
AIAl=-O.5DO*Al*Al 
AlS2=AI/I.414214DO 
IF(AlS2)54,55,55 

54 AIS2=-AlS2 
SUMIN~SUMIN-h(Il*DERF(AlS2) 
GC TO 56 

55 SUMIN=SUMIN+W(I)*DERF(AlS2) 
56 SUMID=SU~lD+W(I)*DEXP(AIAl)/SIGA(I) 

B 1= ( X2 ( IT) -U B ( I ) ) / S 1GB ( I ) 
BIHl=-O.5DO*B1*Bl 
BlS2~31/1.414214DJ 
IF( 8152) 6't,65,65 

64 8152=-8152 
SUM2N=SUM2N-W(I)*DERF(BlS2) 
GO TO 9 

65 SUM2N=SUM2N+W(I)*DERF(BlS2) 
9 SUM2D=5UM2D+W(I)*DEXP(BIBl)/SIGB(I) 

Xl{ITl)=Xl(IT)-SQP2*SUMlN/SUM1D 
X2(ITl)=X2( IT)-SQP2*SUM2N/SUM2D 
DXl=Xl(ITl)-Xl(lTJ 

N 
N 
~ 



OX2=X2(IT1)-X2(ITl 
WRITE(6,2J3'IT ,Xl{IT1),DXI,X2(ITl),DX2 

203 FOR~AT{11X,I2,4(4X,014.7)} 
IF(DABS(OXl).LT.O.OOClDO.AND.OABS{DX2).LT.O.OCOlDO)GO TO 10 

8 CONTINUE 
WRITE{6,204) 

204 FORMAT{lOX,'UNSUCCESSFUl CONVERGENCE'II) 
GO TO 12 

10 WRITE(6,20S} 
205 FORMAT{lJX,'SUCCESSFUL CONVERGENCE'II) 

N 
N 
CJ'l 



c 
C EVALUATI~G THe OBJECTIVE FUNCTION FOR THE OPTIMAL SOLUTION 
C AND THE SOLUTION OBTAINED FROM THE DETERMINISTIC PROBLEM 
C 

l=l.O 
400 CCNTINUE 

SIGN=l.O 
SUNN=J.O 
00 20 I =l,M 
A2=Xl( ITI '-UA( I) 
11=A2/SIGA(11 
lII1=-O.500*Zl*Zl 
ZlS2=ll/1.414214DJ 
IF(ZlS2)21,22,22 

21 ZlS2=-11S2 
S IGN=-l. C 

22 51 = (A2~DERF(llS2)*SIGN)+(O.1978845600*5IGA(I)*OEXP(llll) 
B2=X2(ITl)-U8( I) 
Z2=B2/SIG8(I) 
Z212=-0.500*Z2*Z2 
Z2S2=Z2/1.414214DO 
IF(Z2S2)23,24,24 

23 1252=-1252 
51 GN=-l.C 

24 52 = (B2*OERF{Z2SZ)*SIGN)+{O.19788456DC*SlGB{1)*OEXP(Z212) 
5 := Sl+52 
FUN I = ~J( I ) ~~ S 

20 SUMM =SUMM+FUNI 
IF{l.EQ.2) GO TO 601 
hRITF.(6,600) 

600 F J ~- ~1 A T ( lOX, • P R (J B A B I lIS TIC SOL UTI eN: • ) 
WRITE(6,207)Xl(ITl),X2(ITl),SU~~ 

N 
N 
(J) 



201 FORMAT (/lOX,'OPTIMAL Xl =·,FIO.S/IOX,'OPTIMAL X2 =' 
I,FIO.S/16X,'f(X) =',FIO.5//) 

IF(L.EQ.l) GO TO 603 
601 ~l R I T E ( 6, 602 ) 
602 FORMAT(lOX,'DETERMINISTIC SOLUTION :t) 

