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NOMENCLATURE

Algebraic combinations of the symbols M(mass),

L(length) and T(time) are used to indicate the units of the

quantities defined below.

h step height, L
My pressure basis functions
Ni velocity basis functions
* % 2
P dimensionless pressure coefficient, (P -PO) / pUO
* -
P pressure, ML 1'1‘2
* -1,2
P0 reference pressure, ML T
Re Reynolds number, (pUOh)/p
u dimensionless velocity component in the x-direction,
u /U
o
* -
u velocity component in the x-direction, LT !
U, reference velocity, Lt}
v dimensionless velocity component in the y-direction,
v /Uo
* -
v velocity component in the y-direction, LT 1
*
X dimensionless global coordinate, x /h
*
X global coordinate, L
y dimensionless global coordinate, y*/h
y* global coordinate, L
Greek Symbols
*
m dimensionless absolute viscosity, pu /uo
* . . 1.1
L absolute viscosity, ML °T
by reference absolute viscosity, VARl b
n dimensionless local coordinate corresponding to x



dimensionless local coordinate corresponding to y
*

dimensionless density, p /pO

density, ML~ 3

reference density, ML™3

xi



1. INTRODUCTION

Great strides have been made in the past sixteen
years in the application of the finite element method to
problems in fluid mechanics. As noted by Shen (1), the
first application appears to have been made by Martin (2),
who 1in 1968 generated a rather crude solution of the
potential flow over a circular cylinder. Today the liter-
ature abounds with reports of finite element solutions to
fully viscous problems in both two and, more recently,
three dimensions. This remarkable progress 1is due not
only to the rapid evolutionary development of more effi-
cient computational algorithms, but also to the 1large
strides made by the computer industry.

One of the problems often solved to demonstrate the
effectiveness of a given method of computation 1is the
confined, laminar flow over a downstream facing step.
This problem 1s chosen not only for its geometric simpli-
city and obvious practical value, but also because it
provides a good test of the ability of a computational
algorithm to track the growth of a free shear layer and
resolve secondary flows.

Among those who have reported the results of finite
element solutions to this problem are Bredif (3), Ecer (4)
anu Thomas (5). Bredif started with the stationary (time
independent) Navier-Stokes equations written 1in stream

function-vorticity form and generated weak or 1integral



forms using both conventional and unconventional (upwind)
Galerkin methods. In each case the finite dimensional
subspace of approximate solutions was generated by a set
of basis functions constructed from biquadratic Lagrange
interpolating fuunctions. Ecer, on the other hand, used a
variational formulation derived from a transformed, time-
dependent vorticity transport equation, where the spatial
variation of the independent variables was represented in
terms of piecewise-bilinear Lagrange polynomials. Like
Bredif, Thomas also experimented with the use of unconven-
tional Galerkin weighting functions to artificially dampen
oscillatory "solutions”™ at high Reynolds numbers. How-
ever, the variational form used by Thomas was expressed in
terms of the primitive variables u, v and p, and utilized
biquadratic and bilinear Lagrange interpolating functions
to construct the velocity and pressure approximation sub-
spaces, respectively.

The objective of the present effort was to investi-
gate the laminar flow over a backward facing step using an
alternative finite element method which, like the primi-
tive variable formulation by Thomas (5), could be readily
extended in the future to study three—dimensional flows,
but which did not require the a priori infusion of artifi-
ciél dissipation to admit solutions at high Reynolds
numbers. To this end a scheme recommended by Fortin (6)

based on its superior theoretical convergence properties



was utilized. Specifically, the computational algorithm
is based upon a .conventional Galerkin formulation in the
primitive variables u, v and p, where the subspace of
approximations to the velocity field consists of piecewise
biquadratic Lagrange polynomials, and the pressure field
-is represented by a discontinuous, plecewise linear
approximation. The details of the derivation of the weak
or variational form, the introduction of the spatial dis-
cretization, and the procedures wused to construct and
solve the resulting set of nonlinear, algebraic equations
are presented in the next chapter.

The results of the present computations are presented
in Chapter 3, where they are also compared to both the
prior calculations by Ecer (4) and Taylor (5), and to the
experimental data obtained by Denham and Patrick (7). The
results of a study to determine the causes and effects of
the noticeable lack of development and skewness that char-
acterized the Denham and Patrick data both at and upstream
of the step are also reported in Chapter 3. The conclu-
sions drawn from the results presented in Chapter 3 are

summarized in Chapter 4.



2., THE COMPUTATIONAL METHOD

The purpose of this chapter 1s to present the
derivation of the set of equations wused to generate
approximate solutions to the governing equations, and to

discuss the method used to effect their solution.

2.1 Governing Equations

The system of equations which is presumed to govern
the motion of a steady, constant property incompressible

Newtonian fluid can be written 1in stress—-divergence form

as
x % * % * *
p(u ¢ Vu)=V «3z (2.1)
* *
V .E =0 (2.2)
* * *
where the velocity vector u = (u , v ) in two dimensions,
and * *
du du
* * *
RS I S T ( L+ (2.3)
A ij
6xj axi

is the symmetric stress tensor. The asterisk (*) are used
to denote dimensional quantities.

In the discussions that follow, it is tacitly assumed
that solutions to the above set of equations exist and are

unique. These assumptions are not altogether unreasonable



however, as several rigorous proofs of these and other
properties of equations (2.1) through (2.3) have been
offered in recent years. For the details of these proofs
and the wunderlying assumptions, refer to References 8
through 10,

To facilitate both the solution of the governing
equations and the interpretation of the results, equations
(2.1) through (2.3) are recast in a nondimensional form.
This 1is done by dividing the dependent and independent
variables in the equations by constant reference
properties appropriate to the flowe. ~The reference
properties, and hence dimensionless variables, chosen 1in

the present work are those suggested by White (11):

*
« = i
i L
*
u
E-=-IJ—-
(o]
* *
P - P
P = 2° (2.4)
pOUO
*
- 2
o =
p0
*
=L
" "



Substitution of these new variables into equations (2.1)
through (2.3) and rearrangement of some of the terms

yields the following set of nondimensional equations:

p(u » Vu) =V -1 (2.5)
V ° 9- = O (206)
1 aui du .,
T TR &y e (T (axj * axi) (2.7)

where the Reynolds number, Re, is defined as

Re = -2 0 (2.8)

The boundary data needed to complete the mathematical

statement of the problem will be described in section 2.3.

2.2 Derivation of the Weak Form

In finite element analyses, the spatial
discretization 1is <carried out on a weak form of the
governing equations. This is 1in contrast to finite
difference methods where the approximations for the

derivatives are substituted directly into the governing



equations. Loosely speaking, a "weak” form of an equation
is a reformulation that 1is more "permissive” than the
original equation. Weak forms, for example, typically
admit solutions that do not satisfy the differentiability
requirements of the original equation. They can also be
constructed so that the requirements ©placed on the
smoothness of the boundary and the boundary data to ensure
unique solutions can be relaxed. These and other
properties of weak (or variational) formulations are very
useful from a practical standpoint, since they enlarge the
class of data for which a given problem makes sense.
Those motivated by physical rather than purely
mathematical arguments should refer to the interesting
discussion by Becker, Carey and Oden in Chapter 1 of
Reference 12.

The weak form of the governing equations used in the
present work 1s obtained wusing the standard Galerkin
method for mixed problems (13, 14). In this method the
motion equations are multiplied by any of the n velocity
basis functions, Ni’ that generate the n-dimensional space
from which the velocity approximations are chosen, and
then integrated over the domain Q. Thus, equation 2.5

becomes:

A

J o (u » Yu)N_dQ = [ (V « )N _dQ . (2.9)
Q - - 1 1

Q



An even weaker form of equation (2.5) can be obtained 1if
it is recognized that the right hand side of equation

(2.9) can be rewritten as
nde - [ (g« W.)de, (2.10)

and that the divergence theorem can be applied to the

first of these integrals to yield

DN, dQ = [0« (N, )T = [ (g « I,)de, (2.11)
= = i
Q r Q
where T denotes the boundary of Q and n is 1its outward
directed unit normal. Finally, substitution of equation

(2.11) into equation (2.9) yields the following weak form

of equation (2.5) used in the present work:

J p(u o Vu)N.dQ = [ n « (N,3)d T - [ (g » UN.)dQ. (2.12)
- =1 i< = i

Q r Q

The weak form (2.12) 1is preferred over that given by

equation (2.9) because it both relaxes the

differentiability requirements on I and hence on the

approximations for u and P, and introduces the so-called

"natural” boundary conditions. To complete the weak



formulation of the governing equations, equation (2.6),
which, as noted by Gresho in Ref. 13 implicity defines the
pressure, 1is first multiplied by any of the m pressure

basis functions M where m 1is the dimension of the

1’
pressure approximation space, and then it too is

integrated over the spatial domain Q:

J (Vv «u)M d@ =0 . (2.13)

As noted by Temam (9), solutions to equations (2.12) and
(2.13) are also solutions to equations (2.1) and (2.2)
provided the data for the problém is sufficiently regular
(smooth).

Two alternative categories of weak formulations of
equations (2.5) and (2.6) also in widespread use are the

"penalty” and ‘upwind” formulations. In penalty
formulations, the continuity equation (2.6) is dropped in

favor of representing the pressure by
P = - AV «u), (2.14)

where A is a 1large positive number specified a priori.
The rational behind this approach is explained in detail

in the paper by Reddy (15), and other pertinent
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discussions can be found in References 16 through 18 and
in the literature cited therein. The principal advantage
of this method is that the pressure variable is eliminated
and thus the overall number of equations to be solved
simultaneously 1is substantially reduced. The pressure
field is subsequently recovered in a relatively
inexpensive post-processing operation using equation
(2.14). The obvious disadvantage of this method is that
the computed results depend directly on ¢the a priori
choice of the penality parameter, A. If the selected
.value of A is too 1low, the 1incompressibility constraint
will not be satisfied and the resulting solution will be
erroneouse. If on the other hand A is chosen too high,
numerical stability problems develop owing to the fact
that the computations are performed with finite precision
arithmetic. As for the "upwind” or "Petrov-Galerkin”
formulations, e.g., References 5, 16, 19 and 20, these
methods are the same as that used to generate equations
(2.12) and (2;13) except that the functions Ni are not the
velocity basis functions; rather they are functions chosen
to introduce a certain amount of artificial damping so as

)

to yield oscillatory-free "solutions” on coarse grids. As
pointed out by Gresho (21), the theory behind the vast

majority of such formulations is not well founded and the
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results of computations using these techniques have been
shown to be grossly in error in certain circumstances. In
the present work both of these categories of alternative
formulations were passed over 1in favor of the more
conservative conventional Galerkin formulation, equations
(2.12) and (2.13).

To facilitate both the interpretation of the various
terms and the introduction of the spatial discretization
and subsequent recasting into matrix form, equations
(2.12), (2.13) and (2.7) are expanded in terms of two-

dimensional, rectangular, Cartesian coordinates:

du Su
é o[u o TV ay] N, de
N, oN
= £ N, f_dT - é (T % t Txy 3y JdQ  (2.15)
v Qv
é plu 35 + v ay]Ni de
N, aN
= g N, £, dT - é (ryx Ty 3y )dQ  (2.16)
and
- (s &y y40 =0 (2.17)
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where, as suggested by Gresho, the minus sign in equation

(2.17) is introduced to preserve symmetry,

- -Pr2E) 8 (2.18)
ey T Tyx = (ES) [%‘; + %] (2.19)
Ty = P+ 2(s) —% (2.20)
fX =0 Tex + ny Xy = n (-P + 2 (ﬁ;) %%)
+ o (E) (g—;‘ + %) (2.21)
and
o=, Tty o= (§5) (%3 )
+ng (<P o+ 208 %) . (2.22)

The 1last two equations give the x- and y- components,
respectively, of the surface traction force on the
boundary T'y and are referred to as the "natural"” boundary
conditions. These boundary conditions are very useful in
many practical problems and will be discussed in more

detail in the next section.
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2.3 Boundary Conditions

As noted by Gresho (13), the following boundary
conditions on T are consistent with the weak form used in

the present work and are thus permissible:

and

If the portions of T along which surface tractions
are specified are aligned with the x- and y-directions,
then fx and fy can be 1immediately identified with the

normal and tangential tractions

- du
= - B n
fn P + Z(Re) a (2.23)
and
" aun du -
fr = (Re) (3; * ) (2.24)

where n 1is the outward directed unit normal and <t is the
unit vector tangent to ' The traction-free form of these
boundary conditions, f and/or fT = 0, has proven to be

n

quite wuseful 1in obtaining solutions to problems of an
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engineering nature and are far more flexible than their

Neumann counterparts (%%, %%, %% or %% = 0) used in most

finite difference and some finite element methods such as
the one described in Reference 22. This is because the
zero—-traction boundary conditions do not force the
streamlines to have zero slopes at the boundaries where
they are imposed, and as such permit mass to leave and re-
enter the domain across these boundaries. This 1is very
useful from a practical standpoint, because in engineering
computations the positions of the surfaces outside which
the flow field is unaffected by the presence of a body, or
for internal flows, the location of the plane at which the
flow becomes fully developed, are generally unknown a
priori. Several excellent examples 1illustrating the use
of traction-free boundary conditions are contained 1in
References 13 and 21.

