Choi, Jae-Young2023-08-252023-08-252023http://hdl.handle.net/10919/116130The present study focuses on developing an efficient and stable unmanned aerial system traffic management (UTM) system that utilizes a data-driven target tracking method and a distributed path planning algorithm for multiple Unmanned Aerial Vehicle (UAV) operations with local dynamic networks, which can provide flexible scalability, enabling autonomous operation of a large number of UAVs in dynamically changing environment. Traditional dynamic motion-based target tracking methods often encounter limitations due to their reliance on a finite number of dynamic motion models. To address this, data-driven target tracking methods were developed based on the statistical model of the Gaussian mixture model (GMM) and deep neural networks of long-short term memory (LSTM) model, to estimate instant and future states of UAV for local path planning problems. The estimation accuracy of the data-driven target tracking methods were analyzed and compared with dynamic model-based target tracking methods. A hybrid dynamic path planning algorithm was proposed, which selectively employs grid-free and -based path search methods depending on the spatio-temporal characteristics of the environments. In static environment, the artificial potential field (APF) method was utilized, while the $A^*$ algorithm was applied in the dynamic state environment. Furthermore, the data-driven target tracking method was integrated with the hybrid path planning algorithm to enhance deconfliction. To ensure smooth trajectories, a minimum snap trajectory method was applied to the planned paths, enabling controller tracking that remains dynamically feasible throughout the entire operation of UAVs. The methods were validated in the Software-in-the-loop (SITL) demonstration with the simple PID controller of the UAVs implemented in the software program.ETDapplication/pdfenCreative Commons Attribution-NonCommercial-NoDerivatives 4.0 InternationalUTMTrajectory modelingPath planningGaussian mixture modelDeep neural networkSoftware-In-The-Loop (SITL)Data-driven Target Tracking and Hybrid Path Planning Methods for Autonomous Operation of UAVDissertation