WRITE(6~6J4) XI(ITl),X2{ITl),SUMM 
604 FORMAT (/lOX,'OPTIMAL Xl =',flO.S/lOX,'OPTIMAL X2 =' 

l,FIO.5/16X,'F(X) =',FIO.5/IHl) 
IF{l.EQ.2.) GO TO 12 

603 Xl(ITl)=C. 
X2(ITl)=O. 
l=l+l. 
GO 10 400 

12 STOP 
END N 

N 
....... 



c 
C EUCLIDEAN-DISTANCE SINGLE FACILITY LOCATION PROBLEM 
C WITH A BIVARIATE NORMAL DENSITY FUNCTION 
C 

IMPLICIT REAl*8(A-H,O-Z) 
DIMENSION UA(5},UB(5),SIGA(5),SIGB{5),W(5)~Xl(40)fX2(40) 
REAO(S,1001M,ITMAX 

100 FORMAT(5X,21SJ 
DQ 1 1=1, M 

1 REAO(S,101)UA(I},UB( I),SIGA(I),SIGB{I),W{I) 
101 FORNAT (5X,5FIO.5) 

DO 2 I=l,M 
2 WRITE(6,2001I,UAtI),UB{I),SIGA(IJ,SIGB(I},W(I) 

200 FORMAT(ZX,'I=',I2,3X,'UA=·,FIG.5,3X,'U8=·,FIO.5,3X,·SIGA=',FIO.5, 
13X,'SIGB=t,FIO.5,3X,'W=',FIO.5/) 

WRITE(6,202) 
202 FCRMAT(lOX,'ITER·,10X,'Xl',15X,'DXl',15X,·X2 1 ,15X,'DX2 'I) 

DO 13 IT=l,ITMAX 
SU~·11N=O. DO 
SUMl 0= 0.00 
SUf-'i2N= o. DO 
IT1=IT+l 
DO 14 I=l,M 
AM=l.DO 
Xl(l)=UA(I) 
X2(1)=UB(I) 
SLMOA=(Xl(ITJ-UACI»*(Xl(IT)-UA(I»+(X2(IT)-UB(I»*(X2(IT)-UB(I}) 
Z= O.5DG*SLMDA/(SIGA{IJ*SIGA(I» 
CALL HYPR(1.5DO,2.DO,Z,AM,AN) 
ZI=-Z 
Al=W(Il*AN*DEXP(Zll/SIGA(I) 
S U ~·11 N = SUN 1 N + t 1 f.~ U A ( I ) 

N 
N 
co 



S U '·11 0 = S U :·3 1 0 .. A 1 
14 SUM2N=SUM2N+Al*U8(I) 

XI(!Tl) SUMIN/SUMID 
X2(ITl)=SUM2N/SU~lD 

DXl=Xl(ITl)-XltIT) 
DX2=XZ(ITl)-X2(IT) 
WRITE{6,203)IT ,Xl(ITl),DXl~X2(IT1),DX2 

203 FORMAT(11X,12,4{4X,D14.7» 
IF(OABS(DX11.lT.0.0001DO.AND.DABS{DX2).lT.O.OOOIDO)GO TO 15 

13 CCNTINUE 
WRITE(6,204) 

204 FCRMAT{lCX,'UNSUCCESSFUl CCNVERGENCE'//) 
GO TO 20 

15 WRITE(6,205) 
205 FORMAT(lCX,'SUCCESSFUL CO~VERGENCE'I/) 

N 
N 
1..0 



c 
C EVALUATING THE OBJECTIVE FUNCTION FOR THE OPTIMAL SJlUTION 
C AND THE SOLUTION OBTAINED FROM THE DETERMINISTIC PROBLEM 
C 

l=l.O 
400 CONTINUE 

SUM=O.O 
00 16 1=1 t:'1 
A~'= 1. 0 
SLMOA=(Xl{IT11-UA(I)*(Xl(ITlJ-UA(I)+(X2(ITl)-UB(I» 