In the next section, the spatial discretization of
equations (2.15) through (2.17) 1is introduced, and the
resulting set of simultaneous, nonlinear, algebraic

equations is rewritten in matrix form.

2.4 Spatial Discretization and Matrix Formulation

As in the classical variational methods, eege

Rayleigh-Ritz, least squares, collocation or Galerkin, the
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spatial discretization is accomplished by replacing each
of the field variables by a linear combination of func-

tions and unknown coefficients:

The set of basis functions must be

T I
linearly independent and span the finite dimensional sub-
space Zp of the spacé Z in which solutions to the weak
form of the governing equations lie. That is, the {¢i}
must form a basis for the p-dimensional 1l1linear space Zp
containing the approximation zheZp to the true solu-
tion z € Z of the equations. Additional restrictions on
the basis functions, ¢1, to ensure that zh > 2 as
p » « will be presented in section "2.5.

The term spatial "discretization” stems from the fact

that 1in many cases the basis functions are chosen such

that
¢i(xj’ yi) = §5,. , (2.25)

1]

and thus

h h '
z, =z (xi, yi) =cy e (2.26)
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That is, in these instances the unknown coefficients to be
solved for turn out to be values of the approximate
solution at the p "discrete” points (xi, yi). It should
be noted that while it 1is wusually desirable to utilize
basis functions that satisfy equation (2.25) to avoid
having to post-process the computed results, it 1is not
necessary to do so. In the present work, for example,
while the velocity basis functions satisfy this property,
the pressure basis functions do not. This topic will be
taken up again in greater detail in section 2.5, where the
basis functions used here will be presented.

For the present, let {Ni} denote the set

i=1’2’...,n

of n basis functions wused in the velocity approximation

and (M the  basis for the m-dimensional

1}l=1,2,00-,m
pressure approximation space. Thus, approximate solutions

(uh, vh, Ph) to the true solution (u, v, P) of equations

(2.15) through (2.17) take the form

h n
u = I uy Ni , (2.27)
i=1
h n
v = T Vi Ni , : (2.28)
i=1
and
h m
P = Py Ml , (2.29)
=1
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so that the discretized form of equations (2.15) through
(2.17) becomes, upon substitution of equations (2.27)
through (2.29) into equations (2.15) through (2.22) and
the rearrangement and grouping of like terms:

N, ON, ON, ON

i
[é (/Re) (2 = o=+ oy ayj)dQ]u

deJp, = [ (N, £ )dr , (2.30)

+
—
~
b =
~
~
(1]
~
~—~
|
[\
[
\__l_:
[a %
Lo}
—
<

oy,
+ v é (p Nk Ni S;l)QQ]V
o
- [ [ M, )aelr, = £ (N; £,)dT ,  (2.31)
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and
oN, oN .,
- ! (y x-)a@ley - [ My % Jaelvy =0, (2.32)
where 1 and j = 1,2,e¢¢,n, £ = 1,2,¢¢¢,m and repeated

indices. imply summation. ° As noted by Gresho (13), these

equations can be written in the partitioned matrix form as

[k + N(u™1u® + [c] 2" = (F)
(2.33)
ic” LI
or
|
K+ N !¢ u E
------ 4 -== -—— = --- (2.34)
|
¢t 1o 2" 0
]
where the wunderscores "=" and "-" 1indicate that these
quantities are themselves matrices or vectors,

respectively. Specifically,
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[
NS -

=4

le
]
© eeoe

(2.35)

<
NI =D BT

<

G oo

==

B = ° ’ (2.36)

[F] is the 2nxl vector containing all the imposed traction
boundary conditions (refer to section 2.3), [K]
and [N(gh)] are the 2nx2n viscous stress and advection
matrices, respectively, [C] is the 2nxm pressure gradient
matrix and 1its transpose (c]T is the mx2n divergence
matrixe. To 1isolate groupings of 1like terms, these
matrices can in turn be partitioned into submatrices as

follows:
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1
]
a b |
[K] = |-====---- +
|
kT I K
[}
N (™) o+ N M)
[(N(u' )] =  |eece-ceco----
0
C
=x
[c] = --=1,
C
=y
and finally
F
L
[F] = ---1,
F
L.
where,
aNi oN .,
Kalyy = [ Gw/Re) (5= 570)a

-— - - -

s (2.37)
2K,
0
e ’
N b o+ N ™
(2.38)
(2.39)
(2.40)
(2.41)



and
[Fy]

The
pressure
2.34 1is
obtaining

nonlinear
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= R N
é (u/Re) (ay 3y Jde , (2.42)
3N, N
= é (w/Re) (35— zxT)de , (2.43)
)]ij = u é(p Ne Ny 3% JdQ , (2.44)
)]ij = v é (p NNy 3y Jde , | (2.45)
N,
= g; (-bx_ Ml)dQ , (2.46)
oN, _
= SJ; (?y—- Ml)dQ , (2.47)
= g (Ni fx)dF , (2.48)
= g(Nify)dP . (2.49)

problem of choosing combinations of velocity and
basis functions suitable for use with equation
discussed in the next section, while that of

solutions to this system of simultaneous,

equations is taken up in section 2.8.
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2.5 Selection of the Basis Functions

As pointed out by Prenter (23), the difference
between the finite element method and the other
variational-based techniques mentioned earlier in section
2.4 ;ies in the nature of the space of approximate
solutions, and hence 1in the basis functions wused to
construct them. In the classical variational methods, the
basis functions are chosen so as to generate a space of
approximate solutions consisting of polynominals on the
entire computational domain. Finite element approximate
solutions, on the other hand, are constructed from basis
functions that generate spaces of spline functions - 1low
order polynominal segments on portions or "elements"” of
the computational domain that are "pieced"” together to
give the spatial variation of a field variable over the
entire domain.

The basis functions used to construct spline
functions have two properties that are very desirable from
a computational viewpoint: (1) they automatically lead to
coefficient matrices that are sparse and banded; and (2)
they can bé built wup from “"interpolating functions”
defined on a local (typical spline segment) basis. The
first of these features is 1important because Dbanded

matrices can be manipulated so as to require far 1less
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storage and can be inverted with far fewer arithmetical
operationse. This is a direct consequence of the fact that
the basis functions used to construct splines have regions
of small compact support, i.e. they are zero everywhere
outside at most a few segments of the spline function.
The latter characteristic 1is very desirable as it paves
the way for the construction of algorithms for evaluating
the coefficient matrices in equation (2.34) that take full
advantage of their sparseness.

In general, the basis functions for a given problem
are chosen such that: (1) the domains of the outer-most
spline segments in the physical plane conform as closely
as possible to the shape of the boundary, T ; and (2) they

h

ensure that (EP, v, EP) + (u, v, P) in the limit as the

number of elements, and hence the dimension of the finite
dimensional subspace of approximate solutions, approaches
infinity. In the present work, the first criterion was
addressed with the aid of the isoparametric transformation
described in the next section, and the second by
demonstrating 'compliance with certain mathematical
guidelines that will now be discussed.

As noted by several authors, e.g. References (24)

through (28), one cannot mix together just any sets of

velocity and pressure basils fuunctions and expect to obtain
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a sequence of approximate solutions that converges to the
true solution of the wéak form in the 1limit as the
dimension of the subspaces of approximate solutions
approaches 1infinity. Some authors, e.g. Babuska (24),
Brezzi (25), Fix, et al. (26) and Gunzburger and Peterson
(27) have proposed rather abstract guidelines regarding
the choice of basis functions to assure such behavior.
Others, such as Fortin (6) and Sani (14, 29), have
presented practical schemes for determining whether or not
a given combination of solution subspaces meet these
guidelines.

The consensus of opinion among these authors appears
to be that to obtain a convergent sequence of solutions:
(1) the auxiliary data must be sufficiently smooth; (2)
the solution subspaces (and hence the basis functions)
must satisfy a stability or compatability condition such
as proposed by Babuska (24), Brezzi (25), Fix, et al. (26)

or Gunzeburger and Peterson (27); and (3) Vt}:ﬂ1

she 12 yh

(Q) and

<€ L and Sh are the finite dimensional

(Q) , where

velocity and pressure solution subspaces, respectively,

2

L (Q) is the set of all Lesbegue square 1integrable

functions on @, and Hl is defined as
2 YA dZ 2

Hl(Q) = {Z(r,s) € L° (Q): E:and 35 © L° ()} .
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The velocity basis functions used in the present work
are constructed from the piecewise biquadratic Lagrange
interpolating functions given in Table 2.1. These basis
functions lead to a continuous (C°) representation of the
velocity field on Q that is biquadratic on each element.
Note that the interpolating functions 1in Table 2.1 are
defined in terms of the normalized local coordinate system
depicted in Fig. 2.1. This is done to : (1) facilitate
the evaluation of the various integrals that comprise the
coefficient matrix in equation (2.34); and (2) take better
advantage of the repetitive nature of the calculationse.

The pressure field, on the other hand, is represented
by a discontinuous (C_l) approximation on Q that is linear
on each segment of ¢the spline function approximation.

That is, on each element
h
PP (x,y) = p; + pyx + pay , (2.50)

where the constants p), ) and p3 are not values of ph at
specified nodal points, as is the case for their
counterparts 1in the velocity expansion as discussed in
section 2.4, rather they should be thought of as just

three unknown coefficients associated with a given segment
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Table 2.1. Biquadratic Lagrange interpolating
polynomials used to construct the
velocity basis functions

i ﬁi(g)ﬂ)
1 (3 [(e)(g - D(mMn - 1]
1
2 (- ’2-)[(§+ (g = 1)(n)(n - 1)]
3 @ [+ DM - D]
4 (- 3 [+ (n+ (n- D]
5 () [(B)(g + D(m(n + D]
6 (-3 [(2+ (- D+ D]
1
7 () [(8)(g = DM+ 1)]
8 (- 3 [()(g = D(n+ (n - 1]
9

[Ce + 1D(g - D(n+ D(n - 1) ]
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Fig.

.1.

Local coordinate system and nodal
point numbering scheme.
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of the spline function approximation to P on Q.

The exact origin of this particular combination of
basis functions could not be ascertained. It was
previously used by Engleman and Sani (17) in conjunction
with a penalty formation of the equations, and Fortin
concluded that it "is probably the best one known for two-
dimensional incompressible computations” in his 1981 paper
(6) in which he compared the convergence and stability
properties of several combinations of basis functions in
use at that time.

The combinations of basis functions (element type)
reviewed by Fortin (6) are given in Table 2.2 along-with
other combinations commonly referred ¢to in the open
literature and reviewed during the course of the present
investigation. It is easily shown that all the
combinations presented in this table including the one
used here satisfy the conditions VQ:Hl and SW;LZ. However
only the first seven entries in this table have been shown
to satisfy one of the aforementioned compatibility or
stability conditiouns. The remaining entries have been
shown by Fortin (6) and Sani, (14,29) to fail such
conditions and have been observed by Gresho (13) and
others to yield physically unrealistic pressure

distributions under certain flow conditions. Thus, only
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Table 2.2. Summary of Lagrangian element configurations considered.

