Bai, Kang Jun2021-06-092021-06-092021-06-08vt_gsexam:31005http://hdl.handle.net/10919/103711Rapid advances in machine learning have made information analysis more efficient than ever before. However, to extract valuable information from trillion bytes of data for learning and decision-making, general-purpose computing systems or cloud infrastructures are often deployed to train a large-scale neural network, resulting in a colossal amount of resources in use while themselves exposing other significant security issues. Among potential approaches, the neuromorphic architecture, which is not only amenable to low-cost implementation, but can also deployed with in-memory computing strategy, has been recognized as important methods to accelerate machine intelligence applications. In this dissertation, theoretical and practical properties of a hybrid neural computing architecture are introduced, which utilizes a dynamic reservoir having the short-term memory to enable the historical learning capability with the potential to classify non-separable functions. The hybrid neural computing architecture integrates both spatial and temporal processing structures, sidestepping the limitations introduced by the vanishing gradient. To be specific, this is made possible through four critical features: (i) a feature extractor built based upon the in-memory computing strategy, (ii) a high-dimensional mapping with the Mackey-Glass neural activation, (iii) a delay-dynamic system with historical learning capability, and (iv) a unique learning mechanism by only updating readout weights. To support the integration of neuromorphic architecture and deep learning strategies, the first generation of delay-feedback reservoir network has been successfully fabricated in 2017, better yet, the spatial-temporal hybrid neural network with an improved delay-feedback reservoir network has been successfully fabricated in 2020. To demonstrate the effectiveness and performance across diverse machine intelligence applications, the introduced network structures are evaluated through (i) time series prediction, (ii) image classification, (iii) speech recognition, (iv) modulation symbol detection, (v) radio fingerprint identification, and (vi) clinical disease identification.ETDIn CopyrightNeuromorphic ArchitectureMachine IntelligenceDeep learning (Machine learning)Reservoir Computing NetworkDelay-Feedback Reservoir NetworkHybrid Neural NetworkInternet of ThingsMoving Toward Intelligence: A Hybrid Neural Computing Architecture for Machine Intelligence ApplicationsDissertation