1*{X2(ITl)-UB(I » 
Z=O.5DO*SLMDA/(SIGA(I)*SlGA(I» 
CALL HYPR(1.50~,I.DO,Z,AM,AN) 
ZI=-Z 
A 2= 1 • 2 5 3 3 1 't 1 n (} ~~'~! ( I ) ~{ S I G A ( I ) ;.;, AN * D E X P ( II ) 

16 SUr1:SU;"I+A2 
IF(L.EQ.2) GO TO 601 
WRITE(6,6'JO) 

600 FORMAT(lOX,'PROBABIlISTIC SOLUTION :.) 
WRITE(6,2J6)Xl(ITl),X2(IT1),SUM 

206 FORMAT (/lOX,'OPTIMAL Xl =',FIO.5/10X,'OPTIMAL X2 =', 
IFIO.5/16X,'F(X) =',FIO.5/) 

IF(L.EQ.ll GO TO 603 
601 WRITE(6,602) 
602 FORMAT(10X,'OETERMINISTIC SOlUTICN :.) 

~..JRITE(6,604) Xl(ITl) ,X2(ITll,SUM 
604 FORMAT (/IOX,'OPTIMAl Xl =',FIO.5/1GX,'OPTIMAl X2 =' 

IFIO.5/16X,'F(X) =',FIC.5/1HIJ 
IF(l.EQ.2.) GO TO 20 

603 Xl{ITl)=4. 
X2(ITll=2. 
L:l+l. 

N 
W o 



o 
o 
...;t 

o 
1-0-

00 
01-2 
t!)V)UJ 

o 
N 

231 



SUBROUTINE HYPR(A,B,Z,AM,ANl 
IMPLICIT REAl*8(A-H,O-Z) 
At-11= 1. DO 
TERM=l.DO 
DO 1 1=1,20 
V=OFlJAT ( 1-1) 
TERM={A+V)*l*TERM/«(B+V)*DFlOAT(l») 
AH= AH+ TE :P,~1 
o AN= A;-4- At,'; 1 
AN=At4 
IF(DABS(DAM).LT.O.OOOIDO)GO TO 2 
At>' 1 =Af'1 

1 CCNTINUE 
2 RETURN 

END N 
W 
N 



c 
C EUCLIDEAN DISTANCE MULTIFACILITY LOCATIJN PROBLEM 
C WITH A BIVARIATE NORMAL DENSITY FUNCTION 
C 

IMPLICIT REAL*8(A-H,O-Z) 
DIMENSION UA(6),U3(6},SIGt6),W(6,6',V(6,6),Xl(6,40),X2(6,40), 

IDX1(6},DX2t6) 
REAO(5,lOJ)M,N,ITMAX 

100 FORMAT(5X,3I5} 
DO 1 1=1,"" 

1 READ(S,lOl)UA{I),UR(l),SIG(I) 
101 FCRMAT(5X,3FI0.5) 

DO 2 J=l,N 
2 READ(S,102)(VCJ,L),l=1,J) 

102 FOP r'1 AT ( 5 X , 6 FlO. 5 ) 
DC 3 L=l, N 
IF(l.EQ.N)GO TO 17 
Ll=L+l 
DO 3 J=Ll,N 
V(L,J)=V(J,L) 

3 CONTINUE 
17 DO 4 J=l,N 

4 READ(S,102){W(J,I),I=I,M) 
00 5 1=I,t1 

5 W R IT E ( 6, 200' I , U/\ ( I ) , UB ( I ) , S I G ( I ) 
20 C F Q R :-'1 AT ( 2 X, • 1= • , 12, 3 X , I U A = I ,F 10. 5,3 X, • U R= • ,F 10. 5, 3 X , • S I G =' ,F 10.31 ) 

W~ITE(6,201) 

201 FORf'.~AT (/2X, 'NE~J FACILITY INTERACTlot,JS') 
DO 6 J=l,N 

6 W~ITE(6tlJ2)(V(J,l),l=ltN) 
WRITE(6,202) 

2 02 F ;J R PAT { / 2 X, • N E (J AJ ~ 0 E X 1ST I ~l G F A elL I T YIN T E R /-\ C T I (I ~ IS' ) 

N 
eN 
eN 



DO 7 J=ltN 
7 W~ITE(6,102J(W{J,I},I=1,M) 

DO 19 J=l,N 
Xl(J,I)=DFLOAT(Jl*2. 
X2(J,11=OFlOAT(J)*2. 