Designation Description ) Reference(s)
- s 2

T, - P bq 28

1 /ON

T, - p° . 28,30

2 o

Lo
~
N0
~—
|
J
=
(o)}

o
~

N R
N’

"

-

(@)

(£)_ .3
Q"= Py OQO, 6,17

(s) 4 ‘
Q' - P, Ij 5,13,22,31
(£)_ L4

Q, - Py D 13,32,33
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Table 2.2. (continued)

Designation Description

1
Ql - Po

(£)_

4
Q 2 Po

00

Symbols:

° velocity degrees of freedom
O pressure degree of freedom

P - pressure approximation
Q - quadrilateral velocity element

T - triangular velocity element

Subscripts:

0 - discontinuous approximation
1 - bilinear approximation

2 - biquadratic approximation
Superscripts:

f - full Lagrangian element

r - reduced approximation (6)

s - serendipity element

Integer - number of pressure degrees of freedom

Reference(s)

13,34

13,34
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the first seven entries 1in Table 2.2 received serious
consideration in the present work. The second order
method used here (entry 7) was chosen over the three
linear entries in this table because it was felt that it
would be better able to take advantage of the 1inherent
"quadratic” nature of the laminar flow velocity fields to
be 1investigated. It was wused 1in 1lieu of the other
quadratic elements presented because of 1its superior

convergence properties.

2.6 Isoparametric Transformation

- Perhaps the most common way of attempting to ensure
that the union of the domains of the 1individual spline
segments adequately approximates the shape of the physical
domain is to use a transformation that maps the
geometrically simple domains on which the interpolating
functions are defined 1nto distorted shapes in the
physical plane. Refer to Fig. 2.2. For the sake of
convenience, these transfo;mations are usually defined by

equations of the form:

P, m xS (2.51)

X(E,T]) = i

i

B

1

and
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@~
(o))

|

| 2 3
LOCAL TRANSFORMED,
COORDINATE PHYSICAL
SYSTEM —> PLANE

Fig. 2.2. Isoparametric coordinate transformation.
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S ope) (e)

}’(gn'ﬂ) = z Fi (5’7]) yi (2.52)
i=1

where & and n are the normalized coordinates in the

geometrically simple transformed plane, x and y the

corresponding coordinates in the distorted physical plane,

and xie) and yie) are the coordinates of the n nodal
points associated with element (spline segment) e in the
physical plane. If the functions Fie) (gym), £+ = 1, 2,

eee, n are chosen to be the same as the basis functions
used to represent the spatial variation of the main field
variables, u and v in the present case, then the mapping
expressed by equations (2.51) and (2.52) is referred to as
an "isoparametric” transformation. Such a transformation
is used in the present work, so that equations (2.51) and

(2.52) become, respectively:

9

x(g,n) = ﬁie)(i,n) xie) , (2.53)
i=1

and

9 —(e) (e)

y(g,m = = N (g, y,5, (2.564)
i=1

(e)

where the N (&,n) are the interpolating functions given

i

in the aforementioned Table 2.1 and the remaining
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variables are as defined above.

As will be shown in the next section, terms like

aﬁie)(i, n)
dx(E, n)

and

aﬁie)(gm, n)
a)'(ga Tl)

arise when equ;tions (2.41) through (2.49) are transformed
so as to enable the use of locally defined interpolating
functions. When this transformation is of the form of
equations (2.53) and (2.54), these derivatives are
evaluated using the following expressions which are
derived from a straightforward application of the chain

rule as shown, for example, in References 18, 35 and 36:

-~ - - - - -

<(e) =(e)
Ny "(&sn) ay(E,m) —ay(e, || (&)

dx(E,n) dn 0% 34
1

det 3¢%) (g, m)

<(e) <(e)
oNy (e —ax(z,m) ax(e, || (&)
dy (&, 1) | dn dE an

-t ln -

-

(2.55)

where g(e)(g,n) is the Jacobian matrix associated with the



35

transformation,

det J(e)(ﬁ,n) - (ax(i.n) by(i,n)) - (ay(?;Ln) ax(i,n)) ,

gn on 0k an
(2.56)
OX(E,n) 9 aﬁge)(«i.n) (e)
-—EE——— = ifl 3% xi , (2.57)
—=(e)
9 dN (&:n)
ax<§)|l) = i (e)
on 151 o xi , (2.58)
—=(e)
9 AN (i,n)
dy (e, m) _ i (e)
and
—(e)
oy (E,1m) _ ; Ny (B (e (2.60)
an (o1 an i :

It 1is also shown 1in these same references that the

incremental area dQ in the physical plane 1is related to
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the 1incremental area df dn in the normalized local

coordinate system by
- (e)
dQ = det J (&,n) d& dn (2.61)

2.7 Evaluation of the Coefficient Matrices

The procedure followed in the ©present work to
evaluate the coefficient matrices in equation (2.34)
parallels that presented in any basic text on the subject
of finite elements, e.g. References 18, 35 and 36.
Basically, it involves:

1. Partitioning the domain Q into a set of
subdomains or elements, {Q(e)}, where e runs
from one contiguously through the number of
elements. Each element corresponds to the
domain of a single segment of the spline
function approximatione.

2, Evaluating the element-level coefficient
matrices one at a time. These matrices are
formed and evaluated as described below.

3. Assembling the element~level coefficient
matrices to form the global coefficient matrices
in equation (2.34). The coupling between the

individual elements, which is ignored during the
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formation of the element-level matrices, 1is
introduced in this step.

The element-level coefficient matrices are formed by
simply restricting equation (2.34) to the domain of the
element under consideration. That 1is, the element-level
matrices retain the same form as their global equivalents,
however the domain of the 1integrals in the component

(e).

equations 1is re-interpreted as being Q As noted
earlier in secton 2.4, the process of evaluating the
components of the various coefficient matrices is
facilitated if the component equations are recast in a
normalized coordinate system and the basis functions are
replaced by the interpolating functions from which they

are constructed. Thus the element-level equivalents of

equations (2.41) through (2.47) become:

+1 +1 aﬁi(g,n) aﬁi(i,n)
[Ka]ij B _1I _1f (H/Re) 0x ox
det J(E,n) dgém, (2.62)
+1 +1 &Wi(i.n) aﬁi(a,n)
[Kb]ij = -1j _lf (u/Re) 5y 3y

det J(&,n) d&dn , (2.63)



38

+1 +1 aﬁi(g,n) aﬁ'j(a,n)
(Kolyy = _1f -1f (u/Re) dy ox
det i(g,n) d&dn , (2.64)
N +1 +1 _ _ N, (E,m)
N WDy = _1f pu, N (&,m) N (g, m) —=
det J(g,n) d&dn , (2.65)
) +1 +1 _ _ 3N, (&, n)
det J(&,n) dzdn , (2.66)
+1 +1 bﬁi(g,n)
[c 1y, = _lf . — 4,8
det g(i,n) d¢dn , (2.67)
and
+1 +1 aﬁi(g,n)
[Cy]il = _1f - TMX(E’T))
det J(g,n) d&dn , (2.68)

where i, j and k =1, 2, «.¢¢, 9 and 2 =1, 2, 3 for the
combination of basis functions used in the present work,

and as before, repeated indices imply summation.
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Note that the right hand sides of equation (2.62)
through (2.68) consist entirely of definite integrals of
the form

+1 +1
f [ £(g,n) det J(E,n) d&dn . (2.69)

-1 -1

For quadrilateral elements with opposite sides parallel
Qnd equal, the term det g(g;n) is a constant related to
the area of the element. As such it can be factored out
from under the 1integral sign, leaving an integrand that
can be 1integrated analytically using tables 1like those,
for example, in Huebner and Thornton (37). For the more
general isoparametric quadrilateral elements considered
here, however, det J(E,7n) is not a constant, but rather a
rational function, which 1in general cannot be integrated
analytically. It is for this reason that the integrals in
equations (2.62) through (2.68) are evaluated numerically.

The most widely utilized quadrature rule for
evaluating the components of the element coefficient
matrices when isoparametric elements derived from
quadrilaterals are employed appears to be the Gauss-—
Legendre numerical integration procedure (36,38). This 1is
because 1in general this method requires fewer function

evaluations to achieve a given accuracy than is required
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by other comparable methods commonly wused in numerical
analysis, e.g. the Newton-Cotes formulas (18,36). The
procedure 1is to simply.replace the definite integral in a
normalized coordinate system by a linear combination of
weights, Wi, and function evaluations at n specified
sampling (or "Gauss") points, Ei

+1

n
/] g(g)dg = ¢

g('a'i)w . (2.70)
-1 1

The positions of the sampling points and the corresponding
weights for n = 1, 2, «¢e, 4 are summarized in Table 2.3.
Gauss-Legendre quadrature 1s extended to multi-
dimensional integrations of the type encountered in the
present analysis by following the same procedure that one
would normally use to evaluate multi-dimensional
integrals, namely successively evaluate the integrals from
the iannermost one out, holding the variables associated
with the other integrals constant. Thus, for the two-

dimensional case we have

+1 +1 +1 +1

lf lf g(g,n) degdn = lf (lf g(g,m)dE) dn (2.71)
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Table 2.3. Sampling points and weights in the
Gauss-Legendre numerical integration
formulas

n Ei Wy

1 0.000000 2.000000

2 + 0.577530 1.000000

3 0.000000 0.888889
+ 0.774597 0.555556

4 + 0.339981 0.652145
+ 0.861136 0.347855
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+1 n _
= J (z g,mw,) dn
-1 i=1
n +1 _
= I W, [ g(g,,n) dn
i=1 ' -1 i
oW (£ s(E,m) W)
~ z W z g(F, "ﬂ.) W
i=1 i j=1 S N J

or, since the summation is over a finite number of terums,

+1 +1 n m

/ [ s(e,m dgdn ~ = I g(E,, mOW W, N (2.72)
-1 -1 i=1 j=1 J J

Finally, a note regarding the number of sample
points. Zienkiewicz (18) has suggested that at least 2x2
sampling points be used for parabolic quadrilateral
elements such as those 1incorporated 1in the present
analysise. Indeed he has shown that for two-dimensional
elasticity problems, the use of fewer than 2x2 sampling
points with the aforementioned class of elements leads to

a singular coefficient matrix. .Taylor and Hughes (22)
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reported that based wupon 'their experience 1in obtaining
solutions to the Navier-Stokes equations with a parabolic
quadrilateral element, 3x3 sampling points were generally
sufficiently accurate. In the present work, 4x4 sampling
points were used for the sake of added conservatism.

-

2.8 Solution Method

As shown in section 2.4, the spatial discretization
of the weak form of the governing equations results in a

set of simultaneous, nonlinear, algebraic equations of the

form

é(g) s =b , (2.73)
where

A(s) = [ai (s)] NEQxNEQ assembled

i coefficient matrix,
s = [Si] NEQxl column vector
of unknowns,
b = [bi] NEQxl column vector of

external forces,

and NEQ is the number of equations. The procedures used

to resolve the nonlinearities and solve the resulting set
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of linear, algebraic equations will now be presented.

2.8.1 Iterative Method

For nonlinear problems such as the present one, it 1is
a linearization or iteration that produces the set of
simultaneous, linear, algebraic equations that must
eventually be solved. Given that most practical problems
tend to involve literally thousands of equations, and that
good a priori estimates of the velocity field are seldom
available, the 1iterates must be generated by a method
that: (1) exhibits a high rate of convergence; and (2)
will converge with minimum sensitivity to 1initial
estimates, i.e., one with a large radius of convergence.

The four most widely heralded procedures for
generating such linearizations are: (1) successive
substitution or Picard iteration; (2) the Newton-Raphson
method; (3) the modified-Newton or chord method; and (&)
the so-called quasi-Newton methods. Each of these methods
will now be described.

