Bae, Ki-Hwan2014-03-142014-03-142010-11-18etd-11302010-164945http://hdl.handle.net/10919/29811Air transportation offers both passenger and freight services that are essential for economic growth and development. In a highly competitive environment, airline companies have to control their operating costs by managing their flights, aircraft, and crews effectively. This motivates the extensive use of analytical techniques to solve complex problems related to airline operations planning, which includes schedule design, fleet assignment, aircraft routing, and crew scheduling. The initial problem addressed by airlines is that of schedule design, whereby a set of flights having specific origin and destination cities as well as departure and arrival times is determined. Then, a fleet assignment problem is solved to assign an aircraft type to each flight so as to maximize anticipated profits. This enables a decomposition of subsequent problems according to the different aircraft types belonging to a common family, for each of which an aircraft routing problem and a crew scheduling or pairing problem are solved. Here, in the aircraft routing problem, a flight sequence or route is built for each individual aircraft so as to cover each flight exactly once at a minimum cost while satisfying maintenance requirements. Finally, in the crew scheduling or pairing optimization problem, a minimum cost set of crew rotations or pairings is constructed such that every flight is assigned a qualified crew and that work rules and collective agreements are satisfied. In practice, most airline companies solve these problems in a sequential manner to plan their operations, although recently, an increasing effort is being made to develop novel approaches for integrating some of the airline operations planning problems while retaining tractability. This dissertation formulates and analyzes three different models, each of which examines a composition of certain pertinent airline operational planning problems. A comprehensive fourth model is also proposed, but is relegated for future research. In the first model, we integrate fleet assignment and schedule design by simultaneously considering optional flight legs to select along with the assignment of aircraft types to all scheduled legs. In addition, we consider itinerary-based demands pertaining to multiple fare-classes. A polyhedral analysis of the proposed mixed-integer programming model is used to derive several classes of valid inequalities for tightening its representation. Solution approaches are developed by applying Benders decomposition method to the resulting lifted model, and computational experiments are conducted using real data obtained from a major U.S. airline (United Airlines) to demonstrate the efficacy of the proposed procedures as well as the benefits of integration. A comparison of the experimental results obtained for the basic integrated model and for its different enhanced representations reveals that the best modeling strategy among those tested is the one that utilizes a variety of five types of valid inequalities for moderately sized problems, and further implements a Benders decomposition approach for relatively larger problems. In addition, when a heuristic sequential fixing step is incorporated within the algorithm for even larger sized problems, the computational results demonstrate a less than 2% deterioration in solution quality, while reducing the effort by about 21%. We also performed an experiment to assess the impact of integration by comparing the proposed integrated model with a sequential implementation in which the schedule design is implemented separately before the fleet assignment stage based on two alternative profit maximizing submodels. The results obtained demonstrate a clear advantage of utilizing the integrated model, yielding an 11.4% and 5.5% increase in profits in comparison with using the latter two sequential models, which translates to an increase in annual profits by about $28.3 million and $13.7 million, respectively. The second proposed model augments the first model with additional features such as flexible flight times (i.e., departure time-windows), schedule balance, and demand recapture considerations. Optional flight legs are incorporated to facilitate the construction of a profitable schedule by optimally selecting among such alternatives in concert with assigning the available aircraft fleet to all the scheduled legs. Moreover, network effects and realistic demand patterns are effectively represented by examining itinerary-based demands as well as multiple fare-classes. Allowing flexibility on the departure times of scheduled flight legs within the framework of an integrated model increases connection opportunities for passengers, hence yielding robust schedules while saving fleet assignment costs. A provision is also made for airlines to capture an adequate market share by balancing flight schedules throughout the day. Furthermore, demand recapture considerations are modeled to more realistically represent revenue realizations. For this proposed mixed-integer programming model, which integrates the schedule design and fleet assignment processes while considering flexible flight times, schedule balance, and recapture issues, along with optional legs, itinerary-based demands, and multiple fare-classes, we perform a polyhedral analysis and utilize the Reformulation-Linearization Technique in concert with suitable separation routines to generate valid inequalities for tightening the model representation. Effective solution approaches are designed by applying Benders decomposition method to the resulting tightened model, and computational results are presented to demonstrate the efficacy of the proposed procedures. Using real data obtained from United Airlines, when flight times were permitted to shift by up to 10 minutes, the estimated increase in profits was about $14.9M/year over the baseline case where only original flight legs were used. Also, the computational results indicated a 1.52% and 0.49% increase in profits, respectively, over the baseline case, while considering two levels of schedule balance restrictions, which can evidently also enhance market shares. In addition, we measured