19 CONTINUE 
DO 8 IT=1 t I Ttv1AX 
IT1=IT+l 
S Uti' 10= o. 0 
SUN11N=O.O 
sur'il2N=O .0 
SUt42D=O.O 
SUM21N=0.0 
SUj'·122N=O.O 
TOTMAX=O.O 
00 9 J=l,N 
DO 10 K=l,N 
IF(K.NE.J1GO TO 13 
IF(K.EQ.J)O=l.O 
G'J TO 12 

13 D=DSQRT{(Xl(J,lTl-Xl(K,IT»*(Xl(J,IT1-Xl(K,IT»+(X2(J,IT1-X2(K, 
lIT»*(XZfJ,IT)-X2{K,ITJ}) 

12 Al=V(J,K)/D 
S U fJj 1 0 = S U l'~~ 1 0 + A 1 
SUM11N=SUMIIN+Al*XI(K,IT) 
SUti12N=SUM12N+Al~:~X2( K, IT) 

10 CONTINUE 
00 11 1= 1, r.1 
Ai·1= 1.0 
S l NDA= (X 1 (J , IT) -U l\ ( I ) ) ~~ (X 1 «J, IT) -UA ( I ) ) + (X2 ( J , IT) -UB ( I ) ) * 

1 ( X 2 ( J , IT) -U B ( I ) ) 
Z= O.50*SlMOA/(SIG(!)*SIG(I» 

N 
W 
+=-



CALL HVPR(1.50Q,2.DO,Z,AM,AN) 
ll=-Z 
A2=W(J,I)*AN*0.6266570700*DEXP(Zl)/SIG(I) 
SUr-12D= SUMZO+AZ 
SUM21N=SUM21N+AZ*UA(I) 
SUM22N=SUM22N+A2*UB{I) 

11 CONTINUE 
SUMO=SUMID+SUM2D 
SUMIN=$UMIIN+SUM21N 
SUM2N=SUMI2N+SUM22N 
Xl(J,ITl)=SUMlN/SUMD 
XZ(J,ITl)=SUM2N/SUMO 
DXl{J)=DABS(Xl(J,tT11-Xl(J,IT» 
DX2(J)=DABS(X2(J,ITl)-X2(J,IT») 
DELMAX=DMAXl(OXl(JI,DX2(J» 
TOTMAX=DMAXl(OEl~AX,TOTMAX) 

WRITE(6,25C)Xl(J,IT1),DXlfJ),X2(J,ITl),DXZ(J) 
250 FORMAT(/5X,4(4X,D14.1)) 

9 CONTINUE 
IF(TOTNAX.lT.O.CGOIDO)GO TO 20 
WRITEI6,251) 

25 1 FOR t'1 AT ( I / I ) 
8 CCNTINUc 

WRITE(6,252) 
252 FORMAT(SX,'UNSUCCESSfUl CONVERGftNCE'/) 

GO TO 21 
2 0 t~ R I T E ( 6, 2 53 ) 

253 FCRMAT(SX,'SUCCESSFUl CONVERGANCE'/) 

N 
W 
<.11 



c 
C EVALUATING THE OBJECTIVE FUNCTION FOR THE OPTIMAL SOLUTION 
C AND THE SOLUTION OBTAINED FROM THE DETERMINISTIC PROBLEM 
C 

L=l.O 
400 CONTINUE 

SUN=J.O 
SUr.11=O .0 
SUM2=O.O 
DO 30 J=l,N 
00 31 K=J, N 
o =DSQRT(Xl{J,IT1)-Xl(K,ITl)*(XltJ,ITl)-X1(K,IT1) 