The successive substitution method is a particularly
simple fixed point iterating scheme described by

(Si) s(i+1)

>

y 1 =0, 1, 2, ees & (2.74)
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That 1s, the updated estimates are obtained by solving a
system of equations which 1is 1linearized by wusing the
current estimates to evaluate the coefficient matrix. The
advantages of this method are: (1) unlike the other
procedures, the initial estimates do not have to satisfy
the boundary conditions; and (2) of the methods considered
here, it has by far the largest radius of convergence.
Thus it 1is often possible to start this procedure
with g? = 0. The disadvantage of this scheme is that in
many cases the'rate of convergence 1is relatively slow when
compared to that exhibited by the other methods.

In the Newton-Raphson method the updated estimates

are generatéed by

+ -
s st - aehHt et (2.75)
where L(si) is the NEQxl residual vector given by
s’y = ashHsh - b, (2.76)

and J(s ) is an NEQxNEQ Jacobian matrix defined by
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or (s1)  or (sh)
asi as;

arz(g_i) arz(g_i)
asi asz

brNEQ(gi) arNEQ
asi s,

which in the present work becomes (13)

(3¢styi

where

=

s nesh) + 36t

gT

! (s
i
asNEQ
i
e o0 arZ(g.)
i
asNEQ
i
e oo arNEQ(S )
i
aSNEQ
|
|
| C
-t ==
l ’
|
| 0
(gi)
shH
Nn de ,

(2.77)

(2.78)

(2.79)

(2.80)
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[J' (gi)] = [ o ol —£ x x40 R (2.81)
Q

! i i aNk 2.82
[va(s )]mn é vk ox Nm Nn e, (2. )
' . ON
. st =7 evi =£ x5 N a0, (2.83)

the remaining variables are as previously defined and
again, repeated indices imply summation. An alternative,

more convenient formulation 1s obtained by defining

i+l i

6s = s - s (2.84)
so that equation (2.75) becomes
8s. = - [J(_s_i)]'l r(sh) (2.85)
or
3(st) 8s = - r(sh) . . (2.86)

Note that while equations (2.74) and (2.86) have the same
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form, the solution of equation (2.86) yields a column
vector of adjustments to the results of the previous
iteration, not a solution vector. The solution vector for
each iteration is easily obtained however with the use of
equations (2.84).

The advantage of the Newton—-Raphson scheme is that it
has a rate of convergence that is usually superior to that
exhibited by the other 1lower order methods - its rate of
convergence 1is quadratic so long as the initial solution
vector is within its radius of convergencee. The
disadvantages of this method are (1) the initial solution
vector, go, must satisfy any constrained velocity degrees
of freedom; and (2) the radius of —convergence 1is
relatively small.

The modified-Newton or chord method is obtained if
the initial Jacobian matrix g(go) is used in place
of g(si) at each iteration. The obvious advantage of this
method is that only a single NEQxNEQ coefficient
matrix, g(go), must be constructed and inverted. Both the
successive substitution and Newton—-Raphson schemes require
the formation and 1inversion of a coefficient matrix at
each iteratione. Unfortunately, while the cost per
iteration for this method is significantly lower than that

of the other methods mentioned above, its convergence rate
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is very slow and a relafively good initial estimate that
satisfies any specified velocity boundary conditions 1is
required for this method to converge at all.

A compromise between the chord and Newton-Raphson
methods can be found in the so-called "quasi-Newton"”
algorithms. As noted by Burden (39), 1in this class of
methods the Jacobian matrix is replaced by an
"approximation” matrix which is inverted only once; from
then on it is adjusted in a relatively simple manner after
each 1itermnation. However, while the convergence rates
associated with such methods are significantly better than
that exhibited by the chord method, they generally do not
achieve the quadratic convergence rates characteristic of
the Newton-Raphson update procedure. In addition, 1like
the chord and Newton-Raphson methods, the quasi-Newton
methods also require a relatively good initial estimate of
the velocity field that satisfies any specified velocity
component boundary conditions.

It should be obvious from the above discussions that
no single 1iterative scheme satisfies both criteria set
forth in éhe beginning of this section. The method with
the largest radius of convergence (successive
substitution) has the 1lowest rate of convergence, and

conversely that which converges the fastest (Newton-—
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Raphson) requires the best initial estimate. It is for
this reason that two of the methods described above,
successive substitution and Newton-Raphson, were combined
to yield the update strategy used in the present work.
Specifically, the successive substitution method is used
first to bring the usually crude 1initial estimates
(eeg. 30 = 0) inside the radius of convergence of the
Newton-Raphson method, which 1s then used to accelerate
the convergence. As is demonstrated throughout Chapter 3,
this strategy proved quite effective 1in resolving the
nonlinearlities associated with- the problem considered

here.

2.8.2 Matrix Inversion Procedure

As shown in the previous section, at each iteration
both the successive substitution and Newton—-Raphson
procedures generate a linearization of equation (2.34)
that can be expressed in the same form as equation
(2.73). The methods used to effect solutions to equations
of this type can be divided into two categories: (1)
direct methods, and (2) indirect methods.

Direct methods are characterized by the fact that the
number of steps and operations required to solve equation

(2.73) can be predetermined in an exact manner. The most
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effective algorithms 1n this category are those based upon
applications of the Gauss elimination process (18, 36).
Of these, the L-U factorization method 1is the most
popular.

In the L-U decomposition method, the coefficient
matrix, é-, is/factored usiﬁg Gauss elimination such that

it can be written as the product of an NEQxNEQ 1lower

triangular matrix with unit diagonals and an NEQxNEQ upper

triangular matrix, i.e.,

é =L g (2.87)
where
—l 0 . 0 NEQxNEQ
L21 1 0 o o 0
L= 1. .
LLNEQ,I 0 « o . L
(2.88)

and
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Uy Ui coe U, NEQ | VEQRREQ
U = 0 Uz v Uy, NEQ
= 9 Q * . .
0 6 e ﬁNEQ,NEQ
- -
(2.89)
Thus, equation 2.73 becomes
LUs =r¢ (2.90)
or
Lw=rcr (2.91)

where w is introduced to faciiitate the solution process

and is obtained by solving the NEQxNEQ set of equations

represented by

(=]
|»
]
|=
.

(2.92)

Given the nature of the matrices g and E, it can be shown
(e.g, Reference 18) that the solutions to equations (2.91)

and (2.92), and hence (2.73), are given by
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w, =1,
i-1

wi = ri - jzl Lij wj (i = 2, 3, DI NEQ) (2.93)

and
Sveq ~ YnEQ/UNEQ,NEQ (2.94)
NEQ
s, = (w, = I U,. s.,)/U (i = NEQ-1,
i i : j=i+1 iJ J ii NEQ—Z, 0 0, 1) .

One reason this method is so popular 1is that the
triangular decomposition of A can be carried out 9on
"blocks"” or "zones” of A, using values of A only in the
block being reduced or values of L and g from previously
reduced blockse. This property is essential if the systenm
of equations is very large, as 1s often the case for many
practical problems. An excellent example of how the
triangularization is performed in this manner is presented
in the form of Table 24.13 of Zienkiewicz (18).

As for the 1indirect or 1iterative methods, e.g.,
Gauss-Seidel or Jacobi iteration, they are seldom used in
the finite-element analysis of the Navier-Stokes

equations. The reason is that these methods converge very
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slowly, if at all, when the coefficient matrix results
from a mixed formulation such as that used in the present
analysis. The rate of —convergence can be improved
significantly by the 1introduction of an over-relaxation
factore. Unfortunately, the optimum wvalue of this
parameter cannot be determined a priori and it does in
fact change, sometimes drastically, from one iteration to
the next. As such it is difficult to automate the process
of selecting the relaxation parameter, so that for this
class of methods to be competitive it is often necessary
that the computations be performed in an interactive
mode. This 1s usually considered to be simply too high a
price to pay for the only real advantage offered by
indirect methods - much lower central memory requirements.

As alluded to above, a direct (L-U decomposition)
method was used here to solve linearizations of equation
(2.34). Specifically, the out-of-core, profile algorithm
by Hasbani and Engleman (40) was used to perform both the
L-U decomposition and forward and backward
substitutionse. The solution procedure 1s described in
great detail 1in the aforementioned reference and 1is not
repeated here. However the terms "profile" and "out-of-

core” will now be defined for the sake of completeness.

The term "profile"” refers to the manner in which the
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components of the coefficient matrix, é, are stored.
Profile storage is one of the two schemes most widely used
to take advantage of the sparse and banded nature of
A . The other scheme 1is the so-called "banded"” method.
As is evident from Fig. 2.3, both of these storage modes
achieve their increased efficiency over the full storage
mode by taking advantage of the banded nature of A, and
are of use because zeros outside the first and last non-
zero elements in a given row (or column) do not need to be
stored to effect a solution of equation 2.73.

In the bandwidth storage mode, the destination
vectors (relationships between the local and global
degrees of freedom) are scanned prior to assembly to
determine a priori the distance between the first and last
possible non-zero entries in each row of A. The largest
such distance encountered, say NB, establishes the number
of columns 1in the compacted array and is usually referred
to as the "bandwidth” of A. Refer to Figs. 2.3 and
2.4, The reduction in the required storage for the
assembled coefficient matrix using this procedure, namely
(NEQ-NB)x(NEQ), is usually quite dramatic, for as pointed
out by Zeinkiewicz (18), in many practical applications it
is possible to assign the global node numbers so that NB

is only 10 to 20 percent of NEQ. Furthermore, if the
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coefficient matrix.
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Fig. 2.4. Compact storage modes for the coefficient matrix
in Fig. 2.3. '
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compacted global coefficient matrix 1s inverted using
algorithms taylored to this storage mode, the number of
operations and hence time required to obtain a solution to
equation 2.73 can be reduced substantially. For more
information on bandwith storage modes and solvers, refer
to the extensive bibliography presented by Meyer 1in
Reference 41.

As for the skyline or profile storage mode, it
appears to be the most efficient compact storage scheme
currently available. In this method the necessary
portions of the upper triangular part of the assembled
coefficient matrix are stored by columns and the lower
triangular protion by rows in a one-dimensional array as
shown in Fig. 2.4. A pointer array containing the
whereabouts of the diagonal elements 1in the profile
storage vector 1s also required. As is evident in Fig.
2.3 and noted by many authors, including Zeinkiewicz (18),
this mode of storage has several advantages over bandwidth
storage; (1) it always requires less storage (unless of
course the matrix is diagonal in which case it requires
the same amount); (2) the presence of a few very long non-
zero vrows or columns does not drastically alter the
storage requirements, and (3) it enables both the

triangular decomposition and substitution phases of the
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solution procedure to be expressed in terms of vector dot
products. This last fact 1s especially important if the
computations are performed on vector oriented machines
such as the CRAY or CDC-STAR.

"Out-of-core” profile solvers are algorithms in which
the proffie storage vector 1is stored 1in blocks on low
speed auxiliary storage, usually disk files. The blocks
are then brought into core, one at a time beginning with
the first one, and reduced in sequence. This is possible,
however, only 1if each block can be reduced using data
contained either within that block or within previously
reduced blocks. This in turn 1s made possible by the
manner in which the elements of A are stored in the
compacted storage arraye. The scheme depicted in Fig. 2.4
is an example of one such scheme that permits "blocking".

As mentioned above, the profile solver by Hasbani and
Engleman (40) is used here. This solver was chosen over
that provided by Bathe and Wilson (36) because it 1is an
out-of-core solver that wuses blocking to permit the
solution of very large systems of equations, aﬁd over that
given in Zeinkewicz (18) because it can be used to solve
problems involving unsymmetric coefficient matrices.
Again, refer to the aforementioned Reference 40 for the

specific details of the algorithm used here.



