Jin, Ji-yun2015-07-092015-07-091985http://hdl.handle.net/10919/54304Greenhouse and laboratory experiments were conducted to investigate the distribution of native B, the availability of native and applied B in 14 Virginia soils and the specific reactions of B in soil and hydroxy Al and Fe systems. Total B in the 14 soils ranged from 21.5 to 96.3 mg kg⁻¹. Only a small portion of the total B was in soil solution, non-specifically and specifically adsorbed forms and Mn minerals. These fractions of B are readily available to plants. A large part of the total B was associated with non-crystalline and crystalline Al and Fe minerals and soil silicates. These forms of B contribute little to B absorption by plants. Hot water soluble B, NH₄-acetate extractable B, mannitol exchangeable B and Mehlich III extractable B from the soils closely correlated with the concentrations in corn plants from native B in the greenhouse experiment. A yield response of corn plants to B application did not occur on the soils. Both tissue B concentration from applied B and maximum B adsorption by the soils closely correlated with soil clay, hydroxylamine hydrochloride extractable Mn and NH₄—oxalate (pH 3.25) extractable Al and Fe (under UV light). These data indicated that soil clay and Al-, Fe- and Mn-oxides and hydroxides have high affinities to adsorb B in plant unavailable forms. Boron adsorption on both gibbsite and goethite was pH and temperature dependent. At pH 6.5, boric acid was major species in the system and B was absorbed by the negatively charged surface of gibbsite and the positively charged surface of goethite. At pH 10, borate was primarily species in the system and B was adsorbed on negatively charged surfaces of both minerals. Boron adsorption was greater at pH 10 than at pH 6.5. An increase in temperature increased B adsorption on both minerals at both pH levels. This indicated that the B adsorption was an exothermic process. Boron adsorption on gibbsite and goethite shifted the ZPC of the minerals downward. This verified that specific B adsorption occurred on the surfaces. Aluminum substitution in goethite increased the affinity of the surface for B adsorption.xi, 134 leavesapplication/pdfen-USIn CopyrightLD5655.V856 1985.J56Soils -- Boron content -- VirginiaBoron -- Absorption and adsorption -- ExperimentsBoron chemistry in selected Virginia soils and hydroxy aluminum and iron systemsDissertation