1 + ( X 2 ( J , I T 1 ) - X 2 ( K , IT 1 ) ) :1,.:( X 2 ( J tIT 1) - X 2 « K , I T 1) ) ) 
A1=V(J~K)*D 
SUr'" 1:$ U~}~ 1 +A 1 

31 CGNTINUE 
DO 32 I::l,M 
Ar~= 1. 
SLMCA= (Xl(J,ITlJ-UA(I1J*(Xl(J,IT11-UA(I»)+ 

1(X2{J,ITl}-UB{I»)*(X2(J,ITl)-U8(l}) 
Z :: 0 • 50 0 ~ S l N 0 A / ( S I G ( I ) ,;< S 1 G ( I ) ) 
CALL HVPR(1.5DO,1.OQ,Z,AM,AN) 
Zl=-Z 
A2=1.2533141D0*W(J,1)*AN*DEXP(Zl}*SIG(I) 

32 SUN2=S U>12+t\Z 
30 CONTINU~ 

S U V= S U !"11 + S U ~,~ 2 
IF(l.EQ.2J GO TO 6el 
WRITE(6,6'JO) 

600 FGR~AT(/5X,tPRO~ABIlISTIC SOLUTION !') 
604 HRITE{6,500} 
500 FORMAT (/IOX,'J',10X,'Xl'tlJX,'XZ'/) 

N 
W 
0) 



DO 30;) J=l,N 
300 WRITE(6,501)J,Xl(J,ITl),X2(J,ITl} 
501 FORMAT(9X,I2,6X,FIG.5,2X,FlO.5) 

WRITE( 6, sa2 )SUr·1 
502 FORMATf/16X,'F(X) =',FIO.51/) 

IF(L.EQ.2) GO TO 605 
IF(L.EQ.l) GO TO 6C3 

601 vJPITE(6,602) 
602 FORMAT(5X,'DETERMINISTIC SOLUTION :') 

GO TO 60 LI-

603 Xl(l,ITl)=8.0 
X2(1,ITI)=7.0 
Xl(Z,ITl)=8.0 
X2{2,ITl}=7.0 
l=L+l.O 
GO TO 4JO 

605 WRITE(6,606) 
6;) 6 FeR t~ A T ( t I' ) 

21 STOP 
END 

N 
W 
......... 



SUBROUTINE HYPR{A,B,Z,AM,AN) 
IMPLICIT REAl*8(A-H,O-Z) 
At,11= 1. DO 
T E R ~,. = 1 • 0 C 
00 1 1=1,20 
V=DFLOAT (I-I) 
TERM={A+V)*l*TERM/«8+V)*DFLOAT(I)) 
AM=AM+TERt4 
OAM=A:14-Ar~ 1 
AN=AN 
IF(DABS{DAMJ.LT.O.OOOIDO)GO TO 2 
AMl=AN 

1 CCNTINUE 
2 RETURN 

END 
I'\.) 
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c 
C R TILINEAR-DISTANCE MUlTIFACILITY LOCATION PROBLEM 
C WITh A BIVARIATE NCRMAL DENSITY FUNCTION 
C 

IMPLICIT REAL*8tA-H,O-Z) 
DIMENSION UA(6},SIGA{6),W(6,6),X(6),F(6),UB(6),SIG8(6) 
REAO(S,lOO)M,N 

100 FORMAT(5X,215} 
DO 1 I=I,M 

1 READ(5tlOl)UA(I),U8(I),SIG~(I),SIGB(I) 
101 FOR~AT(5X,4FIO.5) 

00 11 J=l,N 
11 REAO(S,102}(W{J,I),I=1,M) 

102 FORMAT(5X,6FIO.S} 
DO 2 I=l,M 

2 WRITE(6,200)I,UA(I),UB(I),SI (I1,51GB{l) 
200 FOR~AT(2X,'I =',I2,3X,'UA =',FI0.5,3X,·UB =',FIO.5,3X, 

l'SIGA :',FI0.5,3X,'SIGB =',FIO.5/) 
WRITE(6,205) 