3. RESULTS AND DISCUSSION

In the following sections, the results of calcula-
tions performed using the method described in the previous
chapter are presented and discussed. For the sake of
clarity and ease of interpretation, this material will be
presented in two main segments. In the first, the results
of an analysis of the flow over a backward facing step are
presented and compared to both the results of other
calculations and to experimental data. The second seg-
ment, on the other hand, 1s devoted entirely to the
presentation of the results of a study to determine the
cause and effects of the .noticeable lack of development
and skewness that characterized the experimental data both
upstream of and at the step. Brief descriptions of all
the cases studied are given in Table 3.1.

Before proceeding with the details of the various
analyses, a few general comments are appropriate:

l. The Reynolds numbers quoted throughout this
Section and presumed to characterize the wvarious
flows are based on the height of the step and the
mean velocity just wupstream of the step. This
definition is consistent with that wused by Ecer
(4), Thomas (5), and Denham and Patrick (7) in
reporting their results.

2, The nodal point <coordinates and connectivity

arrays for all the computational grids used in the

60



Table 3.1. Summary of the cases run.

Run No. Mesh Reynolds Iterations Run Time Results Description
Elements Nodes Fig. Number S.S N-R CPU sec Fig(s).

101 50 231 3.2 73 2 5 63 3.6,3.9 Outflow boundary placement study.
102 64 291 3.3 73 2 5 81 3.7,3.10
103 78 351 3.4 73 2 5 102 3.8,3.11
201 312 1325 3.5 ) 73 2 6 1062 3.12,3.13 Grid density study.
301 411 1749 3.14 125 5 5 1119 ©3.15,3.18 Analysis step flow at the higher
302 411 1749 3. 14 191 3.16,3.19 Reynolds numbers.
303 411 1749 3. 14 229 5 10 1724 3.17,3.20
401 326 1401 3.23 73 2 6 641 3.25
402 516 2199 3.24 125 5 5 1304 3.26 Analysis of the Denham and
403 516 2199 3.24 191 S 6 1439 3.27 Patrick (7) working section.
404 516 2199 3.24 229 b 8 1704 3.28
501 551 2349 3.30 73 5 4 1254 3.31
502 551 2349 3.30 125 5 5 1386 3.32 Analysis of an alternative
503 551 2349 3.30 191 5 7 1680 3.33 working section design.
504 551 2349 3.30 229 5 8 1823 3.34
601 516 2199 3.24 229 5 7 1592 3.38
602 516 2199 3.24 229 10 5 1927 3.39 Inflow boundary condition
603 516 2199 3.37 229 5 ) 1733 3.40 sensitivity study.
701 516 2199 3.42 229 5 8 1712 3.44 Sensiti{vity to the geometry
702 516 2199 3.43 229 10 5 1925 3.45 of the fafring.

19
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various analyses were generated by the semi-automa-
tic mesh generator GEN2D by D. Pelletier (42).

The results of the various analyses are usually
presented in the form of velocity-vector and u-
velocity profile plots. The u-velocity profiles in
these figures were —constructed in segments by
interpolating the appropriate nodal point data with
the polynomials presented earlier in Table 2.1.
This was done to be consistent with the assumed
nature of the spatial variation of the velocity
field. The v-velocity components were neither
measured by Denham and Patrick nor reported by Ecer
or Thomas. In the present work they are therefore
relegated to the appendices.

The computational algorithm described 1in the
previous chapter was ©programmed in FORTRAN H
Extended and run on an IBM 3081 processor
complexe For each run, the number of iterations
and execution time required to ensure that the
maximum relative difference between the computed
velocities of two successive 1iterations was 1less
than 0.0l percent are given in the aforementioned
Table 3.1. In all the runs, the initial velocity

estimates, uo, were set to zero.
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3.1 Analysis of the Downstream Facing Step Flow

This section 1s devoted to presenting the results of
an analysis of the laminar flow over the backward facing
step depicted in Fig. 3.1. this particular geometry was
chosen because it afforded direct comparisons with both
the prior calculations by Ecer (4) and Thomas (5), and
more importantly, with the experimental data by Denham and
Patrick (7).

The experimental data of Denham and Patrick (7) con-
sists of measurements of the u-velocity profiles at the
step, 20 mm upstream of the step and 12, 30, 60, 90 and
120 mm downstream of the step. All the data reported was
taken with a Laser-Doppler—-Anemometer along the centerline
of the tunnel, which had a step-height to width ratio of
1:20. The measurements were made at Reynolds numbers of
73, 125, 191 and 229.

In addition to displaying the geometric details of
the step, Fig. 3.1 also shows the type and general loca-

tion of the boundary conditions used throughout the analy-

sis as:
u =0
on the solid boundaries,
v =0
u = ui(y)

on the inflow boundary,
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and

f

n 0

on the outflow boundary.

v 0

where the ui(y) at the nodal points on the upstream bound-
ary were obtained by 1linearly interpolating the experi-
mental data measured at x/h = - 1.333, and the zero normal

surface traction downstream boundary condition is as given

earlier by equation (2.23), i.e.,

ou
= - + __E —_—
fn P 2(Re) ox
In setting v = 0 on the outflow boundary, it was

tacitly assumed that this boundary is located sufficiently
far downstream of the step for this to 1indeed be the
case. For two-dimensional 1internal flows 1like the one
analyzed here, this 1is equivalent to stating that the
downstream boundary must be located in a region where the
flow field is fully developed. Unfortunately, the dis-
tance required for the flow to fully recover from the
sudden expansion was unknown a priori. The approach taken
here to resolve this paradox was to first choose a loca-
tion for the outflow boundary and then examine the results
of the ensuing calculation. If the results in the vicin-
ity of the outflow boundary exhibited the characteristics
normally associated with fully developed internal flows,

ee«gs, parabolic u- and zero v-velocity profiles together
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with zero spanwise and constant streamwise pressure gra-
dients, the analysis was pronounced successful. If the
results near the outflow boundary did not exhibit the
proper trends, the computational domain was extended and
another run was made. To illustrate this procedure, the
intermediate as well as final results of the analysis of
the step at Re = 73 will be presented. Only the final
results will be given here for the three higher Reynolds
number cases.

The computational grids used in the analysis of the
flow over the step depicted in Fig. 3.1 at Re = 73 are
presented in Figs. 3.2 through 3.5. As indicated by the
streamwise location of the last column of nodal points in
Fig. 3.2, the outflow boundary conditions were initially
applied at x/h = 8.0. The results of run 101, which are
presented and discussed below, 1indicated that the flow
field was not fully developed in this exit plane. Thus it
was necessary to repeat the calculations, this time using
the finite element mesh depicted as Fig. 3.3, and subse-
quently that presented as Fig. 3.4. Note that in each of
these cases, the computational domain was extended by
adding new elements rather than expanding existing ele-
ments. This was done in an effort to permit the effects
of boundary condition placement to be distinguished from
those attributable to grid density. These latter effects

were studied by comparing the results of run 103 with



Fig. 3.2. Finite element mesh with 50 elements and 231 nodal
points for run 101.
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Fig. 3.3 Finite element mesh with 64 elements and 291 nodal points
for run 102,
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Fig. 3.4. Finite element mesh with 78 elements and 351 nodal points
for run 103.
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Fig. 3.5.
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Finite element mesh with 312 elements and 1325 nodal points
for run 201.
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those obtained using the mesh depicted in Fig. 3.5. This
grid was obtained by dividing each of the elements of the
mesh presented in Fige. 3.4 in half in each direction.

The results of the computations on the grids shown in
Figs. 3.2 through 3.4 have been labeled the 100 series,
and are presented in the form of Figs. 3.6 through 3.8,
respectively. These figures 1illustrate not only the
excellent overall agreement between the calculated and
experimentally measured values, which are also shown in
these figures, but also that despite the fact the velocity
profiles continue to change until x/h > 12, as is evident
in Fig. 3.8, the wu-velocity profiles computed with the
mixed downstream boundary conditions applied at x/h = 8.0
and 12.0 are virtually indistinguishable from those of run
103. That is, very good velocity estimates were obtained
even when the mixed downstream boundary conditions were
applied in a plane at which the outflow was clearly not
fully developed. It is believed that this is so, because
the v-velocity components even as far upstream as x/h =
8.0 are very small, as is evident in Table 3.2, so that
little error is introduced into the calculations in the
vicin;ty of the downstream boundary, and even 1less up-
stream.

The fact that the outflow is not fully devz2loped
until x/h > 12 is perhaps better illustrated by the con-

tour plots of the dimensionless pressure coefficient shown
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Table 3.2. Computed (run 103) v-velocity

components at x/h = 8,0,
y/h v/Uo
0.0 0.0000
0.1 -0.0006
0.2 -0.0028
0.4 -0.0098
0.6 -0.0178
0.8  -0.0258
1.0 -0.0297
1.2 -0.0321
1.4 -0.0304
1.7 ~0.0226
2.0 -0.0136
2.3 ~0.0039
2.6 0.0001
2.8 0.0002

3.0 0.0000
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in Figs. 3.9 through 3.11l. These plots were generated by
SURFACE II (43), and show that spanwise or y-direction
pressure gradients exist until approximately 12.5 step-
heights dowanstream of the step. They also show that while
the general patterns exhibited by the contours remained
relatively fixed from one run to the next, the values
assigned to the contours shifted in the upstream direction

as the computational domain was extended. This behavior

was expected because specifying v = 0 on the downstream
boundary implies that %% = 0 also along this plane. This
in turn implies %% = 0 by virtue of the continuity equa-

tion, and reduces the traction free nornal boundary condi-
tion, Eq. (2.23), to P = 0 all along the downstream bound-
arye Since this is the only boundary on which the pres-
sure 1is, 1in effect, specified, 1t acts as a reference
value for the entire flow field. Thus, when the coméuta—
tional domain was extended, it shifted the position of the
reference pressure and hence the entire pressure field.

As noted earlier, the effects of grid density were
assessed by comparing the results of the runs using the
grids depicted in Figs. 3.4 and 3.5. The re;ults of run
103 were presented in the aforementioned Fig. 3.8, while
those of the analysis on the grid in Fig. 3.5 are given in
Fig. 3.12. Using the experimental data by Denham and
Patrick (7) as a reference, it 1is evident from these

figures that there 1is very 1little difference in the u-
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velocity components computed in runs 103 and 201, despite
the fact that the number of grid points was increased from
351 to 1325, This can also be seen by comparing the
entries in Table 3.3, which summarizes the results of runs
103 and 201 at corresponding nodal points in the plane x/h
= 5.0. The relative differences 1in the values for u,
given in this table are all less than 3 percent, while the
v-velocity components are identical. This 1is viewed here
as not only demonstrating the apparent convergence to the
true solution, but also as showing that very good results
for this problem can be obtained using the method describ-
ed in Chapter 2 even on relatively crude grids such as
those used in the 100 series runs. The results of run 201
are also presented in tabular form in Appendix A.l.

The only noticeable difference between the results of
runs 103 and 201 appears 1in the contour plots of the
dimensionless pressure coefficient, Figse. 3.11 and 3.13,
respectively. As might be expected, increasing the number
of grid points by nearly a factor of four resulted in much
smoother contours, especially in the vicinity of the reat-
tachment point.

All the runs at the higher Reynolds numbers were
performed using the finite element mesh depicted in Fig.
3.14. The particular details of this mesh were arrived at
using the iterative procedure described earlier in connec-

tion with the grids for the 100 series runs at Re=73, and



Table 3.3.

Comparison of the results of runs

103 and 201 at x/h

= 5.0

y Yio03 Y201 150170103/ 1007 V103 V201 "2007103 |10
h Y % Y201 ] Y% Y% Voor ]
0.0 0.00 0.00 0 0.00 0.00 0
. 0.00 0.00 0 0.007 0.007 0
0.02 0.02 0 ~0.01 ~0.01 0
0.13 0.13 0 -0.02 ~0.02 0
0.31 0.30 3 ~0.04 ~0.04 0
. 0.54 0.53 2 ~0.06 ~0.06 0
1.0 0.78 0.78 0 ~0.07 ~0.07 0
1.2 0.01 1.00 1 -0.09 ~0.09 0
1.4 1.18 1.17 1 ~0.09 ~0.09 0
1. 1.28 1.28 0 ~0.08 ~0.08 0
2.0 1.17 1.17 0 -0.07 ~0.07 0
. 0.86 0.86 0 ~0.04 ~0.04 0
: 0.45 0.46 2 ~0.01 ~0.01 0
. 0.20 0.20 0 0.00 0.00 0
. 0.00 0.00 0 0.00 0.00 0
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Computed (run 201) lines of constant pressure coefficient for Re = 73 on
the refined mesh (Fig. 3.5) with 312 elements and 1325 nodal points.
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by exteuding the results of the grid density study.

