Smith, Alana J.Tasnim, NoorPsaras, ZachGyamfi, DaphneMakani, KrishnaSuzuki, Wendy A.Basso, Julia C.2024-06-072024-06-072024-01-26Smith, A.J., Tasnim, N., Psaras, Z., Gyamfi, D., Makani, K., Suzuki, W.A., Basso, J.C. Assessing Human Spatial Navigation in a Virtual Space and its Sensitivity to Exercise. J. Vis. Exp. (203), e65332, doi:10.3791/65332 (2024).https://hdl.handle.net/10919/119345Spatial navigation (SN) is the ability to locomote through the environment, which requires an understanding of where one is located in time and space. This capacity is known to rely on the sequential firing of place cells within the hippocampus. SN is an important behavior to investigate as this process deteriorates with age, especially in neurodegenerative disorders. However, the investigation of SN is limited by the lack of sophisticated behavioral techniques to assess this hippocampal-dependent task. Therefore, the goal of this protocol was to develop a novel, real-world approach to studying SN in humans. Specifically, an active virtual SN task was developed using a cross-platform game engine. During the encoding phase, participants navigated their way through a virtual city to locate landmarks. During the remembering phase, participants remembered where these reward locations were and delivered items to these locations. Time to find each location was captured and episodic memory was assessed by a free recall phase, including aspects of place, order, item, and association. Movement behavior (x, y, and z coordinates) was assessed through an asset available in the game engine. Importantly, results from this task demonstrate that it accurately captures both spatial learning and memory abilities as well as episodic memory. Further, findings indicate that this task is sensitive to exercise, which improves hippocampal functioning. Overall, the findings suggest a novel way to track human hippocampal functioning over the course of time, with this behavior being sensitive to physical activity training paradigms.21 pagesapplication/pdfenCreative Commons Attribution-NoDerivs 3.0 United StatesAssessing Human Spatial Navigation in a Virtual Space and its Sensitivity to ExerciseArticle - RefereedThe Journal of Visualized Experimentshttps://doi.org/10.3791/65332203