the effect of recaptured demand with respect to the parameter that penalizes switches in itineraries. Using values of the parameter that reflect 1, 50, 100, or 200 dollars per switched passenger, this yielded increases in recaptured demand that induced additional profits of 2.10%, 2.09%, 2.02%, and 1.92%, respectively, over the baseline case. Overall, the results obtained from the two schedule balance variants of the proposed integrated model that accommodate all the features of flight retiming, schedule balance, and demand recapture simultaneously, demonstrated a clear advantage by way of $35.1 and $31.8 million increases in annual profits, respectively, over the baseline case in which none of these additional features is considered. In the third model, we integrate the schedule design, fleet assignment, and aircraft maintenance routing decisions, while considering optional legs, itinerary-based demands, flexible flight retimings, recapture, and multiple fare-classes. Instead of utilizing the traditional time-space network (TSN), we formulate this model based on a flight network (FN) that provides greater flexibility in accommodating integrated operational considerations. In order to consider through-flights (i.e., a sequence of flight legs served by the same aircraft), we append a set of constraints that matches aircraft assignments on certain inbound legs into a station with that on appropriate outbound legs at the same station. Through-flights can generate greater revenue because passengers are willing to pay a premium for not having to change aircraft on connecting flights, thereby reducing the possibility of delays and missed baggage. In order to tighten the model representation and reduce its complexity, we apply the Reformulation-Linearization Technique (RLT) and also generate other classes of valid inequalities. In addition, since the model possesses many equivalent feasible solutions that can be obtained by simply reindexing the aircraft of the same type that depart from the same station, we introduce a set of suitable hierarchical symmetry-breaking constraints to enhance the model solvability by distinguishing among aircraft of the same type. For the resulting large-scale augmented model formulation, we design a Benders decomposition-based solution methodology and present extensive computational results to demonstrate the efficacy of the proposed approach. We explored four different algorithmic variants, among which the best performing procedure (Algorithm A1) adopted two sequential levels of Benders partitioning method. We then applied Algorithm A1 to perform several experiments to study the effects of different modeling features and algorithmic strategies. A summary of the results obtained is as follows. First, the case that accommodated both mandatory and optional through-flight leg pairs in the model based on their relative effects on demands and enhanced revenues achieved the most profitable strategy, with an estimated increase in expected annual profits of $2.4 million over the baseline case. Second, utilizing symmetry-breaking constraints in concert with compatible objective perturbation terms greatly enhanced problem solvability and thus promoted the detection of improved solutions, resulting in a $5.8 million increase in estimated annual profits over the baseline case. Third, in the experiment that considers recapture of spilled demand from primary itineraries to other compatible itineraries, the different penalty parameter values (100, 50, and 1 dollars per re-routed passenger) induced average respective proportions of 3.2%, 3.4%, and 3.7% in recaptured demand, resulting in additional estimated annual profits of $3.7 million, $3.8 million, and $4.0 million over the baseline case. Finally, incorporating the proposed valid inequalities within the model to tighten its representation helped reduce the computational effort by 11% on average, while achieving better solutions that yielded on average an increase in estimated annual profits of $1.4 million. In closing, we propose a fourth more comprehensive model in which the crew scheduling problem is additionally integrated with fleet assignment and aircraft routing. This integration is important for airlines because crew costs are the second largest component of airline operating expenses (after fuel costs), and the assignment and routing of aircraft plus the assignment of crews are two closely interacting components of the planning process. Since crews are qualified to typically serve a single aircraft family that is comprised of aircraft types having a common cockpit configuration and crew rating, the aircraft fleeting and routing decisions significantly impact the ensuing assignment of cockpit crews to flights. Therefore it is worthwhile to investigate new models and solution approaches for the integrated fleeting, aircraft routing, and crew scheduling problem, where all of these important inter-dependent processes are handled simultaneously, and where the model can directly accommodate various work rules such as imposing a specified minimum and maximum number of flying hours for crews on any given pairing, and a minimum number of departures at a given crew base for each fleet group. However, given that the crew scheduling problem itself is highly complex because of the restrictive work rules that must be heeded while constructing viable duties and pairings, the formulated integrated model would require further manipulation and enhancements along with the design of sophisticated algorithms to render it solvable. We therefore recommend this study for future research, and we hope that the modeling, analysis, and algorithmic development and implementation work performed in this dissertation will lend methodological insights into achieving further advances along these lines.In CopyrightItinerary-based DemandsCrew SchedulingAircraft Maintenance RoutingFleet AssignmentReformulation-Linearization Technique.Airline Operations ResearchIntegrated Airline OperationsMixed-Integer ProgrammingPolyhedral AnalysisBenders DecompositionSchedule DesignIntegrated Airline Operations: Schedule Design, Fleet Assignment, Aircraft Routing, and Crew SchedulingDissertationhttp://scholar.lib.vt.edu/theses/available/etd-11302010-164945/