The combination velocity-vector/u-profile plots for
the runs at Reynolds numbers of 125, 191 and 229 are
presented in Figs. 3.15 through 3.17, respectively. These
figures also serve to illustrate the comparisons with not
only the experimental data by Denham and Patrick (7), but
also with the results of the earlier calculations by Ecer
(4) and Thomas (5). Unfortunately, the results of the
calculations by Ecer at Re=125 and 191, and by Thomas at
Re=125 and 229 were not reported in the cited references,
and as such do not appear in these figures. As was the
case for the results of the analysis at Re=73, Figs. 3.15
through 3.17 clearly demonstrate that the method presented
in Chapter 2 yields results that are in as good or better
agreement Qlth the available experimental data than those
of the earlier calculations by either Ecer or Thomas. The
computed nodal point velocity components and pressures for
runs 301, 302 and 303 at selected streamwise locations are
also presented in Appendices A.2, A.3 and A.4, respec-
tivelye.

The plots of the dimensionless pressure coefficients
for runs 301 through 303 are given in Figs. 3.18 through
3.20, respectively. As expected, the patterns formed by
the contours in each of these plots are essentially the
same as those that appeared in the pressure contour plots

presented earlier, e.g., Fig. 3.13. This 1s especially
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true 1in the vicinity of the outflow boundary, where the
patterns clearly indicate that in each case the outflow
boundary conditions were placed in a region where the flow

field was fully developed.

3.2 Analysis of the Initial Plane of Experimental Data

As is evident in Figs. 3.15 through 3.17 and noted by
Denham and Patrick (7), the experimental profiles that
served here as 1inflow boundary conditions exhibit a
noticeable lack of development and skewness that becomes
more pronounced with increasing Reynolds number. Denham
and Patrick suggested that the skewness was due to the
asymmetry of the contraction leading up to the step rather
than some upstream influence of the step itself. Refer to
Fig. 3.21. To test this hypothesis and at the same time
determine the sensitivity of the flow field downstream of
the step to the degree of development of the inflow bound-
ary data, the flows through two different flow sections,
one as used by Denham and Patrick and the other with the
step moved far downstream, were predicted and compared.
The purpose, procedure and results of each of the analyses

will now be presented and discussed.

3.2.1 Analysis of the Denham and Patrick Working Section

The Denham and Patrick (7) working secton is depicted

in Fig. 3.21. This section was analyzed to both demon-
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3.21. The Denham and Patrick (7) working section.
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strate the feasibility of modeling an entire working sec-—
tion using the method described in Chapter 2, and to
establish a basis for later comparisons.

The four runs that comprised this analysis, runs 401
through 404, were made at Reynolds numbers of 73, 125, 191
and 229, respectively, using the inflow boundary condi-
tions v = 0 and u = g(y), where g(y) is as depicted in
Fig. 3.22. Admittedly, this profile is perhaps overly
simplified. However it produces the same mass average
velocities in'the vicinity of the step as those reported
by Denham and Patrick, and it does have at 1least some
basis in theory-the central core of the flow field at the
exit plane of a properly designed nozzle is characterized
by constant u- and zero v-velocity components.

The finite element grid used in run 401 is depicted
in Fige. 3.23, while the extended grid depicted in Fig.
3.24 was used in the three higher Reynolds number runs in
this series. In this vein it should be noted that the
details of the manner ian which ‘the step test section was
faired into the floor of the tunnel were not available.
However, as will be shown in secton 3.2.3, the flow field
at and downstream of the step does not appear to be very
sensitive -to this parameter, provided of <course the
transition is not so abrupt that it induces separation.

The combination velocity-vector/u-velocity profile

plots for runs 401 through 404 are presented in Figs. 3.25
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analysis of the Denham and Patrick (7)
working section (runs 401-404).
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through 3.28, respectively. These figures clearly demon-
strate the feasibility of using the computational method
described 1in Chapter 2 to perform the two-dimensional
calculations required here. The computed velocity pro-
files shown in these figures not only qualitatively exhi-
bit the same lack of development and skewing that
characterized the experimental data in the vicinity of the
step, but also quantitatively are 1in very good overall
agreement with the available experimental data.

Figures 3.25 through 3.28 also indicate at least the
origin of the skewing in the velocity profiles at the
step—-the asymmetric contraction leading up to 1{it. How-
ever, the degree to which this behavior might have been
influenced by the presence of the step itself could not be
ascertained from these results alone. To determine this
it was ﬁecessary to compare the results presented in Figs.
3.25 through 3.28 with the corresponding results of an
analysis of a working section that was modified to, 1in
effect, remove any possible upstream influence of the
stepe. Both the results of the analysis of the modified
working section and the comparison with the results

presented here will be given in the next section.

3.2.2 Analysis of an "Alternate” Working Section Design

In this section, the results of an analysis of a

modified version of the Denham and Patrick (7) working
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section are presented and compared to those presented 1in
the previous section to determine: (1) .the extent to
which the initial plane of data was influenced by the step
itself, and (2) the sensitivity of the flow field down-
stream of the step to the degree of development of the
velocity field at the step.

The "alternate"” working section considered ‘here 1is
depicted in Fig. 3.29. As 1indicated by the broken 1line
segments, the modified configuration is identical to that
analyzed in the previous section except for the length of
the constant area section between the fairing and the
step. This dimension was doubled in the modified design
not only to shift any potential upstream influence of the
step 1itself further downstream, but also to alter the
degree of development of the velocity profiles in the
plane of the step.

The calculations performed to predict the flow
through the modified working section are labeled the 500
seriese. The boundary conditions and Reynolds numbers at
which these calculations were performed are precisely the
same as those employed earlier in the analysis of the as-
built working section. The only difference between the
400 and 500 series runs 1is that the 500 series finite
element mesh depicted in Fig. 3.30 required 35 more ele-

ments than the one used in runs 402 through 404 to account

for the additional length of constant area duct installed
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upstream of the step.

The results of this series of runs are presented in
the form of the combination velocity-vector/u-profile
plots given in Figs. 3.31 through 3.34. Comparing the
results of the 400 and 500 series runs, i.e., Figs. 3.25
through 3.28 and 3.31 through 3.34, respectively, indi-
cates that:

(1) Both the magnitude of ¢the skewness and the
degree of development of the experimental pro-
files at x/h = = 1.333, the 1location of the
initial plane of data, were unaffected by the
presence of the step itself. This, in essence,
confirms the hypothesis by Denham and Patrick
(7) that the noticeable skewness in the experi-
mental profiles at x/h = - 1.333 was caused by
the asymmetry of the contraction leading up to
the step rather than by some elliptic effect of
the step itself.

(2) The lack of development of the velocity profiles
at x/h = - 1.333 did indeed influence the velo-
city field well downstream of the step. The
lengths of the recirculating region behind the
step derived from the results of the 500 series
analyses, for example, were up to 15 percent
greater than either those reported by Denham and

Patrick or exhibited by the 100 through 400
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Continued on the next two pages.

working section design at Re

Patrick (7).
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series results.

specific details of the comparison that support

these conclusions are:

(1)

(2)

(3)

The corresponding 400 and 500 series velocity
profiles at x/h = - 1.333, are for all practical
purposes 1identical. This 1is perhaps better
illustrated in Table 3.4, which summarizes the
nodal point velocities from runs 404 and 504 in
this plane. Note that all the corresponding
entries in this table agree to within 2.4 per-
cente.

Using the experimental data as a reference, it
can be seen that the corresponding' velocity
profiles displayed in Figs. 3.25 through 3.28
and 3.31 through 3.34 downstream of the step are
noticeably different. Comparison of‘the entries
in Table 3.5 confirms this observation. This
table summarizes the computed nodal point velo-
cities from runs 404 and 504 in the plane eight
step—-heights downstream of the sudden expan-
sion. Note that the corresponding entries 1in
this table differ by as much as 143 percent.

As shown 1in Fig. 3.35, the length of the
recirculating region behind the step are from 4
to 16 percent longer in those cases where the

flow field upstream of the step was allowed to
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Table 3.4 Comparison of the results of the original
(run 404) and modified (rum 504) working

section analyses at x/h = - 1.333
y U404 Usgs, 19404 Usgsl 007
h Y % Y404 °
1.000 0.0000 0.0000 0.0
1.083 0.3083 0.3012 2.3
1.167 0.5745 0.5642 1.8
1.250 0.7963 0.7857 1.3
1.333 0.9732 0.9630
1.500 1.191 1.186 0.0
1.667 1.276 1.273 0.0
1.917 1.293 1.293
2,167 1.285 1.287
2.417 1.241 1.244 0.0
2.667 0.9790 0.9891 1.0
2.750 0.8016 0.8120 0.0
2,833 0.5739 0.5842 1.8
2.917 0.3040 0.3112 2.4

3.000 0.0000 0.0000 0.0
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Table 3.5 Comparison of the results of the original
(run 404) and modified (rum 505) working
section analyses in the plane eight step
heights downstream of the sudden expansion

y Y404 Usos U404 = Usos! Loo7
h Uo Uo U404 )

0.0000 0.0000 0.0000

0.1667 ~0.0510  -0.0684 34
0.333 0.0277  =-0.0120 143
0.5000 0.1988 0.1831 8
0.6667 0.4229 0.3483 18
0.8333 0.6613 0.5865 11
1.000 0.8837 0.8264 6
1.083 0.9750 0.9338 4
1.167 1.052 1.030 2
1.250 1.113 1.112 0
1.333 1.157 1.176 3
1.500 1.210 1.263 4
1.667 1.223 1.292 6
1.917 1.180 1.241 5
2.167 1.023 1.057 3
2,417 0.7044 0.7228 3
2.667 0.3229 0.3336 3
2.750 0.2138 0.2219 4
2.833 0.1223 0.1277 4
2.917 0.0506 0.0532 5

3.000 0.0000 0.0000
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Fig. 3.35. Variation of separation length with Reynolds number.
A , experimental inlet profiles (5); A,fully
developed inlet profiles (5); + , experimental data (7);
e , present calculations with experimental inlet pro-
files; o, present calculations of the flow through the
modified working section design.
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develop more fully. This trend was also report-
ed by Thomas (5), whose numerical predictions

are also presented in this figure.

3.2.3 Sensitivity Studies

As noted previously in section 3.2.1, to analyze the
Denham and Patrick working section it was necessary to
assume both the geometry of the fairing and the shape of
the inlet velocity profile. To determine the extent to
which the results of presented earlier in the vicinity of
the step might have been affected by the particular values
chosen for these parameters, two additional series of runs
were made. The first, or 600 series, was used to deter-—
mine the sensitivity of the flow near the step to changes
in the velocity field in the plane of the nozzle exit, x/h
= - 13.333, while the second (700 series) examined the
effects of altering the geometry of the fairing. The

results of each of these studies will now be presented and

discussed.

3.2.3.1 1Inlet Velocity Profile

In choosing the 1inlet profile used in the earlier
analyses, it was assumed that: (1) the flow at the en-
trance to the working section was free of the nonuniformi-
ties that are often present to at least some extent at the

exit plane of real nozzles, and (2) the initial boundary
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layer thickness on both the top and bottom walls of the
tunnel was 8.33 percent of the tunnel height. To deter-—
mine the extent to which these assumptions might have
affected the results of the 400 and 500 series runs, three
variations on the original inlet profile were constructed
and tested. As shown in Fig. 3.36, the inlet profiles for
runs 601 and 602 were constructed so as to shift the mass
flow towards the bottom and top of the tunnel, respective-
ly, without altering the degree of development of the
original profile. The inlet profile for run 603, on the
other hand, was more developed than that used in runs 401
through 504, but 1like the original profile is constant
between the segments near the walls representing the
boundary layers. The dimensionless mass averaged velocity
for each of the inlet profiles in this series 1is equal to
that of the original profile.