205 FORMAT(/ZX,' W AND EXISTING FACILITY INTERACTIONS') 
DO 13 J=l,N 

13 WRITE(6,lOZ)(W(J,I),I=1,M) 
WRITE{6,20Z} 

202 FORMAT{/21X,'Xll',15X,'Fl1',15X,'X21',15X,'F21'/J 
K 1.0 

14 DO 22 J=l,N 
22 X(J)~O.O 

9 CONTINUE 
DO 23 J=l,N 

23 F(J)=O.O 
DO 7 J=l,N 
DO 7 I=l,M 

N 
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SIGN=l.O 
AR:X(J)-UA(I) 
ARl=ARISIGA(I} 
ARlS=-O.500*AR1*ARl 
Bl=O.797S8456DO*SIGACI1*DEXP{ARlS} 
AR2=ARl/l.414214DO 
IFIARZ)50,51,51 

50 AR2=-AR2 
SIGN=-l.DJ 

51 B2=AR*W(J,I)*OERF(AR2}*SIGN 
8=61+82 
F(J)=F(J)+G 

7 CONTINUE 
WRITE(6,2 )X(1),Fll),X(2),F(Z) 

203 FORMAT{11X,4(4X,014.7}) 
IF(K.GT.l.OO) GO TO 25 
X{1}=X(1)+O.200 
X(Z)=X{2J+C. 
IF(X(1).LE.l.6DO.AND.X(2).LE.l.6DO) GO TO 9 
WRITE(6,2J6) 

2 FORMAT(1121X,'X12',15X,'F12',15X,'X22',15X,'FZZ'/} 
00 20 I=l,M 
UA(I)=U8(I) 

20 S[GA(Il=SIGB(I) 
K=K+l 
GO TO 14 

25 X(l)=X(l)+C.IDO 
X(Z)=X(2)+O.lOO 
If{X(1).LE.O.800.AND.X(2).LE.O.BDOJ GO TO 9 
WRITE(6,600) 

600 FOR~AT(tl') 
STOP 
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PROBABILISTIC FORMULATIONS 

OF SOME LOCATION PROBLEMS 

by 

Adel Ahmed Aly 

(ABSTRACT) 

The area of facilities location covers a wide variety of problems 

involving both public and private sector applications. To date, the 

study of location problems has been restricted primarily to deterministic 

formulations of the problem. The present research effort investigates 

the effect of random variation on the location decision. 

Three location problems are considered: the single facility 

location problem, the multifacility location problem, and the emergency 

service location problem. The first two problems treated are defined 

as the generalized Weber problem, where the concern is to locate one or 

more new facilities in the plane relative to several existing facilities 

such that the expected total cost of item movements is minimized. The 

total cost function is considered to be a linear function of either the 

expected rectilinear or the Euclidean distance, as well as a quadrati~ 

function of the expected Euclidean distance. 

In the generalized Weber problem the locations of the existing 

facilities and the item movement between facilities are considered to be 

random variables. Two expected total cost formulations are presented; 

the first involves the product of the random variables, weight and 

distance; the second involves the random sum of each individual distance 

traveled. For each formulation, possible applications are discussed, 



theoretical properties are developed, and a solution procedure is 

provided. Each algorithm is programmed and optimal solutions are 

obtained for several example problems. A comparison between the 

probabilistic and deterministic solutions is provided. Both discretely 

and continuously distributed random variables are treated; however, 

for the case of continuously distributed random variables, the normal 

distribution is emphasized. Both constrained and unconstrained formu

lations are considered. 

In formulating the emergency service facilities location problems 

which are studied, random variation is assumed to be present due to the 

assumption that the location of an incident is a random variable 

occuring uniformly over a given region. Both discrete space and 

continuous space formulations are considered. For the discrete case, 

a covering criterion is employed and the deterministic equivalent 

problem is solved as a set cover problem. For the continuous case, the 

problem is solved as a location-allocation problem. In all formulations, 

the rectilinear norm is used to measure the distance traveled. An 

example is solved for each case to illustrate the impact of probabilistic 

aspects on the location decision. 


