Narayanamurthi, Mahesh2021-07-232021-07-232020-01-29vt_gsexam:23877http://hdl.handle.net/10919/104357Simulation and optimization of complex physical systems are an integral part of modern science and engineering. The systems of interest in many fields have a multiphysics nature, with complex interactions between physical, chemical and in some cases even biological processes. This dissertation seeks to advance forward and adjoint numerical time integration methodologies for the simulation and optimization of semi-discretized multiphysics partial differential equations (PDEs), and to estimate and control numerical errors via a goal-oriented a posteriori error framework. We extend exponential propagation iterative methods of Runge-Kutta type (EPIRK) by [Tokman, JCP 2011], to build EPIRK-W and EPIRK-K time integration methods that admit approximate Jacobians in the matrix-exponential like operations. EPIRK-W methods extend the W-method theory by [Steihaug and Wofbrandt, Math. Comp. 1979] to preserve their order of accuracy under arbitrary Jacobian approximations. EPIRK-K methods extend the theory of K-methods by [Tranquilli and Sandu, JCP 2014] to EPIRK and use a Krylov-subspace based approximation of Jacobians to gain computational efficiency. New families of partitioned exponential methods for multiphysics problems are developed using the classical order condition theory via particular variants of T-trees and corresponding B-series. The new partitioned methods are found to perform better than traditional unpartitioned exponential methods for some problems in mild-medium stiffness regimes. Subsequently, partitioned stiff exponential Runge-Kutta (PEXPRK) methods -- that extend stiffly accurate exponential Runge-Kutta methods from [Hochbruck and Ostermann, SINUM 2005] to a multiphysics context -- are constructed and analyzed. PEXPRK methods show full convergence under various splittings of a diffusion-reaction system. We address the problem of estimation of numerical errors in a multiphysics discretization by developing a goal-oriented a posteriori error framework. Discrete adjoints of GARK methods are derived from their forward formulation [Sandu and Guenther, SINUM 2015]. Based on these, we build a posteriori estimators for both spatial and temporal discretization errors. We validate the estimators on a number of reaction-diffusion systems and use it to simultaneously refine spatial and temporal grids.ETDIn CopyrightTime integrationExponential integratorsAdjointsA posteriori Error EstimationAdvanced Time Integration Methods with Applications to Simulation, Inverse Problems, and Uncertainty QuantificationDissertation