The finite element mesh used in runs 60l and 602 is
depicted in the aforementioned Fig. 3.24. This 1is the
same mesh used earlier in run 404. The computational grid
for run 603 was the same as that used in runs 601 and 602
except that the nodal. points were shifted towards the
walls to facilitate the implementation of the inlet velo-
city profile. Refer to Fige. 3.37. All three runs in this
series were made at Re = 229, the Reynolds number at which
any deviations from the results reported earlier would

have been expected to be the most pronounced.
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The significant results of the 600 series of runs are
shown in Figs. 3.38 through 3.40, where they are also
compared to the results of the earlier analysis, run 404,
in which the original inlet profile was used. As expect-
ed, and indeed hoped for, these figures clearly show that
while the u-veloclity components both upstream and in the
vicinity of ¢the fairing are noticeably different than
those of run 404, all the results displayed in these fig-
ures at and downstream of the initial plane of experi-
mental data are virtually indistiguishable. This is also
illustrated in Table 3.6, which summarizes the computed u-
velocity components for runs 404 and 601 through 603 at
the streamwise location of the initial plane of experi-
mental data. As can be seen by comparing the entries in
this table, the wmaximum relative difference betwee; the
600 series results and those of run 404 is only 1.9 pef—
cent. Thus, assuming the salient features of the actual
inlet profile were within the range of the parameters
tested, it can be concluded that the results and conclu-
sions presented earlier in section 3.2.2 are unaffected by
possible differences between the assumed and actual

(unknown) inlet profiles.

3.2.3.2 Geometry of the Fairing

The 700 series of runs was made to assess the sensi-

tivity of the flow near the step to the presumed details
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Table 3.6.

Comparison of u-velocities from runs 404, 601, 602
and 603 at x/h = - 1.333

y U404 U601 N Y602 . Y603 .

h UO Uo 601 UO 602 U0 603
1.000 0.000 0.000 .0 0.000 .0 0.000 0.0
1.083 0.308 0.313 1.6 0.303 1. 0.309 0.3
1.167 0.574 0.584 1.7 0.565 1.6 -——- -—-
1.250 0.796 0.810 1.8 0.782 1.7 —-—— -——
1.333 0.973 0.990 1.7 0.956 1.7 0.976 0.3
1.500 1.919 l1.211 1.7 1.171 1.7 1.193 0.2
1.667 1.276 l.244 1.259 1. 1.275 0.1
1.917 1.293 1.298 . 1.288 1.288 0.4
2.167 1.285 1.276 . 1.295 . 1.281 0.3
2.417 1.241 1.222 1.5 1.260 1.5 1.241 0.0
2.667 0.979 0.961 1.8 0.996 1.7 0.983 0.4
2.750 0.802 0.787 1.9 0.816 1.7 -—- -
2.833 0.574 0.563 1.9 0.584 1.7 -—- -——
2.917 0.304 0.299 l. 0.309 1.6 0.306 0.6
3.000 0.000 0.000 0.0 0.000 . 0.000 0.0
Note: L [|u404 - UXXX|/0404] x 100%

8ET
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of the manner in which the step test section was faired
into the floor of the tunnel. The two alternative geome-
tries selected for this study are shown in Fig. 3.41. As
is evident from this figure, the profiles for runs 701 and
702 were obtained by merely stretching and compressing the
shape originally assumed.

All the runs 1in this series were made at Re = 229
using the inlet velocity profile used earlier in runs 401
through 504. The finite element grids for runs 701 and
702 are presented in Figs. 3.42 and 3.43, respectively.
These grids are everywhere identical to that used earlier
in run 404, the basis for comparison for this series of
runs, except of necessity in the segment of the working
section leading up to the constant area section that forms
the stepe. The pertinent results of rums 701 and 702 are
displayed and compared to those of run 404 and in Figs.
3.44 and 3.45, respectively. These comparisons clearly
indicate that the alterations to the working section
geometry described above do not propagate far enough down-
stream to affect the results either near or downstream of
the step. This conclusion can also be drawn from the
comparison of the computed nodal point velocities present-
ed in the form of Table 3.7. As can be seen by comparing
the corresponding entries in this table, the nodal velo-
cities at x/h = - 1.333 do not vary by more than 1.3 per-

cente.
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Table 3.7 Comparison of computed u-velocity components

from runs 404, 701, and 702 at x/h = -1.333

y Y404 Y701 . Y702 .

h U v, 701 U 702
1.000 0.000 0.000 0.000 0.000 0.0
1.083 0.308 0.309 0.3 0.309 0.3
1.167 0.574 0.576 0.3 0.577 0.5
1.250 0.796 0.799 0.4 0.799 0.4
1.333 0.973 0.976 0.3 0.976 0.3
1.500 1.191 1.193 0.2 1.191 0.0
1.667 1.276 1.278 0.2 1.272 0.3
1.917 1.293 1.295 0.2 1.288 04
2.167 1.285 1.286 0.1 1.280 0.4
2.417 1.241 1.239 0.1 1.290 0.1
2.667 0.979 0.974 0.5 0.987 0.8
2.750 0.802 0.797 0.6 0.810 1.0
2.833 0.574 0.571 0.5 0.581 1.2
2.917 0.403 0.302 0.6 0.308 1.3
3.000 0.000 0.000 0.0 0.000 0.0

Note: By = (V404 - Uxxxl/U404] x 100%



4, SUMMARY

In Chapter 2, a finite element analysils was presented

in which:

l.

The weak or integral form of the governing
equations was generated by the standard Bubnov-

Galerkin method for mixed problems.

The finite dimensional subspace of velocity

approximations was generated by a set of basis
functions constructed from second order Lagrange
interpolating polynomials.

The spatial variation of the pressure field on
each element was represented in terms of a
discontinuous, linear approximation.

The set of nonlinear, algebraic equations resul-
ting from the spatial discretization of the
field equations was 1linearized by employing a
successive substitution method ¢to bring the
initial estimates 1inside the radius of conver-
gence of a Newton-Raphson scheme, which was then
used to accelerate the convergence.

The solution to the set of 1linear, algebraic
equations produced at each iteration by either
of the schemes just mentioned was obtained using
the out;of-core, profile type solver by Hasbani

and Engelman (40).

The method described above was used to predict the

146
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confined, laminar flow over a backward facing step, and to
determine the cause(s) and effects of the noticeable lack
of development and skewness that characterized the experi-
mental data both at and upstream of the step. The results
of the various analyses presented in Chapter 3, together
with the ensuing comparisons indicate that:

1. With the proper choice of basis functions, a
conventional Galerkin scheme such as the one
used here can yield results that are in as good
and in many cases better agreement with the
avallable experimental data than those of uncon-
ventional formulations that rely upon an infu-
sion of artifical dissipation to enhance their
numerical stabilityQ

2. As suggested originally by Denham and Patrick
(7), the skewness in their initial plane of data
was 1indeed caused by the asymmetry of the
contraction leading up to the step, rather than
by some elliptic effect of the step itself.

3. For a given Reynolds number, the flow field
downstream of the step 1is sensitive to the
degree of development of the velocity field just
upstream of the step. For example, it appears
that.enhancing the degree of development of the

velocity field at the step increases the length
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of the recirculating region behind it.

The flow field in the vicinity of the step does
not appear to be overly sensitive to either the
shape of the u-velocity profile at the inlet to
the working section, or to the manner in which
the step test section 1is faired iato the floor
of the tunnel. This latter observation is of
course predicated upon the assumption that the
transition is not so sharp as to induce separa-

tion.
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A.1 Results of the Analysis at RE = 73 (Run 201)

NODE NODAL COORDINATES VELOCITY COMPONENTS AVERAGE PRESSURES
NUMBER X/L Y/L U/00 v/vo (P-P0)/(RHOO*UQ**2)
1 -1.333D+00 3. 000D+00 0.0 0.0 -2.077D-02
2 -1.333D+00 2. 900D+00 3.500D-01 0.0 -2.137D-02
3 -1.333D+00  2.800D+00 6.000D-01 0.0 -2.368D-02
4 -1.333D+00 2. 700D+00 8.600D-01 0.0 -2.764D-02
5 =1.333D+00 2. 600D+00 1.020D+00 0.0 =3.223D-02
6 -1.333D+00  2.450D+00 1.250D+00 0.0 -4.109D-02
7 -1.333D+00 2. 300D+00 1.400D+00 0.0 -4.863D-02
8 =1.333D+00  2.15CC*00 1.480D+00 0.0 -5.867D-02
9 -1.333D+00 2. 000D+00 1.500D+00 0.0 -6.841D-02
10 -1.333D+00 1. 850D+00 1.440D+00 0.0 -7.795D-02
11 =1.333D+00 1. 700D+00 1.330D+00 0.0 -8.689D-02
12 -1.333D+00 1. 550D+00 1.150D+00 0.0 -9.291D-02
13 =1.333D+00 1. 400D+00 9.000D-01 0.0 -9.990D-02
14 -1.333D+00 1. 300D+00 6.900D-01 0.0 -1.021D-01
15 -1.333D+00 1. 200D+00 5.000D-01 0.0 -1.029D-01
16 -1.333D+00 1. 100D+00 2.500D-01 0.0 -1.030D-01
17 =1.333D+00 1. 000D+00 0.0 0.0 -1.033D-01
137 0.0 3. 000D+00 0.0 0.0 -9.125D-02
138 3.238D-17  2.900D+00 2.869D-01 -2.727D-03 -9.076D-02
139 -9.252D-18 2. 800D+00 5.519D-01 -9.341D-03 -9.022D-02
140 1.388D-17 2.700D+00 7.868D-01 -1.755D-02 -9.074D-02
141 -6.476D-17 2. 600D+00 9.863D-01 -2.570D-02 -9.109D-02
142 4.163D-26  2.450D+00 1.218D+00 ~-3.584D-02 -9.465D-02
143 -5.551D-17  2.300D+00 1.377D+00 -4.336D-02 -9.847D-02
144 -4.626D-18  2.150D+00 1.468D+00 -4.875D-02 -1.057D-01
145 4.163D-26  2.000D+00 1.492D+00 -5.215D-02 -1.130D-01
146 ~4.626D-17 1. 850D+00 1.450D+00 -5.298D-02 -1.220D-01
147 -6.014D-17 1. 700D+00 1.346D+00 -5.217D-02 -1.311D-01
148 -4.626D-17 1. 550D+00 1.179D+00 -4.799D-02 -1.398D-01
149 -4.626D-18 1. 400D+00 9.494D-01 -4.280D-02 -1.487D-01
150 -4.626D-18 1. 300D+00 7.657D-01 -3.564D-02 -1.540D-01
151 9.252D-18 1. 200D+00 5.533D-01 -3.226D-02 -1.614D-01
152 -5.089D-17 1. 100D+00 3.183D-01 -2.044D-02 -1.682D-01
153 0.0 1. 000D+00 0.0 0.0 -1.773D-01
369 8.000D-01 3. 000D+00 0.0 0.0 -1.004D-01
370 8.000D-01  2.900D+00 2.450D-01 -2.790D-03 -9.977D-02
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499 2. 000D+00 1. 200D+00 7.746D-01 -7.880D-02 -1.077D-01
500 2.000D+00 1. 100D+00 6.188D-01 -6.689D-02 -1.084D-01
501 2. 000D+00 1. 000D+00 4.687D-01 ~-5.459D-02 -1.091D-01
502 2.000D+00  9.000D-01 3.307D-01 ~-4.172D-02 -1.093D-01
503 2.000D+00  8.000D-01 2.088D-01 =-3.001D-02 -1.095D-01
504 2.000D+00 7.000D-01 1.055D-01 -1.973D-02 -1.093D-01
505 2.000D+00  6.000D-01 2.173D-02 -1.159D-02 -1.091D-01
506 2.000D+00  5.000D-01 -4.120D-02 -5.630D-03 -1.087D-01
507 2.000D+00  4.000D-01 -8.200D-02 -1.823D-03 -1.083D-01
508 2.000D+00  3.000D-01 -9.940D-02 1.012D-04 -1.081D-01
509 2.000D+00  2.000D-01 -9.202D-02  6.035D-04 -1.078D-01
510 2.000D+00 1.500D-01 -7.877D-02  5.244D-04 -1.078D-01
511 2. 000D+00 1. 000D-01 -5.905D-02  3.151D-04 -1.077D-01
512 2.000D+00  5.000D-02 -3.281D-02 1.322D-04 -1.07&D-01
513 2.000D+00 =-4.788D-16 0.0 0.0 -1.078D-01
601 4.000D+00 3. 000D+00 0.0 0.0 -4.293D-02
602 4.000D+00  2.900D+00 1.139D-01 ~-1.224D-03 -4.259D-02
603 4.000D+00  2.800D+00 2.438D-01 -4.897D-03 -4.225D-02
604 4.000D+00  2.700D+00 3.865D-01 -1.101D-02 -4.186D-02
605 4.000D+00  2.600D+00 5.374D-01 -1.920D-02 -4.146D-02
606 4.000D+00  2.450D+00 7.646D-01 -3.517D-02 -4,064D-02
607 4.000D+00  2.300D+00 9.726D-01 -5.225D-02 -3.974D-02
608 4.000D+00  2.150D+00 1.141D+00 -7.016D-02 -3.843D-02
609 4.000D+00  2.000D+00 1.259D+00 -8.422D-02 -3.706D-02
610 4.000D+00 1. 850D+00 1.318D+00 =-9.666D-02 -3.541D-02
611 4. 000D+00 1. 700D+00 1.32CD+00 -1.031D-01 -3.377D-02
612 4.000D+00 1. 550D+00 1.264D+00 -1.069D-01 -3.217D-02
613 4.000D+00 1. 400D+00 1.157D+00 -1.047D-01 -3.065D-02
614 4. 000D+00 1. 300D+00 1.060D+00 ~-1.013D-C1 -2.978D-02
615 4.00CD+00 1. 200D+00 9.477D-01 -9.567D-02 -2.897D-02
616 4. 000D+00 1. 100D+00 8.234D-01 -8.836D-02 -2.833D-02
617 4.000D+00 1. 000D+00 6.927D-01 -7.651D-02 -2.7722-02
618 4.000D+CO  9.000D-01 5.609D-01 -6.967D-02 -2.725D-02
619 4.000D+00  8.000D-01 4.327D-01 -5.924D-02 -2.679D-02
620 4. 000D+00 7.000D-01 3.127D-01 -4.857D-02 -2.642D-02
621 4.0050D+00  6.000D-01 2.050D-01 ~-3.813C-02 -2.63060-02
622 4.000D+00  5.000D-01 1.134D-01 -2.828D-02 -2.574D-02
623 4.000D+00  4.000D-01 4.134D-02 -1.931D-02 -2.541D-02
624 4.000D+00  3.000D-01 -8.241D-03 -1.157D-02 -2.512D-02
625 4.000D+G0  2.000D-01 -3.282D-02 -5.440D-02 -2.481D-02



