Nguyen, Tam2022-06-092022-06-092022-06-08vt_gsexam:35122http://hdl.handle.net/10919/110509Fusobacterium nucleatum is an anaerobic, Gram-negative, oral bacterium that disseminates from the mouth, and contributes to preterm birth, tissue infections, and acceleration of multiple cancers including colorectal and pancreatic. It is well-established that most Fusobacterium species exhibit genetic recalcitrance, which has led to hindrance in the understanding of their biology and molecular pathogenesis. Though the association of Fusobacterium in diseases is well-established, the majority of our experimental work stems from the strain F. nucleatum ATCC 23726 because it is genetically tractable. Here, in this dissertation, we show that we are able to enhance our existing molecular tools for genome editing to introduce the first mutants in a clinically relevant strain, F. nucleatum ATCC 25586, a feat that was never accomplished in decades of trying. Furthermore, we created a deletion library of genes predicted to be involved in host cellular invasion and survival. In this work, we identified a novel small adhesin, FadA2, that played a significant role in the invasive ability of F. nucleatum ATCC 25586 to colorectal cancer cells. This dissertation also sheds the first insight into the roles of the type 5a autotransporters. Using a deletion library of genes encoding for the type 5a autotransporter proteins in F. nucleatum ATCC 23726, we systemically characterized altogether 12 type 5a proteins with a focus on the invasion of colorectal cancer cells. Most notably, we found that a wide assortment of type 5a proteins contributing to binding and invasion of F. nucleatum to HCT116 cancer cells. Furthermore, we identified that RadD was not directly involved in inducing secretions of the cytokines IL-8 and CXCL1 while confirmed the specific association of Fap2 in bacterial-induced cytokine secretion. Thus, our findings provided the first comparative and functional analysis of Fusobacterium type 5a autotransporter proteins in colorectal cancer cells which will be crucial to the understanding of Fusobacterium involvement in cancer progression. Finally, this dissertation reported on the first ever observation on the survival strategy of Fusobacterium inside the host cells. We uncovered a novel protein that contributed to enhanced survival of Fusobacterium residing in colorectal cancer cells. This work undoubtedly helps expand the current Fusobacterium genetic toolkit to study proteins and mechanisms relevant to Fusobacterium-accelerated diseases. By identifying and characterizing novel virulence strategies that Fusobacterium can take advantage of, we can increase our comprehension on this opportunistic microbe while devising innovative therapeutic treatments.ETDenIn CopyrightFusobacteriumgenome editingcellular invasionhost-pathogen interactionmolecular biologycolorectal cancerDecoding novel virulence strategies in Fusobacterium invasion and survivalDissertation