626
627
628
629
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
833
834
835
836
837
838
839

N

000D+00

. 000D+00

000D+00
000D+00
000D+00

. 000D+00

000D+00

. 000D+00

000D+00
000D+00
000D+00
000D+00
000D+00
000D+00
000D+00

. 000D+00

000D+00

. 000D+00
. 000D+00
. 000D+00
. 000D+00

000D+00

. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00

000D+00
000D+00
000D+00
000D+00
000D+00

. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00

NROBPRPPRPPBRNMNLOMVEHEEFEDDOLOSEUVRANYNPOE R EFEEEBRRDODODRDRODPODRONDWE WV -

.500D-01
.000D-01

000D-02

.267D-16
. 000D+00
. 900D+00

800D+00

. 700D+00

600D+00
450D+00
300D+00
150D+00

. 000D+00

850D+00

. 700D+00
. 550D+00
. 400D+00
. 300D+00
. 200D+00
. 100D+00
. 000D+00
.000D-01
.000D-01

000D-01
000D-01
000D-01
000D-01
000D-01

.000D-01

500D-01
000D-01

.000D-02
.914D-16
. 000D+00
. 900D+00
. 800D+00
. 700D+00
. 600D+00
.450D+00
. 300D+00

157

.
OV WNHFPOOFHWLULINMHNNWEOANOOWIKMME 'S MM OSNWUVERNE OO O

.513D-02
.051D-02
. 884D-02
.0

0

.493D-02
.819D-01
.901D-01
.074D-01
.941D-01
. 807D-01
.517D-01
. 091D+00
. 187D+00
. 234D+00
. 229D+00
. 175D+00
. 113D+00
. 034D+00
403D-01
.360D-01
.247D-01
.111D-01
.991D-01
.929D-01
.958D-01
. 103D-01
.379D-01
898D-02
448D-02
.321D-02
.507D-02
0

0

.345D-02
732D-01
690D-01
.705D-01
.308D-01
.935D-01

-3.
-1.
-3.

0.

0.
-3.
-1.
-3.
-6.
-1.
-2.
-3.
-4
-5.
-6.
-6.
-7.
-7
-6.
-6
-6.
-5
-4.
-4
-3.
-2.
-1.
-1.
-5.

150D-03
420D-03
678D-04
0

0

034D-04
390D-03
443D-03
662D-03
388D-02
318D-02
437D-02

.496D-02

560D-02
281D-02
899D-02
054D-02

.081D-02

885D-02

.611D-02

153D-02

.628D-02

969D-02

.259D-02

480D-02
687D-02
903D-02
181D-02
756D-03

.384D-03
.558D-03
.067D-04
.0

0

.633D-04
. 862D-04
.376D-04
.195D-04
.518D-04
.263D-03

LI DR D R B IR IR )
(VRN IRV R TN SO SN S N

. 464D-02
.447D-02
.428D-02
. 409D-02
.152D-03
. 042D-03
.421D-04
.082D-04

142D-04

.626D-04
.299D-03
.404D-03
.627D-03
.001D-03
.247D-02
.631D-02
.00€D-02
.235D-02
.457D-02
.631D-02
. 802D-02
.920D-02
.035D-02
. 106D-02

174D-02

.212D-02

249D-02

.276D-02
.303D-02
.319D-02
. 335D-02

356D-02

.377p-02

447D-02

. 445D-02

442D-02
450D-02

.455D-02
.501D-02
.547D-02



840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861

. 000D+00
. 000D+00

000D+00
000D+00
000D+00
000D+00

. 000D+00
. 000D+00
. 000D+00

000D+00

. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00
. 000D+00

WU R WU O 00 0 b s s s b bt e e N

. 150D+00
. 000D+00
. 850D+00
. 700D+00
. 550D+00
. 400D+00
. 300D+00
. 200D+00
. 100D+00
. 000D+00
. 000D-01
.000D-01
.000D-01
.000D-01
.000D-01
.000D-01
.000D-01
. 000D-01
.500D-01
.000D-01
.000D-02
.331D-16

158

O WNIHFHNWEHEUO IO\ K I \D 0D

.490D-01
.841D-01
. 089D+00
. 153D+00
. 173D+00
. 149D+00
. 109D+00
. 052D+00
. 805D-01

974D-01

.056D-01
.090D-01

106D-01
133D-01

.192D-01

291D-01

.431D-01

604D-01
199D-01

.973D-02
. 980D-02

-7.
-1.
.791D-02
-2.
-2.
-3.
-3.
-3.
-3.

-1

-3

-6

-8

320D-03
247D-02

316D-02
754D-02
065D-02
193D-02
232D-02
202D-02

.080D-02
-2.
-2.
-2.
-1.
-1.
-1.

887D-02
608D-02
270D-02
873D-02
451D-02
024D-02

. 298D-03
-3.
-1.

030D-03
763D-03

. 060D-04
-2.
0.

021D-04
0

FPEPPPERPEPRPPEPPLLLLWLIN

.672D-02
.799D-02
.015D-02

235D-02

.499D-02
.761D-02
.925D-02
.088D-02
.221D-02
. 354D-02
. 448D-02
.541D-02
.599D-02
. 655D-02
.686D-02
.716D-02

734D-02

.752D-02
.761D-02

770D-02

.781D-02
.792D-02



159

A.2 Results of the Analysis at Re = 125 (Run 301)

NODE NODAL COORDINATES VELOCITY COMPONENTS AVERAGE PRESSURES
NUMBER X/L Y/L u/uo - V/VO (P-P0)/(RHOO*UQ**2)
1 -1.333D+00 3. 000D+00 0.0 0.0 =2.133D-02
2 -1.333D+00  2.917D+00 2.000D-01 0.0 =2.120D-02
3 -1.333D+00  2.833D+00 4.400D-01 0.0 -1.804D-02
4 -1.333D+00  2.750D+00 6.620D-01 0.0 -1.447D-02
5 -1.333D+00 2. 667D+00 8.300D-01 0.0 -1.250D-02
6 =1.333D+00  2.417D+00 1.211D+00 0.0 -1.316D-02
7 =1.333D+00  2.167D+00 1.368D+00 0.0 -1.572D-02
8 -1.333D+00 1. 917D+00 1.389D+00 0.0 -1.850D-02
9 -1.333D+00 1. 667D+10 1.315D+00 0.0 -1.852D-02
10 -1.333D+00 1. 500D+00 1.165D+00 0.0 -1.501D-02
11 -1.333D+00 1. 333D+00 9.200D-01 0.0 -1.236D-02
12 =1.333D+00 1. 250D+00 7.230D-01 0.0 -1.003D-02
13 -1.333D+00 1. 167D+00 5.530D-01 0.0 -4.727D-03
14 =1.333D+00 . 1.083D+00 3.350D-01 0.0 -4.722D-06
15 -1.333D+00 1. 000D+00 0.0 0.0 3.028D-04
91 0.0 3. 000D+00 0.0 0.0 -3.010D-02
92 -3.238D-17  2.917D+00 2.225D-01 -8.314D-04 -3.003D-02
93 -2.776D-17  2.833D+00 4.324D-01 -2.682D-03 -2.992D-02
94 =6.014D-17  2.750D+00 6.265D-01 -5.354D-03 -3.022D-02
95 9.252D-18  2.667D+00 8.015D-01 -8.687D-03 -3.009D-02
96 -9.252D-18  2.417D+00 1.188D+00 -1.670D-02 -3.474D-02
97 -3.701D-17  2.167D+00 1.367D+00 -2.334D-02 -4.026D-02
98 -6.939D-17 1.917D+00 1.401D+00 -2.183D-02 =5.030D-02
99 =3.701D-17 1. 667D+00 1.324D+00 -2.483D-02 -6.059D-02
100 -2.776D-17 1. 500D+00 1.181D+00 ~-1.942D-02 -6.849D-02
101 1.850D-17 1. 333D+00 9.346D-01 -2.332D-02 -7.667D-02
102 1.388D-17 1. 250D+00 7.634D-01 -1.727D-02 -8.028D-02
103 -3.701D-17 1. 167D+00 5.599D-01 -2.018D-02 -8.482D-02
104 2.313D-17 1. 083D+00 3.171D-01 -1.150D-02 -8.928D-02
105 3.701D-17 1. 000D+00 0.0 0.0 -9.244D-02
217 8.000D-01 3. 000D+00 0.0 0.0 -3.688D-02
218 8.000D-01  2.917D+00 2.031D-01 ~-1.245D-03 -3.670D-02
219 8.000D-01  2.833D+00 4.008D-01 -4.525D-03 -3.650D-02
220 8.000D-01  2.750D+00 5.882D-01 -9.175D-03 -3.665D-02
221 8.000D-01  2.667D+00 7.620D-01 -1.463D-02 -3.637D-02
222 8.000D-01  2.417D+00 1.155D+00 -2.889D-02 -4.017D-02
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